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Abstract Accumulating evidence indicates that N2O emission factors (EFs) vary with nitrogen additions
and environmental variations. Yet the impact of the latter was often ignored by previous EF determinations.
We developed piecewise statistical models (PMs) to explain how the N2O EFs in agricultural soils depend upon
various predictors such as climate, soil attributes, and agricultural management. The PMs are derived from a
new Bayesian Recursive Regression Tree algorithm. The PMs were applied to the case of EFs from agricultural
soils in China, a country where large EF spatial gradients prevail. The results indicate substantial improvements
of the PMs compared with other EF determinations. First, PMs are able to reproduce a larger fraction of the
variability of observed EFs for upland grain crops (84%, n=381) and paddy rice (91%, n=161) as well as the
ratio of EFs to nitrogen application rates (73%, n=96). The superior predictive accuracy of PMs is further
confirmed by evaluating their predictions against independent EF measurements (n=285) from outside China.
Results show that the PMs calibrated using Chinese data can explain 75% of the variance. Hence, the PMs
could be reliable for upscaling of N2O EFs and fluxes for regions that have a phase space of predictors similar to
China. Results from the validated models also suggest that climatic factors regulate the heterogeneity of EFs in
China, explaining 69% and 85% of their variations for upland grain crops and paddy rice, respectively. The
corresponding N2O EFs in 2008 are 0.84± 0.18% (as N2O-N emissions divided by the total N input) for upland
grain crops and 0.65± 0.14% for paddy rice, the latter being twice as large as the Intergovernmental Panel on
Climate Change Tier 1 defaults. Based upon these new estimates of EFs, we infer that only 22% of current arable
land could achieve a potential reduction of N2O emission of 50%.

1. Introduction

Reactive nitrogen (Nr) entering agricultural soils from fertilizer applications worldwide results into a 43%–56% of
global anthropogenic N2O emissions [Emission Database for Global Atmospheric Research, 2014; Saikawa et al.,
2014]. This contribution is likely to increase in countries with intensive agricultural systems [e.g., China; Zhou
et al., 2014]. The nitrogen application rate (N) is an effective estimator of N2O emissions and has been used to
construct most national reports based on a fertilizer-induced emission factor (EF) approach [Intergovernmental
Panel on Climate Change (IPCC), 2006]. According to IPCC methodology, the EF is calculated as the difference
between N2O emissions at an application rate and a control experiment with zero N divided by N. The EFs in
IPCC Tier 1 are 1% for upland grain crops and 0.3% for paddy rice [IPCC, 2006].

These EF values of 1% and 0.3% are assumed to remain constant. However, considerable evidence from field
experiments and meta-analysis demonstrates that EFs differ largely from the IPCC defaults and change with
nitrogen additions, cultivation practice, and environmental conditions [McSwiney and Robertson, 2005; Grace
et al., 2011; Hoben et al., 2011; Kim et al., 2013; Decock, 2014; Shcherbak et al., 2014; Zhou et al., 2014] (see
supporting information Figure S1). For example, Shcherbak et al. [2014], using 233 observations from 84
sites with at least three N input levels, found that EFs were higher when pH< 7 and that the percent
change in EFs per unit of incremental N application rate (ΔEF) was systematically larger for legume crops,
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for the case of ammonium nitrate applications, and for soils with organic carbon (SOC) >1.5%. A growing
number of field observations have also examined the effects of temperature or moisture on N2O fluxes at
specific sites [Schindlbacher et al., 2004; Singurindy et al., 2009; Troy and Tang, 2011; Dijkstra et al., 2012]. Yet
the mechanism of how environmental factors (xk) regulate the heterogeneity of EFs in agricultural soils
remains elusive at regional or global scales [Xu et al., 2012; Butterbach-Bahl et al., 2013].

Incorporating the empirical knowledge from existing field experiments into diagnostic N2O EF models could
improve the accuracy of bottom-up emission estimates and produce upscaling methods from site to region
that overcome the incorrect assumption of uniform and constant EF values per crop type. Regionally constant
EFs (i.e., EF = Ci for region i) for China’s six Agro-Climate Zones were used by Zhou et al. [2014], an approach
that yields large uncertainties due to significant variations of EFs within each zone. A response curve
describing EF as a single linear function (SLF) of nitrogen application rate was used in other studies, i.e.,
EF =ΔEF · N + b [McSwiney and Robertson, 2005; Hoben et al., 2011; Shcherbak et al., 2014]. Although the SLF
model is able to reproduce observed EFs at individual sites [Shcherbak et al., 2014], its performance toward
upscaling is generally poor. For example, the R2 across all site years in Shcherbak et al. [2014] is only 0.02
for upland grain crops and 0.04 for paddy rice using fixed values of parameters (i.e., ΔEF and b; Table 1).
Conversely, models considering the impacts of environmental variations defined by piecewise EF models
(hereafter PM), EF =ΔEF · N+ b(xk) may better capture the heterogeneity of N2O EFs and emissions.

The PMs also hold implications for understanding the effects of environmental variations on EF distribution.
Applying a random forest algorithm, Perlman et al. [2014] found that global N2O emissions from wheat and
maize fields were highly sensitive to SOC and air temperature, and tended to grow exponentially with these
two factors. However, the effects on paddy rice and other upland grain crops are still unknown [Dijkstra et al.,
2012]. PMs may also provide a tool to help design a N2O reduction strategy, and these advantages would be
greater, at least, if the marginal efficiency of nitrogen fertilizer reductions varies greatly.

Here we explore the heterogeneity of EFs for China’s agricultural soils, where the quantity, spatial pattern, and
causes of EFs and fluxes remain uncertain compared with developed countries. We propose the PMs (sub
section 2.1) and a new version of the Bayesian Recursive Regression Tree (BRRT v2; subsection 2.2)
algorithm to identify optimal subfunctions with selected environmental factors and associated
subdomains. We then collect N2O observations with two or more N input levels including a control from
inside and outside China, which allows the model calibration and validation (subsection 2.3 and
supporting information Text S2). The PM performances are evaluated in the estimates of quantity, spatial
patterns, and interannual anomalies of EFs and ΔEF against local N2O flux observations (subsection 3.1).
We also analyzed the differences in predictive accuracy between models with and without varying
parameters (subsection 3.1). The predictive accuracy and reliability in upscaling are also assessed using

Table 1. Comparisons Between Estimates of N2O Emissions From PMs (This Study) and Previous Studies

Source Algorithm

Performance in Upland Performance in Rice EF, (%) E, (Gg N2O-N/yr)
a

R2 BIC RMSE R2 BIC RMSE Upland Rice Upland Rice Total

IPCC [2006] Constant -- �138 0.83 -- �149 0.62 1 ± 0.56 0.3 ± 0.35 328.5 23.6 352.1
Gao et al. [2011] Constant -- �126 0.84 -- �165 0.59 1.05 ± 0.02 0.41 ± 0.04 -- -- 312.0
Wang et al. [2011b] Constant 0.52 -- -- -- -- -- 0.55 + 0.05 -- 180.7 -- --
Lu et al. [2006]b Constant 0.35 �137 0.82 0.09 �145 0.59 0.69 ± 0.11 0.41 ± 0.09 226.7 32.3 258.9
Zou et al. [2009] Constant -- -- -- 0.29–0.56 -- -- -- 0.42 ± 0.06 -- 33.1 --
Zhou et al. [2014] Regional -- �223 0.57 -- �230 0.48 1.11 ± 0.4 0.62 ± 0.3 365.0 49.2 414.2
Stehfest and Bouwman [2006] RML -- -- -- -- -- -- 0.91 ± 0.42c -- -- 342.7
Akiyama et al. [2005] RML -- -- -- 0.28 -- -- -- 0.43 ± 0.1 -- 33.9 --
Shcherbak et al. [2014]d SLF 0.02 300 1.4 0.04 �73 0.34 1.14 0.16 373.9 12.9 386.8
Shcherbak et al. [2014]e SLF 0.32 �136 0.82 0.10 �152 0.57 0.65 ± 0.18 0.56 ± 0.19 214.4 43.9 258.3
Chipman et al. [2002] PMs 0.70 608 0.44 0.83 263 0.24 0.72 ± 0.22 0.57 ± 0.15 236.5 44.9 281.4
This study PMs 0.84 -583 0.32 0.91 �381 0.17 0.84 ± 0.18 0.65 ± 0.14 272.6 51.2 323.8

aE for all EFs determinations are recalculated using our county-based N application rate in 2008.
bEF models are calibrated following methodology of Lu et al. [2006] but based on our N2O observations.
cThe data are for agricultural soils but never made a distinction between upland and rice.
dEF models are extracted from Table S3 in Shcherbak et al. [2014].
eEF models are calibrated following methodology of Shcherbak et al. [2014] but based our N2O observations without two outliers from Mei et al. [2011].
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independent observations out of China (subsection 3.2). Environmental determinants of EFs in China are
further quantitatively identified through variable importance and partial dependence analysis (sub
section 3.3). Finally, we demonstrate the implications of our models in regional budgets and N reductions
in China (subsection 3.4).

2. Methods and Data Set
2.1. PMs for EFs

According to EF-N relationships from 96 field experimental sites (Figure S2), we found that most of them
(50/64 for upland grain crops and 29/35 for paddy rice, Figure S1) can be expressed as the linear change in
EFs versus N, equivalent to a quadratic growth of N2O emissions (E) versus N. Contrary to previous works
that used the SLF, we propose piecewise linear models (PMs) to account for the shape and heterogeneity of EF:

EFl ¼ ΔEFl xkð Þ�N þ EF0l xkð Þ; where xk∈Ωl; ∀l (1a)

where

EF0l xkð Þ ¼
X

k

bkl�xkð Þ þ cl; (1b)

and l is the index of the subfunction of EFs, l=1,…, L; k is the index of environmental factors, k=1,…, K; and xk
represents the environmental factors applied for any subdomain divisionΩl or regression of each subfunction l,
which can be identical, distinct, or overlapped. N is N application rate. ΔEFl(xk), as the first derivative of EF,
indicates the degree of nonlinearity of the emission increase along a gradient of N (% · kg�1N2O-N · ha). EFl

0(xk),
as the derivative of E at the point N=0, represents the initial level of EF (%), which is described as an additive
linear combination of regression variables xk and domain-specific coefficients (bkl and cl).

The above mathematical expression has a biogeochemical basis. First, the model structure is in line with the
idea of a Hole-in-the-Pipe (HIP) model [Davidson et al., 2000] and the methodology of process-based models
[Li, 2000; Haas et al., 2013; Bouwman et al., 2013]. Nitrification and denitrification are primarily described by
multiplying three terms: E=N′ · Tr · R+ E0, where N′, Tr, R, and E0 stand for the available dissolved inorganic
nitrogen transformed from N input (N′= α ·N), the transport rate indicating the residence time of dissolved
inorganic nitrogen in root zone (%) [Van Drecht et al., 2003], the reaction rate (%), and N2O emission flux
when N= 0, respectively. Correspondingly, EFl in the PMs is equivalent to multiplicative terms α · Tr · R.
Second, the PMs use a set of linear subfunctions to approximately capture the nonlinear response of EFs
to both N and xk, in order to reflect some of triggering events due to changes in xk (e.g., water-filled
pore space (WFPS) as shown by Davidson et al. [2000]). Finally, the selection of environmental factors xk
in the regression reflects their diverse importance on processes Tr and R [Shcherbak et al., 2014; Perlman
et al., 2014].

Eleven environmental factors listed in Table S1 are considered in this study based on the experience of
Bouwman et al. [2002]. Effective precipitation (as the sum of precipitation and irrigation rate, Precip), total
available water capacity (TAWC), and bulk density (BD) for the topsoil are selected to represent the
variations of transport rate and WFPS [Van Drecht et al., 2003]. Average air temperature (Temp) within
measurement period is chosen as a proxy of soil temperature because of their high correlation [Zheng
et al., 1993]. Soil pH, clay content, soil drainage, TN, and SOC are used to account for O2 and available
C status involved in R [Bouwman et al., 2013]. Additionally, fertilizer types and crop types are also selected
as environmental factors.

2.2. BRRT v2 Algorithm

The main challenge in calibrating the PMs is to determine the optimal model structure (i.e., L and xk ∈Ωl) and
model coefficients (i.e., ΔEFl(xk), bkl, cl) with a minimum cost function. The BRRT v2 proposed algorithm is an
updated version of the Bayesian treed model (hereafter BTREED) developed by Chipman et al. [2002].
Combining the conditional distribution of EF with prior p(T), the posterior probability p(T|X,EF) in BRRT v2
is calculated as

p T jX; EFð Þ∝p Tð Þp EFjX; Tð Þ; (2)
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up to a norming constant [Gelman et al., 2003], where X represent environmental factors, i.e., N and xk in
equations (1a) and (1b). T represents a binary tree. Its terminal nodes and splitting rules correspond to the
subfunctions, i.e., equations (1a) and (1b), and the subdomains xk∈Ωl, respectively. The terms p(T) and p(EF|X,T)
in the BRRT v2 are specified in the BRRT v2 as follows:

p Tð Þ ¼ p l; Tð Þp ρjl; Tð Þ; (3a)

p EFjX; Tð Þ ¼ ∏
L

l¼1
∫ ∏

Ml

m¼1
p EFlmjxklm; θlð Þp θljTð Þp xkljTð Þdθl; (3b)

where

EFljθl iid N xTl λl; σ
2
l

� �
; (3c)

λljσl N λl; σ2l =a
� �

; σ2l νω=χ2ν (3d)

p xkljTð Þ ¼ Cn
K

C0
K þ C1

K þ…þ CK
K

; ∀k ¼ 1;…; n; (3e)

and p(l,T) is the probability of terminal node l that is to be resplit, defined as τ(1 + dl)
�υ [Chipman et al.,

2002] where dl is the depth of node l and two hyperparameters τ< 1 and υ> 0. The term p(ρ|l,T) is the
probability of assigning splitting rule ρ= {xk ≤ Sk} to terminal node l if it is split, in which xk is applied as
classification variables for subdomain division; p(EFlm|xklm,θl), p(θl|T), and p(xkl|T) are probabilities of EF,
regression coefficients, and selection of n of regression variables xk in terminal l, respectively, in which n is
the number of selected xk. EFlm and xklm denotes the EF and regression variable k of the mth observation
in the lth terminal node, respectively, where xklm ∈ X, m= 1,2,…, Ml. θl represent a set of regression
coefficients λl and the variance σl of EF in terminal l. All of EFl are assumed to be independent and
identically distributed, in which xTl λl corresponds to equations (1a) and (1b). The ranges of expected values
of λl= {ΔEFl(xk), bkl, cl} are determined based on the marginal responses of EF to xk, but we assume that λl is
normally distributed. The term σl is inverse Gaussian distributed with three hyperparameters a, ν, and ω. The
choice of hyperparameters τ (< 1), υ (> 0), a (= 1 or 3), ν (= 3), and ω (= 0.404 or 0.1173) is determined with
minimum cost function [Chipman et al., 2002; Freeman et al., 2009]. Detailed methodology and glossary of the
BRRT v2 are described in Text S1 and Figure S3, but its three improvements are briefly summarized below.

First, a progressive multirestart stochastic search (hereafter PMRS) algorithm is developed for equations (2)
and (3a)–(3e) to accelerate the identification of the optimal T via a minimum number of model executions.
Conversely, traditional Bayesian tree-based models [Chipman et al., 2002; Liu et al., 2008; Jung et al., 2009]
are so time consuming that it is not easy to traverse the entire optima of trees. The basic strategy of PMRS
is to synchronously run a number (j=1,…, J) of restart scenarios of Markov chain sequence of trees
and progressively eliminate underperforming trees (e.g., half of trees with higher cost function) before
executing subsequent running stages, until the tree with optimal L, xk∈Ωl, λl= (ΔEF, bkl, cl), and σl is
identified in final running stages with a minimum cost function. In the process of PMRS, each tree in Markov
chain sequence is searched by Metropolis-Hastings (MH) algorithm [Chib and Greenberg, 1995]. The cost
function in BRRT v2 that is minimized is the Bayesian Information Criterion (BIC) [Jung et al., 2009].

Second, a new deterministic split or pruning operator (GREEDY), finding the locally optimal tree, is designed
and directly combined into the previous four-mode stochastic search of BTREEDmodel. This update avoids to
nudging to local subdomains when processing the transition from old tree Ti to the new one Ti+1 in the MH

search. If implementing GREEDY, the terminal node l̂ of Ti can be split if the residual sum of squares of its two

child nodes is minimum among all terminal nodes of Ti+1 and smaller than that of entire node l̂, otherwise, an
intermediate node is pruned upward into a terminal node when the complexity cost reaches a minimum
[Breiman et al., 1984].

Third, the abovementioned selection of regression variables in equation (1b) for each terminal node is then
launched when one of five modes has been chosen in the MH search. This process is achieved through both
random and deterministic approaches. First, regression variables are randomly selected based on prior p(xkl|T);
Second, the randomly selected xk is further screened by stepwise forward regression. The forms of EFl and
p(EF|X,T) are updated accordingly. Contrary to the BTREED [Chipman et al., 2002], variable selection helps
reduce the number of redundant xk used in equation (1b) for individual terminal nodes.
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2.3. Data Set

For training piecewise EF models, we collected N2O measurements and the corresponding xk in China’s
agricultural soils from 153 peer-reviewed studies including with 178 zero-N application. After data
screening (described in Text S2 and Table S3), this data set comprised 732 site years (521 for upland grain
crops and 211 for paddy rice) at 96 sites from 1994 to 2013. It covers most major cereal-production areas
in China and the phase space of environmental conditions (Figure S3). We used all site years in the original
studies, averaged by replicates if necessary. Missing values (less than 200 site years) of soil attributes or
climate within measurement period are supplemented by the 1 km Harmonized World Soil Database
(HWSD) v1.2 [FAO/IIASA/ISRIC/ISSCAS/JRC, 2012] or by climate data of the nearest stations from the China
Meteorological Data Sharing Service System (http://cdc.cma.gov.cn).

The PMs calibrated by observations from China are validated by independent observations from outside
China. Specifically, 445 site years (including 124 records at zero-N control) from 56 sites (Figure S4) that
satisfy our selection criteria (see Text S2) are extracted from Akiyama et al. [2005], Stehfest and Bouwman
[2006], and Shcherbak et al. [2014], where parts of xk in their data set are supplemented from original articles.

PMs are also applied to simulate the spatial distribution of fertilizer-induced N2O emissions over China arable
lands in 2008 at a 1 km scale. The forcing data set is prepared as follows: (i) a 1 km land use map in 2010 with
soil attributes (BD, TAWC, clay content, soil drainage, pH, TN, and SOC) is directly extracted from Liu et al.
[2014] and HWSD v1.2, which are assumed to represent the target year 2008; (ii) county-level data of the
annual amounts of synthetic fertilizers and manure applied in 2008 are obtained for 2884 political units
from Zhou et al. [2014], and disaggregated into 1 km maps based on the above cropland distribution; (iii)
annual Precip and Temp in 2008 are obtained from 0.25° data set of TRMM 3B42RT [Huffman et al., 2010]
and Climate Research Unit (CRU TS v. 3.22) [Harris et al., 2014], respectively, and then downscaled based
on 1 km WorldClim v1.4 [Hijmans et al., 2005]; and (iv) 5min percentages of area actually irrigated (δ) are
extracted from FAO Global Map of Irrigation Areas v5.0 (GMIA) [Siebert et al., 2013] over China and
resampled it into 1 km grid cells, and further bias corrected based on municipal-level data set of actual
irrigation area in 2008 from 34 provincial statistical registers (PSRs) in China. Actual irrigation rate per grid
cell is finally calculated as the product of municipal irrigation rate per area and δ, where the former can
also be obtained from the PSR data set.

3. Results and Discussion
3.1. Model Accuracy in Calibration

According to a sensitivity analysis of BRRT v2 to hyperparameters [Freeman et al., 2009], the minimum BIC
exists at τ = 0.95, υ= 1.0, a= 1, and ω= 0.1173. Additionally, fivefold cross validation was applied to avoid
overfitting in model calibration. The BRRT v2, initialized with 20 restarts of 500 iterations per stage, then
found the 10- and 7-node trees for upland grain crops and paddy rice with minimum BIC being �583 and
�381 respectively, after 20,500 iterations (= 500 × [20 + 10+ 5+ 3 + 2 + 1]) of six running stages. Finally, the
relevant xk for subdomain divisions were identified to be crop type, fertilizer type, and Temp for upland
grain crops and fertilizer type and Precip for paddy rice. The regression variables are Precip, Temp, soil pH,
N for upland grain crops and Temp, clay content, soil TN, and N for paddy rice, where the corresponding
standard errors and p values are listed in Table S3.

Figures 1a and 1e show that the data-driven PMs are able to explain 84% and 91% of the variances for upland
grain crops and paddy rice (averaged from fivefold cross validation in supporting information Table S2),
respectively. The mean squared errors (MSEs) of simulated EFs were 0.1% for upland grain crops and
0.03% for paddy rice, indicating very low bias in the models. We also found that few simulated EFs differ
significantly from observations for upland grain crops (solid blue circles in Figure 1a). For the point #1 in
Figure 1a [Liu et al., 2010], N2O emissions, including a peak flux during the fallow period of rice, were
improperly accounted for in the following wheat-growing season, eventually enlarging the observed EF.
For the point #2 [Zhang et al., 2012], the zero-N application plot was managed as bare soil, which possibly
lowers background N2O flux and increases EF [Ussiri and Lal, 2012]. Two other larger discrepancies
between PM results and observations shown in Figure 1a are attributed to the fact that the PMs do
not account for the effects of different percentages of manure in total N inputs (point #3 in Figure 1a)
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[Yang et al., 2007] or the changes in illumination intensity (point #4 in Figure 1a) [Yu et al., 1995] on the
N2O flux. Without these four records, R2 for upland grain crops increases from 0.86 to 0.89 and root-
mean-square error (RMSE) decreases to 0.2 across upland crops.

A higher R2 (>0.88) and lower RMSE of the simulated EFs in Figures 1b, 1c, 1f, and 1g compared to Figures 1a
and 1e show that the PMs can precisely reproduce spatial patterns, interannual anomalies, and the associated
variations, except for the temporal variations within 1997–2000 and 2007 for paddy rice (Figure 1g). Model
performance for ΔEFs is also examined from sites fertilized at three or more N input levels in Figures 1d
and 1h. Contrary to the global results of Shcherbak et al. [2014], the number of negative ΔEFs in China
(41% for upland grain crops and 44% for paddy rice) is comparable to the number of positive values
(Figure 2). In principle, reliable calibrations of ΔEF depend on the accuracies of both individual EFs and their
range of variations within each group. A BIC-oriented model calibration leads to a limited number of ΔEFs,
which makes it more difficult to accurately reproduce all observed ΔEFs. However, the accuracy in ΔEFs
(R2 = 0.71) is acceptable, because (i) the differences of larger positive or smaller negative ΔEFs from the
observations are relatively low and their signs are correctly captured; (ii) yet a few of simulated ΔEFs
disagree in signs with observed results (open blue circles in Figures 1d and 1h), they are relatively close to zero.

We then assess the differences between the results of the PMs and the classical IPCC Tier 1 model, based upon
constant crop-specific EF [IPCC, 2006; Gao et al., 2011; Lu et al., 2006; Zou et al., 2009; Wang et al., 2011b], the
regionally constant EF model [Zhou et al., 2014], the SLF model [Hoben et al., 2011; Shcherbak et al., 2014],
and the Residual Maximum Likelihood approach [Bouwman et al., 2002; Akiyama et al., 2005; Stehfest and
Bouwman, 2006]. Performance statistics in Table 1 illustrate that the PM results are superior to all parameter-
fixed models for the full modeling domain. To unveil the advantage of the PMs, we also compared the
results of BTREED model [Chipman et al., 2002] with the same number of restarts and iterations (20,500) and
the values of hyperparameters. In this sensitivity test, the BTREED shows a lower R2, higher RMSE, and a
higher BIC for both upland grain crops and rice (Table 1). This result can be explained by the three
improvements of the new BRRT v2. Ability in parameter selection of five modes reduced the redundant
environmental variables for the regression, and the PMRS algorithm with the new GREEDY mode increases
the possibility of traversing the entire optima of trees while avoiding ineffective searching in local regions.

Figure 1. Calibration of EF andΔEF for upland grain crops and paddy rice in China.(a or e) Modeled and observed EFs of all site years, (b or f) modeled and observed EFs
averaged by sites and the associated standard errors (SEs, gray error bars), where the R2 values before and after slash are for themeans and SEs of EFs, respectively, (c or g)
Modeled and observed EFs averaged by years and the associated SEs, and (d or h) modeled and observed ΔEFs of all site years. The full data set is illustrated as red open
circles, while the estimates with disagreement in themagnitude of EFs and signs ofΔEFs between simulated and observed results are represented as solid and open blue
circles, respectively. Four outliers in Figure 1a are marked by the number 1 [Liu et al., 2010], 2 [Zhang et al., 2012], 3 [Yang et al., 2007], and 4 [Yu et al., 1995]. All error bars
for EFs are 1 SE. The slope, R2, BIC, and the square root of MSE (RMSE) are indicated in the insets at the bottom right of each panel.
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The better performances of the PMs compared to other models are attributed to its explicit accounting of
heterogeneity in EFs. E-N relationships corresponding to the subfunctions of EFs are illustrated in Figure 2
for upland grain crops and paddy rice under positive or negative ΔEFs. The diagnostic of negative ΔEFs
(Figures 2b and 2d) suggests that activity or efficiency of nitrifier and denitrifier communities may reach
thresholds and further stabilize around these thresholds, when N inputs exceed crop requirements [Ju
et al., 2009; Tatti et al., 2013]. However, the strange decrease in E (as the green line in Figure 2b and
ΔEF =�0.0037% · kg�1 N2O-N · ha) does not have a satisfactory theoretical explanation, though this type of
trend was occasionally observed [van Groenigen et al., 2004; Hoogendoorn et al., 2008; Iqbal, 2009; Wang
et al., 2011a; Zhang et al., 2012; Signor et al., 2013; Zhou et al., 2013]. Conversely, it is impossible for
constant, regionally constant, or SLF EF models to capture these variations of observed EFs across
China (Figure 2).

3.2. Model Reliability Validated by Independent Observations

Having shown the better performance of PMs, we focus now on model reliability through cross validation by
independent data. Figure 3 demonstrates that the PMs calibrated by China’s observations are also able to
capture the variations of EFs when the sites have a phase space of predictors similar to China (R2 = 0.75 for
both upland grain crops and paddy rice). This result provides additional confidence on the predictive
capabilities of PMs, meaning that the same models could be applied to predict EF heterogeneities in
regions that have a phase space of environmental factors similar to China. However, ~10% of the cross-
validation observations (35 site years) could not be reproduced by our models because of the sites whose
xk are not present in China’s data set (or subject to extrapolation; Figure 3). The fact that most N2O field
experiments in China are within temperate or subtropical zones results in this situation outside this climate
space, because climates in low- or high-latitude regions (e.g., Canada, Spain, Finland, Southeast Asia for
upland soils, and Philippines for paddy rice that corresponds to the black circles in Figure 3; see also
Figure S5) are outside the phase space considered for model calibration in China. We then check the
occurrence of this situation in China. Only a small fraction (~9%) of the pixels is, however, subject to this

Figure 2. (a–d) Comparison of our E-N relationship with IPCC Tier 1 (gray dashed lines) and SLF model of Shcherbak et al.
[2014] for all site years (black dashed lines). The curve withminimumΔEF (=� 0.0037% · kg�1 N2O-N · ha) is shown in green
solid line in Figure 2b. The digits above solid lines indicate the number of subfunctions. The 95% confidence intervals (CIs)
for IPCC Tier 1 and SLF models are shown in gray and orange shaded areas, respectively. IPCC Tier 1 95% CIs are 0.3–3% for
upland grain crops and 0–0.6% for paddy rice.
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extrapolation for China in 2008. Those are agricultural soils in the northern borders of China (>45°N) and in
the Sichuan Basin, where reaction velocity and biogeochemistry of N are not adequately captured with the
data used to calibrate the model. To avoid extrapolation or enhance extrapolation capacity, the PMs would
need to be recalibrated using more observations from these regions, which is an additional step that can
be taken in the future.

3.3. Environmental Determinants of EF Distribution

The relative importance of the identified xk on EFs is further quantified in this section. Importance is defined
as the magnitude of the increase in MSE when xk is randomly permuted [Perlman et al., 2014]. For both
upland grain crops and paddy rice, climate alone can explain 69% and 85% of the variations in EF
distribution across China, where Temp and Precip stand out as the single most important determinants
(Figures 4a and 4b). This finding indicates that soil temperature and moisture (through accumulated
precipitation and irrigation as well as temperature-controlled evapotranspiration demand) both

Figure 4. (a and b) Variable importance and (c–h) partial dependence of EF as a function of environmental factors.
Importance is defined as the magnitude of the increase in MSE when xk is randomly permuted, while partial dependence
is defined as the response of EF to a given xk by statistically controlling for the average effect of all other environmental
factors. EFs in Figures 4c–4f are calculated for the same reference N application rate of 200 kgN ha�1. Temperature and
precipitation optima (Topt) are indicated by gray arrows, while the minimum threshold temperatures (Topt) are indicated by
black arrows.

Figure 3. Model cross validations by N2O measurements outside China for (a) upland grain crops, and (b) paddy rice. The
fluxes simulated at sites whose environmental conditions are or are not captured by China’s data set are illustrated as red
open circle or black solid circle, respectively.
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regulate the reaction rates of C and N cycles and the occurrences of soil anaerobic conditions that
promote higher EFs. Soil pH is then ranked second for upland grain crops, which confirms the
observations that soil acidification further enhanced the sensitivity of the N2O EFs [Ju et al., 2009; Guo
et al., 2010].

We also used the PM results to diagnose the sensitivity of EF to Temp and Precip through a partial
dependence analysis. Partial dependence is defined as the marginal response of EF to a given xk by
statistically controlling for the average effect of all other environmental factors. The results shown in
Figures 4c–4f depict the modeled EF for different values of Temp and Precip for each of the records in the
model training data.

For the partial dependence of temperature (Figures 4c and 4d), the EF of upland grain crops increases
exponentially from 0.4% to 1.7% until reaching an optimum temperature (Topt) of ~16°C (Figure 4c),
followed by an abrupt decline. Above ~19°C, the EF rises again to 1.1% until it approaches the second
optima (~22.5°C), and finally decreases to 0.6% at ~26.3°C (Figure 4c). This shape with two maxima is
distinct from monotonic increases previously found at specific sites (Figure S1) or in global models
[Perlman et al., 2014]. However, multiple EF optima were detected in the manipulation experiments, when
analyzing EFs across diverse climates or site characteristics [Farquharson and Baldock, 2008; Singurindy
et al., 2009; Kurganova and de Gerenyu, 2010; Dijkstra et al., 2012]. Thus, the complex two-peaked curve in
Figure 4c could be interpreted by the occurrence of optima and its adaptation to different climate zones.
First, elevated temperature can directly stimulate microbial processes which cascade Nr providing
substrate for denitrification, eventually enhancing N2O evasions [Butterbach-Bahl et al., 2013]. However,
these positive effects of a temperature increase can be offset by its opposite effects [Dijkstra et al., 2012].
When exceeding the optima, increasing temperature can boost plant N uptake, N volatilization [Skjøth and
Geels, 2013], cause rapid soil drying [Bijoor et al., 2008], or decrease the N2O:N2 ratio [Troy and Tang, 2011],
which altogether decreases the fraction of soil N lost as N2O. Second, two successive optimum functions,
roughly divided at ~19°C (Figure 4c), suggest two separate response curves for northern (119 observations
from 34 sites) and southern China (262 observations from 37 sites) according to the spatial distribution of
experimental sites in training data set (Figure S6). Regional studies in forest ecosystems [Breuer and
Butterbach-Bahl, 2005] indicated that microbial communities in upland soils may adapt or acclimate to
ambient low or high temperature, resulting in individual temperature maxima in northern and southern
China. Compared with southern China, the temperature response function of EFs in northern China has
larger maxima relative to minimum threshold temperatures (Tmin; i.e., the distance between Topt and Tmin;
Figure 4c). The adaptive optimum temperature functions applied for instance in the process-based model
DAYCENT [Parton et al., 2001; Del Grosso et al., 2009] would thus be better choice than exponential or
Arrhenius type functions to simulate the EF distribution for China’s upland soils. Opposite to upland soils, it
is important to note that the temperature dependency of EF for paddy rice is quite flat (Figure 4d) across a
similar temperature range than upland soils. This finding may be explained by the fact that positive and
negative effects of elevated temperature may be compensated by each other [Dijkstra et al., 2012],
resulting into an overall small temperature sensitivity of EF for paddy rice.

For precipitation, EF can be described as a single optimum function of Precip for paddy rice (Figure 4f). EF
grows rapidly with Precip starting at 1100mm and reaches a peak of 1.5% at Precip≈ 1400mm, and then
falls down slowly for the range of 1400 ~ 2,580mm. This trend could be well explained by the HIP
conceptual model of Davidson et al. [2000], which found N2O emissions peak at 70–90% WFPS. However,
the shape of the curve shown in Figure 4f looks like a positively-skew Laplace distribution, unlike the
negatively-skew EF-WFPS relationship given by Davidson et al. [2000]. This result may be explained by the
fact that intensive irrigation is common for rice in China [Zou et al., 2009], which increases the occurrence
probability of being near or fully saturated in most of the experimental sites. Thus, additional field
measurements with less Precip in the future would be needed to confirm the precipitation sensitivity
curve for paddy rice. For upland grain crops, a threshold of 70–90% WFPS is not supported by the
calibrated PM results. Figure 4e indicates that EF rather increases fluctuantly with Precip. These upland
soils in China may rarely reach optimum moisture conditions even under high irrigation rates.

Additionally, we discussed the differences between the sensitivity of EF due to N application rate and
environmental factors. The EFs of upland grain crops increase slightly from 0.79% to 0.83% along the
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gradient of N application rates (0–500 kg�1 N · ha; Figure 4g), while the EFs of paddy rice decrease from 0.63%
to 0.42% (Figure 4h). Contrary to N application rate, the EFs are more sensitive to Temp or Precip (Figures 4c
and 4f). In other word, although EFs changed linearly with N application rates at most individual sites where
environmental factors were almost constant within the measurement period (Figure S1), the magnitude and
spatial distribution of EFs are found to be much more determined by climate factors, highlighting the need
for upscaling methods that account for environmental factors than just N application rate.

3.4. Implications on Emission Inventory and N Reductions

Based on gridded data set of identified environmental factors xk, fertilizer-induced N2O emissions are
estimated over the territory of China by the PMs, and uncertainties from five different sources are
deliberately considered (1) N application rates, (2) environmental factors, (3) measurement errors,
(4) parameter estimates, and (5) errors due to extrapolation. The detail of uncertainty analysis is described
in Text S3. Our estimate of the fertilizer-induced N2O emission from China is of 323.8 ± 60.3 Gg N2O-N yr�1

(1σ), with 272.6 ± 49.1 for upland grain crops and 51.2 ± 11.3 Gg N2O-N yr�1 for paddy rice. The
corresponding average EFs are 0.84 ± 0.18% and 0.65 ± 0.14%. The latter value for rice is 1.2 times
larger than the IPCC Tier 1 default value. The IPCC Tier 1-derived estimates of EFs (1% or 0.3%) result
into a slight overestimation of N2O emissions for upland soils and a significant underestimation for
paddy rice emissions (Table 1). We also found significant underestimation (overestimation) for upland
crops (paddy rice) of N2O emissions for models using regionally constant or SLF EF models compared
to PMs, probably because those models do not account for the effects of spatial variations or
seasonality of xk on EFs (Table 1).

The constant, regionally constant, and SLF EF models result in very different N2O emission spatial patterns in
China compared to the map derived from the PMs. In particular, EFs in the year 2008 simulated by PMs vary
greatly across China (Figure 5a). The highest values (>2%) are found in the southwestern China, the north

a b c

d e f

Figure 5. One kilometer spatial patterns of N2O EFs and emissions, differences with other EFmodels, and implications in N2O reductions. (a) N2O EFs in 2008, (b) N2O
emissions in 2008, (c) differences with regionally constant EFmodel, (d) differences with SLFmodel, (e) marginal efficiency at a N fertilizer reduction of 100 kg N ha�1,
(f ) the lowered N2O emissions that are larger than 0.93 kg N2O-N ha�1 (red). The light green in Figure 5e represents cropland.
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China Plain, and upland fields around the Taklamakan Desert, whereas the lowest values (<0.3%) are in
northern Jiangsu and southern China (Figure S7). The spatial pattern of N2O emissions (Figure 5b) is similar
to the one of EFs (Figure 5a), but hot spots of N2O emissions (>6 N2O-N · ha�1) are amplified in high-EF
regions, where most cereal and livestock production in China occurs [Zhou et al., 2014]. High-emission
densities (>4 kgN2O-N · ha�1) are also found in the central part of northeastern China and several counties
discretely distributed in Jiangsu and Shandong provinces (Figure S7).

The absolute differences (AD) between regional EF models (E2) and our estimates (E1) of N2O emissions are
also assessed, defined as AD= E1� E2. Compared to regionally constant EF models [Zhou et al., 2014], our
estimates are ~1.5 kgN2O-N ha�1 higher in Henan, Yunnan, and Guangxi, but ~2 kgN2O-N ha�1 lower in
the Northeast Plain and northern Jiangsu (Figures 5c and S7). These findings indicate that EFs, averaged
from different experiments that define the constant EF or regionally constant EF models, do not capture
the heterogeneity at local scales. EFs of SLF model are relatively closer to our estimates in low-emission-
density regions (Figure 5d), where EFs are generally determined by the term ΔEFl(xk) �N. However,
underestimations are significant in the Sichuan Basin, the Yunnan-Guizhou Plateau, and the North China

Plain (Figure S7), where soils are moderately acidic, leading to higher EF0l xkð Þ.
Additionally, the PMs could be easily applied to identify regions that constitute the best opportunities to
implement effective N2O reduction strategies in China. We define the mitigation potential of N2O
emissions by the difference between the baseline value EB and the value ER with reduced input ΔN set to
100 kgN · ha�1. To ensure no yield loss from suboptimal N applications, the remaining N application rate
(N�ΔN) needs to exceed the crop requirements (~200 kg · ha�1 for upland grain crops and ~100 kg · ha�1

for paddy rice) [Roy et al., 2006; Ju et al., 2009]. The term “potential” here means no consideration of costs,
technical feasibility, and other trade-offs. The marginal efficiency of the mitigation (ηR) is deduced as

ηR ¼ EB � ERð Þ=ΔN ¼ EFþ N � ΔNð Þ · ΔEF xkð Þ: (4)

Figure 5e shows that few pixels have ηR values smaller than EFs, which means that hot spots of ηR (>1%) are
partly distributed in the region where ΔEF< 0. Approximately 50% of the N2Omitigation potential originates
from only 22% of China’s agricultural soils. Regions with the highest mitigation potential include upland fields
in southern China, such as Guangxi, Yunnan, Guangdong, and the Northern Sichuan Basin (Figure 5f). These
results suggest that mitigation could be effectively implemented in these areas, considering only a
maximization of the amount of achievable emission reduction but not accounting for economic trade-offs
and cobenefits. However, the ηR estimated by the constant EF models is constant for all lands and
reduction scenarios. Although the SLF model reflects part of heterogeneity of the EF, it is difficult to avoid
underestimating or overestimating ηR, as it is similar with the EF.

4. Conclusion

We presented a new piecewise linear modeling approach to simulate the complex and poorly understood
spatial patterns of N2O emission factors. The associated BRRT v2 algorithm developed for that purpose
captures the observed heterogeneity of EF across China. The models are of higher accuracy and reliability
compared to other EF determinations that ignore the impacts of spatial gradients in environmental factors.
The PM models are able to (1) quantify the effects of climate as important determinants in regulating the
EF distribution across China, (2) simulate their effects on a large scale, and (3) provide high-resolution N2O
emission maps and a tool to map the most suitable regions for mitigation in terms of amount achievable.
We conclude that (1) the piecewise EF models and BRRT v2 may be powerful enough to perform regional
or global upscaling of the N2O flux and similar works (water, CO2, CH4, gross primary production, etc), if
having sufficient and representative observations (e.g., FLUXNET), (2) the models calibrated by China’s
observations are also applicable for other countries or regions that are subject to interpolation, and (3)
attention to the quality, detail, and resolution of climates is much more important than other forcing data
for N2O EFs estimation in China.

We realize that it is inappropriate to substitute piecewise EF models for IPCC Tier 1 defaults directly.
According to model inference, our estimated EF can only reflect N2O emissions induced by inputs of new
nitrogen (i.e., fertilizers or N depositions), not residual nitrogen (e.g., crop residues, soil mineralization, and
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managed organic soils) [Novoa and Tejeda, 2006]. Thus, we suggest that EFs and emissions for new and
residual nitrogen should be revised as product of fertilizer-induced EFs in equations (1a) and (1b) and a
correction coefficient r; however, how to determine r becomes another question to be undertaken by
future studies.
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