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On the Reconstruction of Palaeo-Ice Sheets: Recent Advances and Future Challenges

Reconstructing the growth and decay of palaeo-ice sheets is critical to understanding mechanisms of global climate change and associated sea-level fluctuations in the past, present and future. The significance of palaeo-ice sheets is further underlined by the broad range of disciplines concerned with reconstructing their behaviour, many of which have undergone a rapid expansion since the 1980s. In particular, there has been a major increase in the size and qualitative diversity of empirical data used to reconstruct and date ice sheets, and major improvements in our ability to simulate their dynamics in numerical ice sheet models.

These developments have made it increasingly necessary to forge interdisciplinary links between sub-disciplines and to link numerical modelling with observations and dating of proxy records. The aim of this paper is to evaluate recent developments in the methods used to reconstruct ice sheets and outline some key challenges that remain, with an emphasis on how future work might integrate terrestrial and marine evidence together with numerical modelling. Our focus is on pan-ice sheet reconstructions of the last deglaciation, but regional case studies are used to illustrate methodological achievements, challenges and opportunities.

Whilst various disciplines have made important progress in our understanding of ice-sheet dynamics, it is clear that data-model integration remains under-used, and that uncertainties remain poorly quantified in both empirically-based and numerical ice-sheet reconstructions.

The representation of past climate will continue to be the largest source of uncertainty for numerical modelling. As such, palaeo-observations are critical to constrain and validate modelling. State-of-the-art numerical models will continue to improve both in model resolution and in the breadth of inclusion of relevant processes, thereby enabling more accurate and more direct comparison with the increasing range of palaeo-observations. Thus, the capability is developing to use all relevant palaeo-records to more strongly constrain deglacial (and to a lesser extent pre-LGM) ice sheet evolution. In working towards that goal, the accurate representation of uncertainties is required for both constraint data and model outputs. Close cooperation between modelling and data-gathering communities is essential to ensure this capability is realised and continues to progress.

Introduction

The first paper published in the newly-launched Quaternary Science Reviews in 1982 was 'On the Reconstruction of Pleistocene Ice Sheets: A Review' by John T. Andrews. His paper highlighted a range of topics in Quaternary science that require accurate reconstructions of the area, volume and chronology of palaeo-ice sheets (e.g. global sea level, marine oxygen isotopes, plant and animal migrations, glacial stratigraphy and chronology), but noted that such reconstructions were difficult to produce, and often tackled separately by sub-disciplines.

The evidence used to reconstruct palaeo-ice sheets was reviewed, and he emphasised the need to reconcile empirical evidence with results from numerical ice sheet models, which were pioneering at the time (e.g. [START_REF] Mahaffy | A three-dimensional numerical method model of ice sheetstests on the Barnes Ice Cap, Northwest Territories[END_REF][START_REF] Budd | The growth and retreat of ice sheets in response to orbital radiation changes[END_REF]Denton and Hughes, 1981), but still very much in their infancy. An important discussion focussed on the mismatch between the over-simplified single-domed ice sheets generated by modelling and the more dynamic and multi-domed configurations inferred from glacial geological evidence (e.g. [START_REF] Shilts | Flow patterns in the central North-American ice sheet[END_REF]. Andrews (1982: p. 26) concluded that the future of ice sheet reconstructions "does not rest with a single approach, but with a multiple approach of reconstructions based on all available field and theoretical data".

Over the last few decades, palaeo-ice sheets have also assumed increasing importance as analogues for assessing recent changes observed in modern ice sheets. The Antarctic and Greenland Ice Sheets have, overall, continued to retreat since the early Holocene [START_REF] Anderson | The Antarctic Ice Sheet during the Last Glacial Maximum and it subsequent retreat history: a review[END_REF][START_REF] Alley | History of the Greenland Ice Sheet: palaeoclimatic insights[END_REF], and the rate of mass loss has increased in recent decades in response to both oceanic and climatic warming [START_REF] Shepherd | A reconciled estimate of ice-sheet mass balance[END_REF]. However, observations of present-day ice sheets are often restricted to a few decades and there is a need to understand the longer-term significance of their recent changes. Numerous workers have, therefore, recognised the potential that palaeo-ice sheets offer in terms of assessing the duration and magnitude of ice sheet instabilities that could occur (e.g. [START_REF] Kleman | Durations and propagation patterns of ice sheet instability events[END_REF] and their contributions to sea-level rise [START_REF] Carlson | Ice sheet sources of sea level rise and freshwater discharge during the last deglaciation[END_REF]. Moreover, our confidence in future predictions of ice sheet mass balance and sea level rise will benefit from numerical ice sheet models that have been rigorously tested against palaeo-data.

Since Andrews' pioneering (1982) review, glaciological numerical modelling of palaeo-ice sheets has evolved from hand-tuning models against a few constraints to Bayesian methodologies involving thousands of observational constraints and dozens of calibrated model parameters [START_REF] Tarasov | A data-calibrated distribution of deglacial chronologies for the North American ice complex from glaciological modeling[END_REF]. In parallel with numerical model development, there has been a rapid expansion in the size and qualitative diversity of datasets for constraining ice sheet models (e.g. glacial geological records from both onshore and offshore, relative sealevel records, glacio-isostatic data, ocean sediment records, etc.). Thus, it has become increasingly necessary to forge interdisciplinary collaboration between sub-disciplines concerned with ice sheet reconstructions and, in particular, to link numerical modelling with observations from both terrestrial and marine records. This has been one of the goals of the international MOCA project (Meltwater routing and Ocean-Cryosphere-Atmosphere response: www.physics.mun.ca/~lev/MOCA), previously funded as a joint network of INQUA PALCOM (Paleoclimate) and TERPRO (Terrestrial processes) commissions. MOCA workshops have enabled modellers and empiricists to collaborate and elucidate what goes into their reconstructions and the associated uncertainties. This synthesis has helped to identify new constraints and scrutinize hidden assumptions, with the aim of providing more robust ice sheet reconstructions. Workshops have also highlighted recent advances in the techniques and methods to reconstruct ice sheets, identified the remaining challenges, and also illuminated directions for future research. These methodological insights motivate this paper. Our aims are to highlight some important advances in reconstructing palaeo-ice sheets from: (i) glacial geological evidence in terrestrial and marine settings (Section 2); (ii) improvements in dating methods and approaches (Section 3); and (iii), numerical modelling (Section 4). Note that we do not cover every aspect of reconstructing palaeo-ice sheets, but focus on methods that are primarily targeted at constraining the extent, thickness and dynamics of ice sheets at the regional to continental scale (Figure 1). We then discuss some key challenges for future work (Section 5), emphasizing the need to link terrestrial and marine records with numerical modelling. In doing so, we evaluate the extent to which Andrews ' (1982) invocation for interdisciplinary ice sheet reconstructions has been met.

Advances Based on Glacial Geological Observations in Terrestrial and Marine Settings

Formalising Glacial Inversion Techniques Using Ice Sheet Flow-Sets

Subglacial processes beneath palaeo-ice sheets created and preserved landforms that are the basic ingredients for reconstructing their flow patterns and extent. The technique of inverting the bed imprint to extract ice sheet properties is known as 'glacial inversion' [START_REF] Kleman | Reconstruction of palaeo-ice sheets: The use of geomorphological data[END_REF][START_REF] Kleman | Reconstruction of palaeo-ice sheets; inversion of their glacial geomorphological record[END_REF]. The burgeoning availability of aerial photography, remote sensing and Geographical Information Systems (GIS) in the latter half of the 20 th century permitted the systematic mapping of ice sheet beds that yielded benchmark reconstructions of the last mid-latitude ice sheets (e.g. [START_REF] Boulton | Glacial geology and glaciology of the last mid-latitude ice sheets[END_REF][START_REF] Dyke | Late Wisconsinan and Holocene history of the Laurentide Ice Sheet[END_REF]. The prevailing paradigm was that the mapped ice flow indicators (e.g. drumlins) formed in a radial pattern close to the ice margin and mostly during deglaciation (e.g. [START_REF] Boulton | Glacial geology and glaciology of the last mid-latitude ice sheets[END_REF]. As such, these reconstructions often depicted a radial pattern of flow from one or more relatively stationary ice domes (Figure 2a,b). This paradigm was challenged when Boulton and Clark (1990a, b) recognised that the Laurentide Ice Sheet (LIS) bed was a 'palimpsest' (relict) landscape of flow patterns of different ages that were not all formed in an ice marginal environment (Figure 3). They grouped coherent patterns of glacial lineations into discrete mapped units, termed 'flow-sets' (Figure 3), and noted how they typically cut across each other, allowing them to assign their relative age based on principles of superimposition. In contrast to previous reconstructions (Figure 2a), they revealed a highly mobile ice sheet with ice divides and dispersal centres shifting by 1000-2000 km during the last glacial cycle, as hinted at in previous records of erratic dispersal trains [START_REF] Shilts | Flow patterns in the central North-American ice sheet[END_REF].

The identification of cross-cutting flow-sets permits detailed reconstructions of changes in ice sheet flow patterns, but flow-sets can also preserve important information with regard to the glaciological conditions that formed and preserved them. [START_REF] Kleman | Reconstruction of palaeo-ice sheets: The use of geomorphological data[END_REF] highlighted the importance of the basal thermal regime and subglacial hydrology when deciphering the glacio-dynamic context of flow-set formation, and identified several different fan (flow-set) types that could be used to create a time-slice sequence of ice sheet evolution (e.g., those formed during a surge, or those formed during warm-based deglaciation). An exemplar of this inversion methodology is provided in a reconstruction of the Fennoscandian Ice Sheet (FIS) from 115 to 9 ka [START_REF] Kleman | Fennoscandian palaeoglaciology reconstructed using a glacial geological inversion model[END_REF]. Similar to the LIS, their reconstruction depicted ice sheet configurations with shifting ice divides during build-up and decay (Figure 4).

Implicit in these reconstructions of the LIS (Boulton and Clark, 1990a, b) and FIS [START_REF] Kleman | Fennoscandian palaeoglaciology reconstructed using a glacial geological inversion model[END_REF] is that some flow-sets record ice flow patterns and properties that date to the last glacial cycle, but predate the Last Glacial Maximum (LGM) and were protected by subsequent cold-based ice. These frozen-bed patches span a wide range of spatial scales that can be used to glean information about ice sheet dynamics and configuration [START_REF] Kleman | The subglacial thermal organisation (STO) of ice sheets[END_REF]. In places, they occur as a mosaic of isolated patches or 'islands' in upland landscapes, but it is also clear that large frozen-bed areas are prevalent at the ice sheet scale [START_REF] Kleman | The subglacial thermal organisation (STO) of ice sheets[END_REF]. Thus, ice directional indicators from earlier stages in the last glacial cycle can be pieced together to reconstruct the inception and build-up of ice sheets prior to the LGM [START_REF] Kleman | Fennoscandian palaeoglaciology reconstructed using a glacial geological inversion model[END_REF]. Compared to the record of deglaciation, pre-LGM ice flow indicators and associated flow-sets are obviously more fragmentary, but they can be integrated with other evidence (e.g. till stratigraphy, chronological data) to provide tentative reconstructions of minimal ice sheet outlines and dispersal centres that provide potentially powerful constraints for numerical modelling of ice sheet build-up [START_REF] Kleman | North American Ice Sheet build-up during the last glacial cycle, 115-21 kyr[END_REF][START_REF] Stokes | Dynamics of the North American Ice Sheet complex during its inception and build-up to the Last Glacial Maximum[END_REF].

Similar inversion methods have been used to reconstruct the pattern and timing of the British-Irish Ice Sheet (BIIS) from ~30 to 15 ka [START_REF] Clark | Pattern and timing of retreat of the last British-Irish Ice Sheet[END_REF]. A key conclusion was that different sectors of the BIIS reached their maximum positions at different times, and that the initiation of ice streaming and calving may have been an important factor in explaining the retreat of marine-based sectors. Clark et al. ( 2012) compared their reconstruction with numerical modelling of the ice sheet [START_REF] Boulton | Glaciology of the British Isles Ice Sheet during the last glacial cycle: form, flow, streams and lobes[END_REF][START_REF] Hubbard | Dynamic cycles, ice streams and their impact on the extent, chronology and deglaciation of the British-Irish ice sheet[END_REF] and found that, whilst there were broad similarities in terms of the extent and the position of ice divides, there were marked discrepancies in the timing of maximum extent and retreat phases, which they suggested may be due to the palaeo-climate forcing, interpreted from the Greenland ice core record. They highlighted the need for further data-model integration, and an improved understanding of both calving dynamics and the links between interior thinning and marginal retreat.

One deficiency in the glacial inversion method (Section 2.1) is that our process understanding of how various landforms are produced remains somewhat limited. However, recent advances in geophysical observations have allowed bedforms to be imaged beneath existing ice sheets at depths of up to 2 km below the ice surface [START_REF] King | Seismic and radar observations of subglacial bed forms beneath the onset zone of Rutford Ice Stream, Antarctica[END_REF]2009;[START_REF] Smith | Rapid erosion, drumlin formation, and changing hydrology beneath an Antarctic ice stream[END_REF].

Specifically, drumlins appear to be recorded in the onset zone of Rutford Ice Stream, West Antarctica, where ice velocities accelerate from 72 to >200 m a -1 in the transition from slower ice sheet flow to more rapid stream flow [START_REF] King | Seismic and radar observations of subglacial bed forms beneath the onset zone of Rutford Ice Stream, Antarctica[END_REF]. Further down the ice stream, where velocities increase to around 375 m a -1 , [START_REF] King | Formation of mega-scale glacial lineations observed beneath a West Antarctic ice stream[END_REF] reported the presence of mega-scale glacial lineations, which are indistinguishable from those reported on palaeo-ice stream beds. These observations confirm the inference from palaeo-glaciology that bedform elongation is related to ice velocity [START_REF] Clark | Mega-scale glacial lineations and cross-cutting ice-flow landforms[END_REF].

In summary, new remote sensing and GIS products have led to major advances in our ability to map changing flow patterns on palaeo-ice sheet beds. Glacial inversion methods have allowed workers to develop a more formal and explicit methodology to invert the bed record.

The resultant reconstructions have allowed us to decipher major changes in ice sheet basal thermal regime and ice divide location and migration, both during build-up and decay phases.

These empirically-derived reconstructions are an improvement on their predecessors, but there remain some important discrepancies when compared to numerical modelling and secure links between landforms and palaeo-ice dynamics (velocity, thickness, basal shear stress) are difficult.

Identification of Palaeo-Ice Streams

Given the importance of rapidly-flowing ice streams to ice sheet mass balance and stability, ice sheet reconstructions that omit their activity are likely to be deficient [START_REF] Stokes | Palaeo-ice streams[END_REF]. The dynamic behaviour of palaeo-ice sheets has often been linked to the activity of ice streams (Denton and Hughes, 1981;[START_REF] Kleman | Fennoscandian palaeoglaciology reconstructed using a glacial geological inversion model[END_REF][START_REF] Hemming | Heinrich events: Massive late Pleistocene detritus layers of the North Atlantic and their global climate imprint[END_REF][START_REF] Clark | Pattern and timing of retreat of the last British-Irish Ice Sheet[END_REF], and it has been known for some time that ice streaming is the most likely explanation for the low ice surface slopes in the marginal areas of some ice sheets [START_REF] Fisher | Objective reconstructions of the Late Wisconsinan Laurentide Ice Sheet and the significance of deformable beds[END_REF]. Therefore, it is perhaps surprising that explicit recognition of ice streaming in glacial inversion techniques is a relatively recent development [START_REF] Kleman | Reconstruction of palaeo-ice sheets: The use of geomorphological data[END_REF][START_REF] Stokes | Geomorphological criteria for identifying Pleistocene ice streams[END_REF].

Early attempts at incorporating ice streams in large-scale ice sheet reconstructions were largely based on topographic inference (Denton and Hughes, 1981;[START_REF] Dyke | Late Wisconsinan and Holocene history of the Laurentide Ice Sheet[END_REF]. Indeed, in relation to Denton and Hughes' (1981) hypothesised ice streams, Andrews (1982: p. 25) noted that "it is not known whether or where ice streams existed within the Laurentide Ice Sheet". However, many of these early inferences were later supported by studies that identified geological evidence of ice stream activity, such as distinctive erratic dispersal trains with abrupt lateral margins (e.g. [START_REF] Dyke | Drumlin fields, dispersal trains, and ice streams in Arctic Canada[END_REF], convergent flow-set patterns [START_REF] Punkari | Function of the ice streams in the Scandinavian ice-sheetanalyses of glacial geological data from southwestern Finland[END_REF], and highly elongate subglacial bedforms termed mega-scale glacial lineations [START_REF] Clark | Mega-scale glacial lineations and cross-cutting ice-flow landforms[END_REF]. Based on the evidence of hypothesised ice streams, and an understanding of their activity in present-day ice sheets, several diagnostic geomorphological criteria were proposed to aid their identification [START_REF] Stokes | Geomorphological criteria for identifying Pleistocene ice streams[END_REF].

These criteria provide an observational template for identifying palaeo-ice streams based on their landform record, but other evidence includes large-scale topographic features (such as cross-shelf troughs and trough mouth fans: Section 2.3). As a result of new satellite and digital elevation products, there has been a huge increase in the number of inferred ice streams (Figure 5), such that we now have a good knowledge of their location in most palaeo-ice sheets [START_REF] Clark | Pattern and timing of retreat of the last British-Irish Ice Sheet[END_REF]Livingstone et al., 2012a;[START_REF] Margold | Ice streams of the Laurentide Ice Sheet: a new mapping inventory[END_REF]. Moreover, recent work has revealed abrupt changes in the trajectory of palaeo-ice streams, known as 'flow switching' [START_REF] Dowdeswell | Flow switching and large-scale deposition by ice streams draining former ice sheets[END_REF][START_REF] Winsborrow | Ice stream flow switching during deglaciation of the southwestern Barents Sea[END_REF], which has also been reported from observations of present-day ice sheets [START_REF] Conway | Switch of flow in an Antarctic ice stream[END_REF] and numerical modeling [START_REF] Payne | Self-organisation in the thermomechanical flow of ice sheets[END_REF]. Thus, reconstructions of palaeo-ice stream activity provide new insights into the long-term behaviour of ice streams (and their potential forcing) and often help reconcile complex cross-cutting flow-set patterns (discussed in Section 2.1) [START_REF] Dyke | Drumlin fields, dispersal trains, and ice streams in Arctic Canada[END_REF][START_REF] Stokes | Major changes in ice stream dynamics during deglaciation of the north-western margin of the Laurentide Ice Sheet[END_REF].

Despite much progress identifying soft-bedded ice streams, understanding the evolution of bedrock landforms in both inter-stream and ice stream areas is more challenging, with features probably developing over multiple glacial cycles [START_REF] Roberts | Streamlined bedrock terrain and fast ice flow, Jakobshavns Isbrae, West Greenland: implications for ice stream and ice sheet dynamics[END_REF].

Nonetheless, recent progress has been made in identifying the landform assemblage of 'hardbedded' ice streams, with rock drumlins, mega-flutes and mega-lineated terrain interpreted to reflect accelerated abrasion and quarrying of bedrock under rapidly-flowing ice [START_REF] Eyles | Rock drumlins and megaflutes of the Niagara Escarpment, Ontario, Canada: a hard bed landform assemblage cut by the Saginaw-Huron Ice Stream[END_REF].

The marine geological record also preserves evidence of palaeo-ice streaming in the form of episodic layers of ice-rafted detritus (IRD), the most conspicuous of which were deposited during Heinrich events [START_REF] Heinrich | Origin and consequences of cyclic ice rafting in the Northeast Atlantic Ocean during the past 130,000 years[END_REF][START_REF] Hemming | Heinrich events: Massive late Pleistocene detritus layers of the North Atlantic and their global climate imprint[END_REF]Section 2.7). [START_REF] Andrews | Detrital carbonate-rich sediments, northwestern Labrador Sea: implications for ice sheet dynamics and iceberg rafing (Heinrich) events in the North Atlantic[END_REF] attributed the carbonate-rich IRD layers associated with the two most recent Heinrich events (H1 and H2) to a source area eroded by an ice stream in Hudson Strait [START_REF] Andrews | Hudson Strait ice streams: a review of stratigraphy, chronology and links with North Atlantic Heinrich events[END_REF]. Ironically, terrestrial glacial geologic evidence for the existence of this ice stream is relatively scarce compared to other ice streams [START_REF] Margold | Ice streams of the Laurentide Ice Sheet: a new mapping inventory[END_REF], but it is often implicated in Heinrich events, despite uncertainty over the precise mechanisms through which debris becomes entrained within icebergs and subsequently released [START_REF] Hemming | Heinrich events: Massive late Pleistocene detritus layers of the North Atlantic and their global climate imprint[END_REF]).

That said, numerical modelling has been able to reproduce the episodic activity of this ice stream at the appropriate time-scales [START_REF] Macayeal | Binge/purge oscillations of the Laurentide Ice Sheet as a cause of the North Atlantic's Heinrich events[END_REF][START_REF] Marshall | A continuum mixture model of ice stream thermomechanics in the Laurentide Ice Sheet: 2. Application to the Hudson Strait ice stream[END_REF][START_REF] Calov | Results from the Ice Sheet Model Intercomparison Project -Heinrich Event INtercOmparison (ISMIP HEINO)[END_REF], and coupled iceberg transport/melt and climate modelling can generate IRD layers of sufficient thickness [START_REF] Roberts | A new constraint on the size of Heinrich Events from an iceberg/sediment model[END_REF], assuming relatively small (0.04 Sv over 500 years) iceberg discharge from Hudson Strait. The cause of Heinrich events, however, remains open to debate (see Section 2.7).

Recent advances in sediment provenance techniques highlight the potential to further constrain episodes of ice stream activity using ocean sediment records [START_REF] Darby | A statistical approach to source determination of lithic and Fe oxide grains: an example from the Alpha Ridge, Arctic Ocean[END_REF]Andrews and Eberl, 2012). Some studies have focussed on potential correlative events from smaller ice streams at the eastern margin of the LIS, such as those draining into Baffin Bay [START_REF] Andrews | Late Quaternary straigraphy, chronology, and depositional processes on the slope of SE Baffin Island, Detrital carbonate and Heinrich events: implications for onshire glacial history[END_REF]2012) or the continental shelf off Nova Scotia [START_REF] Piper | Latest Pleistocene ice-rafting events on the Scotian Margin (eastern Canada) and their relationship to Heinrich events[END_REF]. Further afield, IRD events have also been detected in the Arctic Ocean [START_REF] Darby | Arctic ice export events and their potential impact on global climate during the late Pleistocene[END_REF][START_REF] Darby | Sources of sediment found in sea ice from the western Arctic Ocean, new insights into processes of entrainment and drift patterns[END_REF] and attributed to source areas in the Canadian Arctic Archipelago [START_REF] Stokes | Late Pleistocene ice export events into the Arctic Ocean from the M'Clure Strait Ice Stream, Canadian Arctic Archipelago[END_REF] and Eurasia [START_REF] Spielhagen | Arctic Ocean deep-sea record of northern Eurasian ice sheet history[END_REF]. Although obtaining precise ages for Arctic Ocean IRD events remains difficult because of generally low sedimentation rates, it has been suggested that some events sourced from the Canadian Arctic Archipelago are broadly correlative with the North Atlantic's Heinrich events [START_REF] Darby | Arctic ice export events and their potential impact on global climate during the late Pleistocene[END_REF]. The possibility of large-scale ice sheet reorganisations during Heinrich events has also been hinted at from records of terrestrial ice streams at the southern margin of the LIS [START_REF] Mooers | Terrestrial record of Laurentide Ice Sheet reorganization during Heinrich events[END_REF], but this concept has received little attention. Numerous studies have also examined potential correlations between LIS IRD events and meltwater and IRD events from other mid-latitude ice streams bordering the North Atlantic [START_REF] Lekens | Meltwater and ice rafting in the southern Norwegian Sea between 20 and 40 calendar kyr B.P.: Implications for Fennoscandian Heinrich events[END_REF]2009), although there is much uncertainty about whether IRD events from the eastern LIS have correlatives from other ice sheets (e.g. [START_REF] Fronval | Oceanic evidence for coherent fluctuations in Fennoscandian and Laurentide ice sheets on millennium time-scales[END_REF][START_REF] Dowdeswell | Asynchronous deposition of icerafted layers in the Nordic Seas and North Atlantic Ocean[END_REF][START_REF] Hemming | Heinrich events: Massive late Pleistocene detritus layers of the North Atlantic and their global climate imprint[END_REF][START_REF] Rashid | Fine scale sediment structure and geochemical signature between eastern and western North Atlantic during Heinrich events 1 and 2[END_REF] see also Section 2.7).

To summarise, recent advances have permitted the identification of numerous palaeo-ice stream tracks, and inventories of their location during deglaciation are probably close to complete for some ice sheets (e.g., for the Laurentide Ice Sheet, where >100 ice streams have been identified: [START_REF] Margold | Ice streams of the Laurentide Ice Sheet: a new mapping inventory[END_REF]. These records attest to major changes in their spatial extent during deglaciation, but there have been few attempts to compare reconstructions of palaeo-ice stream activity with output from numerical ice sheet models. In contrast, modelling has been used to simulate the behaviour of individual ice streams, especially in relation to the IRD record, which provides a valuable tool to explore the history of ice streams prior to the LGM.

Offshore Geophysical Evidence of Ice Sheet Extent and Dynamics

A major development in ice sheet reconstructions has been the increased use of geophysical techniques (seismic, sidescan sonar, swath bathymetry) to investigate the marginal areas of palaeo-ice sheet beds that are now submerged beneath sea level (Ó Cofaigh, 2012). Imagery from continental slopes has revealed sedimentary depocentres (trough mouth fans: [START_REF] Vorren | Trough Mouth Fans -Palaeoclimate and ice sheet monitors[END_REF][START_REF] Batchelor | The physiography of High Arctic cross-shelf troughs[END_REF], the architecture of which often indicates rapid, episodic sedimentation by ice streams [START_REF] Dowdeswell | Large-scale sedimentation on the glacier-influenced Polar North Atlantic margins: long-range side-scan sonar evidence[END_REF]Dowdeswell and Elverhoi, 2002;Nygård et al., 2007). Indeed, dating of sediment packages is an important constraint on ice stream activity that is not easily available from terrestrial records, and some marine records extend back through several glacial cycles (Nygård et al., 2007).

Sediment depocentres are often associated with major troughs carved across the continental shelf (e.g. [START_REF] Batchelor | The physiography of High Arctic cross-shelf troughs[END_REF]. Swath bathymetry data from within these troughs (Figure 6) commonly reveals geomorphology which fulfils the criteria for palaeo-ice streams, similar to those described in terrestrial settings [START_REF] Anderson | The Antarctic Ice Sheet during the Last Glacial Maximum and it subsequent retreat history: a review[END_REF][START_REF] Ottesen | Submarine landforms and the reconstruction of fastflowing ice streams within a large Quaternary ice sheet: the 2500 km long Norwegian-Svalbard margin (57 degrees -80 degrees N)[END_REF][START_REF] Ottesen | Ice-sheet dynamics and ice streaming along the coastal parts of northern Norway[END_REF]Livingstone et al., 2012a). Together with sub-bottom profiling and seismic investigations, geophysical techniques have the added advantage of being able to map seafloor morphology and changes in sediment thickness across large areas (Dowdeswell et al., 2004). The seaward extent of glacial till and sub-ice morphology has also been used to constrain the thickness of ice sheets at their marine margins [START_REF] Polyak | Ice shelves in the Pleistocene Arctic Ocean inferred from glaciogenic deep-sea bedforms[END_REF]Jakobsson et al., 2010;[START_REF] Dowdeswell | High-resolution geophysical observations of the Yermak Plateau and northern Svalbard margin: implications for ice-sheet grounding and deep-keeled icebergs[END_REF][START_REF] Niessen | Repeated Pleistocene glaciation of the East Siberian continental margin[END_REF].

A major contribution of submarine geophysical evidence has been the recognition that palaeo-ice sheets were more extensive than previously thought, with almost all of the midlatitude Northern Hemisphere ice sheet maximal margins now known to have reached the continental shelf edge, with particular attention focussed on the Arctic Ocean (Figure 7). In the last decade alone, there are cases where margins have been revised and extended to the edge of the continental shelf for the Laurentide and Innuitian Ice Sheets, the Eurasian Ice Sheet (including the Fennoscandian, Barents Sea and British-Irish Ice Sheets), and the Greenland Ice Sheet (e.g. [START_REF] Ottesen | Submarine landforms and the reconstruction of fastflowing ice streams within a large Quaternary ice sheet: the 2500 km long Norwegian-Svalbard margin (57 degrees -80 degrees N)[END_REF][START_REF] Shaw | A conceptual model of the deglaciation of Atlantic Canada[END_REF][START_REF] Bradwell | The northern sector of the last British Ice Sheet: maximum extent and demise[END_REF][START_REF] England | Revision of the NW Laurentide Ice Sheet: implications for palaeoclimate, the northeast extremity of Beringia, and Arctic Ocean sedimentation[END_REF][START_REF] Cofaigh | An extensive and dynamic ice sheet on the West Greenland shelf during the last glacial cycle[END_REF]. In particular, advances in high-latitude seafloor mapping in the 1990s, especially high resolution multibeam mapping, have helped elucidate the glacial history of the Arctic Ocean (reviewed in [START_REF] Jakobsson | Arctic Ocean glacial history[END_REF]. A series of investigations have documented evidence for extensive erosion of the Arctic Ocean seafloor caused by ice at modern water depths of up to 1,000 m, as well as glacial landforms on individual ridge crests and plateaus where water depths are shallower [START_REF] Vogt | Deep Pleistocene iceberg plowmarks on the Yermak Plateau: sidescan and 3.5 kHz evidence for thick claving ice fronts and a possible marine ice sheet in the Arctic Ocean[END_REF][START_REF] Jakobsson | First high-resolution chirp sonar profiles from the central Arctic Ocean reveal erosion of Lomonsov Ridge sediments[END_REF][START_REF] Polyak | Ice shelves in the Pleistocene Arctic Ocean inferred from glaciogenic deep-sea bedforms[END_REF]. These data, together with chronological information retrieved from sediment cores, have been taken to imply that the most extensive ice shelf complex existed in the Amerasian basin of the Arctic Ocean during Marine Isotope Stage (MIS) 6 [START_REF] Jakobsson | An Arctic Ocean ice shelf during MIS 6 constrained by new geophysical and geological data[END_REF][START_REF] Heyman | Paleoglaciation of the Tibetan Plateau and surrounding mountains based on exposure ages and ELA depression estimates[END_REF].

Large seabed scour marks have also been reported at modern water depths of ~600 m along the northern Svalbard margin and across the Yermak Plateau [START_REF] Vogt | Deep Pleistocene iceberg plowmarks on the Yermak Plateau: sidescan and 3.5 kHz evidence for thick claving ice fronts and a possible marine ice sheet in the Arctic Ocean[END_REF][START_REF] Dowdeswell | High-resolution geophysical observations of the Yermak Plateau and northern Svalbard margin: implications for ice-sheet grounding and deep-keeled icebergs[END_REF] as well as at depths of ~1,000 m on Morris Jesup Rise [START_REF] Jakobsson | An Arctic Ocean ice shelf during MIS 6 constrained by new geophysical and geological data[END_REF] (Figure 7). Similar scour marks and, in places, glacial bedforms such as flutings and megascale glacial lineations have also been used to invoke the presence of extensive and thick ice sheets and ice shelves along the Chukchi Borderland [START_REF] Jakobsson | Multibeam bathymetric and sediment profiler evidence for ice grounding on the Chukchi Borderland, Arctic Ocean[END_REF][START_REF] Dove | Widespread, multi-source glacial erosion on the Chukchi margin, Arctic Ocean[END_REF] and southern Mendeleev Ridge [START_REF] Niessen | Repeated Pleistocene glaciation of the East Siberian continental margin[END_REF], which require revisions of glacial Arctic ice cover [START_REF] Jakobsson | Arctic Ocean glacial history[END_REF]. More localised ice shelves have also been hypothesised, often in association with ice streams (e.g. [START_REF] Hodgson | Episodic ice streams and ice shelves during retreat of the northwesternmost sector of the Late Wisconsinan Laurentide Ice Sheet over the central Canadian Arctic archipelago[END_REF].

Taken together, geophysical evidence of ice sheet and ice shelf extent across continental shelves and submarine ridges has led to major advances in our understanding of the dynamics of palaeo-ice sheet margins, which numerical modelling can now target. Reconstructions of palaeo-ice shelves have seen some major advances, but they are more difficult to constrain, especially in terms of their timing and spatial extent (see also Section 4.3).

Subglacial Hydrology of Ice Sheets and Subglacial Lakes

Glacial geological features relating to subglacial hydrology can provide useful information relating to, for example, ice sheet basal thermal regime and the distribution and drainage of water at the bed. Eskers are particularly useful in glacial inversion techniques (Section 2.1) and are generally thought to form time-transgressively within a few tens of kilometres of the retreating ice margin [START_REF] Kleman | Fennoscandian palaeoglaciology reconstructed using a glacial geological inversion model[END_REF][START_REF] Kleman | Reconstruction of palaeo-ice sheets; inversion of their glacial geomorphological record[END_REF][START_REF] Kleman | North American Ice Sheet build-up during the last glacial cycle, 115-21 kyr[END_REF][START_REF] Mäkinen | Time-transgressive deposits of repeated depositional sequences within interlobate glaciofluvial (esker) sediments in Köyliö, SW Finland[END_REF]Storrar et al., 2014a). [START_REF] Clark | Subglacial drainage, eskers, and deforming beds beneath the Laurentide and Eurasian ice sheets[END_REF] showed that eskers from the LIS were concentrated over the impermeable crystalline bedrock of the Canadian Shield, where subglacial meltwater was more likely to carve R-channels into the base of the ice. In contrast, over softer permeable sediments, meltwater was more likely to drain into and across the till, carving much shallower channels or 'canals' in a more distributed system [START_REF] Sjogren | Incipient tunnel channels[END_REF]. This broad pattern is also seen in the FIS [START_REF] Boulton | Drainage beneath ice sheets: groundwater-channel coupling, and the origin of esker systems from former ice sheets[END_REF] and, while eskers can clearly form over softer sedimentary beds, they are typically less common and depict a more chaotic and fragmentary pattern [START_REF] Shilts | Canadian Shield[END_REF]Storrar et al., 2014a). More recently, Storrar et al. (2014b) showed that the number of eskers increased during deglaciation of the LIS across the Canadian Shield, coinciding with increased rates of ice margin retreat during climatic warming. This is reminiscent of the seasonal evolution of drainage systems in much smaller valley glaciers [START_REF] Hubbard | Alpine subglacial hydrology[END_REF] and implies that drainage systems (and therefore subglacial lubrication) evolve over millennial time-scales.

An important advance in our understanding of the subglacial hydrological system beneath ice sheets has been the discovery of numerous subglacial lakes. They were first identified beneath the Antarctic Ice Sheets in the 1960s [START_REF] Robin | Radio echo exploration of the Antarctic Ice Sheet[END_REF], but several hundred have now been detected (see [START_REF] Wright | The identification and physiographical setting of Antarctic subglacial lakes: an update based on recent advances[END_REF]. They are thought to be an active component of the subglacial hydrological system, with the potential to fill and drain, and exert an important influence on ice dynamics [START_REF] Fricker | An active subglacial water system in West Antarctica mapped from space[END_REF][START_REF] Smith | An inventory of active subglacial lakes in Antarctica detected by ICESat (2003-2008)[END_REF][START_REF] Wright | The identification and physiographical setting of Antarctic subglacial lakes: an update based on recent advances[END_REF].

Until recently, subglacial lakes had mainly been investigated under present-day ice sheets and examples of putative palaeo-subglacial lakes were rare (e.g. [START_REF] Mccabe | Sedimentation in a subglacial lake, Enniskerry, eastern Ireland[END_REF][START_REF] Munro-Stasiuk | Subglacial Lake McGregor, south-central Alberta, Canada[END_REF][START_REF] Christoffersen | Large subglacial lake beneath the Laurentide Ice Sheet inferred from sedimentary sequences[END_REF]. This is, perhaps, surprising because access to the sediments and landforms associated with palaeo-subglacial lakes is relatively easy compared to extant ice sheets. However, despite recent attempts to formulate diagnostic criteria to identify their presence (e.g. [START_REF] Bentley | Subglacial lake sedimentary processes: potential archives of ice sheet evolution, past environmental change and the presence of life[END_REF]Livingstone et al., 2012b) it is difficult it to distinguish their geological signature from former proglacial (ice-marginal or ice-fed) lakes. Nonetheless, there is strong theoretical support for their existence (e.g. [START_REF] Shoemaker | On the formation of large subglacial lakes[END_REF]Livingstone et al., 2012b[START_REF] Livingstone | Modelling North American palaeo-subglacial lakes and their meltwater drainage pathways[END_REF] and palaeo-ice surface and bed topographies can be used to calculate 3-D hydraulic potential surface [START_REF] Shreve | Movement of water in glaciers[END_REF]. [START_REF] Evatt | Subglacial floods beneath ice sheets[END_REF] were the first to consider this method at the ice-sheet scale and predicted where subglacial lakes might have formed under the LIS at the LGM. A similar approach was adopted by [START_REF] Livingstone | Modelling North American palaeo-subglacial lakes and their meltwater drainage pathways[END_REF], who used an ensemble of ice-sheet model outputs to explore the likelihood of subglacial lake formation under the Cordilleran, Laurentide and Innuitian ice sheets (Figure 8).

Subglacial lakes can drain rapidly towards the ice margin (as jökulhlaups), sometimes on subannual timescales [START_REF] Smith | An inventory of active subglacial lakes in Antarctica detected by ICESat (2003-2008)[END_REF]. Knowledge of the geomorphological and sedimentological impact of such drainage events is still in its infancy but, for example, the 'Labyrinth', an anastomosing network of channels in the Dry Valleys (Antarctica), is thought to have formed by periodic subglacial lake drainage events [START_REF] Denton | Meltwater features that suggest Miocene ice-sheet overriding of the Transantarctic Mountains in Victoria Land, Antarctica[END_REF].

Gravel-boulder outwash fans at the mouth of tunnel valleys in North America have also been related to large magnitude subglacial meltwater outbursts [START_REF] Cutler | Sedimentologic evidence for outburst floods from the Laurentide Ice Sheet margin in Wisconsin, USA: implications for tunnel-channel formation[END_REF]. There is also an extensive literature and long history on proposed subglacial (mega-) flood tracts (e.g. [START_REF] Shaw | The meltwater hypothesis for subglacial bedforms[END_REF], which have been linked to large palaeo-subglacial lake outburst events [START_REF] Shoemaker | On the formation of large subglacial lakes[END_REF][START_REF] Shoemaker | Subglacial water-sheet floods, drumlins and ice-sheet lobes[END_REF]. However, in some cases, the use of subglacial bedforms (e.g. drumlins, ribbed moraine) to delineate flood pathways is more controversial (e.g. [START_REF] Clarke | Fresh arguments against the Shaw megaflood hypothesis. A reply to comments by David Sharpe on "Palaeohydraulics of the last outburst flood from glacial-Lake Agassiz and the 8200 BP cold event[END_REF]. The pattern of tunnel valleys, subglacial meltwater channels, and other meltwaterrelated features, are useful for constraining palaeo-subglacial lakes and elucidating how they interact with the subglacial hydrological system. More generally, the imprint of meltwater drainage recorded on the bed of former ice sheets is a potentially useful test of numerical models that predict the configuration of the subglacial hydrological system (e.g. [START_REF] Hewitt | Modelling distributed and channelized subglacial drainage: the spacing of channels[END_REF][START_REF] Werder | Modeling channelized and distributed subglacial drainage in two dimensions[END_REF], but which has generally been under-used.

In summary, meltwater landforms are, perhaps, under-used in terms of understanding the source, routing, and storage of meltwater associated with palaeo-ice sheets. Eskers provide important information about subglacial drainage patterns at the ice sheet scale and how it evolves through time, but meltwater channels carved into bedrock are more enigmatic.

Numerical ice sheet models have proved an important tool for identifying the potential location of subglacial lakes, but there have been few attempts to integrate a palaeoglaciological understanding of subglacial hydrology into numerical modelling of ice sheets.

Proglacial Hydrology of Ice Sheets and Proglacial Lakes

Ice sheet reconstructions have used ice-marginal meltwater channels, spillways, glacial lake shorelines and deltas, to trace former ice margins and reconstruct ice retreat patterns [START_REF] Kleman | The palimpsest glacial landscape in northwestern Sweden -Late Weichselian deglaciation landforms and traces of older west-centered ice sheets[END_REF][START_REF] Jansson | Early Holocene glacial lakes and ice marginal retreat pattern in Labrador/Ungava, Canada[END_REF][START_REF] Kleman | Reconstruction of palaeo-ice sheets; inversion of their glacial geomorphological record[END_REF][START_REF] Greenwood | Formalising an inversion methodology for reconstructing ice-sheet retreat patterns from meltwater channels: application on the British Ice Sheet[END_REF]Margold et al., 2013a, b). These landforms are particularly important in areas of formerly cold-based ice that prevented the formation of glacial lineations or eskers [START_REF] Kleman | The palimpsest glacial landscape in northwestern Sweden -Late Weichselian deglaciation landforms and traces of older west-centered ice sheets[END_REF]. Improved spatial resolution of satellite imagery and Digital Elevation Models, and better access to highresolution data in readily available platforms such as Google Earth, have facilitated investigation of proglacial meltwater landforms over large areas (Margold and Jansson, 2012) and the incorporation of glacial lake shorelines and deltas into ice sheet reconstructions [START_REF] Jansson | Early Holocene glacial lakes and ice marginal retreat pattern in Labrador/Ungava, Canada[END_REF][START_REF] Clark | Pattern and timing of retreat of the last British-Irish Ice Sheet[END_REF].

In relation to ice marginal meltwater features, it has long been known that large proglacial lakes formed around some margins of palaeo-ice sheets as they retreated (e.g. [START_REF] Upham | The Glacial Lake Agassiz: U.S[END_REF][START_REF] Leverett | Glacial formations and drainage features of the Erie and Ohio basins[END_REF]. The routing of lake overflows and meltwater is important because of the potential impact on ocean circulation and climate [START_REF] Rooth | Hydrology and Ocean Circulation[END_REF][START_REF] Teller | Freshwater outbursts to the oceans from glacial Lake Agassiz and their role in climate change during the last deglaciation[END_REF][START_REF] Barber | Forcing of the cold event of 8,200 years ago by catastrophic drainage of Laurentide lakes[END_REF][START_REF] Spielhagen | Arctic Ocean deep-sea record of northern Eurasian ice sheet history[END_REF][START_REF] Mangerud | Ice-dammed lakes and rerouting of the drainage of Northern Eurasia during the last glaciation[END_REF]Peltier et al., 2006;[START_REF] Carlson | Ice sheet sources of sea level rise and freshwater discharge during the last deglaciation[END_REF]. However, the discharge and location of water overflowing from these lakes varied as ice retreated from various basins, thereby opening new outlets [START_REF] Teller | The Lake Agassiz -Lake Superior connection[END_REF][START_REF] Teller | Proglacial lakes and the southern margin of the Laurentide Ice Sheet[END_REF][START_REF] Smith | Glacial Lake Agassiz: The northwestern outlet and palaeoflood[END_REF][START_REF] Smith | Glacial Lake McConnell: palaeogeography, age, duration, and associated river deltas, Mackenzie River basin, western Canada[END_REF][START_REF] Mangerud | The chronology of a large icedammed lake and the Barents-Kara Ice Sheet advances, Northern Russia[END_REF]2004). Records of pre-LGM proglacial lakes (and drainage) must have been equally complex, but most of that record has been eroded or is fragmentary and buried, and is likely to only be discernible in ocean sediment records [START_REF] Nicholl | A Laurentide outburst flooding event during the last interglacial period[END_REF].

Despite recent progress in reconstructing the history of proglacial lakes, many challenges remain, especially concerning one of the world's largest ice-marginal lakes fringing the decaying LIS: glacial Lake Agassiz (GLA). The extent of the lake varied through time, covering a total area >1 million km 2 during its ~6,000 year history, and overflowing at various times to the Gulf of Mexico, the North Atlantic, the Labrador Sea (including its final drainage via Hudson Bay), and the Arctic Ocean [START_REF] Teller | Proglacial lakes and the southern margin of the Laurentide Ice Sheet[END_REF][START_REF] Teller | Glacial Lake Agassiz: a 5000-year history of change and its relationship to the δ 18 O record of Greenland[END_REF] (Figure 9). GLA serves as a useful case study because it highlights the potential difficulty of constraining the continental scale drainage re-routings of proglacial lakes.

Its outlet chronology has been reconstructed using: (1) the location of the changing LIS margin [START_REF] Dyke | An outline of North American deglaciation with emphasis on central and northern Canada[END_REF][START_REF] Lowell | Radiocarbon deglaciation chronology of the Thunder Bay, Ontario area and implications for ice sheet retreat patterns[END_REF]; (2) the dating of beaches that define the lake's outline (e.g. [START_REF] Teller | Postglacial history and palaeoecology of Wampum, Manitoba, a former lagoon in the Lake Agassiz basin[END_REF][START_REF] Lepper | A chronology for glacial Lake Agassiz shorelines along Upham's namesake transect[END_REF]; (3) data-calibrated numerical ice sheet modelling [START_REF] Tarasov | A calibrated deglacial drainage chronology for the North American continent: Evidence of an Arctic trigger for the Younger Dryas[END_REF]; (4) the palaeo-topography of the basin inferred from isostatic rebound (e.g. [START_REF] Leverington | Changes in the bathymetry and volume of glacial Lake Agassiz between 11,000 and 9300 C-14 yr BP[END_REF][START_REF] Shaw | The meltwater hypothesis for subglacial bedforms[END_REF][START_REF] Rayburn | Isostatic rebound in the northwestern part of the Lake Agassiz basin: Isobase changes and overflow[END_REF]; and (5) the dating of meltwater events in the different outlet channels, and in lakes and oceans beyond the channel mouths (Section 2.6), including the use of deep sea oxygen isotope records and distinctive sediment discharge to identify meltwater pulses [START_REF] Fisher | Abandonment chronology of glacial Lake Agassiz's northwestern outlet[END_REF][START_REF] Hillaire-Marcel | Elusive isotopic properties of deglacial meltwater spikes into the North Atlantic: Example of the final drainage of Lake Agassiz[END_REF][START_REF] Lowell | Radiocarbon deglaciation chronology of the Thunder Bay, Ontario area and implications for ice sheet retreat patterns[END_REF][START_REF] Lewis | Lake Agassiz outburst age and routing by Labrador Current and the 8.2 cal ka cold event[END_REF][START_REF] Fisher | Testing northwest drainage from Lake Agassiz using extant ice margin and strandline data[END_REF][START_REF] Teller | Lake Agassiz during the Younger Dryas[END_REF].

Whilst it is generally agreed that GLA initially drained south into the Gulf of Mexico (along the Mississippi River), and finally drained north-east into Hudson Bay [START_REF] Barber | Forcing of the cold event of 8,200 years ago by catastrophic drainage of Laurentide lakes[END_REF][START_REF] Clarke | Palaeohydraulics of the last outburst flood from glacial Lake Agassiz and the 8200 BP cold event[END_REF], its drainage history between these two end-points has been the subject of much debate, particularly in association with the abrupt cold reversal of the Younger Dryas (YD). It has been argued that overflow from GLA may have triggered the YD stadial, but there is uncertainty as to whether it overflowed to the east, to the northwest, or did not overflow at all [START_REF] Lowell | Radiocarbon deglaciation chronology of the Thunder Bay, Ontario area and implications for ice sheet retreat patterns[END_REF][START_REF] Fisher | Testing northwest drainage from Lake Agassiz using extant ice margin and strandline data[END_REF][START_REF] Lowell | What caused the low-water phase of glacial Lake Agassiz?[END_REF][START_REF] Teller | Lake Agassiz during the Younger Dryas[END_REF]. Opinions differ about precise timing and routing of GLA overflow during the YD, because different approaches often yield different interpretations (e.g. deVernal et al., 1996;[START_REF] Tarasov | Arctic freshwater forcing of the Younger Dryas cold reversal[END_REF][START_REF] Carlson | Geochemical proxies of North American freshwater routing during the Younger Dryas cold event[END_REF][START_REF] Murton | Identification of Younger Dryas outburst flood path from Lake Agassiz to the Arctic Ocean[END_REF][START_REF] Not | Enhanced sea-ice export from the Arctic during the Younger Dryas[END_REF][START_REF] Cronin | Stable isotope evidence for glacial lake drainage through the Saint Lawrence Estuary, eastern Canada, ~ 13.1-12.9 ka[END_REF][START_REF] Carlson | Ice sheet sources of sea level rise and freshwater discharge during the last deglaciation[END_REF]. In a recent review, [START_REF] Carlson | Ice sheet sources of sea level rise and freshwater discharge during the last deglaciation[END_REF] favoured an easterly route, but numerical modelling suggests a large influx of freshwater into the Arctic Ocean was more likely (although not necessarily from GLA: [START_REF] Tarasov | Arctic freshwater forcing of the Younger Dryas cold reversal[END_REF], and would have had a more significant impact on ocean circulation [START_REF] Condron | Meltwater routing and the Younger Dryas[END_REF]. Several studies of deep-sea Arctic oxygen isotopes [START_REF] Spielhagen | Arctic Ocean deep-sea record of northern Eurasian ice sheet history[END_REF], faunal assemblages [START_REF] Hanslik | Quaternary Arctic Ocean sea ice variations and radiocarbon reservoir age corrections[END_REF][START_REF] Taldenkova | Benthic and planktic community changes at the North Siberian margin in response to Atlantic water mass variability since last deglacial times[END_REF], and other proxies (reviewed in [START_REF] Carlson | Ice sheet sources of sea level rise and freshwater discharge during the last deglaciation[END_REF] provide evidence for significant meltwater discharge through the Mackenzie River at the onset of the YD (see also Section 2.6), as does an OSL-dated sequence at the mouth of the Mackenzie River [START_REF] Murton | Identification of Younger Dryas outburst flood path from Lake Agassiz to the Arctic Ocean[END_REF]. However, [START_REF] Fisher | Testing northwest drainage from Lake Agassiz using extant ice margin and strandline data[END_REF] argued that, in the Agassiz basin and headwaters of the Mackenzie River (e.g. near Fort McMurray, Alberta), field data are lacking to support Agassiz water being routed to the northwest at this time.

A major impediment to understanding the history of proglacial lakes (including GLA) has been the lack of dating control on shorelines, although optically stimulated luminescence dating (Section 3.2) has seen success (e.g., [START_REF] Lepper | A chronology for glacial Lake Agassiz shorelines along Upham's namesake transect[END_REF]. The dating of lake spillway channels can also help to constrain the timing of lake overflow (e.g. [START_REF] Fisher | Chronology of glacial Lake Agassiz meltwater routed to the Gulf of Mexico[END_REF]2007;[START_REF] Fisher | The chronology, climate, and confusion of the Moorhead Phase of Glacial Lake Agassiz: new results from the Ojata Beach, North Dakota[END_REF]. Difficulty remains in obtaining maximum ages for spillways in recently deglaciated areas, and in situations where floods may occur subglacially or cut through stagnant ice [START_REF] Clarke | Palaeohydraulics of the last outburst flood from glacial Lake Agassiz and the 8200 BP cold event[END_REF]. Nonetheless, shore-line records can be a powerful constraint for numerical modelling of meltwater runoff from ice sheets (as well as providing further constraint on deglacial ice sheet evolution) in models that explicitly resolve proglacial lakes (see Fig. 9 in [START_REF] Tarasov | A data-calibrated distribution of deglacial chronologies for the North American ice complex from glaciological modeling[END_REF].

Over and above changes in baseline runoff related to changes in melting of the LIS and precipitation, there were occasional short-term hydrological spikes that may have also impacted on ocean circulation [START_REF] Rooth | Hydrology and Ocean Circulation[END_REF][START_REF] Barber | Forcing of the cold event of 8,200 years ago by catastrophic drainage of Laurentide lakes[END_REF][START_REF] Condron | Meltwater routing and the Younger Dryas[END_REF].

Any catastrophic lake outbursts should also leave a geomorphological imprint, and there are well-documented examples from North America, Fennoscandia and Russia [START_REF] Bretz | The Channelled Scabland of the Columbia Plateau[END_REF][START_REF] Teller | The Lake Agassiz -Lake Superior connection[END_REF][START_REF] Baker | Cataclysmic late Pleistocene flooding from glacial Lake Missoula: a review[END_REF][START_REF] Smith | Glacial Lake Agassiz: The northwestern outlet and palaeoflood[END_REF][START_REF] Murton | Identification of Younger Dryas outburst flood path from Lake Agassiz to the Arctic Ocean[END_REF][START_REF] Margold | Glacial Lake Vitim, a 3000-km 3 outburst flood from Siberia to the Arctic Ocean[END_REF]. In some distal locations, one might also expect to find dateable material, such as regional erosional surfaces associated with lag deposits (e.g. [START_REF] Murton | Identification of Younger Dryas outburst flood path from Lake Agassiz to the Arctic Ocean[END_REF]. In places, these surfaces and associated geomorphology may also extend offshore [START_REF] Blasco | The late Neogene and Quaternary stratigraphy of the Canadian Beaufort continental shelf[END_REF].

In summary, ice marginal meltwater landforms (meltwater channels, spillways, shorelines) are an important ingredient for glacial inversion techniques, especially where other evidence is scarce. In recent years they have taken on added importance for identifying the extent of large proglacial lakes and meltwater routing, and their associated impacts on the oceanclimate system. Despite much progress, however, it remains difficult to precisely date marginal drainage or outburst floods or even continental scale drainage re-routings; and so it has often proved difficult to reconcile the terrestrial and marine records of meltwater routing.

Numerical modelling offers an important constraint on the likely volumes of water delivered by ice sheets, but the resolution of ice margin chronologies is not yet capable of resolving the precise routing through various spillways and there remains a challenge in deciphering what fraction of a given lake is released via baseline drainage or through major outburst floods.

Detection of Glacial Lake Outburst Events in Near-Shore Marine Records

Since suggestions that the addition of freshwater from glacial lake outbursts may have disrupted ocean circulation (e.g. [START_REF] Rooth | Hydrology and Ocean Circulation[END_REF][START_REF] Broecker | Routing of meltwater from the Laurentide Ice Sheet during the Younger Dryas cold episode[END_REF], palaeoceanographers have been searching marine sediment records for evidence of freshwater discharge events that might complement terrestrial records (Section 2.5). Their detection is, however, complicated by several factors, most notably marine sediment processes, the proximity of core sites to ice sheet margins (and their associated glacial lakes), and the proxies used to infer hydrologic changes (mainly in salinity and temperature) (de Vernal and Hillaire-Marcel 2006). Along continental margins, close to where these pulses of water entered the ocean, sedimentary and hydrological processes include a mix of turbidity currents, surface and intermediate meltwater plumes and IRD. In more distal open-ocean regions, meltwater plumes or only IRD will be recorded (Ó [START_REF] Cofaigh | Laminated sediments in glacimarine environments: diagnostic criteria for their interpretation[END_REF][START_REF] Eyles | Glacial Landforms, Sediments | Glacigenic Lithofacies[END_REF]. The sensitivity of microfaunal and isotopic proxies will also vary with proximity to meltwater sources.

This complexity means that it is often difficult to unequivocally identify glacial lake discharge in open ocean sediment records due to low sediment accumulation rates and uncertainty surrounding oceanographic response. For example, there is clear lithological evidence (red clay layer, spikes in detrital carbonate) for drainage of the final phase of GLA ~ 8.5-8.2 ka (glacial Lake Ojibway: Figure 9) through Hudson Strait [START_REF] Andrews | Final stages in the collapse of the Laurentide Ice Sheet, Hudson Strait, Canada, NWT, 14 C AMS dates, seismic stratigraphy, and magnetic susceptibility logs[END_REF], 1999[START_REF] Kerwin | A regional stratigraphic isochron (ca 8000 14C yr B. P.) from final deglaciation of Hudson Strait[END_REF][START_REF] Barber | Forcing of the cold event of 8,200 years ago by catastrophic drainage of Laurentide lakes[END_REF][START_REF] Hillaire-Marcel | Lake Agassiz Final drainage event in the northwest North Atlantic[END_REF]Jennings et al., 2015).

The lithological signature is lost to bioturbation in distal settings, but oxygen isotopic evidence for this event extends to the Laurentian Fan and continental slope north of Cape Hatteras [START_REF] Keigwin | The 8200 year B.P. event in the slope water system, western subpolar North Atlantic[END_REF]. In contrast, in the deep western Labrador Sea there is a detrital carbonate spike but no isotopic signature [START_REF] Hillaire-Marcel | Lake Agassiz Final drainage event in the northwest North Atlantic[END_REF][START_REF] Bell | The role of subglacial water in ice-sheet mass balance[END_REF].

Recent studies of near-shore regions provide more concrete evidence for hydrological signals of abrupt drainage of glacial lake water than those from open ocean sites. In the outer St Lawrence Estuary, there is microfaunal and geochemical evidence for hydrological changes, possibly caused by GLA drainage, near the onset of the Younger Dryas ~ 13 ka [START_REF] Rodrigues | The impact of glacial lake runoff on the Goldthwait and Champlain Seas: The relationship between Glacial Lake Agassiz runoff and the Younger Dryas[END_REF]Keigwin andJones, 1995, de Vernal et al., 1996;[START_REF] Carlson | Geochemical proxies of North American freshwater routing during the Younger Dryas cold event[END_REF]). In the central St. Lawrence Lowlands and the Lake Champlain Basin to the south (regions that are closer to the LIS margin and mid-continental proglacial lakes), the evidence is even more convincing. Geomorphological evidence from isostatically uplifted lake and marine shorelines and high-resolution (up to ~ 0.1 to 0.8 cm a -1 ) lacustrine and marine stratigraphic records [START_REF] Franzi | Late Quaternary history of northeastern New York and adjacent parts of Vermont and Quebec[END_REF] from glacial Lake Vermont and Champlain Sea sediments provide a nearly-continuous record of LIS retreat from ~13.5 to ~10 ka. Evidence points to six regional lake drainage events from these lakes between 13.3 and 10 ka, originating in the St. Lawrence/Champlain and Ontario-Erie lowlands (Lakes Vermont, Iroquois), modern Lake Huron (Lake Algonquin), and the interior plains (Lake Agassiz) [START_REF] Rayburn | A series of large late Wisconsinan meltwater floods through the Champlain and Hudson Valleys, New York State, USA[END_REF](Rayburn et al., , 2007;;[START_REF] Cronin | Salinity Changes in the Champlain Sea (New York, Vermont) ~11.4-10.8 ka: Implications for Glacial Lake Drainage[END_REF]2012). These events involved volumes of lake waters ranging from hundreds to thousands of km 3 [START_REF] Teller | Freshwater outbursts to the oceans from glacial Lake Agassiz and their role in climate change during the last deglaciation[END_REF] and at least three events correlate with abrupt millennial scale climate events recognized in Greenland ice cores and other proxy records: the Intra-Allerød Oscillation (~13.3 ka), the YD (12.9-13.1 ka), and Preboreal Oscillation (~11.2-11.5 ka) [START_REF] Rayburn | Timing and duration of glacial lake discharges and the Younger Dryas climate reversal[END_REF][START_REF] Katz | Constraints on Lake Agassiz discharge through the late-glacial Champlain Sea (St. Lawrence Lowlands, Canada) using salinity proxies and an estuarine circulation model[END_REF].

As noted above (Section 2.5), GLA drainage through the Mackenzie River at the onset of the Younger Dryas has been proposed as an alternative route to the St. Lawrence on the basis of modelling [START_REF] Tarasov | Arctic freshwater forcing of the Younger Dryas cold reversal[END_REF] and dating of Mackenzie delta sands and upstream gravels and erosional channels [START_REF] Murton | Identification of Younger Dryas outburst flood path from Lake Agassiz to the Arctic Ocean[END_REF]). Here too, there is a contrast between the temporal resolution of central Arctic marine sediment records and those along Arctic continental margins. Sedimentation rates on the Lomonosov, Mendeleev and Northwind Ridges average roughly 0.5-2 cm ka -1 , while those on continental margins are 2 to 3 orders of magnitude higher. Consequently, central Arctic isotopic records of meltwater induced hydrological changes are ambiguous [START_REF] Poore | Late Pleistocene and Holocene meltwater events in the western Arctic Ocean[END_REF], whereas in more proximal regions of the Chukchi and Beaufort Seas off North America, a number of independent proxy methods provide clearer evidence for deglacial hydrological changes [START_REF] Andrews | On the reconstruction of Pleistocene Ice Sheets: A Review[END_REF]Dunhill 2004, Polyak et al. 2007). There is also geophysical (submarine incised valleys) and stratigraphic evidence on the Chukchi Margin for deglacial ice-rafting and lake drainage, possibly from Alaska's Glacial Lake Noatak, that cannot be accounted for by river discharge or precipitation changes [START_REF] Hill | Paleodrainage on the Chukchi shelf reveals sea level history and meltwater discharge[END_REF]. Off Siberia, sediments from the Laptev Sea indicate major hydrological changes during the last deglaciation (around 12.9 ka), perhaps from Lena River discharge [START_REF] Spielhagen | History of freshwater runoff across the Laptev Sea (Arctic) during the last deglaciation[END_REF][START_REF] Taldenkova | Benthic and planktic community changes at the North Siberian margin in response to Atlantic water mass variability since last deglacial times[END_REF].

In summary, these few examples illustrate the huge potential to utilise a variety of evidence from continental shelves and slopes to constrain ice sheet dynamics and runoff. This includes the integration of submarine geophysical, chronological (e.g. radiocarbon dating, varves), sedimentological (e.g. IRD), microfaunal (e.g. foraminifera, ostracodes dinoflagellates), and geochemical proxies (usually oxygen isotopes). Among the many remaining challenges in detecting specific abrupt discharge events, chronology ranks highest because it remains difficult to distinguish short-lived, catastrophic outbursts, most evident in spikes in stable isotope records, from hydrological changes due to more progressive influx of glacial meltwater (i.e longer-term baseline flows).

Heinrich Events and Associated Meltwater Plumes

Glacial intervals are characterised by Heinrich events that, sensu stricto, are identified by a sudden increase in the coarse lithic fraction, a dominance of the polar planktonic foraminifera Neogloboquadrina pachyderma(s), and a lowering of inferred sea-surface salinity [START_REF] Heinrich | Origin and consequences of cyclic ice rafting in the Northeast Atlantic Ocean during the past 130,000 years[END_REF][START_REF] Bond | Correlations between climate records from North Atlantic sediments and Greenland ice[END_REF]. For the past two decades, these events have highlighted the limits of our understanding with respect to reconstructing ice sheet dynamics and their links to the ocean-climate system [START_REF] Hemming | Heinrich events: Massive late Pleistocene detritus layers of the North Atlantic and their global climate imprint[END_REF].

The original definition of Heinrich layers was based on IRD in the central North Atlantic [START_REF] Ruddiman | Late Quaternary deposition of ice-rafted sand in subpolar North-Atlantic (Lat 4-degrees to 65-degrees-N)[END_REF][START_REF] Heinrich | Origin and consequences of cyclic ice rafting in the Northeast Atlantic Ocean during the past 130,000 years[END_REF], but their sedimentary signature in the Labrador Sea changes with distance from Hudson Strait, and is significantly different from that observed distally. Close to Hudson Strait, the layers are up to several metres thick. IRD abundance shows high-frequency internal variations within the Heinrich layers, with two abundance maxima at the base and the top separated by cyclic deposits of mud turbidites, meltwater plume deposits (rapid deposition of hemipelagic sediment) and IRD beds [START_REF] Rashid | Fine scale sediment structure and geochemical signature between eastern and western North Atlantic during Heinrich events 1 and 2[END_REF]. Such internal variations are less striking moving southwards, as the thickness of Heinrich layers decreases and IRD abundance shows less variation. The succession of turbidites, meltwater plume deposits and IRD beds are organized as couplets (Figure 10) [START_REF] Hesse | Depositional facies of late Pleistocene Heinrich events in the Labrador Sea[END_REF] and are similar to seasonal cycles recognised in the Bay of Biscay by [START_REF] Zaragosi | The impact of the last European deglaciation on the deep-sea turbidite systems of the Celtic-Armorican margin (Bay of Biscay)[END_REF]. Dispersed drop clasts and pellets within the turbidite layers suggest that ice calving occurred at the same time as meltwater supply. High resolution sedimentary records from the Bay of Biscay also show a similar pattern for meltwater events, with turbidites attributed to meltwater during warm periods, and IRD beds topping the turbidites during cold periods [START_REF] Zaragosi | The impact of the last European deglaciation on the deep-sea turbidite systems of the Celtic-Armorican margin (Bay of Biscay)[END_REF][START_REF] Toucanne | Timing of massive 'Fleuve Manche' discharges over the last 350 kyr: insights into the European ice-sheet oscillations and the European drainage network from MIS 10 to 2[END_REF][START_REF] Roger | Late Quaternary glacial history and meltwater discharges along the Northeastern Newfoundland Shelf[END_REF]. Thus, Heinrich events appear to involve seasonal meltwater discharge and iceberg calving, similar to that seen at modern glacier outlets.

The volumetric importance of meltwater plume deposits in proximal Heinrich layers means that Heinrich events cannot be interpreted only in terms of iceberg supply and rates of iceberg melting [START_REF] Andrews | Hudson Strait ice streams: a review of stratigraphy, chronology and links with North Atlantic Heinrich events[END_REF][START_REF] Roche | Constraints on the duration and freshwater release of Heinrich event 4 through isotope modelling[END_REF]. Indeed, the IRD layers may represent only a small portion of the Heinrich events (Figure 10), and the proportion varies between different events, implying variability in the proportion of icebergs to meltwater [START_REF] Rashid | The extent of ice on the continental shelf off Hudson Strait during Heinrich events 1-3[END_REF]. For example, Heinrich event 3 (H3) is the most prominent event in the Labrador Sea for the past 40 ka, but IRD sourced from the Hudson Strait Ice Stream is barely recorded in the associated Heinrich layer.

The geographic distribution of IRD depends not only on supply, but also on iceberg melting rates and transport distance, which is further controlled by oceanic and atmospheric temperatures, sea ice, winds, and ocean currents. Because the volume of IRD is not representative of the event, IRD layers from the North Atlantic cannot be used as the sole proxy for rapid and extreme calving events [START_REF] Rashid | Fine scale sediment structure and geochemical signature between eastern and western North Atlantic during Heinrich events 1 and 2[END_REF]. Furthermore, Andrews et al. (2012) have been able to identify at least two sources for the Heinrich layers in the Labrador Sea based on source rock signatures. The complex internal structure of Heinrich events as well as the variability in the sediment source (Tripsanas and Piper, 2008b;[START_REF] Rashid | Fine scale sediment structure and geochemical signature between eastern and western North Atlantic during Heinrich events 1 and 2[END_REF][START_REF] Roger | Late Quaternary glacial history and meltwater discharges along the Northeastern Newfoundland Shelf[END_REF] indicates a complex series of ice stream catchments and tributary redistribution for each event, which is consistent with the activation of a number of different ice streams (see Section 2.2).

Because meltwater pulses were associated with high sedimentation rates, long stratigraphic records are difficult to obtain close to ice stream outlets. Nevertheless, similar patterns from the Eastern Canadian margin and European margin are inferred from 14 to 45 ka (Figure 11).

Sedimentary records suggest that meltwater pulses started shortly after or around H4 [START_REF] Lekens | Meltwater and ice rafting in the southern Norwegian Sea between 20 and 40 calendar kyr B.P.: Implications for Fennoscandian Heinrich events[END_REF][START_REF] Toucanne | Timing of massive 'Fleuve Manche' discharges over the last 350 kyr: insights into the European ice-sheet oscillations and the European drainage network from MIS 10 to 2[END_REF]. The amount of meltwater increased toward the LGM, with a climax from 15 to 28 ka (Figure 11) [START_REF] Lekens | Meltwater and ice rafting in the southern Norwegian Sea between 20 and 40 calendar kyr B.P.: Implications for Fennoscandian Heinrich events[END_REF][START_REF] Haapaniemi | Source, timing, frequency and flux of ice-rafted detritus to the Northeast Atlantic margin, 30-12 ka: testing the Heinrich precursor hypothesis[END_REF][START_REF] Roger | Late Quaternary glacial history and meltwater discharges along the Northeastern Newfoundland Shelf[END_REF]. Where ice persisted, sedimentation rates remained high until the beginning of the Holocene [START_REF] Piper | Stratigraphic and sedimentological evidence for late Wisconsinan sub-glacial outburst floods to Laurentian Fan[END_REF]. Meltwater pulses did not occur randomly, and sometimes occurred in cycles that may be related to millennial-scale variability (e.g. Dansgaard-Oeschger (DO) cycles). These are recorded in turbidite records, particularly in the North Sea fan, the Orphan Basin, and the Laurentian fan, where thick sequences of turbidites were interrupted every 1-2 ka by hemipelagic sediments [START_REF] Lekens | Meltwater and ice rafting in the southern Norwegian Sea between 20 and 40 calendar kyr B.P.: Implications for Fennoscandian Heinrich events[END_REF][START_REF] Piper | Stratigraphic and sedimentological evidence for late Wisconsinan sub-glacial outburst floods to Laurentian Fan[END_REF]Tripsanas and Piper, 2008b;[START_REF] Roger | Late Quaternary glacial history and meltwater discharges along the Northeastern Newfoundland Shelf[END_REF]. Recent work, however, suggests that the existence of individual D-O oscillations does not rely upon meltwater outputs to force them, but may arise from self-sustained nonlinear oscillations of the coupled atmosphereocean-sea ice system that are 'kicked' into action by preceding Heinrich events [START_REF] Peltier | Dansgaard-Oeschger oscillations predicted in a comprehensive model of glacial climate: A "kicked" salt oscillator in the Atlantic[END_REF].

On both the European and eastern Canadian margins, a drop in the meltwater input is inferred to have begun around 20-23 ka, and glacigenic debris flows related to readvance of ice streams were common [START_REF] Lekens | Meltwater and ice rafting in the southern Norwegian Sea between 20 and 40 calendar kyr B.P.: Implications for Fennoscandian Heinrich events[END_REF]Tripsanas and Piper, 2008a). These readvances coincided with weak Atlantic Meridional Overturning Circulation (AMOC) between 19-23 ka [START_REF] Van Meerbeeck | Assessing the sensitivity of the North Atlantic Ocean circulation to freshwater perturbation in various glacial climate states[END_REF]. More generally, the timing and amplitude of the meltwater pulses coincides with major changes in the AMOC during the last glacial cycle [START_REF] Van Meerbeeck | Assessing the sensitivity of the North Atlantic Ocean circulation to freshwater perturbation in various glacial climate states[END_REF]. Despite recent advances, there is no clear consensus about the timing and amount of meltwater and sediment flux during Heinrich events [START_REF] Alley | Ice-rafted debris associated with Binge/Purge oscillations of the Laurentide Ice Sheet[END_REF][START_REF] Johnson | Hudson Bay-Hudson Strait jökulhlaups and Heinrich events: a hypothesis[END_REF][START_REF] Hemming | Heinrich events: Massive late Pleistocene detritus layers of the North Atlantic and their global climate imprint[END_REF][START_REF] Hulbe | Catastrophic ice shelf breakup as the source of Heinrich event icebergs[END_REF][START_REF] Marshall | Ice sheet action versus reaction: Distinguishing between Heinrich events and Dansgaard-Oeschger cycles in the North Atlantic[END_REF][START_REF] Marcott | Iceshelf collapse from subsurface warming as a trigger for Heinrich events[END_REF]. Insufficient data have been collected near the different glacial outlets (Section 2.6), so that use of marine records has overemphasised Heinrich events and the post-Heinrich event 1 deglaciation. Freshwater flux is difficult to quantify and is not necessarily correlated with IRD flux (the latter being easier to quantify from sediment cores). This difficulty is well illustrated with the multiple attempts at modelling Heinrich events [START_REF] Hemming | Heinrich events: Massive late Pleistocene detritus layers of the North Atlantic and their global climate imprint[END_REF][START_REF] Marshall | Ice sheet action versus reaction: Distinguishing between Heinrich events and Dansgaard-Oeschger cycles in the North Atlantic[END_REF][START_REF] Roberts | A new constraint on the size of Heinrich Events from an iceberg/sediment model[END_REF]. The data show that iceberg calving represented only part, and in the case of H3 a very small part, of a full Heinrich event; and the freshwater was largely provided by seasonal meltwater discharge. This aspect of the Heinrich events is critical because it can help test numerical modelling. For example, the 'Binge and Purge' model from [START_REF] Macayeal | Binge/purge oscillations of the Laurentide Ice Sheet as a cause of the North Atlantic's Heinrich events[END_REF] is able to reproduce the IRD layers at the base and top of the Heinrich events, but fails to generate seasonal meltwater deposits. The jökulhlaup model from [START_REF] Johnson | Hudson Bay-Hudson Strait jökulhlaups and Heinrich events: a hypothesis[END_REF] is able to reproduce large amounts of meltwater, but because of its catastrophic approach, iceberg calving and meltwater outburst are not distinct processes and occur over too short a time compared to a typical Heinrich event. Models that assume that Heinrich events were the result of ice-stream reaction to oceanic forcing [START_REF] Marcott | Iceshelf collapse from subsurface warming as a trigger for Heinrich events[END_REF][START_REF] Alvarez-Solas | Brief communication "Can recent ice discharges following the Larsen-B ice-shelf collapse be used to infer the driving mechanisms of millennial-scale variations of the Laurentide ice sheet?[END_REF] may not account for the meltwater derived from both Hudson Strait and from other coastal regions throughout Heinrich events, but rather emphasise processes that produce abundant icebergs from a Hudson Strait Ice Stream and ice shelf. Some glaciological models driven by climate forcing [START_REF] Marshall | Ice sheet action versus reaction: Distinguishing between Heinrich events and Dansgaard-Oeschger cycles in the North Atlantic[END_REF] obtain results very close to what is observed in the sediment record, as they are able to differentiate meltwater input from coastal regions, ice sheets, and Heinrich events from the LIS. Nonetheless, such models encounter difficulties with the Heinrich events, because they restrict the events to ice calving events and therefore overestimate the IRD flux and miss the rhythmic layers deposited from meltwater.

In summary, recent work on sediment sources have shown a great variability even within the same ice sheet, suggesting a complex redistribution of ice stream and tributaries for ice calving and/or meltwater events. Sedimentary records suggest involvement of seasonal meltwater discharge and iceberg calving during ice sheet collapse. Modelling direct meltwater inputs into deep water have been made (discussed in Section 4.6), but the volumetric importance of such flows remains to be assessed from sedimentary record.

Insufficient data have been collected near palaeoglacial outlets and, therefore, the timing, duration and significance of seasonal meltwater pulses during ice sheet collapse remain to be assessed.

Recent Advances in Dating Ice Sheet Extent

The value of terrestrial glacial geological evidence described above is increased if it can be dated. This section highlights recent advances in the application of cosmogenic nuclide dating (Section 3.1), luminescence dating (Section 3.2) and radiocarbon dating (Section 3.3) to ice sheet reconstructions. A recent in-depth review of dating methods, specific to the Arctic region, can be found in [START_REF] Alexanderson | An Arctic perspective on dating Mid-Late Pleistocene environmental history[END_REF].

Cosmogenic dating

Cosmogenic nuclide dating has developed into an established chronological tool for ice sheet reconstructions [START_REF] Bierman | Cosmogenic glacial dating, 20 years and counting[END_REF][START_REF] Balco | Contributions and unrealized potential contributions of cosmogenic-nuclide exposure dating to glacier chronology, 1990-2010[END_REF]. It has enabled direct exposure dating of glacial landforms and deposits, and the number of studies applying cosmogenic nuclide dating for reconstructions of ice sheets has grown rapidly over the last decade. These studies tend to focus on: (i) exposure dating of ice sheet extent (both laterally and vertically) and (ii) determining the effect of subglacial erosion and preservation.

Several recent studies have focussed on constraining the extent and thickness of extant ice sheets in Greenland [START_REF] Roberts | The deglacial history of southeast sector of the Greenland Ice Sheet during the Last Glacial Maximum[END_REF][START_REF] Briner | Using in situ cosmogenic 10 Be, 14 C, and 26 Al to decipher the history of polythermal ice sheets on Baffin Island, Arctic Canada[END_REF][START_REF] Young | A 10Be production-rate calibration for the Arctic[END_REF] and Antarctica [START_REF] Stone | Holocene deglaciation of Marie Byrd Land, West Antarctica[END_REF][START_REF] Bentley | Deglacial history of the West Antarctic Ice Sheet in the Weddell Sea embayment: Constraints on past ice volume change[END_REF][START_REF] Mackintosh | Retreat of the East Antarctic ice sheet during the last glacial termination[END_REF] since the LGM.

Similarly, studies of the last mid-latitude ice sheets have tended to focus on changes since the

LGM (e.g. [START_REF] Rinterknecht | The last deglaciation of the southeastern sector of the Scandinavian ice sheet[END_REF][START_REF] Balco | Cosmogenic-nuclide and varve chronologies for the deglaciation of southern New England[END_REF][START_REF] Stroeven | Investigating the glacial history of the northern sector of the Cordilleran Ice Sheet with cosmogenic 10 Be concentrations in quartz[END_REF][START_REF] Stroeven | Importance of sampling across an assemblage of glacial landforms for interpreting cosmogenic ages of deglaciation[END_REF], but dating of more extensive pre-LGM glaciations has been applied to the north-eastern FIS [START_REF] Linge | Cosmogenic 10 Be exposure age dating across early to late Weichselian ice-marginal zones in northwestern Russia[END_REF], the northern Cordilleran Ice Sheet [START_REF] Ward | Evidence for a 55-50 ka (early Wisconsin) glaciation of the Cordilleran ice sheet, Yukon Territory, Canada[END_REF][START_REF] Stroeven | Investigating absolute chronologies of glacial advances in the NW sector of the Cordilleran Ice Sheet with terrestrial in situ cosmogenic nuclides[END_REF] and the Patagonia Ice Sheet [START_REF] Kaplan | Cosmogenic nuclide measurements in southernmost South America and implications for landscape change[END_REF]Darvill et al., in press).

Cosmogenic dating has limitations that are closely related to geomorphological uncertainties.

An ideal sample for dating the deglaciation of an ice sheet (bedrock or boulders exposed after deglaciation) has had no exposure to cosmic rays prior to glaciation (no inheritance) and full exposure to cosmic rays (no shielding) after deglaciation [START_REF] Heyman | Too young or too old: Evaluating cosmogenic exposure dating based on an analysis of compiled boulder exposure ages[END_REF]. Often, however, at least one of these requirements cannot be met, resulting in exposure ages that can be either younger or older than the actual deglaciation age. If a surface has been exposed to cosmic rays before the last glaciation, experienced limited or no glacial erosion while ice covered, and full exposure after deglaciation, the surface will yield exposure ages that are older than the deglaciation age due to prior exposure. If, on the other hand, a surface was not exposed before the last glaciation and has only been exposed during a part of the post-glacial time, the surface will yield exposure ages that are younger than the deglaciation age due to incomplete exposure. Several samples from a surface with an expected distinct deglaciation age commonly display scattered exposure ages indicating that the problem with prior and/or incomplete exposure is common [START_REF] Putkonen | Accuracy of cosmogenic ages for moraines[END_REF][START_REF] Kaplan | Cosmogenic nuclide measurements in southernmost South America and implications for landscape change[END_REF][START_REF] Heyman | Too young or too old: Evaluating cosmogenic exposure dating based on an analysis of compiled boulder exposure ages[END_REF].

To address the issue of prior and incomplete exposure, several strategies have been applied to interpret sets of exposure ages; firstly, scattered exposure ages can be interpreted as a result of prior exposure with the youngest exposure age of the group interpreted as closest to the actual deglaciation age. Secondly, scattered exposure ages can be interpreted as a result of incomplete exposure with the oldest exposure age closest to the actual deglaciation age.

Thirdly, the average of a set of exposure ages can be taken as the deglaciation age, based on the assumption (typically implicitly) that the effects of prior exposure and incomplete exposure will yield equally large errors of opposite character (too old and too young).

Fourthly, a scatter in a set of exposure ages can be evaluated using numerical modelling of geomorphic processes to identify the most likely deglaciation age [START_REF] Applegate | Improved moraine age interpretations through explicit matching of geomorphic process models to cosmogenic nuclide measurements from single landforms[END_REF].

Finally, a statistically robust approach is to only use groups of exposure ages that are so well clustered that the scatter can be explained by measurement error alone, and to accept the mean exposure age of that group as the most likely deglaciation age [START_REF] Balco | Contributions and unrealized potential contributions of cosmogenic-nuclide exposure dating to glacier chronology, 1990-2010[END_REF]. An example of how exposure age interpretations can lead to different ice sheet reconstructions is the deglaciation of the southern FIS. Giving preference to either the average or the older exposure ages has led to reconstructions diverging with up to some thousand years [START_REF] Rinterknecht | The last deglaciation of the southeastern sector of the Scandinavian ice sheet[END_REF][START_REF] Houmark-Nielsen | Cosmogenic surface exposure dating the last deglaciation in Denmark: discrepancies with independent age constraints suggest delayed periglacial landform stabilization[END_REF].

When glacial erosion has been limited, and nuclides accumulated during a previous period of exposure remain, differing nuclide decay rates of multiple radiogenic isotopes can be used to quantify burial durations under ice [START_REF] Fabel | Landscape preservation under Fennoscandian ice sheets determined from in situ produced 10 Be and 26 Al[END_REF][START_REF] Stroeven | A relict landscape in the centre of Fennoscandian glaciation: cosmogenic radionuclide evidence of tors preserved through multiple glacial cycles[END_REF]. For quartz minerals, pairs of 10 Be (half-life 1.4 Ma) and 26 Al (half-life 0.7 Ma) have been used to infer burial durations of hundreds of thousands of years [START_REF] Bierman | Mid-Pleistocene cosmogenic minimum-age limits for pre-Wisconsinan glacial surfaces in southwestern Minnesota and southern Baffin Island: A multiple nuclide approach[END_REF][START_REF] Fabel | Landscape preservation under Fennoscandian ice sheets determined from in situ produced 10 Be and 26 Al[END_REF][START_REF] Stroeven | A relict landscape in the centre of Fennoscandian glaciation: cosmogenic radionuclide evidence of tors preserved through multiple glacial cycles[END_REF]. This information helps constrain the glacial erosion and quantify the cumulative duration of ice coverage over multiple glacial cycles. For quantifying shorter burial events, a promising nuclide is in-situ produced 14 C, which has a half-life of only 5,700 years, and which therefore decays rapidly enough to be significantly altered when covered by ice for just a few thousand years. [START_REF] Miller | Limited ice-sheet erosion and complex exposure histories derived from in situ cosmogenic 10 Be, 26 Al, and 14 C on Baffin Island, Arctic Canada[END_REF] Cosmogenic exposure dating is rapidly evolving with refinements in both measurement and calculation techniques [START_REF] Balco | Contributions and unrealized potential contributions of cosmogenic-nuclide exposure dating to glacier chronology, 1990-2010[END_REF]. An important improvement in measurement accuracy was achieved for the most commonly used nuclide, 10 Be, when [START_REF] Nishiizumi | Absolute calibration of 10 Be AMS standards[END_REF] accurately determined Be ratios of several different standards used to measure 10 Be concentrations. An outcome of this study was that reported 10 Be concentrations from earlier measurements should be adjusted by up to 17% [START_REF] Nishiizumi | Absolute calibration of 10 Be AMS standards[END_REF]. The production of cosmogenic nuclides is also being re-evaluated. Several recent 10 Be production rate calibration studies have reported 5-15% lower reference 10 Be production rates (e.g. [START_REF] Balco | Regional beryllium-10 production rate calibration for late-glacial northeastern North America[END_REF][START_REF] Young | A 10Be production-rate calibration for the Arctic[END_REF][START_REF] Heyman | Paleoglaciation of the Tibetan Plateau and surrounding mountains based on exposure ages and ELA depression estimates[END_REF] compared to the original CRONUS production rates (e.g. [START_REF] Balco | A complete and easily accessible means of calculating surface exposure ages or erosion rates from 10 Be and 26 Al measurements[END_REF], implying that many exposure ages are likely to be thousands of years older than previously reported. For example, Ballantyne and Stone (2012) recalculated the exposure ages of 22 boulders from moraines in northwestern Scotland based on new locally calibrated 10 Be production rates, increasing the original mean exposure age by 6.5-12%, and suggesting that the ice retreated much earlier and did not persist throughout the Lateglacial Interstadial. Furthermore, in a recent paper from the CRONUS-Earth project, the production rates have been evaluated for 10 Be, 26 Al, 3 He, 36 Cl, and 14 C (Borchers et al., in press) for an updated CRONUScalc online exposure age calculator. The geographical (and temporal) scaling of production rates has also seen recent advances, with Monte Carlo simulations originally aimed to estimate exposure to cosmic ray flux for aircrew during flights [START_REF] Sato | Development of PARMA: PHITS-based analytical radiation model in the atmosphere[END_REF] being developed into a model for cosmogenic production scaling on Earth [START_REF] Lifton | Scaling in situ cosmogenic nuclide production rates using analytical approximations to atmospheric cosmic-ray fluxes[END_REF].In summary, cosmogenic dating has enabled direct dating of glacial landform surfaces and has led to several major advances regarding palaeo-ice sheet history and dynamics, including dating of ice sheet margins and verification of surface preservation under non-erosive ice sheets. The method is now widely used and will continue to develop into an established chronological tool for ice sheet reconstructions with further calibration (e.g., with AMS C-14) and refinements to production rates and scaling [START_REF] Bierman | Cosmogenic glacial dating, 20 years and counting[END_REF][START_REF] Balco | Contributions and unrealized potential contributions of cosmogenic-nuclide exposure dating to glacier chronology, 1990-2010[END_REF]. A key point regarding cosmogenic dating is that exposure ages are only correct if all geomorphological uncertainties are understood and correctly addressed; when that is not the case, exposure ages may lead to erroneous chronological constraints.

Luminescence dating

The most commonly used approaches in luminescence dating are Thermo-Luminescence (TL, using either quartz or feldspar), Optically Stimulated Luminescence (OSL, quartz), and Infrared Stimulated Luminescence (IRSL, feldspar). TL dating is now rarely used, but both OSL and IRSL are frequently applied in glacial geological reconstructions. The advantage of OSL is that the signal is known to bleach rapidly when quartz grains are exposed to light and to be stable for millions of years once shielded. However, some quartz has been unsuitable for OSL dating due to either low signal levels [START_REF] Preusser | Characterisation of low OSL intensity quartz from the New Zealand Alps[END_REF] or signal instabilities [START_REF] Steffen | OSL quartz age underestimation due to unstable signal components[END_REF]. In such contexts, feldspar IRSL often provides an alternative, although this signal is known to suffer from anomalous fading, causing age underestimation [START_REF] Wintle | Anomalous fading of thermoluminescence in mineral samples[END_REF][START_REF] Huntley | Ubiquity of anomalous fading in K-feldspars and the measurement and correction for it in optical dating[END_REF]. To circumvent the problem of fading, new approaches involve using a thermally-assisted IRSL measurement (post-IR IRSL; [START_REF] Thomsen | Laboratory fading rates of various luminescence signals from feldspar-rich sediment extracts[END_REF][START_REF] Buylaert | A robust feldspar luminescence dating method for Middle and Late Pleistocene sediments[END_REF]. However, this signal is known to bleach less rapidly and can cause ageoverestimation in proglacial environments [START_REF] Blomdin | Timing of the deglaciation in southern Patagonia: Testing the applicability of K-Feldspar IRSL[END_REF][START_REF] Lowick | Testing the application of post IR-IRSL dating to fine grain waterlain sediments[END_REF]). An advantage of IRSL is the higher saturation level, which allows dating further back in time than OSL. Initial attempts to date proglacial sediments using TL had little success due to problems with incomplete bleaching of the signal prior to deposition [START_REF] Kronborg | Preliminary result of age determination by TL of interglacial and interstadial sediment[END_REF][START_REF] Jungner | Preliminary investigations on TL dating of geological sediment from Finland[END_REF]. This problem was also observed in modern proglacial sediments (e.g., [START_REF] Gemmell | Zeroing of the TL signal of sediment undergoing fluvial transportation: A laboratory experiment[END_REF]1994).

Even though both OSL and IRSL are much more light-sensitive than TL, early studies using these techniques also struggled with incomplete bleaching when using multi-grain approaches [START_REF] Duller | Luminescence dating of poorly bleached sediment from Scotland[END_REF][START_REF] Rhodes | Zeroing of the OSL signal in quartz from young glaciofluvial sediment[END_REF]. However, as pointed out by [START_REF] Duller | Luminescence dating of poorly bleached sediment from Scotland[END_REF], sediments will likely contain grains with various bleaching histories and levels, including those that experienced complete resetting. The major methodological breakthroughs to date proglacial sediments were, therefore, the introduction of single aliquot and single grain methodologies. In these approaches, several equivalent dose (D e ) measurements from the same sample provide information about the level of bleaching, and different statistical approaches have been proposed to extract the well-bleached fraction from the distribution [START_REF] Galbraith | Optical dating of single and multiple grains of quartz from Jinmium rock shelter, northern Australia: Part I, experimental design and statistical models[END_REF][START_REF] Galbraith | Statistical aspects of equivalent dose and error calculation and display in OSL dating: An overview and some recommendations[END_REF].

Many studies have stressed the importance of sampling suitable glacial sediment facies [START_REF] Fuchs | Luminescence dating of glacial and associated sediments: review, recommendations and future directions[END_REF][START_REF] Thrasher | Luminescence dating of glaciofluvial deposits: A review[END_REF]. For the FIS, for example, OSL ages have been produced for a wide variety of deposits related to ice sheet (de)glaciation (e.g. Alexanderson and Murray, 2012a;[START_REF] Johnsen | OSL ages in central Norway support a MIS 2 interstadial 25-20 ka and a dynamic Scandinavian ice sheet[END_REF], although they typically contain ages that overestimate the expected age range, presumably due to incomplete bleaching. Several recent studies have investigated the luminescence properties of quartz and feldspar from modern depositional environments, thereby testing the significance of incomplete bleaching in different glacial settings [START_REF] Alexanderson | Residual OSL signals from modern Greenlandic river sediments[END_REF]Alexanderson and Murray, 2012b). Alexanderson and Murray (2012b) showed that the risk for incompletely bleached grains is largest in subglacial till and proximal glaciofluvial sediment, and least in distal glaciofluvial and lacustrine sediment.

OSL ages for sediment associated with the Eurasian Ice Sheet seem to be in relatively good agreement with geological interpretations and radiocarbon ages (e.g. [START_REF] Mangerud | The chronology of a large icedammed lake and the Barents-Kara Ice Sheet advances, Northern Russia[END_REF][START_REF] Murray | Testing the accuracy of quartz OSL dating using a known-age Eemian site on the river Sula, northern Russia[END_REF], and some studies have successfully dated sediments older than the LGM. For example, [START_REF] Mangerud | The chronology of a large icedammed lake and the Barents-Kara Ice Sheet advances, Northern Russia[END_REF] sampled beach and shoreface deposits from Glacial Lake Komi, northwestern Russia. All sampled sand was transported and deposited by waves at or close to the palaeo-shoreline, implying that grains were likely to have been exposed to sufficient sunlight to reset OSL. In North America, early work applied TL to both relict and modern proglacial sediment [START_REF] Berger | Thermoluminescence chronology of Toronto-area Quaternary sediments and implications for the extent of the midcontinent ice sheet(s)[END_REF], whereas more recent work has applied both fading-corrected IRSL and OSL dating on a variety of deposits (mainly glaciolacustrine and postglacial aeolian) associated with proglacial lakes [START_REF] Lepper | A chronology for glacial Lake Agassiz shorelines along Upham's namesake transect[END_REF] and the deglaciation of the Laurentide [START_REF] Balescu | IRSL dating of Middle Pleistocene interglacial sediments from southern Quebec Canada using multiple and single grain aliquots[END_REF] and the Cordilleran ice sheets [START_REF] Demuro | Single-grain OSL dating of glaciofluvial quartz constrains Reid glaciation in NW Canada to MIS 6[END_REF].

In summary, OSL and IRSL dating are currently the most reliable methods to determine depositional ages of glaciofluvial and aeolian sediments related to deglaciation. They are often complementary to cosmogenic and radiocarbon dating in underpinning palaeoglaciological reconstructions, but incomplete bleaching remains an issue in some glacial sedimentary environments and they typically have much larger error bounds compared to radiocarbon dating.

Radiocarbon Dating and Pan-Ice Sheet Margin Chronologies

For many years, radiocarbon dating has been used to determine ice margin chronologies, with several hundred dates available for most ice sheets (e.g. [START_REF] Hughes | Dating constraints on the last British-Irish Ice Sheet: a map and database[END_REF] and thousands in some cases [START_REF] Dyke | Deglaciation of North America, scale[END_REF]. Accelerator Mass Spectrometry (AMS) dating of terrestrial macro-fossils and marine micro-fossils has greatly enhanced our ability to constrain the timing of events, including ice retreat. In some locations, bulk sample radiocarbon ages of lake-bottom sediments are now accepted as having errors of at least 1-2 ka and up to 10 ka [START_REF] Grimm | The magnitude of error in conventional bulksediment radiocarbon dates from central North America[END_REF]. This is due to problems such as dissolved carbonates in water or detrital carbon reworked from carbon-bearing rocks and sediments. In Switzerland, for example, [START_REF] Andree | C-14 dating of plant macrofossils in lake sediment[END_REF] found an 800-year offset in radiocarbon age between bulk sediment and AMS plant macrofossil ages for the late-glacial interval, while offsets of up to 8 ka occur in basal lake sediments in central North America [START_REF] Grimm | The magnitude of error in conventional bulksediment radiocarbon dates from central North America[END_REF]. In another example, the initiation of 13 lakes/bogs across a landscape previously covered by the south-eastern LIS provided a tight cluster of AMS ages between 16 and 15 ka [START_REF] Peteet | Delayed deglaciation or extreme Arctic conditions 21-16 cal. kyr at southeastern Laurentide ice sheet margin[END_REF], which is 5-9 ka later than the time of ice retreat based upon the extrapolation of bulk chronologies [START_REF] Dyke | Deglaciation of North America, scale[END_REF], varves [START_REF] Ridge | The Quaternary glaciation of western New England with correlations to surrounding areas[END_REF], and cosmogenic dates [START_REF] Balco | Regional beryllium-10 production rate calibration for late-glacial northeastern North America[END_REF].

Perhaps the most important advance in terms of radiocarbon dating is the synthesis of dates from across an ice sheet bed to generate pan-ice sheet margin chronologies. Whilst various dating techniques have been deployed in specific localities, only rarely have these been compiled across larger areas. Building on the sequence of maps depicting deglaciation of North America [START_REF] Dyke | Late Wisconsinan and Holocene history of the Laurentide Ice Sheet[END_REF], [START_REF] Dyke | Deglaciation of North America, scale[END_REF] assembled a chronological database of mainly radiocarbon dates, supplemented with varve and tephra dates, which constrain ice margin positions and shorelines of large glacial lakes. Dates on problematic materials (e.g. marl, freshwater shells, lake sediment with low organic carbon content, marine sediment, bulk samples with probable blended ages, and most deposit feeding molluscs from calcareous substrates) were excluded. Marine shell dates, a major component, were adjusted for regionally variable marine reservoir effects based on a large new set of radiocarbon ages on live-collected, pre-bomb molluscs from Pacific, Arctic, and Atlantic shores. The resultant database contains ~4,000 dates, as well as interpolated margin position maps, which can be readily imported into GIS software for further analysis and integration with numerical modelling. Indeed, the new chronology has provided a powerful constraint for numerical modelling [START_REF] Tarasov | A geophysically constrained large ensemble analysis of the deglacial history of the North American ice sheet complex[END_REF][START_REF] Tarasov | A data-calibrated distribution of deglacial chronologies for the North American ice complex from glaciological modeling[END_REF].. More recently, the DATED project has synthesized the available published evidence for the timing and spatial extent of the Eurasian Ice Sheet (between 25 and 10 ka) (Hughes et al., accepted). All relevant dates for both the growth and decay of the Eurasian Ice Sheet (~5,000 dates) were critically evaluated and entered into a database, together with metadata to interpret them that includes the location, site type, dated material, dating method, sample number, and stratigraphic context and setting. Each date was classified in terms of its stratigraphic context and assessed in terms of likely reliability. To facilitate comparison and create an internally-consistent dataset, all radiocarbon dates were calibrated using the same calibration data, with a uniform reservoir correction for marine samples, and all terrestrial cosmogenic nuclide exposure ages were recalculated using common schemes for production rates and scaling models. The chronological database was coupled to a GIS and relevant glacial geomorphic indicators from the literature were compiled in digital geo-referenced form. Motivated by the requirement of ice sheet models for uncertainty estimates on input data, ice margin isochrones for every 1,000 years between 25 and 10 ka were interpreted based on the spatial observations, together with the classified and calibrated chronological data. Importantly, three ice margin positions were reconstructed for each time slice: a maximum, minimum and most-credible (Figure 12). These capture the end-members of possible ice marginal positions ('error margins') that satisfy the chronological constraints including dating precision, stratigraphic and spatial correlations, and gaps in dating (or ages).

Other on-going assimilations of existing, and newly collected, geological evidence to form the basis of ice sheet reconstructions also include the BRITICE Project for the British-Irish Ice Sheet and the RAISED project for Antarctica (Reconstruction of Antarctic Ice Sheet Deglaciation: see overview in [START_REF] Siegert | A community-based reconstruction of Antarctic Ice Sheet deglaciation since the Last Glacial Maximum[END_REF]. The MOCA project is also updating and revising the [START_REF] Dyke | Deglaciation of North America, scale[END_REF] North American chronology in areas where new dates have been obtained, and through the addition of min-max bounding isochrones for each time-slice.

It is clear that much can be gained by synthesising existing dates into pan-ice sheet chronologies, especially in terms of assessing the synchronicity of the maximum extent of different ice sheets and their rates of deglaciation. Pan-ice sheet chronologies with quantified errors also provide a robust test for numerical ice sheet models.

Recent Advances Based on Numerical Modelling of Ice Sheets

Model Resolution, Parameterisation and Uncertainty

Three issues cut across most aspects of modelling complex environmental systems such as palaeo-ice sheets. First, such modelling is subject to limited model grid resolution and the approximation of relevant processes (if not their complete lack of inclusion) due to computational expense. Secondly, the above, along with uncertainties in model inputs, induce significant uncertainties in model outputs that need to be quantified. Thirdly, in order to reduce and quantify these uncertainties, large and diverse observations (palaeo-datasets) are required to constrain the models. However, the quantity and quality of such datasets are generally inadequate to provide complete constraint and suffer from their own uncertainties, especially in the context of palaeo-ice sheet reconstructions.

Ice sheet models are run at the highest grid resolution possible for the given context and available computational resource. For large glacial cycle ensembles of continental ice sheets, this is typically in the range of 20 to 50 km. However, with parallelized models able to efficiently distribute the modelling of a single ice sheet over hundreds of processor cores, model runs down to 5 km grid resolution are now possible [START_REF] Golledge | Dynamics of the last glacial maximum Antarctic ice-sheet and its response to ocean forcing[END_REF]Seguinot et al., in review). In contrast, climate models are computationally much more expensive, with current Earth-system Models of Intermediate Complexity (EMICS) running at effective resolutions of ~500 km. As ice sheet models need a climate forcing to evolve, this mismatch in climate model resolution is a major problem for palaeo-ice sheet modelling. Furthermore, even the representation of core dynamical processes that are resolvable at modelled scales (in both climate and ice sheet models) are generally subject to simplification to enable computational tractability within research timescales. For ice sheet modelling, the Shallow-Ice (SIA) and Shallow-Shelf approximations (SSA) are standard reductions of the full 3D stress balance ("Stokes" equation) for ice sheets, streams, and shelves, respectively [START_REF] Blatter | Present state and prospects of ice sheet and glacier modelling[END_REF][START_REF] Kirchner | Capabilities and limitations of numerical ice sheet models: a discussion for Earth-scientists and modelers[END_REF][START_REF] Schoof | Ice-sheet dynamics[END_REF].

Processes that cannot be explicitly resolved according to known physics (due to model grid size and/or computational expense) must therefore be parameterized or ignored.

Parameterized processes generally involve poorly-defined parameters whose values must then be constrained through some combination of physical reasoning, observational comparisons, and high-resolution modelling that explicitly resolves the process.

Modelling uncertainties also arise from those present in various inputs to ice sheet models. Some are observational, such as the basal topography of present-day ice sheets [START_REF] Fretwell | Bedmap2: improved ice bed, surface and thickness datasets for Antarctica[END_REF]. Other uncertainties are related to past conditions such as the basal topography at the time of ice sheet inception [START_REF] Tarasov | A data-calibrated distribution of deglacial chronologies for the North American ice complex from glaciological modeling[END_REF]. The largest uncertainties concerning inputs to ice sheet models are in the atmospheric and oceanic components of the climate representation [START_REF] Pollard | A retrospective look at coupled ice sheet-climate modeling[END_REF]. Near-surface temperatures and rates of snow accumulation are the primary controls on regional terrestrial ice thickness, at least for regions that are not streaming (e.g. [START_REF] Seguinot | The effect of climate forcing on numerical simulations of the Cordilleran Ice Sheet at the Last Glacial Maximum[END_REF]. Ocean temperatures and currents have a strong impact on grounding line stability (influencing ice calving and sub-shelf melt at marine boundaries) and are major sources of uncertainty, although recent advances have been made (see Section 4.4). Basal processes (drag, hydrology, and sediment production/transport/deposition) determine fast flow conditions and also have large uncertainties, due both to their small scales, complex interactions, and limited accessibility for direct scientific study.

The presence of significant uncertainties necessitates a probabilistic approach to reducing and quantifying uncertainty. This is best understood through Bayes Theorem, in which the posterior probability, given a set of constraints, is proportional to the product of the likelihood and the prior probability. The 'prior' is the initial probability distribution for a set of poorly-defined model parameters and inputs. The likelihood function specifies the probability of a value of model output being in agreement with a set of observations (which were not used to generate the prior), given associated uncertainties. The determination of a full posterior probability distribution of model predictions will generally require drawing samples of parameter and input data sets from the prior, computing resultant model predictions, and comparing those predictions against observations with the likelihood function [START_REF] Rougier | Probabilistic inference for future climate using an ensemble of climate model evaluations[END_REF]. The likelihood function, in some sense, acts as a metric or, more crudely, as a measuring stick. Posterior probability determination, therefore, adds another order of computational load because repeated model runs are required. A key innovation in this regard has been the introduction of statistical emulators of complex models that enable large sampling within available computational resources (e.g. [START_REF] Tarasov | A data-calibrated distribution of deglacial chronologies for the North American ice complex from glaciological modeling[END_REF].

As noted, ice sheet modelling needs to be constrained by observations from the palaeo-record, which can be relatively scarce. For example, present-day climate system modelling benefits from terabytes of daily data retrieved from satellites. This is in sharp contrast to the limited set of records for the last glacial cycle, and their uneven distribution in both space and time.

Further uncertainties are due to the largely indirect nature of most proxy records in relation to the quantities/characteristics of interest, as well as the inherent dating uncertainties associated with the proxy record. Given the resolution and approximations, ice sheet models will not, in the foreseeable future, freely recreate inferred margin chronologies with even 100 km (except for margins subject to strong topographic controls such as continental shelf breaks) and 500 year accuracy. Uncertainties in local climate forcing and controls on fast flow necessitate the use of some form of applied nudging of modelled margins positions towards geologicallybased inferences [START_REF] Tarasov | A data-calibrated distribution of deglacial chronologies for the North American ice complex from glaciological modeling[END_REF]. Dated ice margin reconstructions are, therefore, an important constraint, but have their own uncertainty. The explicit quantification of these uncertainties in the form of maximum and minimum isochrones for each time-slice is an important step forward (see Section 3.3). However, the long-term goal is the calibration of glaciological models against the direct marginal constraint data that have been used to construct the geologically-inferred isochrones, especially for regions where marginal constraints are sparse.

Constraining Ice Sheet Thickness and Palaeotopography Using Glacial-Isostatic-Adjustment Data

Except for cosmogenic nuclide dating of nunataks and trimlines (Section 3.1), there is little direct evidence to constrain the thickness distribution and related surface topography of palaeo-ice sheets. These constraints are largely provided from records of glacio-isostaticadjustment (GIA), which can be inverted to reconstruct ice sheet configuration. Pure 'GIAbased' reconstructions invoke iterative tuning of ice load chronologies to fit relevant GIA data, subject to geologically-inferred ice margin chronologies (e.g. [START_REF] Peltier | Glacial isostatic adjustment I: the forward problem[END_REF]. Traditionally, the GIA-based method was largely reliant on relative sea level (RSL) data, which have no coverage for the large regions of palaeo-ice sheets that are presently ice covered and/or were not exposed to post-glacial submarine conditions. The recent large expansion of coverage of measurements of present-day vertical velocities from continuous or repeat GPS [START_REF] Argus | The Antarctic component of postglacial rebound model ICE-6G_C (VM5a) based upon GPS positioning, exposure age dating of ice thicknesses, and relative sea level histories[END_REF]Peltier et al., in press) has significantly improved the body of constraints available from this measurement system for deglaciated regions lacking RSL data.

The ICE-NG series of deglacial ice load reconstructions [START_REF] Tushingham | Validation of the ICE-3G model of Wurm-Wisconsin deglaciation using a global data-base of relative sea level histories[END_REF] (ICE-3D); [START_REF] Peltier | Ice-age paleotopography[END_REF]1996 (ICE-4G); Peltier, 2004 (ICE-5G)) have been the most widely used examples of the GIA-based approach. The most recent model in this series, ICE-6G_C (VM5a), uses the largest set of space geodetic constraints currently available to both constrain and validate the reconstruction [START_REF] Argus | The Antarctic component of postglacial rebound model ICE-6G_C (VM5a) based upon GPS positioning, exposure age dating of ice thicknesses, and relative sea level histories[END_REF][START_REF] Kierulf | A GPS velocity field for Fennoscandia and a consistent comparison to glacial isostatic adjustment models[END_REF]Peltier et al., 2015). Except for the glaciologically-derived Greenland component [START_REF] Tarasov | Greenland glacial history and local geodynamic consequences[END_REF] of ICE-5/6G, these models are not subject to any explicit glaciological constraints. To enforce semblance to realistic ice-sheet profiles, the GIA-based reconstruction of Lambeck and colleagues (e.g. [START_REF] Lambeck | The Scandinavian Ice Sheet: from MIS 4 to the end of the Last Glacial Maximum[END_REF] invoke equilibrium parabolic glaciological flowline approximations.

GIA-based reconstructions of ice sheet thickness variations require forward modelling to predict the geophysical observables that serve as constraints. This methodology requires two primary inputs. The first input is the glaciation history itself, which is inferred (if nonuniquely) by adjusting the glaciation history so that the RSL and vertical velocity predictions of the model fit the observations. For the non-glaciological components of the ICE-NG series, this essentially (although not trivially) involves moving around conceptual blocks of ice until the best fits are achieved. The second is the chosen representation of the internal viscoelastic structure of the planetary interior which, in turn, is used to generate the aforementioned RSL predictions for a given ice loading history. How the theoretical structure is able to separate error in the targeted glaciation history from error in the viscoelastic structure warrants discussion.

The elastic component of the viscoelastic structure is well-constrained by the almost spherically symmetric distribution (properties are a function only of depth in the Earth) of elastic Lame parameters of the Hookean elastic model of the planetary interior that is constrained by body wave and free oscillation seismology. By the elastic component of the rheology of Earth material, we mean that property which would determine the material response to an applied stress if liquid-like 'flow' were impossible. The only additional parameter required is to specify the viscosity component of the viscoelastic structure.

Although it is well understood that this viscosity should be laterally heterogeneous in a medium in which the solid state convection process is occurring that is required to understand plate tectonic phenomenology, it is unclear as to the horizontal scale on which such lateral heterogeneity should be significant. Therefore, the dominant models in the ICE-NG series continue to be based upon the assumption that the viscosity may be adequately represented as spherically symmetric. In the ICE-NG (VMX) series of models, the depth dependent profile of viscosity VMX is constrained by demanding that the same profile be capable of reconciling the GIA observations from every region that has undergone the crustal rebound process, following the most recent deglaciation. In constructing this model, use is made of the fact that ice sheets of increasing lateral scale are sensitive to the viscosity of the Earth over an ever increasing range of depths. The data employed to infer the depth dependence of viscosity (wavelength dependent relaxation times) are chosen in such a way that they are only weakly dependent upon the deglaciation history employed to fit the observational constraint.

Note, however, that this weak dependence breaks down in ice marginal regions (thus local variations in the earth rheology for these regions are much harder to constrain). The VM2 viscosity profile of the ICE-5G model, and the simple multilayer fit to this profile provided by the VM5a model in ICE-6G_C (VM5a), provides an excellent fit to the majority of the GIA-related observations. In the most recent work, however, a further refinement to this viscosity profile has been shown to be necessary to incorporate the additional constraints provided by relative sea level history data from the region of postglacial forebulge collapse outboard of the LIS along the eastern and western seaboards of the continental United States [START_REF] Roy | Glacial isostatic adjustment, relative sea level history and mantle viscosity: reconciling relative sea level model predictions for the US east coast with geological constraints[END_REF]. Thus, the process of model improvement is an iterative one in which one starts with an assumed known depth variation of mantle viscosity determined on the basis of observations that are relatively independent of the thickness of glacial ice that, when removed during deglaciation, was responsible for inducing the time dependent uplift of the land that is recorded in radiocarbon-dated RSL histories. One then adjusts the time dependence of ice sheet thickness within the inferred deglaciation isochrones (when available) to obtain the amplitude(s) of observed sea level fall at sites that were once ice covered. One then invokes additional data, such as GPS observations of present day rates of vertical motion of the crust, to further constrain the ice sheet loading history, and still further data to further refine the radial profile of mantle viscosity, until a fully converged model is obtained.

Although the dominant models of the GIA process continue to those based upon the spherically symmetric ansatz, it is important to note that significant current effort is being expended to investigate the extent to which lateral heterogeneity of the internal mantle viscosity structure may be influencing the conclusions concerning deglaciation history to which such GIA analyses have led. Recent examples of such work include van der Wal et al.

(2013), which focused upon an attempt to infer 3D rheological Earth properties for Fennoscandia; and that of [START_REF] Austermann | Barbados based estimates of ice volume at Last Glacial Maximum effected by subducted plate[END_REF], which focused upon the rebound process in the Caribbean. In the former, the authors found that the expanded parametric range of laterally varying Earth rheology could improve RSL fits of the ICE-5G (VM2) ice loading chronology of [START_REF] Peltier | Global isostasy and the surface of the ice-age earth: the ice-5G (VM2) model and GRACE[END_REF]. The latter study found that lateral heterogeneity of viscosity in the vicinity of Barbados could significantly perturb the fit of the same ICE-5G (VM2) model to the [START_REF] Peltier | Global glacial ice volume and Last Glacial Maximum duration from an extended Barbados sea level record[END_REF] record that is employed to constrain the net eustatic increase in sea level across the most recent glacial interglacial transition. In neither of these studies was attention focused upon an analysis of the uncertainties concerning the conclusions to which the authors were led. A research priority for the community is a clear specification of regional uncertainties in Earth rheology along with the quantification of the impact of these uncertainties on inferred deglacial ice sheet chronologies.

A subsequent evolution has been the imposition of the available set of GIA-based constraints on 3D glaciological models. This has progressed from hand-tuned models (e.g. [START_REF] Tarasov | Greenland glacial history and local geodynamic consequences[END_REF] to approaches that explore and quantify (to varying extents) uncertainties due to climate forcing and glaciological model components [START_REF] Tarasov | A data-calibrated distribution of deglacial chronologies for the North American ice complex from glaciological modeling[END_REF][START_REF] Briggs | A data constrained large ensemble analysis of Antarctic evolution since the Eemian[END_REF] as well as uncertainties in the regional Earth rheology [START_REF] Whitehouse | A deglacial model for Antarctica: geological constraints and glaciological modelling as a basis for a new model of Antarctic glacial isostatic adjustment[END_REF][START_REF] Lecavalier | A model of Greenland ice sheet deglaciation constrained by observations of relative sea level and ice extent[END_REF]. The much expanded constraint of glaciological-self-consistency, however, can come with an expected cost. For regions of dense GIA-data coverage, such as North America, there is (to date) a trade-off of poorer fits to some of the GIA data (e.g. [START_REF] Tarasov | A data-calibrated distribution of deglacial chronologies for the North American ice complex from glaciological modeling[END_REF]. However, for regions under current ice-cover, such as Antarctica, GIAbased observatyions are sparse and provide relatively little constraint for deglacial evolution [START_REF] Briggs | A data constrained large ensemble analysis of Antarctic evolution since the Eemian[END_REF]. Glaciological modelling also offers a clearer path to implementation of Bayesian model calibration to generate a probabilistic distribution of deglacial ice sheet chronologies [START_REF] Tarasov | A data-calibrated distribution of deglacial chronologies for the North American ice complex from glaciological modeling[END_REF] based on model fits to constraint data.

As a partial comparison of the two methodologies (pure-GIA versus a 'glaciological' ice sheet modelling approach), Figure 13 shows a set of 6 selected, but not necessarily representative, examples from hundreds of comparisons available (see Supplementary Figures 1 and2). These are comparisons between relative sea level (RSL) observations and model predictions based upon application of the ICE-6G_C (VM5a) model and two of the overall best-fitting model runs detailed in [START_REF] Tarasov | A data-calibrated distribution of deglacial chronologies for the North American ice complex from glaciological modeling[END_REF]. The two model runs have similar overall RSL scores, but run nn9927 has a much better fit to marine limits, whereas nn9894 has a much better fit to strandline data. Both methodologies employ the same assumption as to the depth dependent viscoelastic structure of the Earth, namely the VM5a structure of [START_REF] Peltier | Deepest mantle viscosity: constraints from Earth rotation anomalies[END_REF]. They both also employ the same dataset to describe the space time evolution of the Laurentide, Cordilleran and Innuitian ice sheet margin positions (the calibrated glaciological model has, however, a clearly defined uncertainty assessment for the ice margin, given in [START_REF] Tarasov | A data-calibrated distribution of deglacial chronologies for the North American ice complex from glaciological modeling[END_REF], and the same database of relative sea level history constraints. The glaciological model is additionally constrained by strandline elevations (and associated age constraints). Parts of the Canadian Arctic Archipelago (especially most of Ellesmere Island and Prince of Wales Island) are poorly fit by both nn9894 and nn9927 [START_REF] Tarasov | A data-calibrated distribution of deglacial chronologies for the North American ice complex from glaciological modeling[END_REF], whereas most RSL data envelopes are very well fit by the GIA-based model in this region. This high latitude misfit of the glaciological-based model runs to the RSL data is not shared by earlier models that have been produced using this methodology. It should also be noted that the plotted one-way error bars (the upward or downward "ticks") for the limiting RSL data have been severely truncated for the sake of visual clarity. There are also sites where the glaciological models have better RSL fits than the GIA model (e.g. Melville Island sites 1253-4, NE Banks Island 1356, and Makkovik 1608). For the majority of the North American ice sheets the RSL fits are not dissimilar for the three ice chronologies.

Model differences around Hudson Bay (e.g. sites 1631-1641) illustrate a further characteristic difference between the predictions of the GIA-based model and those of the two glaciological models (Figure 13). Although both methodologies deliver reasonable fits to the RSL observations over the range of time over which such observations are available, the GIAbased model predicts a significantly larger net fall of sea level (land uplift), a consequence of the fact that the thickness of the ice sheet at the LGM is significantly greater in the GIAbased model than in either of those that have been delivered by the Bayesian calibration procedure in the glaciological approach.

In summary, both the pure GIA-based and the glaciological ice sheet model-based approaches have their strengths and weaknesses when reconstructing ice sheet palaeotopography. A challenge for the pure GIA approach is that the space time thickness histories that it delivers will, in general, not be in accord with glaciological first principles. Furthermore, hand-tuning of pure GIA-based ice histories precludes any rigorous uncertainty assessment, although methodology is being developed that will enable this shortcoming to be eliminated. A challenge for glaciological modelling is that not only is a sophisticated ice sheet model required, but so too is a palaeo-climate model to drive the evolution of ice cover.

The latter necessarily adds more degrees of freedom, but provides some physical constraint in terms of climatic self-consistency. By ignoring climate forcing and glaciological process issues, pure GIA methods offer a benchmark for quantifying the impact of climate and glaciological constraints.

Modelling Palaeo-Ice Shelves and Calving

As noted (Section 2.3), geophysical investigation of the ocean-floor has revealed that many palaeo-ice sheets and ice shelves were far more extensive than previously recognised. In the Arctic, for example, ice shelves likely covered extensive areas of the Amerasian Basin of the Arctic Ocean, the Chukchi Borderland, the Siberian Shelf, and the northern Svalbard margin (Section 2.3, Figure 7). When data supporting the existence of these ice shelf complexes began to emerge, the most commonly-used numerical models were unable to adequately capture the coupled ice sheet-shelf systems because they used the Shallow-Ice Approximation (SIA) [START_REF] Blatter | Present state and prospects of ice sheet and glacier modelling[END_REF][START_REF] Kirchner | Capabilities and limitations of numerical ice sheet models: a discussion for Earth-scientists and modelers[END_REF]. Indeed, model results obtained with an SIA model for grounded ice will differ from their counterparts obtained from a coupled ice sheet-ice shelf model, because a SIA model is unable to account for the impact which an ice shelf may have on inland ice (e.g. through buttressing: see Section 4.4).

As the need for considering ice shelf dynamics was realized, models using a 'Shallow Shelf Approximation (SSA)' were developed (e.g. [START_REF] Macayeal | Large-scale ice flow over a viscous basal sediment: Theory and application to Ice Stream B, Antarctica[END_REF][START_REF] Weis | Theory of shallow ice shelves[END_REF]. However, simple coupling of SIA and SSA models across the grounding line was difficult and so alternative approaches explored how ice dynamics in the transition zone could be modelled without having to employ the more computationally intense 'Stokes' equations (Chugunov and Wilchinski 1996;[START_REF] Hulbe | A new numerical model of coupled inland ice sheet, ice stream and ice shelf flow and its application to the West Antarctic Ice Sheet[END_REF][START_REF] Schoof | Ice sheet grounding line dynamics: steady states, stability, and hysteresis[END_REF][START_REF] Schoof | Ice-sheet dynamics[END_REF].

Earlier recommendations to employ second order SIA and SSA models had to be rectified [START_REF] Kirchner | Capabilities and limitations of numerical ice sheet models: a discussion for Earth-scientists and modelers[END_REF] and have led to the development of new adaptive, error-based couplings schemes (Ahlkrona et al., submitted), while so-called 'hybrid' models [START_REF] Pollard | A retrospective look at coupled ice sheet-climate modeling[END_REF]DeConto, 2012, Bueler and[START_REF] Bueler | Shallow shelf approximation as a sliding law in a thermomechanically coupled ice sheet model[END_REF]) make use of an heuristic approach of coupling an ice sheet and ice shelf. Hybrid models can also be used for simulations of ice sheet-shelf systems, including grounding line migration, at comparatively low computational cost (e.g. [START_REF] Pollard | Modelling West Antarctic ice sheet growth and collapse through the past five million years[END_REF]2012).

In addition to the development of coupled ice sheet-shelf models, the modelling of calving has gained prominence. Calving is usually included in a coarse parametric fashion, introducing considerable uncertainty to model results. Recent years, however, have seen the implementation of physically-based calving laws to ice flow models (Benn et al., 2007a, b;[START_REF] Nick | A physically calving based model applied to marine outlet glaciers and implications for glacier dynamics[END_REF]. Using an extension of the crevasse depth formulae of [START_REF] Nye | Comments on Dr Loewe's letter and notes on crevasses[END_REF][START_REF] Nye | The distribution of stress and velocity in glaciers and ice-sheets[END_REF], the criterion defines the calving front as where surface and basal crevasses penetrate the full ice thickness. By calculating crevasse penetration depth from the first derivative of glacier velocities (longitudinal strain rates), calving is linked directly to ice dynamics. Incorporating the effects of ponded meltwater (allowing deeper crevasse penetration) also allows calving rates to be driven by climate fluctuations via changes in surface runoff (e.g. [START_REF] Nick | Future sea-level rise from Greenland's major outlet glaciers in a warming climate[END_REF]. These physically-based calving mechanisms have begun to be implemented in numerical modelling (e.g., of Antarctica) [START_REF] Albrecht | Parameterisation for subgrid-scale motion of ice-shelf calving fronts[END_REF][START_REF] Levermann | Kinematic first-order calving law implies potential for abrupt ice-shelf retreat[END_REF][START_REF] Pollard | Description of a hybrid ice sheet-shelf model, and application to Antarctica[END_REF]Briggs et al., 2013;[START_REF] Albrecht | Fracture-induced softening for large-scale ice dynamics[END_REF][START_REF] Pollard | Potential Antarctic Ice Sheet retreat driven by hydrofracturing and ice cliff failure[END_REF], but remain particularly challenging in palaeo-applications where the intermittent and often rapid nature of the calving process has to be properly accounted for on long timescales.

In summary, numerical modeling of ice shelves and calving is mostly focussed on predicting extant ice sheet dynamics. Thus, the modeling of palaeo-ice shelves and calving is very much in its infancy. Apart from the long timescales involved (causing mostly numerical challenges) two major issues will need to be overcome. First, the accurate description and implementation of ice sheet-ocean interactions will require a rigorous treatment not only of calving, but also melting and refreezing processes beneath an ice shelf, for which very simple parameterizations are currently used. Given the dependence on sub-shelf ocean circulation and water temperature, accurate representation of this process for palaeo-timescales will likely pose a long-term challenge. Therefore, the second issue is the need for a rigorous assessment of model sensitivity to calving rates and sub-ice shelf melt rates so that uncertainty related to these processes can be quantified. Given the scarcity of data, this aspect of model calibration will be challenging and will also require an accurate treatment of the grounding line (see Section 4.4).

Improvements in Modelling Marine Ice Sheet Grounding Lines

Recent years have seen a focus on improving the modelling accuracy of marine ice-sheets, where the bed is substantially grounded below sea level [START_REF] Hindmarsh | The role of membrane-like stresses in determining the stability and sensitivity of the Antarctic Ice Sheets: back pressure and grounding line motion[END_REF][START_REF] Schoof | Ice sheet grounding line dynamics: steady states, stability, and hysteresis[END_REF][START_REF] Katz | Stability of ice-sheet grounding lines[END_REF][START_REF] Nick | A physically calving based model applied to marine outlet glaciers and implications for glacier dynamics[END_REF][START_REF] Docquier | Representing grounding line dynamics in numerical ice sheet models: recent advances and outlook[END_REF][START_REF] Drouet | Grounding line transient response in marine ice sheet models[END_REF][START_REF] Feldmann | Resolution-dependent performance of grounding line motion in a shallow model compared to a full-Stokes model according to the MISMIP3d intercomparison[END_REF]. The grounding line is where ice, flowing from its source areas, begins to float. Grounding lines circumscribe much of the grounded ice in Greenland and nearly all of Antarctica, and grounding lines were present in substantial parts of the margins of palaeoice sheets (Figure 7). The most challenging aspect in these models is the representation of the grounding line and its migration.

At the simplest level, the mechanics of grounded ice and ice-shelves are rather different. In both cases, their motion is conceptualised as being due to a driving stress; in simple iceshelves, this is proportional to the thickness of the ice, while in grounded ice it is proportional to the product of ice thickness and surface slope. This led to the idea of the 'marine ice-sheet instability' or 'grounding-line instability', first put forward by [START_REF] Weertman | Stability of the junction of an ice sheet and an ice shelf[END_REF]. At the grounding line, close to the ice-shelf, the appropriate driving stress is the 'ice-shelf' driving stress. Following mathematical analysis, the rate at which ice spreads at the grounding line is proportional to the ice thickness raised to a power of around three (van der Veen, 2013). This is a consequence of the rheological properties of ice and the assumption that the appropriate mechanical description is the same as for floating ice-shelves. Evidently, if the grounding line retreats on an adverse slope (deepens inland), the thinning rate will increase, because the thickness of the ice at a retreating grounding line must increase. This gives rise to the possibility of a grounding-line instability. While the idea of marine ice-sheet instability was largely accepted by the glaciological community, there were doubts about the rigour of Weertman's theory because it was not a full solution of the equations describing mechanics and mass conservation.

Recently, Schoof (2007) confirmed Weertman's original supposition and provided the first theory of grounding line dynamics in a formula that related flux of ice across the groundingline to the ice-thickness. This permitted ice-sheet modellers to compare the flows calculated by their models with the Schoof flux formula, and thus to understand the requirements for calculating flux across the grounding-line to sufficient accuracy. The particular computational issue is the accurate calculation of flow in a 'boundary layer', where the ice flow changes from sheet flow, resisted by basal shear stress, to extending flow characteristic of ice shelves. The accelerating flow in this boundary layer has to be captured properly for accurate calculation of grounding-line advance or retreat [START_REF] Schoof | Ice sheet grounding line dynamics: steady states, stability, and hysteresis[END_REF]. The extent of the boundary layer for ice sheet flow is typically 10-20 km [START_REF] Hindmarsh | The role of membrane-like stresses in determining the stability and sensitivity of the Antarctic Ice Sheets: back pressure and grounding line motion[END_REF], while for a perfectly slippery stream where all the resistance comes from the lateral margins, the boundary layer approximates the ice-stream width [START_REF] Hindmarsh | An observationally validated theory of viscous flow dynamics at the iceshelf calving front[END_REF].

Alternative mathematical approaches [START_REF] Katz | Stability of ice-sheet grounding lines[END_REF], numerical experiments, and model inter-comparisons [START_REF] Docquier | Representing grounding line dynamics in numerical ice sheet models: recent advances and outlook[END_REF][START_REF] Pattyn | Results of the Marine Ice Sheet Model Intercomparison Project[END_REF][START_REF] Drouet | Grounding line transient response in marine ice sheet models[END_REF] have confirmed the basic accuracy of the [START_REF] Schoof | Ice sheet grounding line dynamics: steady states, stability, and hysteresis[END_REF] formula and approach. However, models incorporating the full set of appropriate mechanical equations predict flow across the grounding line up to twice as fast as given by the Schoof formula (e.g. [START_REF] Drouet | Grounding line transient response in marine ice sheet models[END_REF].

These aspects of the mechanical problem are discussed by [START_REF] Nowicki | Conditions for a steady ice sheet-ice shelf junction[END_REF] and [START_REF] Fowler | Mathematical Geoscience[END_REF], drawing on earlier work by [START_REF] Chugunov | Modelling of a marine glacier and ice-sheet-ice-shelf transition zone based on asymptotic analysis[END_REF]. A recent review of these issues and ice-sheet dynamics, more generally, is provided by [START_REF] Schoof | Ice-sheet dynamics[END_REF].

In addition to expressing the relationship between ice flux and thickness, the Schoof formula shows how flux depends on the viscous properties of ice and the basal resistance. Most importantly, the [START_REF] Schoof | Ice sheet grounding line dynamics: steady states, stability, and hysteresis[END_REF] formula includes a parameter that represents buttressing from an ice shelf. Buttressing is crucial because it opposes the tendency of the ice to spread and thin at the grounding-line, and can inhibit retreat and augment advance [START_REF] Goldberg | Grounding line movement and ice shelf buttressing in marine ice sheets[END_REF]. Again, numerical experiments indicate that the [START_REF] Schoof | Ice sheet grounding line dynamics: steady states, stability, and hysteresis[END_REF] formula is accurate in the presence of specified buttressing [START_REF] Drouet | Grounding line transient response in marine ice sheet models[END_REF], but it is also true that representing buttressing by a parameter diverts attention from the interplay between flow across the grounding line and the buttressing from an ice shelf. For example, increased flow associated with thinning might induce increased resistance from ice shelves. This has been demonstrated in numerical experiments to the extent that grounding lines on reverse slopes can be stabilized; in other words achieve steady positions resistant to perturbation (Gudmundsson et al., 2012). Related to this, is the notion that radial grounding lines associated with radially spreading shelves can buttress and stabilise grounding lines [START_REF] Pegler | Dynamics of a viscous layer flowing radially over an inviscid ocean[END_REF].

Changes in buttressing are also likely to be the primary link through which ocean melting of ice-shelves, which is strongly associated with ice-sheet thinning in modern glaciers [START_REF] Pritchard | Antarctic ice-sheet loss driven by basal melting of ice shelves[END_REF], affects the grounding line [START_REF] Goldberg | Investigation of land ice-ocean interaction with a fully coupled ice-ocean model: 1. Model description and behavior[END_REF]. Changes in ice-stream flux from surging can also cause advance or retreat of grounding-lines [START_REF] Robel | Rapid grounding line migration induced by ice stream internal variability[END_REF].

The accuracy of the [START_REF] Schoof | Ice sheet grounding line dynamics: steady states, stability, and hysteresis[END_REF] formula led [START_REF] Pollard | Modelling West Antarctic ice sheet growth and collapse through the past five million years[END_REF] to incorporate it directly into their palaeo-marine-ice-sheet modeling of the time-dependent behaviour of the Antarctic ice-sheet (AIS) over the last 5 Ma, with the grounding line contracting and expanding over 41 ka obliquity, and 100 ka eccentricity cycles. The alternative to their approach is to solve the equation in the boundary layer numerically, which must account for the much greater accuracy required there. This requires more advanced techniques, such as adaptive nested grids [START_REF] Gladstone | Grounding line migration in an adaptive mesh ice sheet model[END_REF][START_REF] Cornford | Adaptive mesh, finite volume modeling of marine ice sheets[END_REF][START_REF] Feldmann | Resolution-dependent performance of grounding line motion in a shallow model compared to a full-Stokes model according to the MISMIP3d intercomparison[END_REF] or higher-order methods. These methods have yet to be published in full, but results of an initial inter-comparison can be found in [START_REF] Pattyn | Results of the Marine Ice Sheet Model Intercomparison Project[END_REF]. They are significantly more computationally intensive than use of the Schoof formula, and thus are unlikely to be used in glacial cycle modelling for the foreseeable future.

The [START_REF] Schoof | Ice sheet grounding line dynamics: steady states, stability, and hysteresis[END_REF] formula also highlights the parameters whose specification requires improvement; principal among these are buttressing, strongly affected by the ocean melt-rate near the grounding-line, and bed resistance. The latter, in areas currently occupied by icestreams, is at best taken to be the same as present-day values inferred from glaciological inversions [START_REF] Joughin | Integrating satellite observations with modelling: basal shear stress of the Filcher-Ronne ice streams, Antarctica[END_REF], or else assumed or taken as a tuning parameter, constant in time. Sub-shelf melt is not yet computed with oceanographic modelling in palaeo-contexts (see Section 4.3), and this situation is likely to persist owing to the ocean models' high computational expense and the inability of limited observational records to even validate modelling of present conditions. For example, the [START_REF] Pollard | Modelling West Antarctic ice sheet growth and collapse through the past five million years[END_REF] model does incorporate and require varying back-pressure from ice shelves. This varying back-pressure is indirectly forced through varying the ocean melt at the base of ice-sheets, using a highly parameterized representation of the ocean.

An important aspect of grounding-line modelling of large sectors of ice-sheets is using knowledge of the thickness of the ice sheet in the past to constrain grounding line positions, and thereby ice volume. [START_REF] Bentley | Deglacial history of the West Antarctic Ice Sheet in the Weddell Sea embayment: Constraints on past ice volume change[END_REF] and [START_REF] Brocq | Reconstructing the Last Glacial Maximum ice sheet in the Weddell Sea embayment, Antarctica, using numerical modelling constrained by field evidence[END_REF] have explored this with respect to the Weddell Sea sector of the West Antarctic Ice Sheet (WAIS). They calculated ice sheet elevations consistent with quasi-steady grounding line positions, concluding that the Weddell Sea grounding-line did not advance to the continental shelf edge at the LGM. However, [START_REF] Hillenbrand | Grounding-line retreat of the West Antarctic Ice Sheet from inner Pine Island Bay[END_REF] concluded that, on the basis of marine geological evidence, the grounding line extended to the continental shelf margin, possibly only briefly. More systematic views of matching data with models are provided by [START_REF] Whitehouse | A deglacial model for Antarctica: geological constraints and glaciological modelling as a basis for a new model of Antarctic glacial isostatic adjustment[END_REF] and by Briggs and Tarasov (2013). [START_REF] Whitehouse | A deglacial model for Antarctica: geological constraints and glaciological modelling as a basis for a new model of Antarctic glacial isostatic adjustment[END_REF] and [START_REF] Argus | The Antarctic component of postglacial rebound model ICE-6G_C (VM5a) based upon GPS positioning, exposure age dating of ice thicknesses, and relative sea level histories[END_REF] considered the data/modelling matching problem for all of Antarctica, with an emphasis on GIA interactions; whereas Briggs and Tarasov (2013) made a systematic analysis of how to consistently incorporate data sources in inverse modelling procedures.

The impact of GIA on ice dynamics has been a long-lived theme in ice sheet modelling (Oerlermans, 1980;[START_REF] Tarasov | A high-resolution model of the 100 ka ice-age cycle[END_REF]. [START_REF] Gomez | Sea level as a stabilizing factor for marine-ice-sheet grounding lines[END_REF][START_REF] Gomez | Evolution of a coupled marine ice sheet-sea level model[END_REF] have recently expanded this with the addition of self-gravitational effects (i.e. the effect of changing mass distribution on the geoid) and analysis of the resulting combined impact on grounding line stability. Retreat from glacial maxima is likely to have been into much deeper basins, which will have subsequently shallowed through GIA, adding considerably to the potential complexity of the evolution. Moreover, loss of ice-volume leads to instantaneous lowering of the raised geoid around ice-sheets as explained in terms of the gravitationally self-consistent Sea Level Equation that is fundamental to the understanding of the GIA process [START_REF] Clark | Global changes in post-glacial sea-levelnumerical calculation[END_REF][START_REF] Peltier | Glacial isostasy and relative sea-levelglobal finiteelement model[END_REF]. Thus, in certain cases, the grounding-line does not retreat into deeper water, even though it lies on a reverse slope. [START_REF] Bradley | Low postglacial rebound rates in the Weddell Sea due to Late Holocene ice-sheet readvance[END_REF] present geophysical evidence for GIA-related advances of the grounding line in certain sectors of the Antarctic ice-sheet.

To summarise, until recently, modelling inadequacies were a bigger constraint on understanding the evolution of palaeo-marine ice-sheets than data inadequacy. The opposite is probably true now, although there remains plenty of scope for the practice of marine icesheet modelling to further improve. The ruling hypothesis about current marine ice-sheet retreat, particularly in Antarctica, is that it is due to warming oceans. If this holds for palaeoice-sheets, the representation of this in models is the next computational challenge; and data to constrain the ocean temperature on continental shelves are likely to become increasingly important. Modelling can also answer a related question: what ocean conditions are needed to drive the observed retreat of marine ice-sheets?

Modelling the Impact of Iceberg and Meltwater Events on the Ocean-Climate System

As discussed in Section 2.7, there is abundant evidence of meltwater and IRD pulses from palaeo-ice sheets during the last deglaciation. The impact of these pulses occurs via massive meltwater input at the coast and its subsequent mixing within the oceanic system or through the release of icebergs that acts as a mobile heat sink and freshwater source. Although all these effects are important for the ocean-atmosphere system, no modelling studies have so far included all these effects with the adequate physical and spatial resolution.

In numerous modelling studies, meltwater fluxes have been applied to perturb the Atlantic Meridional Overturning Circulation (AMOC) [START_REF] Stommel | Thermohaline convection with 2 stable regimes of flow[END_REF][START_REF] Bryan | High-latitude salinity effects and interhemispheric themohaline circulations[END_REF][START_REF] Stouffer | Investigating the causes of the response of the thermohaline circulation to past and future climate changes[END_REF] and the associated northward heat transport, thus creating abrupt climate events [START_REF] Paillard | Role of the thermohaline circulation in the abrupt warming after Heinrich events[END_REF][START_REF] Ganopolski | Rapid changes of glacial climate simulated in a coupled climate model[END_REF]. Often, the North Atlantic has been used as the region where the freshwater flux was applied since it is: (i) advectively close to the main north Atlantic convection sites (where deep sinking of denser surface water occurs), thus ensuring an effective response of the simulated oceanic system; and (ii), where the main marine deposits of IRD are found (see Section 2.7) i.e. in the so-called 'Ruddiman belt' between 45 and 55°N (Ruddiman, 1977;[START_REF] Heinrich | Origin and consequences of cyclic ice rafting in the Northeast Atlantic Ocean during the past 130,000 years[END_REF][START_REF] Hemming | Heinrich events: Massive late Pleistocene detritus layers of the North Atlantic and their global climate imprint[END_REF].

Consequently, most models have been run with an input of freshwater, termed 'hosing experiments', [START_REF] Ganopolski | Rapid changes of glacial climate simulated in a coupled climate model[END_REF][START_REF] Stouffer | Investigating the causes of the response of the thermohaline circulation to past and future climate changes[END_REF]) in the Ruddiman belt, with different sets of magnitudes used to evaluate the sensitivity of the models to a freshwater perturbation (see [START_REF] Kageyama | Modelling glacial climatic millennial-scale variability related to changes in the Atlantic meridional overturning circulation: a review[END_REF], for a review).

Model inter-comparisons show that not all models are sensitive to freshwater hosing in the same manner [START_REF] Stouffer | Investigating the causes of the response of the thermohaline circulation to past and future climate changes[END_REF][START_REF] Kageyama | Modelling glacial climatic millennial-scale variability related to changes in the Atlantic meridional overturning circulation: a review[END_REF]. For example, while all models show a shutdown of the thermohaline circulation under a 1.0 Sv hosing [START_REF] Stouffer | Investigating the causes of the response of the thermohaline circulation to past and future climate changes[END_REF], they differ in response when the forcing is closer to what is currently estimated for Heinrich events, i.e. 0.1 to 0.4 Sv [START_REF] Hemming | Heinrich events: Massive late Pleistocene detritus layers of the North Atlantic and their global climate imprint[END_REF]. Moreover, when a different climate state is used (e.g. [START_REF] Ganopolski | Rapid changes of glacial climate simulated in a coupled climate model[END_REF]van Meerbeeck et al., 2009;[START_REF] Kageyama | Climatic impacts of fresh water hosing under Last Glacial Maximum conditions: a multi-model study[END_REF], the response of the climate models to freshwater forcing is also different (it becomes more or less sensitive depending on the details of the boundary conditions and the model used).

Recently, it has become clear that state-of-the-art GCMs tend to overestimate the oceanic stability with respect to freshwater forcing [START_REF] Valdes | Built for stability[END_REF]. However, because the actual sensitivity of the climate system is unknown, and could be different between different climate states, an assessment of the most likely behaviour of the system is not possible.

The effects of melting icebergs have also been (explicitly or implicitly) simulated as freshwater input in climate models [START_REF] Ganopolski | Rapid changes of glacial climate simulated in a coupled climate model[END_REF][START_REF] Otto-Bliesner | The sensitivity of the climate response to the magnitude and location of freshwater forcing: last glacial maximum experiments[END_REF]. However, icebergs not only freshen the surface ocean through melting, but also through cooling the ocean by the heat uptake needed to melt the ice, and by having a distribution that is modified by climate itself through the winds and surface ocean currents.

Hence, modelling them only as simple freshwater fluxes in traditional 'hosing' experiments potentially neglects important processes. As such, recent thermo-dynamical iceberg models have been coupled to climate models. One of the first studies to undertake this approach was [START_REF] Levine | Sensitivity of the glacial ocean to Heinrich events from different iceberg sources, as modelled by a coupled atmosphere-iceberg-ocean model[END_REF], who accounted for both the distribution of icebergs and their freshwater release. With icebergs, they found a greater freshwater release is required to have the same effect on the AMOC than the traditional freshwater hosing approach. They attributed this to the more localized freshwater input from icebergs. They also found that the length of the pathway that the icebergs travel to the main deep oceanic convection sites is an important influence on their eventual impact. A similar conclusion was reached by [START_REF] Jongma | The effect of dynamicthermodynamic icebergs on the Southern Ocean climate in a three-dimensional model[END_REF], who showed that the main freshwater input from icebergs originating from Hudson Strait (see Section 2.2) was in the western North Atlantic, thus diminishing the impact on the Nordic Seas' deep convection when a comparable amount of freshwater is used to those in the traditional hosing experiments.

Using a more complete modelling approach, including the latent heat exchanges, [START_REF] Jongma | Simulating Heinrich event 1 with interactive icebergs[END_REF] showed that the effect of an iceberg armada from Hudson Strait on the AMOC strength was relatively similar to the traditional freshwater hosing approach, albeit with a different time evolution and through rather different physical mechanisms. Indeed, they showed that, contrary to [START_REF] Levine | Sensitivity of the glacial ocean to Heinrich events from different iceberg sources, as modelled by a coupled atmosphere-iceberg-ocean model[END_REF] and [START_REF] Jongma | The effect of dynamicthermodynamic icebergs on the Southern Ocean climate in a three-dimensional model[END_REF], icebergs were much more efficient at suppressing deep convection when the latent heat is taken into account. This counter-intuitive result (cooling the surface ocean should generate denser waters) is explained by a 'sea-ice facilitation effect', whereby the cooling effect of icebergs promotes sea-ice formation. Although sea-ice formation increases the salinity and density of the surface waters through brine rejection, a denser sea-ice cover also strongly reduces the loss of oceanic heat to the atmosphere, leading to a lower surface water density. The two effects are thus competing, but the insulating impact is stronger, and the net result found is a large reduction in dense water formation. In comparison to the traditional approach, [START_REF] Jongma | Simulating Heinrich event 1 with interactive icebergs[END_REF] found that freshwater 'hosing' is not a good representation of the Heinrich events, because simulating the iceberg distribution induces important east-west differences in the North Atlantic (fresher and colder western north Atlantic and saltier eastern north Atlantic) that leads to substantial differences in the AMOC recovery after the Heinrich events. If one intends to compare modelling results with North Atlantic proxy data, the freshwater hosing approach is probably not a valid approximation. The geographical envelope of iceberg paths modelled in [START_REF] Jongma | Simulating Heinrich event 1 with interactive icebergs[END_REF] is consistent with the spread of IRD observed from ocean cores drilling in the North Atlantic [START_REF] Hemming | Heinrich events: Massive late Pleistocene detritus layers of the North Atlantic and their global climate imprint[END_REF]; see Section 2.6) as seen on Figure 14. A similar geographical spread of the melting was found recently by another study that uses the IRD distribution of the North Atlantic Ocean as a constraint for the model [START_REF] Roberts | A new constraint on the size of Heinrich Events from an iceberg/sediment model[END_REF].

Besides icebergs as a source of meltwater, it is also important to account for the changing drainage of meltwater from ice sheets in both space and time. Drainage events have been associated with cooling events during deglaciation (Section 2.5) and it is important to analyse the modelled climatic response, not only to different volumes and rates of meltwater release, but also to the location of the freshwater input in the oceans. In the context of analysing the likely causes of the YD cold period, Peltier et al. (2006) analysed the effect of routing a large freshwater input into the Arctic Ocean as proposed by [START_REF] Tarasov | Arctic freshwater forcing of the Younger Dryas cold reversal[END_REF]. Peltier et al. (2006) found that the effect of an Arctic Ocean input for the freshwater flux is very similar to the same input in the North Atlantic, albeit with a small delay of a decade, and some slight differences in the time evolution of the strength of the AMOC. Consequently, in their lowresolution coupled climate model, a surface freshwater flux affects the AMOC even if the forcing is not directly located in the North Atlantic region, close to the deep convection sites.

More recently, the first ocean modelling study to examine meltwater transport with a high enough resolution to permit ocean eddies [START_REF] Condron | Meltwater routing and the Younger Dryas[END_REF] found that, for an intense flood over a 3-year period, a much larger fraction of freshwater discharge into the Arctic was likely to reach deep water formation sites than the same discharge into the Gulf of St Lawrence. It is, however, unclear what the effect would be after a few decades and if this result is linked to the sensitivity of one particular model. Since many other river outlets or ice-sheet margins may provide freshwater input during the last deglaciation (e.g. [START_REF] Marshall | Modelling North America freshwater runoff through the Last Glacial Cycle[END_REF][START_REF] Tarasov | A calibrated deglacial drainage chronology for the North American continent: Evidence of an Arctic trigger for the Younger Dryas[END_REF][START_REF] Not | Enhanced sea-ice export from the Arctic during the Younger Dryas[END_REF], [START_REF] Roche | A systematic study of the impact of freshwater pulses with respect to different geographical locations[END_REF] set up a low-resolution modelling study to examine the response of one particular climate model to the input of freshwater of different magnitude and systematically tested all locations. They showed that the effect of freshwater input on the AMOC can be predicted on the basis of an 'advective distance' to the main sites of deep convection. The closer the input to the main deep convection sites, the easier it is to disrupt the AMOC; the further away (in an advective sense), the more likely the freshwater will undergo some mixing along the way and its effect will be reduced. They also demonstrated that, in sea-ice covered regions, the freezing of a large part of the freshwater that is then transported as sea-ice (in accordance with the Arctic Ocean scenario of Peltier et al., 2006) prevents the mixing of the waters and enhances the impact on the AMOC compared to a scenario without this sea-ice effect. Using a more complex (but still relatively low resolution) model, Otto-Bliesner and Brady (2010) also investigated the effect of variable magnitude freshwater fluxes in two different locations: the North Atlantic and the Gulf of Mexico. They confirmed the result obtained by [START_REF] Roche | A systematic study of the impact of freshwater pulses with respect to different geographical locations[END_REF], showing that the AMOC reduction is less in the case of a freshwater input into the Gulf of Mexico than in the North Atlantic, due to mixing and re-circulation of part of the freshwater anomaly through the North Atlantic sub-polar gyre. A similar conclusion was reached for the 8.2 ka event by [START_REF] Li | The responses of East Asian Summer monsoon to the North Atlantic Meridional Overturning Circulation in an enhanced freshwater input simulation[END_REF], who evaluated the impact of different meltwater drainage routes on the AMOC response.

In summary, there is a large range of model responses to schematic freshwater forcing experiments in low-resolution ocean-climate models. When using models with a higher resolution and eddy resolving oceanic components, the sensitivity to freshwater forcing seems to be very sensitive to the location of freshwater injection. Some modeling experiments are now starting to include more realistic iceberg treatment, including the dynamics of freshwater release, latent heat and iceberg drift. Results obtained are showing an iceberg distribution in broad accordance with data constraints. No data-based constraints are available to characterize the actual sensitivity of the oceanic circulation to meltwater in different climate states.

Discussion and Conclusions

Given the recent advances and key challenges identified above, we outline some key methodological challenges for palaeo-ice sheet reconstructions, with an emphasis on how future work might integrate terrestrial and marine evidence with numerical modelling.

Improved Understanding of the Genesis of Subglacial Landforms

The burgeoning availability of remote sensing imagery and marine geophysical datasets has led to major advances in our ability to map the glacial geomorphology of palaeo-ice sheet beds. However, one major deficiency (see Section 2.1) is that our process understanding of how various landforms are created is incomplete. This is what [START_REF] Kleman | Reconstruction of palaeo-ice sheets; inversion of their glacial geomorphological record[END_REF] referred to as the 'genetic problem', i.e. deciphering the processes by which, and the conditions under which, particular landforms are created. Many of the landforms that are important in glacial inversion methods (e.g. ribbed moraine, drumlins, mega-scale glacial lineation) are least understood in terms of their genesis. Recent observations of landforms being created under modern ice masses hold much potential for further advances in glacial inversion techniques [START_REF] King | Formation of mega-scale glacial lineations observed beneath a West Antarctic ice stream[END_REF][START_REF] Smith | Rapid erosion, drumlin formation, and changing hydrology beneath an Antarctic ice stream[END_REF] because specific bedforms can be linked to specific glaciological conditions (e.g. ice thickness, velocity, subglacial hydrology). These observations provide the 'missing link' between glaciology and palaeo-glaciology, and will considerably refine glacial inversion methods and help to parameterize subglacial processes in ice sheet models [START_REF] Bingham | Glacial geomorphology: towards a convergence of glaciology and geomorphology[END_REF]). If, for example, it could be demonstrated that fields of drumlins of a given amplitude and spacing were formed under specific ice dynamical conditions (velocity, thickness, basal temperature), they would provide additional constraints for palaeo-ice sheet reconstructions. Indeed, statistical descriptions of flow-set characteristics (see [START_REF] Hillier | Subglacial bedforms reveal an exponential size-frequency distribution[END_REF] could be compared to ice dynamics generated by numerical models. At the same time, one can expect that future technological advances will permit whole landscapes to be imaged beneath the Greenland and Antarctic ice sheets.

Glacial inversion techniques that have been applied to palaeo-ice sheets will provide the only observational template to interpret what is likely to be an incredibly complex assemblage of cross-cutting landforms that reveal important aspects of the ice sheet's evolutionary history.

Capturing Ice Stream Dynamics in Numerical Ice Sheet Models

Once identified (see Section 2.2), the 'known' location of palaeo-ice streams provides a useful observational record to test ice-sheet models that generate ice streams [START_REF] Boulton | Glaciology of the British Isles Ice Sheet during the last glacial cycle: form, flow, streams and lobes[END_REF][START_REF] Hubbard | Dynamic cycles, ice streams and their impact on the extent, chronology and deglaciation of the British-Irish ice sheet[END_REF][START_REF] Stokes | Ice streaming in the Laurentide Ice Sheet: A first comparison between data-calibrated numerical model output and geological evidence[END_REF][START_REF] Golledge | Glaciology and geological signature of the Last Glacial Maximum Antarctic ice sheet[END_REF].

Given the current attention to improving ice-sheet models and capturing ice-stream dynamics, there is an urgent need to understand the properties (i.e., boundary conditions) that initiate, sustain or inhibit ice streaming [START_REF] Winsborrow | What controls the location of ice streams?[END_REF]. This can be achieved through a combined approach that evaluates model predictions of ice streaming against independent geological evidence of their activity. Few studies have attempted this, but [START_REF] Stokes | Ice streaming in the Laurentide Ice Sheet: A first comparison between data-calibrated numerical model output and geological evidence[END_REF] found generally good agreement for the LIS, despite the use of the Shallow-Ice-Approximation (see Section 4.3) and a relatively coarse grid-resolution. More recently, [START_REF] Golledge | Glaciology and geological signature of the Last Glacial Maximum Antarctic ice sheet[END_REF] presented a sector-by-sector comparison of modelled versus empirically-derived ice-stream locations for the Last Glacial Maximum in Antarctica, using a model with a much higher resolution (5 km ) and that incorporated both the shallow ice and shallow-shelf approximations. At the continent scale, the flow characteristics of the modelled ice sheet is in good agreement with the present-day ice sheet, and they were able to capture the complex dendritic velocity pattern of ice streams fed by tributaries of intermediate velocity [START_REF] Bamber | Widespread complex flow in the interior of the Antarctic ice sheet[END_REF] that extend well into the ice sheet interior (see Figure 15). There is, however, a clear need for further data-model calibrations with higher order models and with better treatment of subglacial hydrology, which may improve the ability to model terrestrially-terminating ice streams in the Northern Hemisphere ice sheets [START_REF] Stokes | Ice streaming in the Laurentide Ice Sheet: A first comparison between data-calibrated numerical model output and geological evidence[END_REF].

A major limitation of using known palaeo-ice stream locations to test numerical models is, however, the current lack of dating control on ice stream flow-sets [START_REF] Stokes | Ice streaming in the Laurentide Ice Sheet: A first comparison between data-calibrated numerical model output and geological evidence[END_REF][START_REF] Margold | Ice streams of the Laurentide Ice Sheet: a new mapping inventory[END_REF]. There is, therefore, a requirement for additional chronological constraints on palaeo-ice stream activity, including from marine IRD records (e.g. Andrews et al., 2012) which has much potential to test numerical models and refine ice sheet reconstructions [START_REF] Mackintosh | Retreat of the East Antarctic ice sheet during the last glacial termination[END_REF][START_REF] Jamieson | Ice-stream stability on a reverse bed slope[END_REF].

Capturing Subglacial Hydrology in Numerical Models

The imprint of meltwater drainage recorded on the bed of former ice sheets offers a potentially powerful constraint to develop, calibrate and test numerical models. Observations from modern ice sheets have highlighted the importance of water pressure and deformable wet sediments in lubricating the bed and controlling ice stream behaviour [START_REF] Bell | The role of subglacial water in ice-sheet mass balance[END_REF]. However, subglacial hydrology models are still based on a priori assumptions about the nature of the drainage network and we lack the observational data at the spatial and temporal scales necessary to constrain and test them. A key challenge is to exploit the palaeomeltwater record in a way that is useful to modellers at the spatial and temporal scales at which they operate. To do so, we require a better understanding of the origin of relict meltwater features, including the source of water, how quickly they were eroded/deposited, and where under the ice sheet they formed during the life-cycle of the ice sheet (Storrar et al., 2014a;[START_REF] Jansen | Inner gorges cut by subglacial meltwater during Fennoscandian ice sheet decay[END_REF]. It also requires a more thorough characterisation of the whole drainage network, and so the identification of palaeo-subglacial lakes is also required.

Likewise, in order to compare the relict subglacial imprint to drainage system morphology, subglacial hydrological models need to be extended to include the processes of sediment erosion, transport and deposition.

Capturing Proglacial Hydrology in Numerical Models

For a given probability distribution of deglacial ice-sheet evolution (including ice thickness, basal elevation and surface meltwater production), the accurate determination of regional meltwater discharge into ocean basins is reasonably straightforward on super-annual timescales. Water need only be routed down-slope until it either fills local depressions (while keeping track of water that is thereby locally stored) or reaches the ocean. Care is needed, however, in handling the sub-grid sensitivity of meltwater routing at choke points [START_REF] Tarasov | A calibrated deglacial drainage chronology for the North American continent: Evidence of an Arctic trigger for the Younger Dryas[END_REF] as surface drainage can otherwise get distorted with the grid-scale resolution of current numerical models. Routing sensitivity to the elevation of choke points also implies a need for accurate representation of GIA in the model (e.g. [START_REF] Tarasov | Greenland glacial history and local geodynamic consequences[END_REF].

Even though meltwater discharge for a given ice-sheet history can be accurately computed in terms of surface runoff, the impact of these meltwater discharges are subject to large modelling uncertainties due to high sensitivities to uncertainties in reconstructed ice sheets, especially to the exact location of ice-sheet margins at choke points near spillways (Section 2.6). Models are unable to accurately predict past meltwater routing without palaeoconstraints on ice margin chronologies for these critical regions [START_REF] Tarasov | A calibrated deglacial drainage chronology for the North American continent: Evidence of an Arctic trigger for the Younger Dryas[END_REF]. This sensitivity also implies that accurate estimation of margin-chronology uncertainty is critical (Section 5.8). The timing of regional discharge can change significantly with different uncertainty estimates for ice margin chronologies [START_REF] Tarasov | A calibrated deglacial drainage chronology for the North American continent: Evidence of an Arctic trigger for the Younger Dryas[END_REF]. Given these ice margin uncertainties, there is therefore a need to constrain ice sheet records with palaeorecords that directly constrain meltwater routing or fluxes. Surface drainage also leaves geological and geomorphological indicators that are useful for constraining ice sheet models (Section 2.5). Fluvial erosion offers a measure of water fluxes [START_REF] Jansen | Inner gorges cut by subglacial meltwater during Fennoscandian ice sheet decay[END_REF], but with complications arising from the non-linear response to water velocities. Strand-lines are an important direct measure of pro-glacial lake levels that can be directly compared against model output if their ages are well constrained [START_REF] Tarasov | A calibrated deglacial drainage chronology for the North American continent: Evidence of an Arctic trigger for the Younger Dryas[END_REF].

Freshwater Impacts on the Ocean-Climate System

State-of-the-art climate models are now frequently subject to 'hosing' experiments to test model response to freshwater fluxes (Section 2.5). However, most experiments are conducted at model resolutions that do not resolve the narrow high-velocity boundary currents of ocean basins and require major diffusive approximations that ignore the complex spatio-temporal structure of turbulent mixing and associated eddies. Furthermore, standard hosing experiments spread meltwater injection across the North Atlantic (e.g. [START_REF] Kageyama | Climatic impacts of fresh water hosing under Last Glacial Maximum conditions: a multi-model study[END_REF], as opposed to injection at the relevant coastal outlets. Higher resolution models (e.g. [START_REF] Condron | Meltwater routing and the Younger Dryas[END_REF] are able to much better resolve these processes without diffusive approximations, but the higher horizontal grid resolution (18 km), along with 50 vertical levels, is computationally intensive and restricts the analysis to short time-scales. There is, therefore, a need to create alternative coarse resolution representations of eddy processes that are faithful to the underlying physics while permitting long model-time integrations. One potential route is the introduction of appropriate noise into the model equations to better represent the chaotic nature of turbulent eddies. This approach of stochastic sub-grid parameterization has been shown to significantly improve the representation of certain atmospheric processes [START_REF] Berner | Systematic Model Error: The Impact of Increased Horizontal Resolution versus Improved Stochastic and Deterministic Parameterizations[END_REF]. Ocean response is also highly sensitive to the location of meltwater injection [START_REF] Condron | Meltwater routing and the Younger Dryas[END_REF] and the spatial pattern of freshwater injection needs to be taken into account [START_REF] Jongma | Simulating Heinrich event 1 with interactive icebergs[END_REF]. A related complication is the apparent sensitivity of the modelled climate system response to meltwater injection to the background state of the ocean-climate system [START_REF] Kageyama | Modelling glacial climatic millennial-scale variability related to changes in the Atlantic meridional overturning circulation: a review[END_REF]2013).

Finally, a further important question relates to the differing response to variations in the magnitude and duration of meltwater injections. A clear answer will again require highresolution models that avoid implicit and explicit diffusive transports. Modelled freshwater injection rates are of moderate confidence on 100 year timescales, but except for lake drainage events, we have little confidence on shorter timescales given the time-resolution of available constraint data.

Fast and Accurate Palaeoclimate Models

Glaciological models require time-evolving palaeo-climate fields to compute the temperature of the ice and the (terrestrial and marine) surface mass-balance. The impacts of changing ice-sheet topography and meltwater fluxes on the ocean-climate system are also of high interest.

Earth system Models of Intermediate Complexity (EMIC) provide representation of relevant Earth system processes at less than state-of-the-art levels of complexity to enable palaeo-ice sheet model integrations. Though a wide range of such models exists with varying emphasis on the complexity of individual components [START_REF] Petoukhov | EMIC intercomparison project (EMIP-CO2): comparative analysis of EMIC simulations of climate, and of equilibrium and transient responses to atmospheric CO2 doubling[END_REF], all have serious deficiencies. These range from missing processes, such as the dynamic evolution of the radiative effect of clouds and transport of sea-ice, to significant misfits in predicted monthly mean temperature and precipitation for the present-day climate. There is, therefore, an urgent need for the development of next-generation community EMICs that could complete glacialcycle runs within a year of real time and that can handle the evolving area and bathymetry of the ocean (especially the opening and closing of gateways) and accurately respond to evolving ice sheets. Such a model would need fully coupled atmospheric, ocean, land surface, and sea-ice components. Given the importance of sea-ice and ocean feedbacks, a dynamic sea-ice model is required (i.e. that includes the stresses from wind and ocean currents) as well as an ocean GCM. The EMIC also needs to be well-documented, openly available, and designed for ease of coupling with new components and different users..

Quantifying Uncertainties in Ice Margin Chronologies

Dated (or age-bracketed) ice-margin positions are one of the most valuable ingredients for empirically-based ice sheet reconstructions and provide a powerful constraint for numerical modelling. Indeed, the compilation of pan-ice sheet margin chronologies has been pivotal in enabling data-calibrated numerical modeling (e.g. [START_REF] Tarasov | A data-calibrated distribution of deglacial chronologies for the North American ice complex from glaciological modeling[END_REF]. Ideally, empirical ice sheet reconstructions (e.g. of margin position or thickness) should clearly show the level of uncertainty or at least provide an estimate. The resolution of the margin positions is determined by both the amount of data available, and the chosen level (scale) of generalisation, which may leave large gaps (uncertainties) in some areas. Filling these gaps will be important if empirically derived ice-margin reconstructions are to keep pace with numerically modelled margin positions at 5 km resolution [START_REF] Golledge | Dynamics of the last glacial maximum Antarctic ice-sheet and its response to ocean forcing[END_REF][START_REF] Pattyn | Results of the Marine Ice Sheet Model Intercomparison Project[END_REF][START_REF] Seddik | Simulations of the Greenland ice sheet 100 years into the future with the full Stokes model Elmer/Ice[END_REF]. Quantifying uncertainty is particularly important for numerical models using Bayesian calibration to produce probability distributions of the results [START_REF] Tarasov | A data-calibrated distribution of deglacial chronologies for the North American ice complex from glaciological modeling[END_REF].

It is also important that the data used to generate ice-margin chronologies are available for scrutiny. It is critical to distinguish between data (e.g. mapped moraine positions) and interpretations (e.g. interpolated ice margin positions where moraines are absent) and the interpretative rules used in the reconstruction. Our understanding of landform formation processes and thus how we interpret them may change (Section 5.1), but the distribution of landforms will not. In this regard, GIS is a particularly useful tool for providing data in a digital format, which allows for detailed scrutiny of the source data and facilitates comparison with other data or numerical model outputs (e.g. [START_REF] Napieralski | Towards a GIS assessment of numerical ice-sheet model performance using geomorphological data[END_REF][START_REF] Li | Identifying patterns of correspondence between modeled flow directions and field evidence: An automated flow direction analysis[END_REF]Briggs and Tarasov, 2013).

Integration of Empirical Data and Numerical Modelling

An important long-term goal should be the rigorous specification of the probability distribution for past ice-sheet evolution. More practically, this should provide a meaningful envelope for past evolution that confidently captures 'reality'. In working towards that goal, an accurate representation of input and constraint data uncertainties is required. Modellers and those collecting empirical data need to define accurate error models for constraint and input data.

A key challenge is to effectively quantify the structural uncertainties in numerical models.

Structural uncertainties, such as those due to limited model grid resolution and missing processes, account for the residual discrepancy between the model and 'reality' with the bestfit set of model parameters. Within the climate and hydrological modelling, non-exclusive approaches include: (i) hierarchical models that parameterise the form of the structural error [START_REF] Rougier | Probabilistic inference for future climate using an ensemble of climate model evaluations[END_REF][START_REF] Hauser | Artificial neural network assisted Bayesian calibration of climate models[END_REF], (ii) extraction of variance components from multi-model ensembles (i.e. involving models with different parameterisations and numerical formulations: [START_REF] Sexton | Multivariate probabilistic projections using imperfect climate models part I: outline of methodology[END_REF], and (iii) minimization of structural uncertainties through the introduction of parameterisations, new processes, and otherwise more complete models (e.g., Briggs et al., 2013). The interpretation of probabilities from ensemble-based results relies on the assumption that, in some sense, the ensemble contains model runs that are close to or at least bracket 'reality'. However, it is unclear how to rigorously test such an assumption even when observations are fully bracketed (after accounting for uncertainties) by ensemble model results. A trend to increase the degrees of freedom in the model offers an obvious (though expensive) route towards this bracketing. However, given the nonlinearity of such systems, increasing model complexity can also make it more difficult to find model configurations that are close to 'reality'. Therefore, significant misfits to at least a subset of observations are likely to persist (e.g. [START_REF] Tarasov | A data-calibrated distribution of deglacial chronologies for the North American ice complex from glaciological modeling[END_REF].

One challenge that is relatively easy to address is the compilation of constraint data in an accessible and well-documented digital form that is easy to import for model use. A recent example is the initial version of the AntCal database of palaeo-data for Antarctica (Briggs and Tarasov, 2013). Other examples include the ALBMAP (LeBrocq et al., 2010) and BEDMAP II [START_REF] Fretwell | Bedmap2: improved ice bed, surface and thickness datasets for Antarctica[END_REF] data sets for Antarctica and Greenland. Likewise, the recent expansion of coverage of measurements of present-day vertical velocities from continuous or repeat GPS (e.g. [START_REF] Kierulf | A GPS velocity field for Fennoscandia and a consistent comparison to glacial isostatic adjustment models[END_REF] has significantly improved constraint data for GIA-based ice sheet reconstructions [START_REF] Argus | The Antarctic component of postglacial rebound model ICE-6G_C (VM5a) based upon GPS positioning, exposure age dating of ice thicknesses, and relative sea level histories[END_REF][START_REF] Peltier | Space geodesy constrains ice-age terminal deglaciation: the global ICE-6G_C (VM5a) model[END_REF].

In terms of data-model integration, therefore, there are some key issues that ought to be explicit in both the modelling and empirical data-gathering communities. Studies using numerical ice sheet models ought to consider:

• What assumptions and approximations are made and what are the main sources of uncertainty?

• What is the uncertainty distribution for the input data, and for the output of the numerical model? Do the latter adequately address model approximations and associated uncertainties?

• What efforts have been made to better relate model output directly to palaeo-records?

• Given the above, how robust are the results? What has been done to ensure that the error bars (e.g. 2 sigma bounds) really envelop reality? To what extent has the full distribution of results been analyzed as opposed to excessive focus on a mean or single 'best-fitting' model run?

• Where to make the model output available for further scrutiny by the community, with appropriate embargos to allow full publication of results, etc.

Those providing empirical data should consider:

• Outlining the assumptions in terms of data interpretation and clearly specifying/quantifying errors in any resultant reconstruction.

• Introducing greater transparency in terms of data quality and quantity. Unfortunately, data quality often loses out to quantity. Clearly, there is a trade-off, but high quality data (i.e. with tight error bars and a strong signal) are generally more valuable than a large quantity of low quality data. Those collecting empirical data can also use the uncertainty maps from calibrated modelling studies to prioritize data collection and ensure that their efforts will offer the greatest constraint value for the integration of data and modelling.

• Depositing data in centralized online data-bases. To ensure data-utilization, the maintenance and updating of online data-bases is very important. Servers such as the world data centres http://www.ncdc.noaa.gov/palaeo/icgate.html are a good example, but need to encourage detailed uncertainty specifications, and standardization of data formats.

An obvious issue in terms of data-model integration is that there is a large difference between the empirical datasets available for reconstructing ice sheets during their growth stages, as opposed to their decay stages. This is a particular challenge for constraining numerical models of ice sheet build-up, but a well-calibrated deglacial (post-LGM) record can be used as a target to help constrain the prior evolution of the ice sheet [START_REF] Stokes | Dynamics of the North American Ice Sheet complex during its inception and build-up to the Last Glacial Maximum[END_REF].

Concluding Remark

Since [START_REF] Andrews | On the reconstruction of Pleistocene Ice Sheets: A Review[END_REF] pioneering review of the techniques to reconstruct ice sheets, there have been major technical advances in numerical modelling and a rapid expansion in the size and qualitative diversity of datasets for constraining such models. This paper has reviewed some of the major developments in techniques to reconstruct palaeo-ice sheets in order to evaluate the extent to which terrestrial and marine records have been integrated with numerical modelling. Whilst various disciplines have made important progress in our understanding of ice-sheet dynamics (both in terms of specific regions and specific processes), a well-constrained deglacial ice sheet chronology with adequately quantified uncertainties

does not yet exist.The representation of past climate will continue to be the largest source of uncertainty for numerical modelling. Therefore, palaeo-observations will continue to be critical to constrain and validate modelling. Current state-of-the-art glaciological models continue to improve in model resolution and in the breadth of inclusion of relevant processes, thereby enabling more accurate and more direct comparison with the increasing range of palaeo-observations. Thus, the capability is developing to use all relevant palaeo-records to more strongly constrain deglacial (and to a lesser extent pre-LGM) ice sheet evolution. Denton and Hughes (1981). [START_REF] Andrews | On the reconstruction of Pleistocene Ice Sheets: A Review[END_REF] noted the mismatch between the single-domed ice sheet configurations and flow patterns inferred from till stratigraphy and erratic dispersal data (e.g. [START_REF] Shilts | Flow patterns in the central North-American ice sheet[END_REF], shown in (c). Figures redrawn from [START_REF] Andrews | On the reconstruction of Pleistocene Ice Sheets: A Review[END_REF]. [START_REF] Ottesen | Ice-sheet dynamics and ice streaming along the coastal parts of northern Norway[END_REF]. This cross-shelf trough exhibits many of the geomorphological criteria for identifying palaeoice streams [START_REF] Stokes | Geomorphological criteria for identifying Pleistocene ice streams[END_REF], including a convergent onset zone feeding into a main trunk characterised by mega-scale glacial lineations with abrupt lateral margins and ice stream shear margin moraines (black arrows); (b) Seismic data across the grounding zone wedge (100 m s = ~90 m on the vertical axis). [START_REF] Tarasov | A data-calibrated distribution of deglacial chronologies for the North American ice complex from glaciological modeling[END_REF]. These six comparisons are not intended to be representative of the differences between the quality of these different predictions at the totality of available locations from this geographical region. The site codes corresponding to the six site names shown here are 1160 (Eureka Stn.), 1186 (Hd Expedition Fjd), 1254 (SW Melville Is), 1356 (NE Banks Is), 1434 (Hs Inugsuin Fjd) and 1632 (Lac Guillaume-Delisle). These locations are shown as red circles on Supplementary Figure 1. A complete set of such comparisons is available in Supplementary Figure 2, which are shown in blue circles on Supplementary Figure 1. 

  [START_REF] Briner | Using in situ cosmogenic 10 Be, 14 C, and 26 Al to decipher the history of polythermal ice sheets on Baffin Island, Arctic Canada[END_REF] used 14 C, 10 Be, and 26 Al, to show the limited glacial erosion on upland Baffin Island and to quantify the duration of Holocene ice cap coverage.
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 2 Figure 2: Map of modelled ice thickness (metres) and flow-lines of the North American (a) and Eurasian Ice Sheets (b) afterDenton and Hughes (1981).[START_REF] Andrews | On the reconstruction of Pleistocene Ice Sheets: A Review[END_REF] noted the mismatch between the single-domed ice sheet configurations and flow patterns inferred from till stratigraphy and erratic dispersal data (e.g.[START_REF] Shilts | Flow patterns in the central North-American ice sheet[END_REF], shown in (c). Figures redrawn from[START_REF] Andrews | On the reconstruction of Pleistocene Ice Sheets: A Review[END_REF].
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 3 Figure 3: (a) Multiple cross-cutting flow-sets (colours used arbitrarily to show different flow-sets) from the central part of the Laurentide Ice Sheet mapped by Boulton and Clark (1990b), including close-up in (b). These flow-sets are numbered (e.g. DF21, DF22 in (b)) and stacked into relative age sequence (flow-stages) (c) using cross-cutting relationships, and reveal a highly mobile ice sheet reconstruction, which shows the areal extent of the ice sheet through time in (d). Figures redrawn fromBoulton and Clark (1990b).
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 4 Figure 4: Application of[START_REF] Kleman | Reconstruction of palaeo-ice sheets: The use of geomorphological data[END_REF] glacial inversion of flow-sets (fans) to the Fennoscandian Ice Sheet, from[START_REF] Kleman | Reconstruction of palaeo-ice sheets; inversion of their glacial geomorphological record[END_REF]. Different fan types are 'unfolded' to produce a time-slice sequence of ice sheet evolution that spans from 115 to 9 ka.
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 5 Figure 5: The number of hypothesised ice streams has grown rapidly over recent years, with those in the Laurentide Ice Sheet increasing from 10 (black arrows) that were reviewed by Stokes and Clark (2001) in (a), to over 100 (blue shading) in the latest inventory compiled by Margold et al. (2015) in (b).

Figure 6 :

 6 Figure 6: (a) Multi-beam bathymetric data showing a submarine palaeo-ice stream bed (ice flow bottom right to top left) in Malangsdjupet, northern Norway (from[START_REF] Ottesen | Ice-sheet dynamics and ice streaming along the coastal parts of northern Norway[END_REF]. This cross-shelf trough exhibits many of the geomorphological criteria for identifying palaeoice streams[START_REF] Stokes | Geomorphological criteria for identifying Pleistocene ice streams[END_REF], including a convergent onset zone feeding into a main trunk characterised by mega-scale glacial lineations with abrupt lateral margins and ice stream shear margin moraines (black arrows); (b) Seismic data across the grounding zone wedge (100 m s = ~90 m on the vertical axis).
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 9 Figure 9: Total area covered by large proglacial lakes in North America (grey) during the last retreat of the LIS (from Teller, 2004, Fig. 1, after Teller, 1987). Major continental divides shown by dash-dot lines. Names of the major lakes are shown in the region where they formed. Major overflow routes from lakes are shown by arrows; letters identify their names as follows: A = Chicago outlet, B = Wabash River Valley, C = Mohawk Valley, D = Hudson Valley, E = Grand River Valley, F = Port Huron outlet, G = Fenelon Falls outlet, H = North Bay outlet, I = Temiskaming outlet, J = Duluth outlet, K = Minnesota River Valley, L = Kaminiskwia outlet, M = eastern Agassiz outlets, N = Clearwater outlet. Extent of proglacial lakes in Hudson Bay Lowland and St. Lawrence Lowland are not shown where lacustrine sediments are now buried by marine sediment.
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 10 Figure 10: Example of fine-scale structure within a Heinrich Layer from the Labrador Sea that can be several metres thick (modified from Hesse and Khodabakhsh, 1998). Left panel shows the location map. Right panel shows: (a) X-radiograph showing the rhythmic succession of individual IRD layers (dark) and turbidite and/or meltwater plume deposit layers (light). The existence of individual IRD laminae is possible only if there is enough time between the occurrences of the turbidity currents, otherwise the IRD would be incorporated in the turbidites as drop-stones or reworked by the turbidity currents. (b) a large number of light-dark couplets are identified over a 17 cm interval. Additional work is required to determine the average duration of a couplet, but it is likely that they are annual (T and P = turbidites and meltwater plume deposits; IRD = ice rafted debris; cp = couplet).
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 12 Figure 12: Excerpt from the DATED-1 ice margin reconstruction (Hughes et al., accepted) for 16 ka, east of Svalbard, showing ice margin positions interpolated between available dates. Maximum (dashed white line), most credible (solid white line) and minimum (dotted white line) ice margin positions are shown. Date sites and age labels (ka) are coloured by glacial classification (after Hughes et al., 2011): advance (e.g. below till; red); deglacial (e.g. above till; green); ice free (e.g. no stratigraphic information available; light green). Dates are considered reliable are shown by solid symbols (e.g. 1), dates that may be reliable are shown in outline (e.g. 2).
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 13 Figure13: Comparisons of Glacial Isostatic Adjustment-based (GIA-based) and datacalibrated glaciological ice sheet modeling-based predictions of relative sea level (RSL) histories at six example locations on the North American continent that were once covered by the Laurentide and Innuitian ice-sheets. The black lines are the predictions of the GIA-based model. The blue and red dashed curves are for glaciological ice sheet models nn9927 and nn9894, respectively[START_REF] Tarasov | A data-calibrated distribution of deglacial chronologies for the North American ice complex from glaciological modeling[END_REF]. These six comparisons are not intended to be representative of the differences between the quality of these different predictions at the totality of available locations from this geographical region. The site codes corresponding to the six site names shown here are 1160 (Eureka Stn.), 1186 (Hd Expedition Fjd), 1254 (SW Melville Is), 1356 (NE Banks Is), 1434 (Hs Inugsuin Fjd) and 1632 (Lac Guillaume-Delisle). These locations are shown as red circles on Supplementary Figure1. A complete set of such comparisons is available in Supplementary Figure2, which are shown in blue circles on Supplementary Figure1.
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 14 Figure 14: Simulated freshwater input and iceberg tracks in a Last Glacial Maximum climate simulated Heinrich event with interactive icebergs (from Jongma et al., 2013). The color scale indicates the freshwater flux input to the ocean in m 3 s -1 due to melting icebergs (note logarithmic scale). The five grey circles show the chosen fixed input locations for the iceberg delivery. The colored lines are a sample of iceberg tracks generated by the iceberg model. The white line in the center shows the area classically chosen for 'Ruddiman belt' freshwater hosing experiments for comparison with the colored area at the background.
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Figure 8: Modelled subglacial lake likelihood map for the North American Ice Sheet Complex from 32 to 6 ka from [START_REF] Livingstone | Modelling North American palaeo-subglacial lakes and their meltwater drainage pathways[END_REF]. F is the flotation criteria which is the ratio of non-local, subglacial water pressure to ice overburden pressure (i.e., if F=1, the water pressure is at the ice-overburden pressure). White line shows ice extent from [START_REF] Dyke | The Laurentide and Innuitian ice sheets during the Last Glacial Maximum[END_REF]. Pink circles refer to published palaeo-subglacial lake records: CB = Christie Bay, Great Slave Lake; ML: McGregor Lake; TL: Travers Lake; OK: Okanagon.