
HAL Id: hal-01806093
https://hal.science/hal-01806093

Submitted on 1 Jun 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Forward-XPath and extended register automata
Diego Figueira

To cite this version:
Diego Figueira. Forward-XPath and extended register automata. International Conference on
Database Theory (ICDT), Mar 2010, Lausanne, Switzerland. �10.1145/1804669.1804699�. �hal-
01806093�

https://hal.science/hal-01806093
https://hal.archives-ouvertes.fr


Forward-XPath and extended register automata

Diego Figueira
INRIA, LSV,

ENS Cachan, France

ABSTRACT
We consider a fragment of XPath named ‘forward-XPath’,
which contains all descendant and rightwards sibling axes as
well as data equality and inequality tests. The satisfiability
problem for forward-XPath in the presence of DTDs and even
of primary key constraints is shown here to be decidable.

To show decidability we introduce a model of alternating au-
tomata on data trees that can move downwards and right-
wards in the tree, have one register for storing data and
compare them for equality, and have the ability to (1) non-
deterministically guess a data value and store it, and (2)
quantify universally over the set of data values seen so far
during the run. This model extends the work of Jurdziński
and Lazić. Decidability of the finitary non-emptiness prob-
lem for this model is obtained by a direct reduction to a
well-structured transition system, contrary to previous ap-
proaches. Another consequence that we explore is the satis-
fiability problem for the Linear Temporal Logic (LTL) over
data words with one register and quantification over data
values, which is shown to be decidable.

Categories and Subject Descriptors
I.7.2 [Document Preparation]: Markup Languages
; H.2.3 [Database Management]: Languages
; H.2.3 [Languages]: Query Languages

General Terms
Algorithms, Languages

Keywords
alternating tree register automata, XML, forward XPath,
unranked ordered tree, data-tree, infinite alphabet

1. INTRODUCTION

This work is motivated by the increasing importance of rea-
soning tasks in xml research. An xml document can be seen
as an unranked ordered tree where each node carries a label
from a finite alphabet and a set of attributes, each with an
associated datum from some infinite domain.

XPath is arguably the most widely used xml node selecting
language, part of XQuery and XSLT; it is an open stan-
dard and a W3C Recommendation [5]. Static analysis on
xml languages is crucial for query optimization tasks, con-
sistency checking of xml specifications, type checking trans-
formations, or many applications on security. Among the
most important problems are those of query equivalence and
query containment. By answering these questions we can
decide at compile time whether the query contains a contra-
diction, and thus whether the computation of the query on
the document can be avoided, or if one query can be safely
replaced by another one. For logics closed under boolean
combination, these problems reduce to satisfiability check-
ing, and hence we focus on this problem. Unfortunately, the
satisfiability problem for XPath with data tests is undecid-
able, even when the data domain has no structure [11] (i.e.,
where the only data relation available is the test for equal-
ity or inequality). It is then natural to identify and study
decidable expressive fragments. In this work we adopt an
automata-theoretic approach to find such fragments. The
main contributions can be summarized as follows.

• A new register automata model for xml is introduced.
This is an extension of the model treated in [13] with a
decidable finitary emptiness problem. The decidabil-
ity proof we propose simplifies the previous approaches
of [13, 6] and facilitates the pursuit and identification
of decidable extensions. This is evidenced here by the
introduction of two extensions that preserve decidabil-
ity.

• The satisfiability for the ‘forward’ fragment of XPath
with data test equalities and inequalities is shown to
be decidable, even in the presence of DTDs and pri-
mary key constraints. This settles a natural question
left from the work in [13], also mentioned in [8, 9]. As a
consequence this also answers positively the open ques-
tion raised in [1] on whether the downward fragment
of XPath in the presence of DTDs is decidable.1 In
fact, we give a decision procedure for the satisfiability

1The same question on downward XPath but in the absence
of DTDs was treated in [8].



problem in the presence of any regular tree language,
and we can therefore code the core of XML Schema
(stripped of functional dependencies, except of unary
primary keys) or Relax NG document types.

• We show that the temporal logic for words with data
defined in [6] extended with quantification over data
values is decidable. This is a consequence of consider-
ing our automata model over words rather than trees.

Automata. The automata model we define is based on the
ATRA model (for Alternating Tree Register Automata). It
is a tree walking automaton with alternating control and one
register to store and compare data values. This automaton
can move downwards and rightwards over an unranked or-
dered tree with data. It is a decidable model that has been
studied in [13] and corresponds to the extension to trees of
the automaton over words of [6]. The proofs of decidability
of these automata models are based on non-trivial reductions
to a class of decidable counter automata with faulty incre-
ments. In the present work, decidability is directly shown by
interpreting the semantics of the automaton in the theory of
well quasi-orderings in terms of a well-structured transition
system [10]. The object of this alternative proof is twofold.
On the one hand, we propose a simpler proof of the main
decidability results of [13, 6]. On the other, our approach
easily yields the decidability of the non-emptiness problem
for two powerful extensions of ATRA. These extensions con-
sist in the following abilities: (a) the automaton can non-
deterministically guess any data value of the domain and
store it in the register; and (b) it can make a certain kind of
universal quantification over the data values seen along the
run of the automaton, in particular over the ancestors’ data
values. We name these extensions guess and spread respec-
tively, and the model of alternating tree register automata
with these extensions as ATRA(guess, spread).

In the context of xml documents, we show that this model of
automata can decide a large fragment of XPath. Moreover,
when restricted to words with data it can decide and capture
some extensions of temporal logics.

XML. We study and show decidability of the satisfiability
problem for a fragment of XPath by a reduction to the non-
emptiness problem of ATRA(guess, spread). Let us describe
this logic. Core-XPath [12] is the fragment of XPath that
captures all the navigational behavior of XPath. It has been
well studied and its satisfiability problem is known to be
decidable in ExpTime in the presence of DTDs [14]. We
consider an extension of this language with the possibil-
ity to make equality and inequality tests between attributes
of xml elements. This logic is named Core-Data-XPath in
[2], and its satisfiability problem is undecidable [11]. The
present work contributes to the study of different naviga-
tional fragments of XPath with equality tests in the attempt
to find decidable and computationally well-behaved logics.
Here we address a large fragment named ‘forward XPath’,
that contains the child, descendant, self-or-descendant, next-
sibling, following-sibling, and self-or-following-sibling axes. For
economy of space we refer to these axes as ↓, ↓+, ↓∗, →, →+,
→∗ respectively. Note that →+ and →∗ are interdefinable in
the presence of →, and similarly with ↓+ and ↓∗. We then
refer to this fragment as XPath(↓, ↓∗,→,→∗). Although our

automata model cannot capture this logic in terms of ex-
pressiveness, we show that there is a non-trivial reduction
to the nonemptiness problem of ATRA(guess, spread). By the
fact that these automata can code any regular language (in
particular a DTD), and that XPath(↓, ↓∗,→,→∗) can express
unary primary key constraints, it follows that satisfiability
of forward-XPath in the presence of DTDs and primary key
constraints is decidable.

Words. ATRA(guess, spread) interpreted over words with data
also yield new decidability results on the satisfiability for
some extensions of the temporal logic with one register de-
noted by LTL↓(U,X) in [6]. This logic contains a ‘freeze’
operator to store the current datum and a ‘test’ operator
to test the current datum against the stored one. Our au-
tomata model captures an extension of this logic with quan-
tification over data values, where we can express“for all data
values in the past, ϕ holds”, or “there exists a data value in
the future where ϕ holds”. Indeed, none of these two types of
properties can be expressed in the previous formalisms of [6]
and [13]. These quantifiers may be added to LTL↓(U,X) over
data words without losing decidability. However, adding the
dual of any of these operators results in undecidability.

Related work
In [13] a fragment of XPath(↓, ↓∗,→,→∗) is treated. The lan-
guage is restricted to data test formulæ of the form ε = α
(or ε 6= α), that is, sentences that test whether there ex-
ists an element accessible via the α-relation with the same
(resp. different) data value as the current node of evalua-
tion. This logic was shown to be expressible in the ATRA
automaton defined in [13]. However, this restricted form of
data tests cannot express, e.g., that there are two leaves with
the same datum, or that all the elements with a certain sym-
bol have different data value (i.e, a primary key constraint).
The problem regarding the decidability of the full forward
fragment with arbitrary data tests is a non-trivial natural
question left from [13] that is positively answered here.

The work in [1] investigates the satisfiability problem for
many XPath logics, mostly fragments without negation or
without data equality tests in the absence of sibling axes.
Also, in [8] there is a thorough study of the satisfiability
problem for all the downward XPath queries with and with-
out data equality tests. Notably, none of these works consid-
ers horizontal axes to navigate between siblings: By exploit-
ing the bisimulation invariance property enjoyed by these
logics, the complexity of the satisfiability problem is kept
relatively low (at most ExpTime) in the presence of data
values. However, when horizontal axes are present, most
of the problems have a non-primitive recursive complexity
(including the fragment of [13], or even much simpler ones
without the one-step ‘→’ axis [9]). In [11], several fragments
with horizontal axes are treated. The only fragment with
data tests and negation studied there is incomparable with
the forward fragment, and it is shown to be undecidable.

First-order logic with two variables and data equality tests
is explored in [2], where it is shown that FO2 with local
one-step relations to move around the data tree and a data
equality test relation is decidable. [2] also shows the decid-
ability of a fragment of XPath(↑, ↓,←,→) with sibling and
upward axes but restricted to local elements and to data for-



a, 2

a, 2 b, 2

b, 9 b, 5 b, 3

a, 2 b, 1 b, 2

Figure 1: A data tree.

a, 0

b, 0

c, 0

<a>
    <b @att1="4" @att2="6">
        <c @att1="2"/>
    </b>
</a>

att1, 4

att1, 2

att2, 6

XML data-tree

Figure 2: From XML documents to data-trees.

mulæ of the kind ε = α (or 6=), while our fragment cannot
move upwards but features transitive axes and unrestricted
data tests.

2. DATA TREES AND XML DOCUMENTS
In this article we work with data trees instead of xml docu-
ments, being a simpler formalism to work with, from where
results can be transferred to the class of xml documents.
We discuss below how all the results we give on XPath over
data trees, also hold for the class of xml documents.

A data tree is an unranked ordered tree whose every node
is labeled by a symbol from a finite alphabet and a datum
from an infinite domain, as in the example of Fig. 1. Let
℘(S) denote the power set of S, let N be the set of positive
integers, and let us fix D to be any infinite domain of data
values. In our examples we will consider D = N. We define
Pos ⊆ ℘(N∗) to be the set of sets of finite tree positions
(we write ε for the empty word, corresponding to the root’s
position). X ∈ Pos iff (a) X ⊆ N∗, |X| <∞; (b) it is prefix-
closed; and (c) if n(i + 1) ∈ X then ni ∈ X. Given a finite
alphabet Σ, a finite data tree over Σ is a tuple T = 〈P, σ〉
with P ∈ Pos and σ : P → Σ×D, as in Fig. 1. The functions
π1 and π2 project the first and second component of an
element of Σ × D. We define typeT : P → {O, Ō} × {�, �̄}
that specifies whether a node has children and/or siblings to
the right. That is, typeT (p) := (a, b) where a = O iff p1 ∈ P ,
and where b = � iff p = p′i and p′(i+ 1) ∈ P .

While a data tree has one data value for each node, an xml
document may have several attributes at a node, each with
a data value. Every attribute of an xml element can be
encoded as a child node in a data tree labeled by the at-
tribute’s name, as in Fig. 2. This coding can be enforced by
the formalisms we present below, and we can thus transfer
all the decidability results to the class of xml documents.
In fact, it suffices to demand that all the attribute symbols
can only occur at the leaves of the data tree and to inter-
pret attribute expressions like ‘@attrib1 ’ of XPath formulæ
as child path expressions ‘child[attrib1]’.

3. THE ATRA MODEL
In this section we present the model of computation that
will enable us to show decidability of XPath and temporal
logic fragments.

An Alternating Tree Register Automaton (ATRA) con-
sists in a top-down walking automaton with alternating con-
trol and one register to store and test data. In [13] it was
shown that its finitary emptiness problem is decidable and
non primitive recursive. Here, we consider an extension of
ATRA with two operators: spread and guess. We call this
model ATRA(spread, guess).

Definition 3.1. A forward alternating register automa-
ton ATRA(spread, guess) is a tuple 〈Σ, Q, qI , δ〉 s.t.

Σ is a finite alphabet; Q is a finite set of states;
qI ∈ Q is the initial state; and

δ : Q→ Φ is the transition function, where Φ is defined
by the grammar

a | ā | �? | set(q) | eq | eq | q ∧ q′ | q ∨ q′ |
Oq | �q | guess(q) | spread(q, q′)

where a ∈ Σ, q, q′ ∈ Q, � ∈ {O, Ō, �, �̄}.

This formalism without the guess and spread transitions is
equivalent to the automata model of [13] on finite data trees,
where O and � are to move to the first child or to the next
sibling, set(q) stores the current datum and eq (resp. eq)
tests that the current node’s value is (resp. not) equal to
the stored.

As this automaton is one-way, we define its semantics as a
set of ‘threads’ for each node that progress synchronously.
That is, all threads at a node move one step forward simul-
taneously and then perform some non-moving transitions
independently. This is done for the sake of simplicity of the
formalism, which simplifies the presentation of the decid-
ability proof.

Next we define a configuration of a node and a configuration
of a tree to then give a notion of a run over a data tree T =
〈P, σ〉. A node configuration is a tuple 〈p, α, γ,H〉 that
describes the partial state of the execution at a given node.
p ∈ P is the node position in the tree T , γ = σ(p) ∈ Σ×D is
the current node’s symbol/datum, and α = typeT (p) is the
tree type of the node. Finally, H ∈ ℘(Q×D) is a finite collec-
tion of active threads of execution, each thread 〈q, d〉 con-
sisting in a state q and the value stored in the register d. By
ConfN we denote the set of all node configurations. A tree
configuration is a finite set of node configurations, like
{〈ε, α, γ,H〉, 〈1211, α′, γ′, H ′〉, . . . }. The run will be defined
in such a way that a tree configuration never contains node
configurations in a descendant/ancestor relation. We call
ConfT = ℘(ConfN ) the set of all finite tree configurations.
Given a set of threads we write data(H) := {d | 〈q, d〉 ∈ H},
and data(〈p, α, (a, d), H〉) := {d} ∪ data(H).

To define a run we first introduce three transition relations
over node configurations: the non-moving relation →ε, the



first-child relation →O, and the next-sibling relation →�.
We start with →ε. If the transition corresponding to a
thread is a set(q), the automaton sets the register with cur-
rent data value and continues the execution of the thread
with state q; if it is eq, the thread accepts (and in this case
disappears from the configuration) if the current datum is
equal to that of the register, otherwise the computation for
that thread cannot continue. The reader can check that
the rest of the cases follow the intuition of an alternating
automaton. Let ρ = 〈p, α, (s, d), {〈q, d′〉} ∪H〉. Then,

ρ→ε 〈p, α, (s, d), {〈qi, d′〉} ∪H〉
if δ(q) = q1 ∨ q2, i ∈ {1, 2}

(1)

ρ→ε 〈p, α, (s, d), {〈q1, d′〉, 〈q2, d′〉} ∪H〉
if δ(q) = q1 ∧ q2

(2)

ρ→ε 〈p, α, (s, d), {〈q′, d〉} ∪H〉 if δ(q) = set(q′) (3)

ρ→ε 〈p, α, (s, d), H〉 if δ(q) = eq and d = d′ (4)

ρ→ε 〈p, α, (s, d), H〉 if δ(q) = eq and d 6= d′ (5)

ρ→ε 〈p, α, (s, d), H〉 if δ(q) = `? and ` is in α (6)

ρ→ε 〈p, α, (s, d), H〉 if δ(q) = s (7)

ρ→ε 〈p, α, (s, d), H〉 if δ(q) = r̄ for r 6= s (8)

The following cases correspond to our extensions to the
model of [13]. The ‘guess’ instruction extends the model
with the ability of storing any datum from the domain D.
Whenever δ(q) = guess(q′) is executed, a data value (non-
deterministically chosen) is saved in the register.

ρ→ε 〈p, α, (s, d), {〈q′, e〉} ∪H〉
if δ(q) = guess(q′), e ∈ D

(9)

The ‘spread’ instruction is an unconventional operator in
the sense that it depends on the data of all threads in
the current configuration with a certain state. Whenever
δ(q) = spread(q2, q1) is executed, a new thread with state
q1 and datum d is created for each thread 〈q2, d〉 present in
the configuration. With this operator we can code a uni-
versal quantification over all the ancestors’ data values. For
convenience, we demand that this transition may only be ap-
plied if all other possible→ε kind of transitions were already
executed. Or, in other words, that only spread transitions
or moving transitions are present in the configuration (the
moving transitions being those defined as ‘Oq’ and ‘�q’).

ρ→ε 〈p, α, (s, d), {〈q1, d〉 | 〈q2, d〉 ∈ H} ∪H〉
if δ(q) = spread(q2, q1) and

for all 〈q̃, d̃〉 ∈ H :

either δ(q̃) = spread(q̃1, q̃2), δ(q̃) = Oq̃1,

or δ(q̃) = �q̃1 for some q̃1, q̃2 ∈ Q

(10)

The →O and →� transitions advance all threads of the
node simultaneously, and are defined, for any type α1 ∈
{O, Ō,�, �̄} and symbol and with data value γ1 ∈ Σ× D,

〈p, (O, r), γ,H〉 →O 〈p 1, α1, γ1, HO〉, (11)

〈pi, (l,�), γ,H〉 →� 〈p(i+ 1), α1, γ1, H�〉 (12)

iff (i) the configuration is ‘moving’ (i.e., all the threads 〈q, d〉
contained in H are of the form δ(q) = Oq′ or δ(q) = �q′);

(ii) for � ∈ {O,�}, H� = {〈q′, d〉 | 〈q, d〉 ∈ H, δ(q) = � q′};
and (iii) α1 and γ1 are consistent with the position p1 in the
case of (11), or with p(i+ 1) in the case of (12).

Finally, we define the transition between tree configurations
that we call�t . This corresponds to applying a ‘non-moving’
→ε to a node configuration, or to apply a ‘moving’→O,→�,
or both to a node configuration according to its type. That
is, we define S1 �t S2 iff one of the following conditions
holds:

1. S1 = {ρ} ∪ S ′, S2 = {τ} ∪ S ′, ρ→ε τ ;

2. S1 = {ρ} ∪ S ′, S2 = {τ} ∪ S ′,
ρ = 〈p, (O, �̄), γ,H〉, ρ→O τ ;

3. S1 = {ρ} ∪ S ′, S2 = {τ} ∪ S ′,
ρ = 〈p, (Ō,�), γ,H〉, ρ→� τ ;

4. S1 = {ρ} ∪ S ′, S2 = {τ1, τ2} ∪ S ′,
ρ = 〈p, (O,�), γ,H〉, ρ→O τ1, ρ→� τ2.

A run over a data tree T = 〈P, σ〉 is a non-empty se-
quence S1 �t · · · �t Sn with S1 = {〈ε, α0, γ0, H0〉} and
H0 = {〈qI , π2(σ(ε))〉} (i.e., the thread consisting in the
initial state with the root’s datum), such that for every
i ∈ [1..n], 〈p, α, γ,H〉 ∈ Si: (1) p ∈ P ; (2) γ = σ(p); and
(3) α = typeT (p). We say that the run is accepting iff

Sn ⊆ {〈p, α, γ, ∅〉 | 〈p, α, γ, ∅〉 ∈ ConfN }.

The ATRA model is closed under all boolean operations [13].
However, the extensions introduced guess and spread, while
adding expressive power, are not closed under complement
as a trade-off for decidability.

Proposition 3.1. (a) ATRA(guess) has more expressive
power than ATRA; (b) ATRA(spread) has more expressive
power than ATRA.

Proof (sketch). (a) is based on the fact that while with
guess we can express “there are two leaves with equal da-
tum”, with ATRA we cannot do it(more details in the Ap-
pendix). Here we focus on the proof of (b). We show a
property P that can be expressed in ATRA(spread) and such
that its negation permits to code an undecidable problem.
Hence, P cannot be expressed in ATRA since it is both closed
under complement and decidable.

Given Σ = {a, b}, let P be the following property: “there
exists an inner node labeled b such that there is no ancestor
labeled a with the same data value”as depicted in Fig. 3. Let
us see how P can be coded into ATRA(spread). Assuming q0
is the initial state, the transitions should reflect that every
a seen along the run is saved with a state qa, and that this
state is in charge of propagating this datum everywhere in
the tree. Then, we non-deterministically choose a b and
check that all these stored values under qa are different from
the current one. For succinctness we write the transitions
as positive boolean combinations of the basic operations.

δ(q0) = (b ∧ O? ∧ spread(qa, q1))∨(
(ā ∨ set(qa)) ∧ (Ō? ∨ Oq0) ∧ (�̄? ∨�q0)

)
,

δ(q1) = eq, δ(qa) = (Ō? ∨ Oqa) ∧ (�̄? ∨�qa).



a

b

a
a

≠

Figure 3: A property not expressible in ATRA.

P , on the other hand, cannot be expressed by the ATRA
model. Were it expressible, then the negation “for every in-
ner node b there exists an ancestor a with the same data
value” would also be. It can be seen that with this kind of
property one can code an accepting run of a Minsky automa-
ton along a branch by using data to assure that (i) for every
increment there is a corresponding future decrement; and by
using this property that (ii) for every decrement there exists
a corresponding previous increment. This is absurd, as the
ATRA model is decidable. We refer the reader to [6, 9] for
more details on these kind of codings.

Proposition 3.2. ATRA(spread, guess) models have the
following properties: (i) they are closed under union, (ii)
they are closed under intersection, (iii) they are not closed
under complement.

Proof (sketch). (i) and (ii) are straightforward if we
notice that the first argument of spread ensures that this
transition is always relative to the states of one of the au-
tomata being under intersection or union. (iii) is a conse-
quence of the proof of Proposition 3.1 item (b), combined
with the fact that the model will be shown to be decid-
able.

3.1 Decidability of the emptiness problem
We dedicate this section to prove the decidability of the
ATRA(guess, spread) emptiness problem. The main argu-
ment consists in interpreting the automaton’s execution as a
transition system in the theory of well quasi-orderings with
some good properties that allow us to obtain an effective pro-
cedure for the emptiness problem. This is known in the lit-
erature as a well-structured transition system (WSTS) [10].
The following are standard definitions.

Definition 3.2. (A,≤) is a well quasi-order (wqo) iff
‘≤’ ⊆ A × A is a relation that is reflexive, transitive and
for every infinite succession w1, w2, . . . ∈ Aω there are two
indexes i < j such that wi ≤ wj.

Definition 3.3. Given a transition system (A,→), we
define Succ(a) := {a′ | a→ a′}, Succ∗(a) := {a′ | a→∗ a′}.
Given a wqo (A,≤) and A ′ ⊆ A, we define ↑A ′ := {a | a′ ∈
A ′, a′ ≤ a}.

Definition 3.4. We say that a transition system (A,→)
is finitely branching iff Succ(a) is finite for all a ∈ A. If
Succ(a) is also effectively computable for all a, we say that
(A,→) is effective.

Definition 3.5. A wqo (A,≤) is reflexive downwards
compatible (rdc) with respect to a transition system (A,→)
iff for every a1, a2, a

′
1 ∈ A such that a′1 ≤ a1 and a1 → a2,

there exists a′2 ∈ A such that a′2 ≤ a2 and either a′1 → a′2 or
a′1 = a′2.

Decidability will be shown as a consequence of the following
known result.

Proposition 3.3. ([10, Proposition 5.4]) If (A,≤) is a
wqo and (A,→) a transition system such that (1) it is rdc,
(2) it is effective, and (3) ≤ is decidable; then for any a ∈ A
it is possible to compute a finite set A ′ ⊆ A such that ↑A ′ =
↑Succ∗(a).

Theorem 3.1. Non-emptiness of ATRA(guess, spread) is
decidable.

Proof. As already mentioned, decidability for ATRA was
proved in [13]. Here we propose an alternative approach
that simplifies the proof of decidability of the two extensions
spread and guess.

The proof goes as follows. We will define a wqo ≺ over
the node configurations and show that (ConfN ,≺) is rdc
w.r.t. →ε, →O and →� (Lemma 3.2). We will then ap-
ply a useful result (Proposition 3.4) to lift this result to the
set of tree configurations and prove for some decidable wqo
< that (ConfT ,<) is rdc w.r.t. �t . Note that strictly speak-
ing �t is an infinite-branching transition system as →O or
→� may take any value from the infinite set D, and→ε can
also guess any value. However, it can trivially be restricted
to an effective finitely branching one. Then, by Proposi-
tion 3.3, �t has an effectively computable upward-closed
reachability set, and this implies that the emptiness prob-
lem of ATRA(guess, spread) is decidable.

We first define the relation ‘≺’ ⊆ ConfN × ConfN between
node configurations

〈p, α, (s, d), H〉 ≺ 〈p′, β, (s′, d′), H ′〉

iff there exists an injective mapping f : {d}∪data(H)→ D
such that
1. if 〈q, e〉 ∈ H then 〈q, f(e)〉 ∈ H ′, 2. f(d) = d′, and
3. s = s′ and α = β.

Whenever it is necessary to make explicit the witnessing
function f that enables the relation, we write ρ ≺f τ . The
following lemma follows from the definition just seen. The
proof is in the Appendix.

Lemma 3.1. (ConfN ,≺) is a well quasi-order.

Let � := →ε ∪ →O ∪ →� ⊆ ConfN × ConfN . The core
of this proof is centered in the following lemma.

Lemma 3.2. (ConfN ,≺) is reflexive downward compatible
(rdc) with respect to �.



Proof. We shall show that for all ρ, τ, ρ′ ∈ ConfN such
that ρ� τ and ρ′ ≺ ρ, there is τ ′ such that τ ′ ≺ τ and either
ρ′ � τ ′ or τ ′ = ρ′. The proof is a simple case analysis of the
definitions for�. All cases are treated alike, here we present
the most representative. Suppose first that � performs a
→ε, then one of the definition conditions of →ε must apply.

If (4), let

ρ = 〈p, α, (s, d), {〈q, d〉} ∪H〉 � τ = 〈p, α, (s, d), H〉

with δ(q) = eq. Let ρ′ = 〈p′, α, (s, e′), H ′〉 ≺f ρ. If there
is 〈q, e〉 ∈ H ′ such that f(e) = d, then by injectivity of
f , e = e′ and we can then apply the same →ε-transition
obtaining

ρ →ε τ
g g
ρ′ →ε τ ′

witenessed by the map f . Otherwise, we can safely take
ρ′ = τ ′ and check that τ ′ ≺f τ .

If (3), let

ρ = 〈p, α, (s, d), {〈q, d′〉} ∪H〉 �
τ = 〈p, α, (s, d), {〈q′, d〉} ∪H〉

with ρ→ε τ and δ(q) = set(q′). Again let ρ′ ≺f ρ containing
〈q, e〉 ∈ H ′ with f(e) = d′. In this case we can apply the
same →ε-transition arriving to τ ′ where τ ′ ≺f τ . Else, we
take ρ′ = τ ′.

If a guess is performed (9), let

ρ = 〈p, α, (s, d), {〈q, d′〉} ∪H〉 →ε

τ = 〈p, α, (s, d), {〈q′, e〉} ∪H〉

with δ(q) = guess(q′). Let ρ′ = 〈p′, α, (s, d′1), H ′〉 ≺f ρ.
Suppose there is 〈q, d′2〉 ∈ H ′ such that f(d′2) = d′, then
we then take a guess transition from ρ′ obtaining some τ ′.
If e ∈ Im(f), we obtain τ ′ by guessing f−1(e) and hence
τ ′ ≺f τ . If e 6∈ Im(f), τ ′ is obtained by guessing a ‘new’
value e2 different from all those of data(ρ′), and by defining
f ′ := f [e2 7→ e] we have τ ′ ≺f ′ τ . Otherwise, if there is no
〈q, d′2〉 ∈ H ′ such that f(d′2) = d′, we take τ ′ = ρ′ and check
that τ ′ ≺f τ .

Finally, if a spread is performed (10), let

ρ = 〈p, α, γ, {〈q, d′〉} ∪H〉 →ε

τ = 〈p, α, γ, {〈q1, d〉 | 〈q2, d〉 ∈ H} ∪H〉

with δ(q) = spread(q2, q1). Let ρ′ = 〈p′, α, γ′, H ′〉 ≺f ρ and
suppose there is 〈q, e〉 ∈ H ′ such that f(e) = d′ (otherwise
τ ′ = ρ′ works). We then take a spread instruction ρ′ →ε τ

′

and see that τ ′ ≺f τ , because any 〈q1, e〉 in τ ′ generated by
the spread must come from 〈q2, e〉 of ρ′, and hence from some
〈q2, f(e)〉 of ρ; now by the spread applied on ρ, 〈q1, f(e)〉 is
in τ . The remaining cases of →ε are only easier.

There can be 3 other possible ‘moving’ applications of �
depending on the tree type of the node configuration in
question. We will only analyze one case, as the others are
symmetric. Suppose that we have

ρ = 〈p, (O, �̄), (a, d), H〉 � τ = 〈p1, α1, (a1, d1), H1〉

where ρ →O τ . Let ρ′ = 〈p′, (O, �̄), (a, d′), H ′〉 ≺f ρ. If
ρ′ is such that ρ′ ≺ τ , the relation is trivially compati-
ble. Otherwise, we shall prove that there is τ ′ such that
ρ′ � τ ′ and τ ′ ≺ τ . Condition (i) of →O holds for ρ′,
because all the states present in ρ′ are also in ρ (by defini-
tion of ≺f ) where the condition must hold. Then, we can
apply the →O transition to ρ′ and obtain τ ′ of the form
〈p′1, α1, (a1, d

′
1), H ′1〉. Notice that we are taking α1 and a1

exactly as in τ , and that H ′1 is completely determined by the
→O transition from H ′. We only need to describe the value
d′1 that will serve our purpose. As before, if d1 ∈ Im(f) we
take d′1 = f−1(d1) and check τ ′ ≺f τ ; and if d1 6∈ Im(f) we
take d′1 to be a new value not in data(H ′) and check τ ′ ≺f ′ τ
with f ′ := f [d′1 7→ d1].

We just showed that for node configurations, (ConfN ,�) is
rdc w.r.t. (ConfN ,≺). We now lift this result to tree con-
figurations, by considering that a tree configuration can be
equivalently seen as an element from (ConfN )∗, and showing
that the transition system ((ConfN )∗,�t ) is rdc w.r.t. the
embedding order over (ConfN ,≺) that we define next.

Definition 3.6. The embedding order (A∗,<) over
an order (A,≤) is defined as follows.
(w1 · · ·wn) < (v1 · · · vm) iff there exist 1 ≤ i1 < i2 < · · · <
in ≤ m such that wj ≤ vij for all j ∈ [1..n].

The lifting result is a standard argument, and can be stated
in this general proposition, whose proof can be found in the
Appendix.

Proposition 3.4. Let ≤,→1 ⊆ A×A, <,→2 ⊆ A∗×A∗
where < is the embedding order over (A,≤) and →2 is such
that if s →2 t then: s and t are of the form s = ū a v̄,
t = ū b̄ v̄ where b̄ = b1 · · · bm such that a →1 bz for every
z ∈ [1..m]. Then,

if (A,≤) is a wqo which is rdc with →1,
then (A∗,<) is a wqo which is rdc with →2.

We can apply this proposition by taking →1 as �, ≤ as
≺, and taking that a ConfT configuration can be seen as an
element of (ConfN )∗ by sorting the set by the lexicographic
order on the first component (i.e., the node’s position on the
tree), and vice versa every element of (ConfN )∗ can be seen
as an element from ConfT . We instantiate →2 to be �t

as it verifies the conditions demanded for →2. As a result
we have that (ConfT ,�t ) is rdc w.r.t. (ConfT ,<) and the
condition (1) of Proposition 3.3 is met.

As already mentioned, the transition �t does not need to
have infinite branching. This is just a consequence of the
fact that the�t -image of any configuration has only a finite
number of configurations up to isomorphism of the data val-
ues contained (remember that only equality between data
values matters), and representatives for every class are ef-
fectively computable. We can then take �t 2 ⊂ �t to have
only one representative element for each class of equivalence
and it then follows that the reachable classes of equivalence



of �t and �t 2 are the same. Hence, we have that condition
(2) from Proposition 3.3 is also met. Finally, condition (3)
holds as < is a wqo (by Proposition 3.4) that is computable.
We can then apply Proposition 3.3 and it follows that the
reachability and non-emptiness problems are decidable. In-
deed, an ATRA(guess, spread) M is non-empty iff there exists
an element of the finite basis of

↑Succ∗({〈ε, α, (a, d0), {〈qI , d0〉}〉})

—for any fixed d0 and some α ∈ {O, Ō} × {�, �̄} and a ∈
Σ— in which every node configuration has an empty set of
threads.

4. DECIDABILITY OF XPATH
This section is mainly dedicated to the decidability of the
satisfiability problem for a fragment of XPath with down-
ward and rightward axes known as ‘forward-XPath’. This
is proved by a reduction to the ATRA(guess, spread) non-
emptiness problem.

4.1 Definitions
We consider a fragment of the navigational part of XPath 1.0
with data equality and inequality. In particular this logic is
here defined over data trees. However, an xml document
may typically have not one data value per node, but a set of
attributes, each carrying a data value. This is not a problem
since every attribute of an xml element can be encoded as
a child node in a data tree labeled by the attribute’s name.
Thus, all the decidability results hold also for XPath with
attributes over xml documents.

Let us define a simplified syntax for this logic. XPath is a
two-sorted language, with path expressions (α, β, . . . ) and
node expressions (ϕ,ψ, . . . ). We write XPath(O) to denote
the data-aware fragment with the set of axes O ⊆ {↓, ↓∗
,→,→∗,←, ∗←, ↑, ↑∗}. It is defined by mutual recursion as
follows,

α, β ::= o | [ϕ] | αβ | α ∪ β o ∈ O ∪ {ε}

ϕ,ψ ::= a | ¬ϕ | ϕ ∨ ψ | ϕ ∧ ψ | 〈α〉 | α = β | α 6= β

where a ∈ Σ, and Σ is a finite alphabet. A formula of
XPath(O) is either a node expression or a path expression.
We define the ‘forward’ set of axes as F := {↓, ↓∗,→,→∗}, and
consequently the fragment ‘forward-XPath’ as XPath(F). We
also refer by XPath−(F) to the fragment considered in [13]
where data tests are of the restricted form ε = α or ε 6= α.2

There have been efforts to extend XPath to have the full ex-
pressivity of MSO, e.g. by adding a least fix-point operator
(cf. [3, Sect. 4.2]), but these logics generally lack clarity and
simplicity. However, a form of recursion can be added by
means of the Kleene star, which allows us to take the transi-
tive closure of any path expression. Although in general this
is not enough to already have MSO [4], it does give an in-
tuitive language with counting ability. By regXPath(O) we
refer to the enriched language where path expressions are
extended by allowing the Kleene star on any path expres-
sion.

α, β ::= o | [ϕ] | αβ | α ∪ β | α∗ o ∈ O ∪ {ε}
2[13] refers to XPath−(F) as ‘forward XPath’. Here, ‘forward
XPath’ is the unrestricted fragment XPath(F).

Let T = 〈P, σ〉 be a data tree. The semantics of XPath is
defined as the set of elements (in the case of node expres-
sions) or pairs of elements (in the case of path expressions)
selected by the expression. The data aware expressions are
the cases α = β and α 6= β.

[[→]]T := {(xi, x(i+ 1)) | x(i+ 1) ∈ P}

[[↓]]T := {(x, xi) | xi ∈ P}

[[α∗]]T := the reflexive transitive closure of [[α]]T

[[ε]]T := {(x, x) | x ∈ P}

[[αβ]]T := {(x, z) | ∃y.(x, y) ∈ [[α]]T , (y, z) ∈ [[β]]T }

[[[ϕ]]]T := {(x, x) | x ∈ [[ϕ]]T }

[[α ∪ β]]T := [[α]]T ∪ [[β]]T

[[¬ϕ]]T := P \ [[ϕ]]T

[[〈α〉]]T := {x ∈ P | ∃y.(x, y) ∈ [[α]]T }

[[ϕ ∨ ψ]]T := [[ϕ]]T ∪ [[ψ]]T

[[α = β]]T := {x ∈ P | ∃y, z.(x, y) ∈ [[α]]T ,

(x, z) ∈ [[β]]T , π2(σ(y)) = π2(σ(z))}

[[ϕ ∧ ψ]]T := [[ϕ]]T ∩ [[ψ]]T

[[α 6= β]]T := {x ∈ P | ∃y, z.(x, y) ∈ [[α]]T ,

(x, z) ∈ [[β]]T , π2(σ(y)) 6= π2(σ(z))}

[[a]]T := {x ∈ P | π1(σ(x)) = a}

For instance, in the model of Fig. 1,

[[〈↓∗[b ∧ ↓ [b] 6=↓ [b]]〉]]T = {ε, 1, 12}.

We define sub(ϕ) to denote the set of all subformulæ of ϕ,
psub(ϕ) := {α | α ∈ sub(ϕ), α is a path expression}, and
nsub(ϕ) := {ψ | α ∈ sub(ϕ), ψ is a node expression}.

Primary key. It is worth noting that XPath(F) —contrary
to XPath−(F)— can express unary primary key constraints.
That is, whether for some symbol a, all the a-elements in
the tree have different data values.

Lemma 4.1. For every a ∈ Σ let pk(a) be the property
over a tree T = 〈P, σ〉: “For every two different positions
p, p′ ∈ P of the tree, if π1(p) = π1(p′) = a, then π2(p) 6=
π2(p′)”. Then, pk(a) is expressible in XPath for any a.

Proof. It is easy to see that the negation of this property
can be tested by first guessing the closest common ancestor
of two different a-elements with equal datum in the under-
lying ‘first child’-‘next sibling’ binary tree coding. At this
node, we verify the presence of two a-nodes with equal da-
tum, one accessible with a “↓∗” relation and the other with a
compound “→+↓∗” relation (hence the nodes are different).
The expressibility of the property then follows from the logic
being closed under negation. The reader can check that the
following formula expresses the property, where ‘↓+’ = ‘↓↓∗’
and ‘→+’ = ‘→→∗’.

pk(a) ≡ ¬〈↓∗ [ ε[a] =↓+ [a] ∨ ↓∗ [a] =→+↓∗ [a] ]〉



4.2 Reduction to ATRA non-emptiness
In this section we show how satisfiability of forward-XPath
can be decided with the help of the automata model intro-
duced in Section 3. First let us fix some nomenclature.

Definition 4.1. We say that a class of automata S cap-
tures a logic L iff there exists a translation t : L → S such
that for every ϕ ∈ L and data tree T , we have that T verifies
ϕ if and only if t(ϕ) has an accepting run over T .

[13] shows that ATRA captures the fragment ‘XPath−(F)’.
It is immediate to see that ATRA can easily capture the
Kleene star operator on any path formula, obtaining decid-
ability of regXPath−(F). However, these decidability results
cannot be generalized to the full unrestricted forward frag-
ment XPath(F) as ATRA is not powerful enough to capture
the expressivity of the logic. It cannot express, for instance,
that there are two different leaves with the same data value.
Unfortunately, the model ATRA(guess, spread) introduced in
this article can neither capture XPath(F). Concretely, data
tests of the form ¬(α = β) are impossible to perform for
ATRA(guess, spread) as this would require —in some sense—
the ability to guess two disjoint sets of data values S1, S2

such that all α-paths lead to a data value of S1, and all
β-paths lead to a data value of S2. Still, in the sequel we
show that there exists a reduction from the satisfiability of
regXPath(F) to the emptiness of ATRA(guess, spread). This
result settles an open question regarding the decidability of
the satisfiability problem for the forward-XPath fragment:
XPath(F). The main results that will be shown in Section 4.3
are the following.

Theorem 4.1. Satisfiability of regXPath(F) in the pres-
ence of DTDs and unary primary key constraints is decid-
able, non primitive recursive.

And hence the next corollary follows from the logic being
closed under boolean operations.

Corollary 4.1. The query containment and the query
equivalence problems are decidable for XPath(F).

Moreover, these decidability results hold for regXPath(F)
and even for two extensions:

• a navigational extension with upward axes (in Sec-
tion 4.4), and

• a generalization of the data tests that can be performed
(in Section 4.5).

4.3 Allowing arbitrary data tests
This section is devoted to the proof of the following state-
ment.

Proposition 4.1. For every η ∈ regXPath(F) there exists
an effectively computable ATRA(guess, spread) automaton M
such that M is non-empty iff η is satisfiable.

The proof can be sketched as follows:

• We define a strategy of evaluation consisting of a re-
striction of the transition �t of ATRA(guess, spread)
that is referred to as �t· ⊆�t . This strategy verifies
that there exists an accepting run under �t iff there
exists an accepting run under �t· .

• We give a translation from forward XPath formulæ to
ATRA(guess, spread) automata such that (1) any tree
accepted by the automaton M with the evaluation
strategy �t· verifies the XPath formula η, and (2) any
tree verified by the formula η is accepted by the au-
tomaton M .

Intuitively, �t· is the restriction of �t to a finitely branch-
ing transition system, where each data value introduced non
deterministically (either from a guess or from a →O or →�

transition) verifies that either it already existed in the cur-
rent node configuration, or it has not appeared so far along
the whole execution of the automaton. Note that with this
semantics the automaton accepts strictly less data trees.
However, this can be done preserving the existence of data
trees with accepting runs since from an accepting �t se-
quence one can construct a similar accepting �t· sequence.
Indeed, for any data tree T accepted under the �t seman-
tics, there is another data tree T ′, that only differs in T in
the data values of some nodes, which is accepted both under
the �t· semantics and the �t semantics.

Definition 4.2. Let us fix θ : N∗ × N → D an injective
map. Consider the restriction where ρ = 〈p, . . .〉 →O τ ap-
plies only if

1. τ introduces a data value already in data(ρ), or

2. if it introduces the value θ(p1, 1).

A similar restriction applies for ρ = 〈pi, . . .〉 →� τ and
θ(p(i + 1), 1). Finally, ρ = 〈p, . . .〉 →ε τ applies only if
either

1. a non-guess transition is performed;

2. a guess transition is performed and a data value already
in data(ρ) is guessed; or

3. a guess transition is performed and the guessed data
value is θ(p, imin), where

imin = min{i | θ(p, i) 6∈ data(ρ)}.

We note this restriction of �t by �t· .

The following lemma follows from the definition above(see
the Appendix for more details).

Lemma 4.2. Let M be an ATRA(guess, spread). M has
an accepting run under �t iff it has an accepting run under
�t· .

Based on the semantics of �t· , we define a translation from
regXPath(F) formulæ to ATRA(guess, spread) automata. Let



η be a regXPath(F) formula and let M be the corresponding
ATRA(guess, spread) automaton defined by the translation.
We show that (i) if a data tree T is accepted by M under
the �t· strategy, then T verifies η, and (ii) if a data tree
T verifies η, then T is accepted by M (under �t ). The
emptiness problem for M under�t and�t· are equivalent as
already discussed, and thus Proposition 4.1 follows.

The translation
Let η be a regXPath(F) node expression in negated normal
form (nnf for short). For succinctness and simplicity of the
translation, we assume that η is in a normal form such that
the ↓-axis is interpreted as the leftmost child. To obtain this
normal form, it suffices to replace every appearance of ‘↓’ by
‘↓→∗’. For every path expression α ∈ psub(η), consider a
deterministic complete finite automaton Hα over the alpha-
bet Ση = {ϕ | ϕ ∈ nsub(η)} ∪ {↓,→} which corresponds
to that regular expression. We assume the following names
of its components: Hα = 〈Ση, δα, Qα, 0, Fα〉, with Qα ⊂ N
the finite set of states and 0 ∈ Qα the initial state. We
next show how to translate η into an ATRA(guess, spread)
automaton M . For the sake of readability we define the
transitions as positive boolean combinations of ∨ and ∧ over
the set of basic tests and states. Any of these —take for in-
stance δ(q) = (set(q1) ∧ Oq2) ∨ (q3 ∧ ā)— can be rewritten
into an equivalent ATRA with at most one boolean connec-
tor per transition (as in Definition 3.1) in polynomial time.
The most important cases are those relative to the following
data tests:

1. α = β 2. α 6= β 3. ¬(α = β) 4. ¬(α 6= β)

We define the ATRA(guess, spread) automaton

M := 〈Σ, Q, (|ϕ|), δ〉

with

Q := {(|ϕ|), (|α|)~C,i, (|α|)
~
F , (|α, β|)

~
C,i,E,j | ϕ ∈ nsub¬(η),

α, β ∈ psub¬(η),~ ∈ {=, 6=,¬=,¬6=},
i ∈ Qα, C ⊆ Qα, j ∈ Qβ , E ⊆ Qβ}

where op¬ is the smallest superset of op closed under nega-
tion under nnf, i.e., if ϕ ∈ op¬(η) then nnf(¬ϕ) ∈ op¬(η).
The sets C, E are not essential to understand the general
construction, and they have as only purpose to disallow non-
moving loops in the definition of δ. As an example we first
take care of the boolean connectors and the simplest tests.

δ((|a|)) := a δ((|ϕ ∨ ψ|)) := (|ϕ|) ∨ (|ψ|)
δ((|¬a|)) := ā δ((|ϕ ∧ ψ|)) := (|ϕ|) ∧ (|ψ|)

The tests 〈α〉 and ¬〈α〉 are coded in a standard way, see[13]
for more details. Here we focus on the data-aware cases.
Using the guess operator, we can easily define the cases cor-
responding to the data test cases 1 and 2 as follows. Here,
(|α|)F holds at the endpoint of a path matching α.

δ((|α = β|)) := guess((|α, β|)=)

δ((|α, β|)=) := (|α|)=∅,0 ∧ (|β|)=∅,0 δ((|α|)=F ) := eq

δ((|α 6= β|)) := guess((|α, β|) 6=)

δ((|α, β|) 6=) := (|α|)=∅,0 ∧ (|β|) 6=∅,0 δ((|α|) 6=F ) := eq

We define the transitions associated to each Hα, for i ∈
Qα, C ⊆ Qα,~ ∈ {=, 6=}.

δ((|α|)~C,i) :=
∨

ϕ∈nsub(α),
i′:=δα(ϕ,i), i′ 6∈C

(
(|ϕ|) ∧ (|α|)~C∪{i′},i′

)
∨ O(|α|)~∅,δα(↓,i) ∨�(|α|)~∅,δα(→,i) ∨

∨
i∈Fα

(|α|)~F

The test case 4 involves also an existential quantification
over data values. In fact, ¬(α 6= β) means that either (1)
there are no nodes reachable by α, or (2) there are no nodes
reachable by β, or (3) there exists a data value d such that
both (a) all elements reachable by α have datum d, and (b)
all elements reachable by β have datum d.

δ((|¬α 6= β|)) := (|¬〈α〉|) ∨ (|¬〈β〉|) ∨ guess((|α, β|)¬6=)

δ((|α, β|)¬6=) := (|α|)¬6=∅,0 ∧ (|β|)¬6=∅,0
δ((|α|)¬6=F ) := eq δ((|α|)¬=F ) := eq

δ((|α|)¬~C,i ) :=
∧

ϕ∈nsub(α),
i′:=δα(ϕ,i), i′ 6∈C

((|ϕ̄|) ∨ (|α|)¬~C∪{i′},i′)

∧ (Ō? ∨ O(|α|)¬~∅,δα(↓,i)) ∧ (�̄? ∨�(|α|)¬~∅,δα(→,i))

∧
∧
i∈Fα

(|α|)¬~F where ϕ̄ stands for nnf(¬ϕ).

The difficult part is the translation of the data test case 3.
The main reason for this difficulty is the fact that ATRA
automata do not have the expressivity to make these kinds
of tests. An expression ¬(α = β) forces the set of data val-
ues reachable by an α-path and the set of those reachable
by a β-path to be disjoint. We show that nonetheless the
automaton can test for a condition that is sat-equivalent to
¬(α = β). Suppose first that η = ¬(↓ α =→ β) is to be
checked for satisfiability. One obvious answer would be to
test separately α and β. If both tests succeed, we can then
build a model satisfying η out of the two witnessing trees
by making sure they have disjoint sets of values. Other-
wise, η is clearly unsatisfiable. Suppose now that we have
η = ϕ ∧ ¬(↓ α =→ β), where ϕ is any formula with no
data tests of type 3. One could build the automaton for ϕ
and then ask for “spread((| ↓ α|)¬=0 ∨ (| → β|)¬=0 )” in the au-
tomaton. This corresponds to the property “for every data
value d taken into account by the automaton (as a result
of the translation of ϕ), either all elements reachable by α
do not have datum d, or all elements reachable by β do
not have datum d”. If ϕ contains a α′ = β′ formula, this
translates to a guessing of a witnessing data value d. Then
the use of spread takes care of this particular data value,
and indeed of all other data values that were guessed to
satisfy similar demands. In other words, it is not because
of d that ¬(↓ α =→ β) will be falsified. But then, the
�t· semantics ensures that no pair of nodes accessible by α
and β share the same datum. This is the main idea we en-
code next. Here, spread(q) :=

∧
q′∈Q spread(q′, q), and we

define δ((|¬(α = β)|)) := (|α, β|)¬=∅,0,∅,0. Given ¬(α = β), the
automaton systematically looks for the closest common an-
cestor of every pair (x, y) of nodes accessible by α and β
respectively, and tests, for every data value d in the node



configuration, that either (1) all data values accessible by
the remaining path of α are different from d, or (2) all data
values accessible by the remaining path of β are different
from d.

δ((|α, β|)¬=C1,i,C2,j) := spread
(
(|α|)¬=∅,i ∨ (|β|)¬=∅,j

)
∧ O(|α, β|)¬=∅,δα(↓,i),∅,δβ(↓,j)

∧�(|α, β|)¬=∅,δα(→,i),∅,δβ(→,j)

∧
∧
i∈Fα

(|β|)¬=∅,j ∧
∧
j∈Fα

(|α|)¬=∅,i

∧
∧

ϕ∈nsub(α),
i′:=δα(ϕ,i), i′ 6∈C1

((|ϕ̄|) ∨ (|α, β|)¬=C1∪{i′},i′,C2,j)

∧
∧

ϕ∈nsub(β),
j′:=δβ(ϕ,j), j

′ 6∈C2

((|ϕ̄|) ∨ (|α, β|)¬=C1,i,C2∪{j′},j′)

The following lemmas then follow from the discussion above.

Lemma 4.3. For any data tree T , if T verifies η, then M
accepts T under the �t semantics.

Lemma 4.4. For any data tree T , if M accepts T under
the �t· semantics, then T verifies η.

Lemmas 4.3 and 4.4 together with Lemma 4.2 conclude the
proof of Proposition 4.1. We then have that Theorem 4.1
holds.

Proof of Theorem 4.1. By Proposition 4.2, satisfiabil-
ity of regXPath(F) is reducible to the nonemptiness problem
for ATRA(guess, spread). On the other hand, we remark that
ATRA(guess, spread) automata can code any regular tree lan-
guage —in particular a DTD, the core of XML Schema, or
Relax NG— and are closed under intersection by Proposi-
tion 3.2. Also, the logic can express any unary primary key
constraint as stated in Lemma 4.1. Hence, by Theorem 3.1
the decidability follows.

It is known that even much simpler fragments of XPath have
non primitive recursive complexity [9].

4.4 Allowing upward axes
Here we explore one possible decidable extension to the logic
regXPath(F), whose decidability can be reduced to that of
ATRA(guess, spread).

Consider the data test expressions of the types

¬(αb = βf) and ¬(αb 6= βf)

where βf ∈ regXPath(F) and αb ∈ regXPath(B), with B :=
{↑, ↑∗,←, ∗←}. We can decide the satisfaction of these kinds
of expressions by means of the spread(·, ·), using carefully its
first parameter to select the desired threads from which to
collect the data values we are interested in. Intuitively, along
the run we throw threads that save current data value and
try out all possible ways to verify αrb ∈ regXPath(F), where

·r stands for the reverse of the regular expression. Let the
automaton arrive at a configuration 〈(|αb|), d〉 whenever αrb
is verified. This signals that there is a backwards path from
the current node in the relation αb that arrives at a node
with data value d. Hence, at any given position, the instruc-
tion spread((|αb|), (|αf|)¬~) translates correctly the expression
¬(αb ~ βf). Furthermore, αb need not be necessarily in
regXPath(B), as its intermediate node tests can be formulæ
from regXPath(F). More formally, let regXPathB(F) be the
fragment of regXPath(F ∪B) defined by the grammar

ϕ,ψ ::= ¬a | a | ϕ ∧ ψ | ϕ ∨ ψ | 〈αf〉 | 〈αb〉 |
αf ~ βf | ¬(αf ~ βf) | ¬(αb = βf) | ¬(αb 6= βf)

with ~ ∈ {=, 6=}, a ∈ Σ, and

αf, βf ::= [ϕ] | αfβf | oαf | (αf)
∗ o ∈ {↓,→, ε},

αb, βb ::= [ϕ] | αbβb | oαb | (αb)∗ o ∈ {↑,←, ε}.

We must note that regXPathB(F) contains the full data-
unaware fragment (i.e., with no data tests) of regXPath(B),
and that it is not closed under negation. In fact, were it
closed under negation, its satisfiability would be undecid-
able. As mentioned, we can decide the satisfiability problem
for this fragment.

Theorem 4.2. Satisfiability for regXPathB(F) under pri-
mary key constraints and DTDs is decidable.

4.5 Allowing stronger data tests
Consider the property “there are three descendant nodes la-
beled a, b and c with the same data value”. That is, there
exists some data value d such that there are three nodes
accessible by ↓∗ [a], ↓∗ [b] and ↓∗ [c] respectively, all carry-
ing the datum d. Let us denote the fact that they have
the same or different datum by introducing the symbols ‘∼’
and ‘6∼’, and appending it at the end of the path. Then in
this case we write that the elements must satisfy ↓∗ [a]∼,
↓∗ [b]∼, and ↓∗ [c]∼. We then introduce the node expres-
sion {{α1s1, . . . , αnsn}} where αi is a path expression and
si ∈ {∼, 6∼} for all i ∈ [1..n]. Semantically, it is a node ex-
pression that denotes all the tree positions p from which we
can access n nodes p1, . . . , pn such that there exists d ∈ D
where for all i ∈ [1..n] the following holds: (p, pi) ∈ [[αi]]; if
si = ∼ then π2(σ(pi)) = d; and if si = 6∼ then π2(σ(pi)) 6= d.
Note that now we can express α = β as {{α∼, β∼}} and α 6= β
as {{α∼, β 6∼}}. Let us call regXPath+(F) to regXPath(F) ex-
tended with the construction just explained. This is a more
expressive formalism since the first mentioned property —or,
to give another example, {{↓∗ [a]∼, ↓∗ [b]∼, ↓∗ [a]6∼, ↓∗ [b] 6∼}}—
is not expressible in regXPath(F).

We argue that satisfiability for this extension can be decided
in the same way as for regXPath(F). It is straightforward to
see that positive appearances can easily be translated with
the help of the guess operator. On the other hand, for neg-
ative appearances, like ¬{{α1s1, . . . , αnsn}}, we proceed in
the same way as we did for regXPath(F). The only differ-
ence being that in this case the automaton will simulate the
simultaneous evaluation of the n expressions and calculate
all possible configurations of the closest common ancestors
of the endpoints, performing a spread at each of these inter-
mediate points.



Theorem 4.3. Satisfiability of regXPath+(F) under pri-
mary key constraints and DTDs is decidable.

5. TEMPORAL LOGICS ON DATA WORDS
The logic LTL↓(X,F,U) is a logic for data words that cor-
responds to the extension of the Linear Temporal Logic
LTL(X,F,U) with the ability to use one register for stor-
ing a data value for later comparisons. Here, a data word
is understood as a non-branching data tree. More formally,
sentences are defined

ϕ,ψ ::= a | ↓ ϕ | ↑ | ¬ϕ | ϕ ∧ ψ | ϕ ∨ ψ |
Xϕ | Fϕ | U(ϕ,ψ) | > | ⊥

where a ∈ Σ. Here, X is the next element operator, F is the
future operator (i.e., the transitive closure of X), and U(ϕ,ψ)
is the until operator stating that we can move forward by el-
ements satisfying ψ until an element satisfying ϕ is reached.
We denote by X̄, G and Ū the respective dual operators of
X, F, and U. These are such that ¬Xϕ ≡ X̄¬ϕ, ¬Fϕ ≡ G¬ϕ
and ¬U(ϕ,ψ) ≡ Ū(¬ϕ,¬ψ), and hence enables us to work
with sentences in negated normal form (nnf) without loss of
generality. With the operator ↓ we store the current datum
in the register and continue the evaluation of the formula,
and with the operator ↑ we test current data value against
the one stored in the register. In this logic we can express
properties like “for every a element there is a future b ele-
ment with the same data value” as G(¬a ∨ ↓ (F(b ∧ ↑))).

This logic has been studied in [7, 6] where satisfiability and
expressivity issues have been addressed. [6] established that
the satisfiability problem for LTL↓(X,F) and LTL↓(X,F,U)
are decidable and non primitive recursive on data words. It
was also shown that the two way extension LTL↓(X,F,F−1)
is undecidable over data words and, similarly, that the ex-
tension to having two registers is undecidable.3 The decid-
ability results have been established by means of the Alter-
nating Register Automaton (ARA) that corresponds to the
ATRA model evaluated on data words rather than data trees.
Thus, we call ARA(guess, spread) our model evaluated over
data words (we remark that ATRA can force the model to
be linear by asking that everywhere ‘�̄’ must hold). This
automaton corresponds to having only node configurations
and →ε and →O as only transitions. Then, the decidability
of the emptiness problem immediately follows.

We propose the following logic for data words, which is an
extension of LTL↓(X,U,F) with two other operators. The

operator ∀↓≤ϕ states that for all data value occurring in the
data word at a previous position than the current one, ϕ
must hold. The operator ∃↓≥ϕ states that for some data value
occurring at a future position of the data word, ϕ holds.
However, we do not allow the dual operators ∀↓≥ or ∃↓≤ as
this results in an undecidable logic, so we deal with a logic
with much added expressive power but that is not closed
under negation. In this context, the ‘forward’ operators are
F := {U, Ū,F,G,X, X̄}. By LTL↓nnf(O) we denote the logic
restricted to the operators O considering that the formulæ
are in negated normal form. It is not hard to see that we can
then code LTL↓nnf(F, ∀

↓
≥, ∃

↓
≤) into ARA(guess, spread).4 We

3What is more, all the lower bounds hold even in the absence
of the X modality [9].
4Note that this logic already contains LTL↓(X,U,F).

then obtain the following results.

Theorem 5.1. Let ∃↓< be the operator ∃↓≤ restricted only
to the data values occurring strictly before the current point
of evaluation. Then, on finite data words:
(i) satisfiability of LTL↓nnf(F,G, ∃↓<) is undecidable;

(ii) satisfiability of LTL↓nnf(F,G, ∀↓≥) is undecidable; and

(iii) satisfiability of LTL↓nnf(F, ∃
↓
≥, ∀

↓
≤) is decidable.

Proof. To prove (i) and (ii) we show that these logics
can code an accepting run of a 2-counter Minsky Automa-
ton, that is known to be undecidable. For this, we build on
some previous results [9] showing that LTL↓nnf(F,G) can code
some weak notion of counter automaton5 where a decre-
ment instruction can always be applied, even to a counter
with value 0, in which case the counter’s value remains un-
changed. Here data values are used to ensure that, along
the run, every increment instruction occurring before a test
for zero has a corresponding decrement in between. In this
coding, an increment is linked to a decrement of the same
counter by means of sharing the same data value. We show
that both LTL↓nnf(F,G,∃↓<) and LTL↓nnf(F,G,∀↓≥) can ensure
that for every decrement there is a previous increment with
the same data value. Hence, in this case we are coding an
accepting run of a Minsky Automaton, where decrements
cannot be performed to non-positive counters, and with an
undecidable emptiness problem. Let us see how.

(i) The LTL↓nnf(F,G, ∃↓<) formula G(deci → ∃↓< ↑) states
that the data value of every decrement must not be
new, and in the context of this coding this means that
it must have been introduced by an increment instruc-
tion.

(ii) The LTL↓nnf(F,G, ∀↓≥) formula

∀↓≥(F(deci∧ ↑)→ F(inci∧ ↑))
evaluated at the first element of the data word ex-
presses that for every data value: if there is a decre-
ment with that value, then there is an increment with
that value. It is then easy to ensure that they ap-
pear in the correct order (first the increment, then the
increment).

The addition of any of these conditions to the coding of [9]
results in a coding of an n-counter Minsky Machine, whose
emptiness problem is undecidable.

The item (iii) is a consequence of Theorem 5.2 stated be-
low.

Corollary 5.1. The finitary satisfiability problem for both
LTL↓nnf(F, ∃

↓
≤) and LTL↓nnf(F,∀

↓
≥) are undecidable.

Proof. Condition (i) can be also coded in LTL↓nnf(F, ∃
↓
≤)

as G(X(deci)→ ∃↓≤(X ↑)).
5This automaton is called Incrementing Counter Automa-
ton, and can equivalently be seen as a a counter automaton
where counters may have faulty increments along the run.



Theorem 5.2. For every formula ϕ ∈ LTL↓nnf(F,∀
↓
≤, ∃

↓
≥)

there exists an effectively computable ARA(spread, guess) M
such that for every data word w,

w satisfies ϕ iff M accepts w.

Proof. The translation for LTL↓nnf(F) is like the one pre-
sented in [6] and presents no complications whatsoever. For

the coding of the ∀↓≤ operator, we first make sure to maintain
all the data values seen so far as threads of the configuration.
We can do this easily.

δ(q1) := set(q2) δ(q2) := (Ō? ∨ Oq1) ∧ qsave
δ(qsave) := Ō? ∨ Oqsave

Now we can assume that at any point of the run, we maintain
the data values of all the previous elements of the data word
as threads 〈qsave, d〉. Note that these threads are maintained
until the last element of the data word, at which point the
test Ō? is satisfied and they are accepted. At the last element
we cannot be sure to have the qsave threads with the data
needed, but this is not a problem. In fact, a ∀↓≤ operator
evaluated at the last element of a word can be simulated
without using the ∀↓≤, as the last element is a distinguished

one. That is, a formula ∀↓≤(X̄⊥ ∧ ϕ) results in the same

automaton as the translation of G(↓ F(X̄⊥ ∧ ϕ)). Then,

for the inner nodes we translate a formula ∀↓≤(X> ∧ ϕ) as

δ(q) := O?∧ spread(qsave, qϕ), where qϕ codes the formula ϕ.

On the other hand, a formula like ∃↓≥ϕ is simply translated

as δ(q) = guess(q′) with δ(q′) = qϕ ∧ qF↑, where qϕ is the
translation of ϕ and qF↑ is the translation of F ↑.

Moreover, we argue that these extensions add expressive
power.

Proposition 5.1. On finite data words:
(i) The logic LTL↓nnf(F, ∀

↓
≤) is strictly more expressive than

LTL↓nnf(F);

(ii) The logic LTL↓nnf(F,∃
↓
≥) is strictly more expressive than

LTL↓nnf(F).

Proof. (i) follows from the proof of Proposition 3.1 and

the fact that ATRA captures LTL↓nnf(F).

For (ii), we propose to consider the property “there exists a
future data value d such that all the positions labeled with
a have data values different from d”. This can be expressed
by the formula ∃↓≥G(a→ ¬ ↑). However, we argue that this

property cannot be expressed by a LTL↓nnf(F) formula.

6. CONCLUDING REMARKS
We presented a simplified framework to work with 1-way
alternating register automata on data words andtrees, en-
abling the possibility to easily show decidability of new op-
erators by proving that they preserve the downward com-
patibility of a well-structured transition system. It would
be interesting to hence explore more decidable extensions,
to study the expressiveness limits of decidable logics and
automata for data trees.

Also, this work argues in favor of exploring models that al-
though they might be not closed under all boolean opera-
tions, can serve to show decidability of logics closed under
negation —such as forward-XPath— or expressive natural
extensions of existing logics—such as LTL↓nnf(F, ∃

↓
≥, ∀

↓
≤).

Acknowledgment. We acknowledge the financial support
of the Future and Emerging Technologies (FET) programme
within the Seventh Framework Programme for Research of
the European Commission, under the FET-Open grant agree-
ment FOX, number FP7-ICT-233599.

7. REFERENCES
[1] Michael Benedikt, Wenfei Fan, and Floris Geerts.

XPath satisfiability in the presence of DTDs. J. ACM,
55(2), 2008.

[2] Miko laj Bojańczyk, Claire David, Anca Muscholl,
Thomas Schwentick, and Luc Segoufin. Two-variable
logic on data trees and XML reasoning. In PODS,
pages 10–19. ACM Press, 2006.

[3] Balder ten Cate. The expressivity of XPath with
transitive closure. In PODS, pages 328–337. ACM
Press, 2006.

[4] Balder ten Cate and Luc Segoufin. XPath, transitive
closure logic, and nested tree walking automata. In
PODS, pages 251–260. ACM Press, 2008.

[5] James Clark and Steve DeRose. XML path language
(XPath). Website, November 1999. W3C
Recommendation. http://www.w3.org/TR/xpath.

[6] Stéphane Demri and Ranko Lazić. LTL with the freeze
quantifier and register automata. In LICS, pages
17–26. IEEE Computer Society Press, 2006.

[7] Stéphane Demri, Ranko Lazić, and David Nowak. On
the freeze quantifier in constraint LTL: Decidability
and complexity. In TIME, pages 113–121. IEEE
Computer Society Press, 2005.

[8] Diego Figueira. Satisfiability of downward XPath with
data equality tests. In PODS, pages 197–206. ACM
Press, 2009.

[9] Diego Figueira and Luc Segoufin. Future-looking
logics on data words and trees. In MFCS, volume 5734
of LNCS, pages 331–343. Springer, 2009.

[10] Alain Finkel and Philippe Schnoebelen.
Well-structured transition systems everywhere!
Theoretical Computer Science, 256(1-2):63–92, 2001.

[11] Floris Geerts and Wenfei Fan. Satisfiability of XPath
queries with sibling axes. In DBPL, volume 3774 of
LNCS, pages 122–137. Springer, 2005.

[12] Georg Gottlob, Christoph Koch, and Reinhard Pichler.
Efficient algorithms for processing XPath queries.
ACM Trans. Database Syst., 30(2):444–491, 2005.

[13] Marcin Jurdziński and Ranko Lazić. Alternating
automata on data trees and XPath satisfiability.
CoRR, abs/0805.0330, 2008.

[14] Maarten Marx. XPath with conditional axis relations.
In EDBT, volume 2992 of LNCS, pages 477–494.
Springer, 2004.

http://www.w3.org/TR/xpath


APPENDIX

A. DETAILED DEFINITIONS

nnf(ϕ ∧ ψ) := nnf(ϕ) ∧ nnf(ψ)

nnf(ϕ ∨ ψ) := nnf(ϕ) ∨ nnf(ψ)

nnf(¬(ϕ ∧ ψ)) := nnf(¬ϕ) ∨ nnf(¬ψ)

nnf(¬(ϕ ∨ ψ)) := nnf(¬ϕ) ∧ nnf(¬ψ)

nnf(oα) := o nnf(α) o ∈ F

nnf([ϕ]α) := [nnf(ϕ)]nnf(α)

nnf(α~ β) := nnf(α)~ nnf(β)

nnf(¬α~ β) := ¬nnf(α)~ nnf(β)

nnf(a) := a

nnf(¬a) := ¬a
nnf(¬¬ϕ) := nnf(ϕ)

nnf(〈α〉) := 〈nnf(α)〉

sub(ϕ ∧ ψ) := {ϕ ∧ ψ} ∪ sub(ϕ) ∪ sub(ψ)

sub(¬ϕ) := {¬ϕ} ∪ sub(ϕ)

sub(ϕ ∨ ψ) := {ϕ ∨ ψ} ∪ sub(ϕ) ∪ sub(ψ)

sub(a) := {a}
sub([ϕ]α) := {[ϕ]α} ∪ sub(ϕ) ∪ sub(α)

sub(oα) := {oα} ∪ sub(α)

sub(α~ β) := {α~ β} ∪ sub(α) ∪ sub(β)

sub(〈α〉) := {〈α〉} ∪ sub(α)

B. MISSING PROOFS
Proof of Lemma 3.1. The fact that ≺ is a quasi-order

(= reflexive and transitive) is immediate from its definition.
To show that it is a well quasi-order, suppose we have an
infinite sequence of configurations ρ1ρ2ρ3 · · · . It is easy to
see that it contains an infinite subsequence τ1τ2τ3 · · · such
that all its elements are of the form 〈α0, (a0, d), T 〉 with

• α0 and a0 fixed, and

• hT (d) = C0 fixed,

where hT (d) = {q | 〈q, d〉 ∈ T}. This is because we can
see each of these elements as a finite coloring, and apply the
pigeonhole principle on the infinite set {ρi}i.

Consider then the function gT : ℘(Q)→ N, such that gT (C) =

#{d | C = hT (d)} (we can think of gT as a tuple of N|℘(Q)|).
Assume the relation ≺† defined as T ≺† T ′ iff gT (C) ≤
gT

′
(C) for all C. By Dickson’s Lemma ≺† is a wqo, and then

there are two τi = 〈α0, (s0, di), Ti〉, τj = 〈α0, (s0, dj), Tj〉,
i < j such that Ti ≺† Tj . For each C ⊂ Q, there exists an
injective mapping fC : {d | hTi(d) = C} → {d | hTj (d) = C},
as the latter set is bigger than the former by ≺†. We define
the desired injection f as the (disjoint) union of all fC ’s. In
the case hT (di) = hT (dj) = ∅, we also define f(di) = dj .
Hence, τi ≺ τj .

Proof of Proposition 3.4. The fact that (A∗,<) is a
wqo is given by Higman’s Lemma. The rdc property with

a, 1

a, 1 a, 2

a, 2

a, 1

a, 1 a, 3

a, 2

Figure 4: Two indistinguishable data trees for ATRA.

respect to →2 is straightforward. Let

ū′ a′ v̄′ < ū a v̄ →2 ū b̄ v̄

with ū′ < ū, a′ ≤ a, v̄′ < v̄, and a →1 bz for all z ∈ [1..|b̄|].
As a′ ≤ a and ≤ is rdc with →1, one possibility is that for
each a →1 bz we can apply a a′ →1 b

′
z with b′z ≤ bz. In

this case we obtain ū′av̄′ →2 ū
′b̄′v̄′ < ūb̄v̄. The only case

left to analyze is when, for some a →1 bz the compatibility
is reflexive, that is, a′ ≤ bz. But then we take a reflexive
compatibility as well, the reader can check that in this case
ū′a′v̄′ < ūb̄v̄.

Finally, in the case where a has no pre-image is only easier
as we can take the exact same element.

Proof of Lemma 4.2. Any �t step shot by a →ε, →O,
or →� from a node configuration ρ leading to τ can be re-
produced by �t· from an isomorphic copy ρ′ of ρ leading to
an isomorphic copy of τ which is in the same relation to ρ′

as τ is to ρ. This can be safely done without any collateral
effects as the executions of two different node configurations
〈p, . . .〉, 〈p′, . . .〉 have no interference one with another and
are completely independent. The fact of whether one node
configuration takes a data value that happens to be equal
or not to a data value of another configuration no impact
whatsoever in the execution. It suffices to examine the def-
inition to see that �t· depends on the transitions →O, →�

and →ε of the node configurations.

C. EXPRESSIVITY
Proof of Proposition 3.1, item (a). We show an ex-

ample of the expressiveness that guess adds to ATRA. We
force two incomparable nodes to have the same data value
without any further data constraint. Note that this datum
does not necessarily has to appear at some common ances-
tor of the nodes. Consider the ATRA(guess) defined over
Σ = {a} with

δ(q0) = guess(q1), δ(q1) = Oq2, δ(q2) = q3 ∧ q4,
δ(q3) = Oq5, δ(q4) = �q5, δ(q5) = eq.

Consider the two data trees of Fig 4. It is easy to see that
for any ATRA, either both are accepted, or both rejected.
However, the ATRA(guess) we just built distinguishes them.

D. FORMAL SEMANTICS OF LTL WITH
REGISTERS

LTL↓n(U,X) is the Linear Temporal Logic with the freeze
quantifier (↓i), test predicate (↑i) and next (X) and until
(U) temporal operators studied in [6, 7]. As it was shown
in [6], LTL↓n(U,X) is undecidable as soon as n > 1. We



will then focus on the language that uses only one regis-
ter: LTL↓(U,X). We study an extension of this language
with a restricted form of quantification over data values.
We will actually add two sorts of quantification. On the one
hand the ∀↓≤ and ∃↓≤ quantifies universally or existentially
over all the data values occurred before the current point of
evaluation. Similarly, ∀↓≥ and ∃↓≥ quantifies over the future
elements on the data word. For our convenience and wlog,
we will work in Negated Normal Form (nnf), and we use Ū
to denote the dual operator of U, and similarly for X̄. Sen-
tences of LTL↓1(U, Ū,X, X̄,O), where O ⊆ {∀↓≤, ∃

↓
≤,∀

↓
≥, ∃

↓
≥}

are defined:

ϕ ::= a | ¬a |↑| ¬ ↑|↓ ϕ | Xϕ | X̄ϕ |
U(ϕ,ϕ) | Ū(ϕ,ϕ) | op ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ

where a is a symbol from a finite alphabet Σ, and op ranges
over O. For economy of space we will write LTL↓nnf(F,O) to
denote this logic6.

A data word is an element from (Σ×D)∗, where Σ is a finite
set of symbols, and D is an infinite domain of data values.
For simplicity and wlog we can assume that D = N. Given
a data word σ, we write σ[i] for the ith element (pair) of
the word, and π1, π2 for the projections on Σ and D. We
show next the most significant cases of the definition of the
satisfaction relation |=:

(σ, i) |=d a iff π1(σ[i]) = a

(σ, i) |=d ↑ iff d = π2(σ[i])

(σ, i) |=d ↓ ϕ iff (σ, i) |=π2(σ[i]) ϕ

(σ, i) |=d U(ϕ,ψ) iff for some i ≤ j ≤ |σ|
and for all i ≤ k < j

we have (σ, j) |=d ϕ and (σ, k) |=d ψ

(σ, i) |=d Xϕ iff i < |σ| and (σ, i+ 1) |=d ϕ

(σ, i) |=d ∃↓≥ϕ iff there exists i ≤ j ≤ |σ| such that

(σ, i) |=π2(σ[j]) ϕ

(σ, i) |=d ∀↓≤ϕ iff for all 1 ≤ j ≤ i we have

(σ, i) |=π2(σ[j]) ϕ

where 1 ≤ i ≤ |σ|. We say that ϕ satisfies σ, written σ |= ϕ,
if σ, 1 |=d0 ϕ with d0 = π2(σ[1]). Notice that the future
modality can be defined Fϕ := U(ϕ,>) ∨ ϕ and its dual G

as the nnf of ¬F¬ϕ, provided that ϕ ∈ LTL↓nnf(F).

6here F is to mark that we have all the forward modalities:
U, Ū,X, X̄,F,G


	Introduction
	Data trees and XML documents
	The ATRA model
	Decidability of the emptiness problem

	Decidability of XPath
	Definitions
	Reduction to ATRA non-emptiness
	Allowing arbitrary data tests
	Allowing upward axes
	Allowing stronger data tests

	Temporal logics on data words
	Concluding remarks
	References
	Detailed definitions
	Missing proofs
	Expressivity
	Formal semantics of LTL with registers

