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Abstract Great advances have been made in the last decade in quantifying and understanding the
spatiotemporal patterns of terrestrial gross primary production (GPP) with ground, atmospheric, and space
observations. However, although global GPP estimates exist, each data set relies upon assumptions and none
of the available data are based only on measurements. Consequently, there is no consensus on the global
total GPP and large uncertainties exist in its benchmarking. The objective of this review is to assess how the
different available data sets predict the spatiotemporal patterns of GPP, identify the differences among data
sets, and highlight the main advantages/disadvantages of each data set. We compare GPP estimates for the
historical period (1990–2009) from two observation-based data sets (Model Tree Ensemble and Moderate
Resolution Imaging Spectroradiometer) to coupled carbon-climate models and terrestrial carbon cycle
models from the Fifth Climate Model Intercomparison Project and TRENDY projects and to a new hybrid data
set (CARBONES). Results show a large range in the mean global GPP estimates. The different data sets broadly
agree on GPP seasonal cycle in terms of phasing, while there is still discrepancy on the amplitude. For
interannual variability (IAV) and trends, there is a clear separation between the observation-based data that
show little IAV and trend, while the process-based models have large GPP variability and significant trends.
These results suggest that there is an urgent need to improve observation-based data sets and develop
carbon cycle modeling with processes that are currently treated either very simplistically to correctly estimate
present GPP and better quantify the future uptake of carbon dioxide by the world’s vegetation.

1. Introduction

At leaf level, terrestrial plants fix atmospheric carbon dioxide (CO2) as organic compounds by net
photosynthesis; at ecosystem scale, the gross uptake of CO2 is known as gross primary production (GPP)
(i.e., the sum of the net photosynthesis by all leaves measured at the ecosystem scale) [Chapin et al., 2002;
Beer et al., 2010]. Both leaf photosynthesis and GPP vary diurnally and seasonally in response to changes in
climate (light, precipitation, temperature, and humidity) and nutrient availability, while the spatial
distribution is determined primarily by climatic conditions.

Terrestrial GPP is the major driver of land carbon sequestration and it plays a pivotal role in the global carbon
balance, providing the capacity of terrestrial ecosystems to partly offset anthropogenic CO2 emissions
[Janssens et al., 2003; Cox and Jones, 2008; Battin et al., 2009].

Given its central role in the global carbon budget and the increasing need to understand the role of the
terrestrial biosphere in global carbon cycle, it is critical to develop a clear understanding of GPP
spatiotemporal patterns [Canadell et al., 2000]. Therefore, the quantification of GPP is becoming a major
topic in global climate change studies.

However, direct measurements of GPP do not exist because no observation techniques are available to
quantify this process at the right spatial scale [Ma et al., 2015]. Using photosynthesis measurements at leaf
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level is not that straightforward because of difficulties in controlling environmental conditions of gas
exchange chambers or physical placement of a cuvette on a leaf (or a chamber over a plant) that may
produce biases and artifacts [Baldocchi, 2003]. Nevertheless, one can reduce the experimental artifacts
introduced by cuvettes by controlling the temperature, light, CO2, and humidity. However, even when
direct photosynthesis measurements can be made, they usually represent small samples in space and time
[Ryan, 1991; Long and Bernacchi, 2003].

GPP can be only inferred from direct measurements of net carbon exchange between terrestrial ecosystems
and the atmosphere [Reichstein et al., 2005; Lasslop et al., 2010; Reichstein et al., 2012] at ecosystem scale,
while at a larger scale even more assumptions have to be taken into account [Jung et al., 2009; Beer et al.,
2010; Jung et al., 2011].

Worldwide more than 600 measuring flux tower stations exist (http://fluxnet.ornl.gov/) for the measurement
of CO2 exchange between ecosystems and the atmosphere through the eddy covariance technique
[Baldocchi et al., 2001; Friend et al., 2007; Aubinet et al., 2012]. This method allows quantification of the
continuous net ecosystem exchange (NEE) of CO2, namely, the balance between the carbon released by
ecosystems through the respiration and the carbon uptake by GPP. For each flux tower station, several
algorithms allow separation of ecosystem respiration (Reco) and GPP from NEE [Reichstein et al., 2005;
Reichstein et al., 2012] through relatively simple models parameterized with the NEE measurements.

However, the component fluxes of NEE (i.e., GPP and Reco) cannot bemeasured directly at a regional or global
scale. Thus, to retrieve GPP estimates at larger scales, available local flux tower observations have been scaled
up to the globe using data-driven (or statistical) models [Jung et al., 2009; Beer et al., 2010; Jung et al., 2011].

The data-driven modeling based on eddy covariance technique comprises two steps: (1) the
parameterization of GPP in relation to explanatory variables at sites and (2) the application of the model
using gridded information about these explanatory variables. In the first step, the GPP estimated by
partitioning continuous NEE measurements is used to establish the relation between local drivers and flux,
while with the second step the spatial and temporal variability of GPP is computed using gridded remote
sensing and climatic data [Jung et al., 2009].

There exist several data-driven methods on scaling eddy covariance-based information to the globe
including pure statistical methods (such as neural networks or model trees) or semiempirical regression
models, based on inherent water-use efficiency [Beer et al., 2009] or light use efficiency [Monteith, 1972,
1977]. However, all these approaches have a low capacity in extrapolating to completely different
environmental conditions, and it depends on the availability of sufficient data [Beer et al., 2010]. In
addition, these models are not able to extrapolate in time, i.e., to predict future fluxes.

Another data-driven approach to quantify variations in GPP at global scales is based on satellite
measurements of optical parameters that are directly related to vegetation activity [Myneni et al., 2002;
Damm et al., 2010]. Different remote sensing-based GPP models have been proposed; in general, these
GPP models can be classified into two categories. One major type of remotely sensed GPP includes
models that employ the maximum light use efficiency (LUE) [Monteith’s, 1972, 1977; Goetz and Prince,
1999; Turner et al., 2005; Hilker et al., 2008]. The other major model type uses remotely sensed leaf area
index (LAI) to scale-up Farquhar photosynthesis model [Farquhar et al., 1980] from leaf level to canopy and
then to regional or global level [Chen et al., 2012; Ryu et al., 2011]. The former LUE-type method is more
straightforward and simple but often yields insufficient results, because it measures only the absorbed
photosynthetically active radiation (APAR) while assuming LUE to be constant or it is modeled from
ancillary meteorological variables [Goetz and Prince, 1999].

Alternatively, considerable efforts have been made to develop process-based carbon cycle models to
understand terrestrial carbon cycle mechanisms at different spatial scales [Moorcroft, 2006; Prentice et al.,
2014, and references therein]. Process-based terrestrial carbon models, simulating the major processes of
the carbon cycle, have been used to study the role of the terrestrial biosphere in the global carbon cycle
and to assess possible future changes and risks in biogeochemical cycles associated with a changing
climate [Cramer et al., 1999; Kicklighter et al., 1999; Cramer et al., 2001; McGuire et al., 2001; Dargaville et al.,
2002; Sitch et al., 2003; Morales et al., 2005; Zaehle et al., 2007; Sitch et al., 2008; Le Quéré et al., 2009; Piao
et al., 2009].
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A broad range of models now exists, ranging in complexity from simple regressions based on climatic
variables [e.g., Agreen et al., 1991; McGuire et al., 1993] to complex models that simulate biophysical and
ecophysiological processes [e.g., Sitch et al., 2003; Krinner et al., 2005]. Each approach is based on
simplifying assumptions about how ecosystems are structured and how vegetation responds to changes
in the environment. However, since ecosystems are highly complex, it is impossible to include all
component processes and their interactions into a numerical model, and thus, simplifications must be made.

Different sets of equations, parameter values, and forcing variables thus lead to different estimates of GPP or
more generally to different model behaviors. The differences in models’ results due to only differences in the
equations are often referred to as structural uncertainty [Wang et al., 2011; Zhao et al., 2012].

Consequently, terrestrial carbon cycle models used to assess the effect of past or future climate scenarios on
ecosystems need to be systematically evaluated to ensure that they are able to correctly simulate the
seasonal cycles, interannual variability, and trends of carbon fluxes [Anav et al., 2013]. It is also necessary to
identify the sources of variation between models and between models and observations that could help
modelers identify shortcomings and improve their tools [Morales et al., 2005].

One prerequisite for the analysis of spatiotemporal biosphere-atmosphere fluxes is the comparison of GPP
simulated by different models [Vetter et al., 2008; Jung et al., 2008]. In fact, since GPP is directly sensitive
to variations in carbon dioxide concentration and climate, conducting comparative investigations of
terrestrial models reveals the effects of different model structures [Richardson et al., 2006], parameter
values [Braswell et al., 2005; Zaehle et al., 2005], input climate forcing [Zhao et al., 2006; Lin et al., 2011;
Zhao et al., 2012], and initial states of biomass and soil carbon pools [Carvalhais et al., 2008]. In addition,
comparing models with data is useful for understanding the behavior of both models and data in a joint
perspective [Betts, 2004; Jaeger et al., 2009; Mahecha et al., 2010].

One major source of uncertainty in carbon cycle modeling is the meteorological forcing field used to run
these models. The choice of the meteorological input data set alone can result in a typical 20% difference
of simulated GPP [Zhao et al., 2006; Jung et al., 2007], and it can strongly influence the spatial patterns of
modeled GPP [Jung et al., 2007; Poulter et al., 2011].

Recently, a consortium of terrestrial carbon cycle modeling groups agreed to investigate the spatial trends in
land–atmosphere carbon flux by performing a set of simulations in which all the models were forced by
the same observed climate over the historical period 1901–2010 (TRENDY project [Sitch et al., 2015]). The
availability of different terrestrial carbon models forced by the same input data removes the uncertainty
due to the different meteorological forcing fields. However, even when using a particular forcing there can
be systematic errors that will be propagated to the output of carbon models.

In contrast, Earth System Models (ESMs) have been developed mainly during the last decade [Collins et al.,
2011; Gent et al., 2011; Watanabe et al., 2011; Dunne et al., 2012; Bentsen et al., 2013; Dufresne et al., 2013; Ji
et al., 2014]; within an ESM, a given process-based terrestrial carbon model is fully coupled to a climate
model. In other words, like offline simulations (i.e., models using prescribed forcings), the simulated
climate impacts GPP, but unlike offline models, the state of the vegetation (i.e., phenology, surface energy
fluxes, and greenhouse gas sources and sinks) also modifies the climate leading to a high temporal
consistency between the atmosphere and the land surface. ESMs further incorporate additional
components such as atmospheric chemistry, aerosols, and the oceanic carbon cycle [Taylor et al., 2012].

The ESMs are forced by a variety of externally imposed changes such as increasing greenhouse gas
(concentration-driven simulations [Taylor et al., 2012]) and sulfate aerosol concentrations, changes in solar
radiation, and forcing by volcanic eruptions. These prescribed forcings allow the models to compute their
own climate with their interannual variability [Lin, 2007].

It should be noted that some of these ESMs simulate the terrestrial carbon cycle with the same carbon cycle
models used in TRENDY. Thus, the existence of different land carbon models that use the same prescribed
climate (i.e., TRENDY) represents a unique opportunity to separate and compare the effects on GPP of
differences in climate simulated by ESMs against the effect of structural differences in the carbon models. In
other words, comparing different terrestrial carbon cycle models forced by the same climatic forcing allows the
identification of structural model uncertainties (systematic and random), while comparing the carbon models
when they are coupled within ESMs allows the identification of climate forcing-related uncertainties on GPP.
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A hybrid approach for quantifying CO2 surface fluxes has been proposed, merging carbon fluxes
measurements with process-based models [Rayner et al., 2005]. This method is based on data assimilation,
namely, the process of finding the model representation that is most consistent with observations. In
other words, the data assimilation is generally used to find an optimal combination of models’ parameter
values that minimize a function which describes the misfits between observation and model results.

Given the relevant role of GPP in the global carbon balance as well as the limitations of existing data sets, there
has been much effort to provide empirical-based constraints [Frankenberg et al., 2011]. Here we compare GPP
estimates for the period 1990–2009 from different observation-based data sets (model tree ensemble (MTE)
and Moderate Resolution Imaging Spectroradiometer (MODIS)), different coupled carbon-climate models and
terrestrial carbon models from the Fifth Climate Model Intercomparison Project (CMIP5) and TRENDY projects,
and a new hybrid data set (CARBONES) to identify the agreement between them as well as the strength and
weakness of each product. In fact, none of the available data sets is based only on measurements, but
assumptions must be made to retrieve the final value one way or another. In other words, all the available
estimates have a modeling component behind; thus, each data set has some advantages/limitations.

Despite the existence of many different models from TRENDY simulations, only few of them are actually used
online within an ESMs; thus, here we present results for the only TRENDY models that have also been used as
land component within an ESM. This analysis is supported and reinforced by recent results of Dalmonech et al.
[2015] who demonstrated that comparing a coupled and an uncoupled configuration of the same model
helps to isolate climate model from land model biases.

2. Available Global GPP Products
2.1. Observation-Based GPP

We use two different observation-based data sets: the first one is a data-driven model based on eddy
covariance data, while the second data set is a data-driven model based on satellite measurements.
2.1.1. Data-Driven GPP Trained by Eddy Covariance Measurements
The first data set (MTE-GPP) is a statistical model of GPP based upon flux tower local observations, global
satellite retrievals of fraction of absorbed photosynthetically active radiation (fAPAR), and global climate
fields. This model uses a model tree ensemble (hereafter MTE) which is a machine learning system where
the target variable (i.e., GPP) is predicted by a set of multiple linear regressions from explanatory variable.
This model has been recently applied to the upscaling of water and carbon fluxes [Jung et al., 2009, 2011].

GPP estimates were derived at site level by eddy covariance measurements from 178 of the stations
belonging to the LaThuile Collection [Jung et al., 2009; Beer et al., 2010; Jung et al., 2011].

The eddy covariance measurements at the basis of this product were collected and harmonized in the
LaThuile FLUX NETwork (FLUXNET) Synthesis database (www.fluxdata.org). The data were processed with
standard methodologies, including quality filtering and partitioning of NEE in the two components (GPP
and ecosystem respiration). The GPP estimates were aggregated at different time resolutions and then
used to parameterize the data-driven models together with the drivers either measured at the site
(climatic data) or extracted at the tower location (remote sensing data).

Specifically, two steps are required to produce global GPP estimates from local site measurements: in the first
step the model tree ensemble is trained against eddy covariance GPP estimates at site level using satellite
observations of fAPAR and meteorological data as explanatory variables. In the second step, global
explanatory variables are used in combination to the trained MTE-GPP to estimate global GPP patterns
[Jung et al., 2009, 2011].

This data set provides GPP estimates at a spatial resolution of 0.5° ×0.5° and with monthly time step for the
temporal period 1982–2011 [Jung et al., 2011]. Although the MTE data set starts in 1982, it is important to note
that since FLUXNET site measurements only began in the mid-1990s with just few tens of sites mainly in
Europe and USA, the extrapolation of GPP back to 1990s is based on the sensitivity of GPP to climate. In
addition, most of the eddy covariance stations available are in Europe and North America, so that the MTE-GPP
is poorly constrained by observations in Tropical, Boreal, and Siberian regions. This latter point suggests that
there is large uncertainty in the regions that are not covered by measurement stations (e.g., Africa, Siberia,
South America, and Tropical Asia).
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Another source of uncertainty in the MTE-GPPmight be the lack of CO2 fertilization: in fact, while atmospheric
CO2 rose from about 340 until 390 ppm during our study period, the MTE assumes an average CO2 level not
increasing with time.

The estimated uncertainty of global mean annual GPP (~6 Pg C yr�1 [Jung et al., 2011]) was quantified based
on the standard deviation over the ensemble of 25 different trees. However, this value does not consider
other sources of uncertainty such as the uncertainty from the eddy covariance fluxes measurements and
their partitioning as well as the uncertainty of global satellite observations of fAPAR and meteorological
data used as predictor variables.
2.1.2. Data-Driven GPP Trained by Satellite Measurements
The second data set we used is the improved Moderate Resolution Imaging Spectroradiometer (MODIS) GPP
[Zhao et al., 2006; Zhao and Running, 2010]. MODIS, which provides a quantitative and dynamic measurement
of spatial and temporal productivity by vegetation, is a continuous satellite-driven data set monitoring global
vegetation at 1 km resolution. It provides 8 day, monthly, and annual data over the period 2000–2012 (http://
www.ntsg.umt.edu/project/mod17).

The MODIS GPP algorithm is described in Running et al. [2004]. A simple light use efficiency model (MOD17)
is at the core of the GPP component of the algorithm, and it requires daily inputs of incoming
photosynthetically active radiation and climatic variables. MODIS GPP data are driven by National Centers
for Environmental Prediction-Department of Energy (NCEP-DOE) II meteorological reanalysis data set [Zhao
and Running, 2010]. Additional MOD17 inputs include fAPAR and LAI, which are both standard MODIS products.

Unlike the MTE algorithm that allows the uncertainty of the data set to be estimated, for the MODIS data it is
challenging to quantify the uncertainties in GPP estimates, because first, there are no quantified uncertainties
in most of the input data, such as weather data from NCEP-DOE II, and second, our knowledge on the
uncertainties in the biome property parameters are still poor [Zhao and Running, 2011]. Uncertainties in
the inputs from MODIS land cover, fAPAR/LAI, daily meteorological data, GPP algorithm, and its parameters
thus can introduce uncertainties in the estimated MODIS GPP [Zhao et al., 2005].

In addition, cautions should be taken for comparing satellite estimates with model-simulated GPP. In fact,
remotely sensed fAPAR generally provides key realistic spatiotemporal changes of vegetation leaf area and
cover because disturbances, recovery, and human management can be directly detected though
resolution dependent. Thus, resulting GPP can largely reflect either the reduction in plant growth caused
by deforestation, desertification, and disturbances (fires, wind throw, insects’ outbreaks, and storms) or the
enhancement in vegetation growth caused by reforestation, fertilizer users, and effects of nitrogen
deposition. In contrast, GPP estimated by many process-based models simulates potential LAI when an
ecosystem reaches an equilibrium status under the input climate and soil conditions. Human activities
tend to reduce vegetation cover (LAI), and many ecosystems cannot reach equilibrium status due to
extensive human interferences. Therefore, in principle, if both remotely sensed GPP and process-based
models are perfect and input data sets are accurate, modeled GPP is generally higher than remotely
sensed GPP.

2.2. Process-Based Models
2.2.1. Land Carbon Models (Offline Models)
We use monthly GPP output from terrestrial carbon models that took part in TRENDY project [Sitch et al.,
2015]. Results are from the so-called “S3” TRENDY simulation which uses observed CO2 concentrations,
climate, and land cover change as forcing over the period 1901–2010. The same 6-hourly climate data
from the Climate Research Unit (CRU)-NCEP climate forcing [Wei et al., 2014] were used in all models.

Although many different models from TRENDY simulations exist, due to the unavailability of the
corresponding online version, we used only three different models.

In the first model, Community Land Model Carbon-Nitrogen version 4 (CLMCN4) [Thornton and Rosenbloom,
2005; Thornton et al., 2007, 2009; Randerson et al., 2009], photosynthesis by plants adopting the C3
biochemical pathway [Chapin et al., 2002] is based on the model of Farquhar et al. [1980] as modified by
Collatz et al. [1991], while for plants adopting the C4 biochemical pathway it is based on the model of
Collatz et al. [1992].
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The second model, Joint UK Land Environment Simulator (JULES) [Best et al., 2011; Clark et al., 2011], uses the
biochemistry of C3 and C4 photosynthesis from Collatz et al. [1991, 1992], as described by Sellers et al. [1992]
and Cox et al. [1999], to determine potential leaf-level photosynthesis [Clark et al., 2011].

In the third model, ORganizing Carbon and Hydrology in Dynamic EcosystEms (ORCHIDEE) [Krinner et al.,
2005], the C3 and C4 photosynthesis is calculated following Farquhar et al. [1980] and Collatz et al.
[1992], respectively.

The models differ in their resolution, their parameterization, and the way they simulate several processes.
Table 1 lists the models used in this study, while a detailed discussion on the way they calculate GPP is
given in Appendix A.
2.2.2. Earth System Models (Online Models)
We examine GPP as simulated by ESMs from the Fifth Climate Model Intercomparison Project (CMIP5). As the
TRENDY project, also ESMs from CMIP5 use common simulation and output protocols, enabling direct
comparisons between models.

Here we use results from “historical” runs [Taylor et al., 2012], in which the ESMs were forced by increasing
greenhouse gas and sulfate aerosol concentrations, changes in solar radiation, forcing by volcanic aerosols,
and time-evolving land use changes. Simulations for the historical period extend from 1850 to 2005.
Since our reference period for the analysis is 1990–2009, we used results from RCP 2.6 to fill the period
2006–2009. In fact, this RCP has the CO2 concentration closer to the observed levels during this period. It
should also be noted that the difference between all the existing RCPs is not large during the first years
of simulation.

Four CMIP5 ESMs are selected based on the availability of the same land component of the TRENDY models:
CLMCN4 is the landmodel component of the Community Earth SystemModel (CESM1-BGC [Gent et al., 2011])
and Norwegian Earth System Model (NorESM1-ME [Bentsen et al., 2013]), ORCHIDEE is the land component of
the IPSL-CM5A-MR Earth system model [Dufresne et al., 2013], while JULES is used in the Hadley Centre
climate model HadGEM2-ES [Johns et al., 2006; Collins et al., 2011].

2.3. Hybrid GPP

A third data set (CARBONES) that couples a process-based carbon cycle models (ORCHIDEE) with global
carbon cycle data assimilation system has been recently designed to estimate the net CO2 fluxes over land
and ocean from regional to global scales for the past 20 years (1990–2009). It uses data from both in situ
measuring stations (FLUXNET, global CO2 networks, biomass, and soil inventories) as well as satellite data
of land and oceanic properties, including the atmospheric composition [Kuppel et al., 2013].

Table 1. Summary of the Land Models Used With the Associated Original Resolution and Main Features Controlling the Terrestrial Carbon Cyclea

Offline (TRENDY) Online (CMIP5)

CLM4CN JULES ORCHIDEE CESM1-BGC HadGEM2-ES IPSL-CM5A-MR NorESM1-ME

Spatial resolution
(longitude × latitude)

0.5° × 0.5° 1.85° × 1.25° 0.5° × 0.5° 0.9° × 1.25° 1.875° × 1.25° 2.5° × 1.25° 2.5° × 1.9°

Land area (60°S–90°N) 1.359E+14m2 1.333E+14m2 1.343E+14m2 1.347E+14m2 1.335E+14m2 1.381E+14m2 1.347E+14m2

Number of PFTs 16 5 13 15 5 13 15
Dynamic vegetation N N N N Y N N
N Cycle Y N N Y N N Y
Land component Valid only for the online models CLM4CN JULES ORCHIDEE CLM4CN
Atmospheric forcing CRU-NCEP CAM4 HadGEM2 LMDZ CAM4-Oslo
Photosynthesis for
C3 PFTs

Collatz et al. [1991] Collatz et al. [1991] Farquhar et al. [1980] Same as the offline models

Photosynthesis for
C4 PFTs

Collatz et al. [1992] Collatz et al. [1992] Collatz et al. [1992]

Reference Oleson et al. [2010] Clark et al. [2011] Krinner et al. [2005] Gent
et al. [2011]

Collins
et al. [2011]

Dufresne
et al. [2013]

Bentsen
et al. [2013]

aPFT, plant functional type; Y, yes; N, no.
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CARBONES is based on three different models that describe the global carbon cycle: LMDz [Hourdin et al.,
2006] is used to describe the concentration and transport of CO2 into the atmosphere, ORCHIDEE [Krinner
et al., 2005] simulates the sink and sources of carbon over the land, and a simplified statistical model
simulates the ocean carbon cycle [Kuppel et al., 2013]. All these models are optimized with a data
assimilation system by using satellite and in situ observations [Kuppel et al., 2013].

As with MTE-GPP, CARBONES uses flux tower measurements to constrain GPP (about 60 sites, mostly over
Northern Europe and America); thus, in the regions where no GPP data from flux tower are available,
the uncertainties are higher. In addition, it should be noted that in these regions, CARBONES is not
independent from ORCHIDEE; namely, it is ORCHIDEE in areas that are not informed by data; thus in the
following analysis we expect a close similarity between ORCHIDEE and CARBONES GPPs.

3. Spatiotemporal Pattern of GPP

Processes within the models are simulated on a per area basis. In other words, the carbon stores and fluxes
are calculated with units of per square meter. This allows the models to be developed without need to know
their eventual spatial resolution and to be evaluated against site level, flux tower data. However, when they
are run in gridded mode these fluxes must be scaled by the land area in order to estimate a global total. In
addition, for coupled ESMs, this area-scaled global flux is what matters to drive the model’s evolution of
atmospheric CO2. Table 1 shows that there is some discrepancy between models in their representation
of the global land area up to 3.5% difference. Although these differences are much smaller than the
between-model differences in GPP per unit area that will be shown in this section, it still represents a
difference of several Pg C yr�1 for the global mean GPP. Similar arguments hold for all other carbon stores
and fluxes, so that total land carbon stored in CMIP5 ESMs may differ by as much as 100 PgC due to
differences in the models land area. In order to remove this issue in our subsequent analysis, for the
results presented here, we regrid all the data sets onto a common 1° × 1° grid.

3.1. Annual Means

Figure 1 shows the spatial distributions of mean annual GPP from the models, the observation-based data
sets, and a hybrid product over the period 1990–2009; however, in case of MODIS, due to the lack of data
before the year 2000, we show data only over the period 2000–2009.

The global spatial patterns fromMTE, MODIS, and CARBONES agree reasonably well, although differences are
significant in some areas. Specifically, there is a good agreement in boreal regions, but CARBONES estimates
higher GPP than MTE and MODIS over Central Europe, southeastern Asia, and in the whole tropical band.

The largest differences in magnitude are found in the Tropics where CARBONES predicts more than
3500 g Cm�2 yr�1 over the whole Amazonian region, while MTE and MODIS have weaker GPP, typically
below 3000 g Cm�2 yr�1. Since neither MODIS nor MTE makes use of any artificial cap, such large
differences can be due to discrepancies in the weather data [Zhao et al., 2006] or to the lack of or coarse
parameterization of disturbances in CARBONES (as already discussed in section 2.1.2).

This pattern is consistent with the finding by Zhao et al. [2006], which showed that the tropical region has the
largest uncertainties in GPP. In addition, it should be noted that for both CARBONES and MTE most of the
uncertainty is due to the limited number of flux sites available over the tropical region, while MODIS could
be affected by cloud cover, although data affected by excessive cloudiness have been filled with data from
a cloud-free period [Zhao et al., 2005].

Consistentwith the observation-based data and CARBONES, all themodels show that the largest GPP fluxes occur
in the Tropics followed bymonsoonal subtropical regions (e.g., South and East Asia), humid temperate regions in
Eastern North America, and Western and Central Europe. Low GPPs are typical of adverse environments, such as
high latitudes characterized by a short growing season and low temperatures, or dry areas where the water
availability limits the plant production. In addition, the models correctly capture the GPP pattern over the
boreal region; namely, boreal forests have a typical longitudinal gradient in Northern Eurasia with GPP
decreasing toward the East as a consequence of increasingly continental climate [Beer et al., 2010].

However, it is noteworthy that some clear differences exist: specifically, compared to other data sets CLM4CN
and HadGEM2-ES exhibit larger GPP (both in terms of magnitude and extension) over the whole Southern
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America, while IPSL-CM5A-MR shows high GPP values over the boreal and arctic regions of Northern
Hemisphere. Since ORCHIDEE does not show the same pattern over these regions, the larger GPP found in
IPSL-CM5A-MR is likely related to the high positive bias in surface temperature simulated by this Earth
system model [Dufresne et al., 2013].

In order to detect themain discrepancy among different data sets, in Figure 2 we shows zonal means of mean
annual GPP. The latitudinal gradient of mean annual GPP follows the overall distribution of biomes with GPP
increasing from dry and cold biomes (desert and tundra) to warm and moist biomes (temperate and
tropical forests).

Figure 1. Spatial distribution of mean annual GPP (g Cm�2 yr�1) computed over the period 1990–2009 by CMIP5 and TRENDY models, observation-based data
(MTE and MODIS), and a hybrid data set (CARBONES).
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In the equatorial zone (10°S–10°N), all the data sets show a peak in GPP, reflecting the abundance of
environmental resources available for plant production (water, light, temperature, and nitrogen for models
including the N cycle). In the dry tropics (10°S–25°S and 10°N–25°N), all the different data sets exhibit a dip
in GPP due to a water shortage. Finally, in the temperate zone of the two hemispheres all the data sets
show a secondary peak, due to the availability of water.

However, there is also a considerable variability in themagnitude of annual GPP among all the different estimates,
particularly around the main two zonal peaks: mean annual GPP in tropical area (around the equator) was the
most variable among models, observation-based data sets, and the hybrid product, with CLM4CN being the
most productive model, while MODIS gives the lower estimates. While in the Tropics CLM4CN has been found
systematically at the upper bound of TRENDY models [Parazoo et al., 2014], a previous study shows that
MODIS GPP is smaller than the GPP estimated at some flux tower stations [Heinsch et al., 2006].

Although there is a good agreement between the observation-based data sets and the hybrid data in the
temperate and subtropical areas, over the tropical region these data sets suffer of large uncertainty:
specifically looking at the equator, MODIS shows a peak around 2100 g Cm�2 yr�1 while MTE and
CARBONES have a peak at 2500 and 2700 g Cm�2 yr�1, respectively.

The relatively low MODIS GPP in the tropics may arise from a low-average annual total GPP set for major
tropic biomes, such as evergreen broad leaf forest, woody savannahs, and savannahs, when calibrating the
parameters of MODIS GPP or net primary production (NPP); this is partially supported by a recent
validation work in Africa [Sjöström et al., 2013] which shows how MODIS underestimates GPP compared to
12 eddy covariance flux towers. Considering MTE and CARBONES, most of the uncertainty is due to the
limited number of flux sites available over tropics. In contrast, the models range between MTE and
CARBONES, with only CLM-based models falling outside this range.

To further investigate the relationship between climatic controls and productivity, we plotted for each model
and data set the mean annual GPP in the climate space of temperature, precipitation, and radiation for each
grid cell (Figure 3). As previously discussed, ESMs produce their own climate with the atmospheric model,
while offline models are all forced by CRU-NCEP. Similarly, MTE uses CRU for the upscaling of fluxes, while
MODIS is driven by DOE II meteorological reanalysis data set. It should also be noted that Zhao and
Running [2010] reported small discrepancies between CRU and DOE data.

The overall picture of GPP distribution in the climate space is quite homogeneous among the different data
sets, even though some differences exist and a few outlier values were detected. The lowest GPP are found
in environments characterized by low temperatures, or with high temperatures but limited by moisture
availability (i.e., low precipitation).

These low-productivity ecosystems correspond to high-latitude biomes, such as tundra with negative mean
annual temperatures ranging from 0 to�10°C, or desert areas, where the temperature is above 30°C and the
evaporative demand greatly exceeded the amount of precipitation entering the ecosystem during a year.

Figure 2. Comparison of the climatological zonal mean computed over the period (1990–2009) for the different models,
observation-based data, and a hybrid data set.
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In contrast, the highest productivity occurred in areas with high precipitation (>2000mm/yr), moderate
temperatures (ranging from 20 to 30°C) and radiation (500–600W/m2). These regions correspond to the
Intertropical Convergence Zone (ITCZ) characterized by high values in precipitation and moderate
radiation due to the cloud cover.

Figure 3. Annual global gross primary production in climate space, represented by mean annual temperature (°C), precipitation (mm/yr), and radiation (W/m2). Each
data point represents one grid cell.
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3.2. Mean Seasonal Cycle

In Figure 4 we compare themean seasonal cycle of GPP. However, it is difficult to assess the seasonal cycles of
the data sets globally given the opposite phase of GPP between hemispheres. Consequently, in the following
analysis we show the temporal evolution of GPP over four subdomains (or latitudinal bands).

At the global scale, all data sets show the same seasonal variations, with only CESM1-BGC and NorESM1-ME
having a flatter evolution during the boreal summer (Figure 4). Compared to the other data sets, these two
ESMs show a lower amplitude in the Northern Hemisphere, and globally their GPPs are virtually the same
during the boreal summer. This can be caused by the combined effect of a cold bias in the surface
temperature (not shown), nitrogen limitation, and sparse coverage over the boreal arctic zone (Figure 1).
However, the zonal averages (Figure 2) suggest that also, CLM4CN has a dip in GPP above 55°–60°N; thus, we
can exclude that this drop is caused by a cold bias simulated by the atmospheric components of these two ESMs.

Over the Northern Hemisphere, characterized by a strong seasonality, all the data sets have a GPP minimum
during the boreal winter and fall, and a maximum during summer following the spring leaf out. Compared
to other data and models, the three data set based on ORCHIDEE (i.e., IPSL-CM5A-MR, ORCHIDEE, and
CARBONES) have the largest GPP peaks during the boreal summer. As previously discussed, the large GPP
found in IPSL-CM5A-MR is due to the warm bias in surface temperature over the high latitudes of Northern
Hemisphere. In the case of CARBONES and ORCHIDEE, the large GPP peaks are supported neither by a
temperature bias nor by an earlier greening-up. This suggests that in this model the water stress is not
strong enough during the peak growing season [Anav et al., 2011]. In the Southern Hemisphere all the
data sets reproduce the phase of the winter GPP minimum, with MTE being lower than the other data. A
large spread is found in the tropical regions; however, this domain is characterized by a low seasonality.

Figure 5 shows the errors of each of the selected GPP data set in reproducing the seasonal cycle compared to
a reference data set. In the Taylor diagram (i.e., Figure 5), the GPP standard deviation simulated by a given
model is proportional to the radial distance from the origin, while the radial distance from the reference
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Figure 4. Comparison of seasonal variations in gross primary production among the different data sets.
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point along a horizontal line is proportional to the root-mean-square difference [Taylor, 2001]. Thus, these
statistics can be used to highlight how much of the overall root-mean-square difference (RMSD) is related
to differences in amplitude and how much is due to the differences in the phase between models and
observation-based data. A model in perfect agreement with the reference data would be located where
the circle with radius equal to unity intersects the x axis.

In this plot we chose as reference theMTE, since it falls in themiddle of the observation-based (MODIS) and hybrid
(CARBONES) data range (Figure 4). It should also be noted that, although MTE cannot be regarded as a “pure”
observational data set, it has been widely used to compare or validate different models [e.g., Frankenberg et al.,
2011; Anav et al., 2013; Piao et al., 2013; Barman et al., 2014; Guanter et al., 2014; Traore et al., 2014].

The reference GPP is represented in the plots by a black triangle on the x axis (zero correlation error) at unit
distance from the origin (no error in standard deviation). The other data-driven data sets (i.e., MODIS and
CARBONES) are represented as a light blue and gray triangle, respectively, and these are compared against

Figure 5. Taylor diagram for the 1990–2009 climatological GPP (MODIS refers to the period 2000–2005). Models with the same land carbon scheme are highlighted
with the same symbol (triangles for observation-based and hybrid data, squares for models based on ORCHIDEE, diamonds for those based on JULES, and circles for
models based on CLM). Dotted lines indicate the correlation, while dashed lines represent the root mean standard error.

Reviews of Geophysics 10.1002/2015RG000483

ANAV ET AL. GPP SPATIOTEMPORAL PATTERNS 796



MTE and other models. The models with the same land component are represented with the same symbols.
For models MTE and CARBONES, the seasonal cycle has been computed over the period 1990–2009, while
we present the seasonal cycle for MODIS over the period 2000–2009 due to the unavailability of data
before the 2000.

Consistent with previous results, MODIS, CARBONES, and MTE do not completely agree on the phase of the
GPP seasonal cycle, the temporal correlation being slightly higher than 0.7 for both MODIS and CARBONES at
global scale. A good agreement between the data sets is found in the Northern Hemisphere where MODIS
and CARBONES have a correlation above 0.9 and 0.8, respectively. In contrast, there is a poor agreement in
the regions characterized by small seasonal amplitudes (i.e., Tropics and Southern temperate areas) where
the correlation ranges between 0.5 and 0.6. Considering MODIS, the amplitude ratio (represented by the
ratio of standard deviations) typically centers around 1 indicating that the pattern variations are of the
right amplitude with respect to MTE. In contrast, CARBONES systematically shows a normalized standard
deviation above 1, suggesting a larger seasonal cycle compared to MTE.

The models display a complex pattern, but three important conclusions can be easily drawn looking at
Figure 5. First, the climate-biased ESMs are closer to their equivalent offline models than to each other,
indicating that the parameterization of GPP is more important for controlling the seasonal phase of GPP
than the climate used to drive each land carbon model. In fact, in most of the regions, we can clearly see
that pairs of coupled and uncoupled models using the same land component are closer than models
having different land components; namely, HadGEM2-ES and JULES have similar skills, as do CLM4CN,
CESM1-BGC, and NorESM1-ME, and ORCHIDEE with IPSL-CM5A-MR.

Second, in all the regions the error of the offline models is smaller than the RMSD of the equivalent online
models. This likely depends on the bias in the simulated climate that affects the results and performances
of the online carbon models. These results are consistent with Dalmonech et al. [2015] who compared the
Earth system model Max Planck Institute-ESM with its offline land component finding that the bias in
climate does not affect the phenology and seasonal carbon fluxes, but it significantly controls the
magnitude of GPP.

Third, neither the observation-based product (MODIS) nor the hybrid data set (CARBONES) are better than
the process-based models.

Finally, although CARBONES is based on an optimized version of ORCHIDEE, it has skills closer to HadGEM2-ES
and JULES rather than to ORCHIDEE, indicating how the data assimilation significantly has improved the
performances of ORCHIDEE.

Considering the models’ performances, at global scale JULES shows the lowest RMSD and the highest
seasonal correlation compared to MTE, with CLM4CN, CESM1-BGC, and NorESM1-ME having similar skills,
although CESM1-BGC and NorESM1-ME have a lower correlation and a weaker seasonal cycle compared to
CLM4CN and the reference data (MTE). The largest mismatch is found in ORCHIDEE and IPSL-CM5A-MR
both having the highest RMSD and standard deviations with the lowest correlations.

In the Northern Hemisphere, characterized by large GPPs during the boreal summer, all the models, except
ORCHIDEE, IPSL-CM5A-MR, and HadGEM2-ES, have a correlation above 0.8. JULES and CLM4CN have a
good agreement with MTE, given their low RMSDs and normalized standard deviations close to the unit
distance from the origin. In contrast, the ESMs based on CLM4CN show large errors explained by the small
amplitude in the seasonal cycle.

In the Southern Hemisphere, clearly models with the same land component are clustered near each other,
while in the Tropics, characterized by low seasonal amplitude, models are more scattered in comparison to
the other subdomains. CLM4CN, CESM1-BGC, and NorESM1-ME have perfect amplitude, the ratio of
standard deviation being 1, while all the other models show larger seasonal amplitudes.

3.3. Interannual Variability

The ability of a climate model to capture realistic interannual variability is an important measure of its
performance. Here we use the standard deviation of annual values simulated over the 1990–2009 to
indicate the magnitude of the model’s interannual variability. For comparison, MODIS data for the years
2000–2009 are also presented.
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Looking at the spatial pattern of the interannual variability of GPP (Figure 6), there is a clear difference
between CARBONES, MTE, and MODIS, with the latter two showing a weaker variability than CARBONES,
only partially explained by the lower annual mean (Figure 1). Regarding MTE, as discussed by Jung et al.
[2009] and Piao et al. [2013] it should not be used as benchmark for interannual variability (IAV).

Figure 6. Spatial distribution of GPP interannual variability (g Cm�2 yr�1) computed over the period 1990–2009 as simulated by CMIP5 and TRENDY models and
compared to reference data (MTE and MODIS) and a hybrid data set (CARBONES).
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In fact, there are different reasons why the interannual variability is weakly reproduced by MTE: first, the
magnitude of the year-to-year variability is smaller than the spatial and seasonal variability, suggesting
that this small variance is partially neglected during the model tree training [Jung et al., 2009]. Second, the
factors controlling the spatial GPP gradients may differ between different years [Reichstein et al., 2007].
In other words, the MTE-GPP is trained by spatial gradients among different sites, and then it uses the
derived relationship to extrapolate to temporal interannual gradients. This assumes that the GPP spatial
and interannual sensitivity to climate variation are the same during all the years, which may be not correct
[Piao et al., 2013]. Finally, the controlling factors for the spatial GPP, calculated from satellite fAPAR and
climate predictors, might be not very reliable due to clouds that affect satellite retrieval.

In contrast, based on the ability of MODIS NPP in capturing drought effects [Zhao and Running, 2010], it is
difficult to conclude that there is an issue in the low IAV of MODIS. Thus, one possible explanation for the
lower correlation of MODIS GPP to CO2 annual growth rate than NPP lies in the fact that autotrophic
respiration is also an important carbon emission cost for vegetation to survive and finally fix carbon as
biomass, and environmentally, it is largely controlled by temperature [Tjoelker et al., 2001; Clark et al., 2003;
Zhao and Running, 2011].

The IAV simulated by all the models is more similar to CARBONES than to MTE or MODIS, although some
significant local to regional differences exist between the models. IPSL-CM5A-MR shows the same spatial
pattern and magnitude of the year-to-year variability as CARBONES, while ORCHIDEE reproduces the same
spatial pattern but with a lower magnitude in the variability. JULES also has the same pattern as
CARBONES, while HadGEM2-ES has a higher IAV in Central and South America and a lower IAV over India.
Finally, CLM4CN, CESM1-BGC, and NorESM1-ME have a weaker magnitude in the IAV when compared to
other models and CARBONES, but the spatial pattern is in agreement with results from other data sets.

All the different data sets assume that the main climatic forcings controlling the GPP are the surface air
temperature, the incident solar radiation, and the soil water availability, the latter being strongly related
to precipitation (see Appendix A). Figure 7 shows the spatial distribution of climatic controls on the
interannual variability of GPP over the period 1990–2009 (2000–2009 for MODIS). The variability caused by
each climatic factor (i.e., temperature, radiation, and precipitation) is assessed through the square of
temporal correlation coefficients between GPP fluxes derived from the models’ simulations and the input
data used to force each model. For MODIS, MTE, and CARBONES, we used CRU-NCEP as climate drivers.
While the latter two data sets use CRU to estimate the GPP, MODIS is trained by DOE II reanalysis;
however, Zhao and Running [2010] reported small discrepancies between CRU and DOE data.

Figure 7 shows that in the offline models the interannual variability of GPP over high latitudes and around the
Tibetan plateau (i.e., in the cold regions) is mainly explained by temperature changes, while precipitation
variations are the major driving variable in most of other regions, except western Amazonian forests where
the contributions from the radiation is also significant. In contrast, in all the ESMs temperature and
radiation tend to be colimiting in the high latitudes of the Northern Hemisphere. Consistent with the
TRENDY models, precipitation is the main driving variable controlling the GPP variability at global scale.

Previous studies suggest that at high latitudes temperature controls the year-to-year GPP variability, since
boreal and arctic ecosystems are cold and rarely water limited [Churkina and Running, 1998; Nemani et al.,
2003; Piao et al., 2009]. However, our results suggest that offline models display temperature as the main
limiting factor in the cold regions of the Northern Hemisphere, while ESMs give a more important role to
radiation. This is explained by the coupling between the atmosphere and the underlying land surface, i.e.,
high temporal consistency between the atmosphere and the land surface. In fact, while in the offline
models, the forcing input are prescribed and the surface fluxes do not modify the planetary boundary
layer or forcing data; in the online models the surface climate is the result of the feedbacks between the
lower troposphere and the underling vegetation and soil. In other words, in the online models the surface
air temperature depends on the surface energy balance:

∂Es
∂t

¼ Rs � LE� SH (1)

where ∂Es/∂t indicates the variation in time of the energy content of the soil, Rs is the net surface radiation
defined as the sum of short- and long-wave contributions, and LE and SH refer to latent and sensible
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fluxes, respectively. This equation suggests that the surface air temperature strongly depends on the
radiation; thus, radiation and temperature covariate in time, resulting in a covariation for the GPP.

3.4. Trend

Linear GPP trends over 1990–2009 (2000–2009 for MODIS) were computed for each grid point using linear
regression analysis; the spatial patterns of these trends are mapped in Figure 8. In general, all the data sets
predict an increase of GPP over time; this positive trend is due to a positive response of plant production
to both increasing CO2 concentration and surface temperature. Nevertheless, there are some areas with
negative trends in GPP likely explained by decreasing precipitation or large-scale droughts [Zhao and
Running, 2010; Zscheischler et al., 2014] or by increasingly intense dry seasons.

The weakest trends are found in MTE and MODIS, and this likely depends on the lack of the fertilization effect
due to increasing CO2. In fact, atmospheric CO2 rose from about 340–390 ppm during our study period, but
neither MTE nor MODIS take into account the rising CO2 level in their algorithms.

Figure 7. Spatial distribution of climatic controls on interannual variation of GPP.
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Coupled models have similar trends as their corresponding offline versions, indicating that the trends of
climatic forcing are well simulated by the ESMs. In addition, since for process models trends are primarily
due to CO2 fertilization, the similar trends in online and offline simulations are the direct consequence of
the same atmospheric CO2 forcing.

In general, models, observation-based data, and the hybrid data set show large areas with increased GPP over
the Northern Hemisphere (Figure 8) mainly due to lengthening of the growing seasons by warming and
wetter climate that enhances plant growth [Piao et al., 2007; Zhao and Running, 2010; Murray-Tortarolo

Figure 8. Spatial distribution of GPP trends (g Cm�2 yr�2) from 1990 to 2009. Green areas indicate increasing GPP, and brown areas indicate decreasing GPP.
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et al., 2013]. However, continued warming may offset these benefits of an earlier spring and decrease carbon
sequestration in a dryer summer and warmer autumn, which could explain the negative trend found in some
areas of Northern Hemisphere [Piao et al., 2014].

The models simulate a large positive trend in the Southern Hemisphere, with the exception of a few isolated
areas. In contrast, MODIS shows large regions with a negative trend. Zhao and Running [2010] suggested that
despite the increased precipitation, the warming trend induced a much higher evaporative demand, leading
to a drying trend. As a result, MODIS reports decreasing NPP because of warming-associated drying trends.
Vegetation indices from satellite data also showed reduction of greenness over the Southern Hemisphere
from 2000 to 2009 [Gobron et al., 2010; Zhao and Running, 2011]. The reduced greenness is in line with the
reduced soil moisture derived from satellite data in the same data period [Jung et al., 2010]. However, this
effect is not shown here with most of the models simulating an increasing GPP over time. There are large
differences in the calculations of GPP between the models and MODIS, namely, for MODIS trends are
computed over one decade, while in case of the other data sets trends are computed over two decades. A
second reason may lie in the differences in the model structure and parameterization. In fact, the GPP
parameterizations are more complex in models than in MODIS (see Appendix A). Thus, we hypothesize
three possible mechanisms for this difference: (1) the disturbances (e.g., fires, wind throw, insects’
outbreaks, storms, pollution, and human management) are well captured by satellite retrievals and still
poorly simulated by models; (2) in the models the CO2 fertilization effect on stomatal closure is too strong,
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Figure 9. Global GPP trends for different data sets computed using the linear regression analysis.

Table 2. Site Codes and Names, Dominant Vegetation Types, Locations, Countries, and Main References of the Eddy
Covariance Sites Used in This Studya

Site Code Site Name Ecosystem Latitude Longitude Country Reference

BE-VIE Vielsam MF 50.3 5.99 Belgium Aubinet et al. [2001]
CH-DAV Davos ENF 46.81 9.85 Switzerland Churakova et al. [2014]
CZ-BK1 Bily Kriz forest ENF 49.5 18.54 Czech Republic Acosta et al. [2013]
DE-HAI Hainich DBF 51.07 10.45 Germany Knohl et al. [2003]
DE-THA Tharandt ENF 50.96 13.56 Germany Grünwald and Bernhofer [2007]
DK-SOR Soroe DBF 55.48 11.64 Denmark Pilegaard et al. [2001]
ES-ES1 El Saler ENF 39.34 �0.31 Spain NA
FI-HYY Hyytiälä ENF 61.84 24.29 Finland Suni et al. [2003a]
FI-SOD Sodankylä ENF 67.36 26.63 Finland Suni et al. [2003b]
FR-HES Hesse DBF 48.67 7.06 France Granire et al. [2000]
FR-LBR Le Bray ENF 44.71 �0.76 France Berbigier et al. [2001]
FR-PUE Puechabon EBF 43.74 3.59 France Rambal et al. [2004]
IT-REN Renon ENF 46.58 11.43 Italy Montagnani et al. [2009]
NL-LOO Loobos ENF 52.16 5.74 Netherland Dolman et al. [2002]
US-HA1 Harvard forest DBF 42.53 �72.17 USA Urbanski et al. [2007]
US-HO1 Howland forest ENF 45.20 �68.74 USA Hollinger et al. [1999]

aThe vegetation types are evergreen needleleaf forests (ENF), evergreen broadleaf forests (EBF), deciduous broadleaf
forests (DBF), and mixed forests (MF). NA, not available.
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leading to vegetation with high resistance to drought; and (3) difference in the time periods (two decades for
models versus one decade for MODIS) when calculating the trends. To test the latter case, we have computed
for all the data sets the trends over the last 10 years of our reference period (not shown); with the shortened
temporal period, models are much closer to MODIS, suggesting that the CO2 effect is reduced by recent
climate variability (i.e., drought or extreme events).

Looking at the mean annual global values (Figure 9), all the models have an increasing trend, while both the
observation-based data sets and the hybrid data show near-zero or slightly positive trends (CARBONES
0.08 Pg C yr�2, MTE 0.018 PgC yr�2, and MODIS 0.005 PgC yr�2). Considering the observation-based data
and CARBONES, the lack of relevant positive trend can be explained by a compensation of points with a
negative and a positive trend (Figure 8).

The CLM-based models have the smallest positive trends in GPP. CLM4CN is the only model in this study that
takes into account nitrogen limitation when computing photosynthesis (Table 1). This suggests that in some
ecosystems, the potential CO2 fertilization effect may already be strongly limited by present-day nitrogen
availability [Vitousek and Howarth, 1991]. This result is consistent with Sitch et al. [2015] who have analyzed
the net primary production trends simulated by nine different DGVMs (Dynamic Global Vegetation
Models) finding that models with a fully coupled carbon and nitrogen cycle simulate a flatter increase in
the land sink. This conclusion is also supported by results from coupled models: among all the ESMs, those
based on CLM4CN have the weakest trend (CESM1-BGC 0.35 Pg C yr�2 and NorESM1-ME 0.26 Pg C yr�2).

Figure 10. Temporal GPP trends computed over different eddy-towers measurement stations for the period JJA (June–August) (see Table 2).
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Figure 11. (top) Temporal and (bottom) spatial cross correlation computed between different carbonmodels and data-driven
GPP estimates. The temporal correlation has been computed using the 1990–2009 climatological mean (2000–2009 for
MODIS), while the spatial correlation is based on a pointwise correlation of the long-term annual means.

Figure 12. Integrated mean annual GPP (x axis) with its (top) IAV (y axis) and (bottom) trend (y axis) as simulated by CMIP5
and TRENDY models, observation-based data (MTE and MODIS), and a hybrid data set (CARBONES).
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Conversely, models that do not
reproduce the nitrogen limitation
might overestimate the CO2

fertilization, leading to high GPP
trends (e.g., JULES 0.62 PgC yr�2

and HadGEM2-ES 0.6 Pg C yr�2).

It is well recognized that the
MTE should not be used as a
benchmark for trends [Jung et al.,
2009; Anav et al., 2013; Piao et al.,
2013]. However, since it relies
on flux tower local observations,
one could argue whether eddy

covariance data capture any trend in GPP and thus attribute the lack of trends in MTE to the missing CO2

fertilization. To test this hypothesis, as well as to check if model and data trends are consistent in their
long-term trend, we selected 16 eddy covariance sites with a long enough record (Table 2). Because of the
lack (or poor quality) of data during winter for many sites and years, we compute the trends only over the
period June–August (JJA), i.e., during the most productive periods of the growing season. The relatively
short time series of the sites (8–10 years), the strong impact of interannual variability and extreme events
(e.g., 2003 heat wave [Ciais et al., 2005] with its lag effects [Granier et al., 2007]), the effects of possible
local disturbance and management practices, and changes in the measurement systems all make the use

Table 3. Synthesis of Global Mean Annual GPP, Interannual Variability,
and Trend

Data Set Mean (Pg C yr�1) IAV (Pg C yr�1) Trend (Pg C yr�2)

MTE 119 1.3 0.0181
MODIS 112 0.8 0.005
CARBONES 148 2.45 0.078
CLM4CN 147 2.87 0.417
CESM1-BGC 130 2.44 0.353
NorESM1-ME 131 1.76 0.262
JULES 149 4.4 0.621
HadGEM2-ES 140 3.89 0.598
ORCHIDEE 153 3.23 0.508
IPSL-CM5A-MR 169 3.26 0.454

Figure 13. (top) Spatial distribution of 2009 mean annual retrieved chlorophyll a fluorescence at 755 nm, and (bottom)
comparison of Sun-induced fluorescence and GPP zonal means from different observation-based data sets.
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Figure 14. Comparison of Sun-induced fluorescence and gross primary production seasonal cycles for the year 2009.

Figure 15. Spatial distribution of mean annual GPP (g Cm�2 yr�1) for the year 2010 based on the optimal combination of
TRENDY models and GOSAT SIF [see Parazoo et al., 2014].
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of the eddy covariance data complicated. However, there is clear evidence of GPP increase with time at the
selected sites (Figure 10), although the increase is only statistically significant at CZ-BK1, DK-SOR, and US-HA1
(95% significance using a Mann-Kendall test).

4. Summary and Discussion

We have compared the spatial and temporal patterns of GPP as simulated by three TRENDY models and four
CMIP5-ESMs, having in common the same land component, with different observation-based data sets and a
hybrid product.

A synthesis of the main results is reported in Figure 11, which shows the temporal (top) and spatial (bottom)
correlations among the different data sets. The temporal correlations were obtained by comparing the mean
seasonal cycles. At the global scale, all the pairs of models and data-driven data sets show a correlation
coefficient above 0.55. In general, we found higher correlations when comparing models against MTE
rather than to MODIS or CARBONES, with the highest value found for JULES. Considering the cross
correlations among models, we observe the highest agreement in the phase of seasonal cycle when
comparing CESM1-BGC with NorEMS1-ME; this is due to the similarity between these two ESMs and the
low sensitivity of simulated GPP to different climatic forcing.

Conversely, the spatial pattern, based on a pointwise correlation of the long-term annual means, is well
represented by all models, the correlations being systematically greater than 0.7. Consistent with the
temporal correlations, models display the highest values when compared to MTE rather than to MODIS or
CARBONES. The highest correlation is found when CLM4CN is compared to MTE, but ORCHIDEE and JULES
also have high correlations. It is also noticeable that comparing models with the same land component
(i.e., HadGEM2-ES versus JULES) does not lead to a relevant increase in the correlation with respect to MTE.

Figure 11 suggests that comparing models with the data-based products, the correlations are higher in the
uncoupled models than in the ESMs. Specifically, irrespective of the reference data set used as benchmark,
CLM4CN has a spatial and temporal correlation higher than CESM1-BGC and NorESM1-ME, as does JULES
compared to HadGEM2-ES. For ORCHIDEE and IPSL-CM5A-MR this is only true in the case of spatial
correlation. This is likely due to biases in the climatic forcing simulated by the ESMs.

Table 4. Summary of Advantages and Disadvantages of Different Methods Used to Estimate GPP
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Figure 12 summarizes the main finding on global GPP averages with the associated interannual variability
and trends. Some conclusions can be easily drawn looking at this figure. First, all of the simulated GPPs are
higher than the MTE and MODIS estimates, while the CARBONES GPP falls in the middle of the simulated
range. This latter result is partially expected since CARBONES represents an optimized version of
ORCHIDEE. Second, consistent with Piao et al. [2013], the global GPP estimates simulated by all the models
show a large range, varying from a minimum of 130 PgC yr�1 found in CESM1-BGC to a maximum of
169 PgC yr�1 for IPSL-CM5A-MR (Table 3). When comparing TRENDY models with the ESMs using the same
terrestrial carbon models, there is a clear mismatch in the GPP global values: JULES simulates about
9 PgC yr�1 more than HadGEM2-ES mainly due to the larger productivity found over Amazonian forest
and the temperate regions of Northern Hemisphere (see Figures 1 and 2). CLM4CN predicts about
16 PgC yr�1 more than the corresponding ESMs due to the larger productivity mainly over the Tropics and
Central-Eastern Eurasia, while IPSL-CM5A-MR simulates 15 Pg C yr�1 more than ORCHIDEE because of the
larger GPP over the Eurasian boreal and Arctic regions. In this latter case, the higher productivity of the
coupled models with respect of the corresponding offline version is mainly due to the strong warm bias of
the atmospheric component [Dufresne et al., 2013].

A large range in GPP estimates is found also in case of the observation-based data sets and the hybrid
product (Table 3). This result indicates that there is still a large uncertainty in the GPP benchmark, and it is
confirmed by the large discrepancies in published estimates of GPP. Terrestrial GPP has been estimated at
about 120 Pg C yr�1 based on δ18O measurements of atmospheric CO2 [Ciais et al., 1997]. Using eddy
covariance flux data and various diagnostic models, Beer et al. [2010] provide an estimate of 123.6
± 8 PgC yr�1 in the period 1998–2005 consistent with result of Jung et al. [2009] and Ciais et al. [1997].
Some studies, however, suggest that current estimates of global GPP [Denman et al., 2007; Ciais et al.,
2013] might be too low and that a best guess of 150–175 PgC yr�1 [Welp et al., 2011] or 146 ± 19 Pg C yr�1

[Koffi et al., 2012] better reflects the observed rapid cycling of CO2. However, these latter studies have
some limitations: specifically, Welp et al. [2011] have used only a limited number of observations and a
very simple model for their results that only calculate the gross photosynthesis (i.e., it does not include any
respiratory processes). In general, through photorespiration, plants immediately respire away 20–40% of
the carbon fixed by photosynthesis [Chapin et al., 2002]; thus, accounting for photorespiration, the Welp
et al. [2011] GPP would be closer to the current estimates [Denman et al., 2007; Ciais et al., 2013]. In
addition, it should also be noted that in their analysis on long-term time series of CO2 isotopes Welp et al.
[2011] found a GPP lower bound of approximately of 120 Pg C yr�1 a value close to previous estimates
[Ciais et al., 1997; Jung et al., 2009; Beer et al., 2010]. However, to retrieve this latter value, they used a Ccs/Ca
ratio of 0.66 (where Ccs is the CO2 partial pressure in chloroplasts at the site of CO2 hydration and Ca
represents the atmospheric CO2 partial pressure); since a ratio of ~0.7 is typical of ratios of CO2 in the
intercellular air spaces to CO2 in the atmosphere (Ci/Ca) of C3 vegetation, it can be argued that two things
are neglected to retrieve a GPP of 120 PgC yr�1: first, the relevant contribution of C4 vegetation to global
GPP. In fact, C4 plants have a lower Ci/Ca ratio (~0.4 [Farquhar et al., 1993]) than C3 plants, and they
approximately contribute to 20–25% of global GPP [Still et al., 2003]. Second, the added resistance of
diffusion across the mesophyll which makes Ccs/Ca less than Ci/Ca [Welp et al., 2011].

Similarly, Koffi et al. [2012] were unable to distinguish the best estimate of 146 ± 19 PgC yr�1 from a different
data assimilation experiment yielding a terrestrial global GPP of 117 PgC yr�1.

Consistent with the discussion of section 3.3 (as well as Figure 6), MTE and MODIS have the lowest
interannual variability, while models are clustered around CARBONES. The observation-based data sets
show no trend (MTE and MODIS), while CARBONES has a slight positive trend, although the length of the
temporal period is too short for a detailed analysis. All the models report a positive trend ranging from
0.28 Pg C yr�2 (NorESM1-ME) to 0.62 Pg C yr�2 (JULES). It is also noticeable that models with the same
land component show similar magnitude in the IAV and temporal trends, as a consequence of GPP
response to prescribed CO2. This is particularly evident for the two ESMs using CLM4CN as land
component (i.e., CESM1-BGC and NorESM1-ME) that are always close to each other in terms of the total
amount of GPP, of interannual variability, and of trends. In this case, since the surface air temperature
and the land precipitation from these models have different pattern and bias (not shown), this result
suggests that using the same land component in the ESMs is more important in controlling the total
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amount of carbon fixed by GPP rather than the difference due to the climatic forcing. Hajima et al. [2014]
found a similar behavior between CESM1-BGC and NorESM1-ME although they used different diagnostics
to compare ESMs.

Besides, Figure 11 highlights how offline models have better performance than ESMs, our results also suggest
that performances of coupled models are not that far from offline models, adding confidence in the carbon
fluxes simulated by models that use an inner climate and increasing their reliability. This result is reinforced
by a recent finding that the bias in climate models does not affect the phenology and seasonal carbon fluxes,
but it significantly controls the magnitude of GPP [Dalmonech et al., 2015].

Although there is still a large discrepancy among models and observation-based data sets, during the last
years great advances have been made in the use of different sources of data to quantify global
spatiotemporal patterns of GPP. For example, carbonyl sulfide (COS) uptake could be used as a proxy for
GPP, based on the close relationship between seasonal dynamics of COS and CO2 mole fractions at
regional and continental scales and the link between COS and CO2 uptake at the leaf level [Blonquist et al.,
2011; Asaf et al., 2013]. The coupled uptake of carbonyl sulfide and CO2 by plants could be used to
constrain terrestrial GPP by the combination of atmospheric COS measurements with an inversion of the
atmospheric transport once the ratio of CO2 versus COS uptake, the additional COS deposition to soils, and
the COS efflux from oceans is more precisely quantified [Beer et al., 2010].

Recently Joiner et al. [2011], Frankenberg et al. [2011], and Guanter et al. [2014] derived plant fluorescence
using high spectrally resolved solar Fraunhofer lines from Earth radiance data measured with Greenhouse
Gases Observing SATellite (GOSAT) [Joiner et al., 2011; Ciais et al., 2014]. In particular, Frankenberg et al.
[2011] found that “global space-borne observations of solar-induced chlorophyll exhibit a strong linear
correlation with GPP and that the fluorescence emission even without any additional climatic or model
information has the same or better predictive skill in estimating GPP as those derived from traditional
remotely sensed vegetation indices using ancillary data and model assumptions.”

To quantify the spatial agreement between the observation-based GPP and satellite fluorescence, in
Figure 13 we compare the GOME-2 Sun-induced fluorescence (SIF) [Joiner et al., 2013] with MTE and
MODIS GPP for the year 2009. On the annual average, we find a strong spatial correlation between
fluorescence and MTE (0.9) and MODIS (0.8) GPP, and the SIF spatial pattern (Figure 13, top) is consistent
with results in Figure 1, confirming that SIF can be used as a proxy for GPP. The latitudinal distribution of
fluorescence agrees well with MTE and MODIS GPP (Figure 13, bottom), with SIF reproducing the high
productivity of tropical environments as well as the dip of the dry subtropical areas and the secondary
peaks of temperate regions.

In Figure 14 we compare the seasonal cycle of SIF data with MTE and MODIS GPP for the year 2009. In the
regions characterized by a strong seasonality, we found a perfect agreement in the phase of seasonal
cycle with MTE and MODIS exhibiting a correlation of 0.99; conversely, the correlation is slightly lower
when SIF is compared to MTE in the tropics (0.9) and much poorer compared to MODIS (0.49).

These new advances in space-borne retrieval suggest how it is possible to constrain the GPP directly from
satellite observations of chlorophyll fluorescence, using the SIF as a proxy for GPP [Frankenberg et al.,
2011]. Zhang et al. [2014] recently have shown how SIF data can be also used as an indicator of the
magnitude and seasonality of maximum carboxylation rate, a key parameter of the Farquar’s model (see
Appendix A). Specifically, even though the maximum carboxylation rate varies in space and time as a
function of climate, because of the difficulties in measuring it in the field and then to prescribe values on a
global scale, terrestrial carbon models make use of fixed values associated to different plant functional
types. Zhang et al. [2014] demonstrated that using a seasonally varying maximum carboxylation rate
improves the GPP performances compared to simulations with fixed carboxylation rate values.

However, it should be noted that to retrieve the GPP from the fluorescence signal, several assumptions must
be made, with GPP depending on the measured fluorescence and APAR [Frankenberg et al., 2011; Guanter
et al., 2014]. The assumption of a linear relationship between SIF and GPP might be not valid for all the
ecosystems or under different light and temperature conditions; thus, the SIF-based GPP should be
inferred using biome-specific regressions. This is confirmed by Guanter et al. [2012] who showed that the
relationship between SIF and GPP is sensitive to vegetation type and climate.
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Recently, Parazoo et al. [2014] inferred the global distribution of GPP from an ensemble of eight DGVMs
constrained by global measurements of SIF from the Greenhouse Gases Observing Satellite (GOSAT). In
Figure 15 we show the 2010 annual distribution of GPP obtained with this approach: although here we
focus only on a specific year, the spatial pattern is consistent with results of Figure 1 with high annual GPP
in the tropics and lower values over dry-cold regions. Also, the global SIF-constrained GPP estimate
(144 PgC yr�1) is closer to models than MTE or MODIS. However, this latter result is somewhat expected
since Parazoo et al. [2014] used an ensemblemean of eight TRENDYmodels to convert the SIF signal into GPP.

5. Conclusions

Our results indicate a large range in mean annual GPP estimates with associated large uncertainty in the
interannual variability and trends. This result reinforces the well-known problem that a perfect global GPP
data set does not exist; in fact, all the data sets analyzed in this paper have some advantages/disadvantages
(Table 4). Considering MODIS and MTE, our results indicate that these data sets have some issues on the IAV
and trends that need to be addressed in the future. In contrast, because of the wide range in GPP estimates
and the large uncertainties in future climate projections [Friedlingstein et al., 2006; Arora et al., 2013], all the
models need to be improved since several processes are still missing [Ciais et al., 2013].

For instance, most of the models do not simulate human management including fertilization and irrigation
[e.g., Gervois et al., 2008; Runyan et al., 2012], disturbances like fire, logging, harvesting, insect outbreaks,
and ecosystem dynamics (migration, variation in forest age and structure, and forest regrowth from
abandoned crops fields). In addition, nitrogen dynamics are simulated by only few models (Table 1),
although the importance of terrestrial nitrogen-carbon cycle interactions is well known [Magnani et al.,
2007; Zaehle, 2013], and very few models have phosphorus dynamics (none of the models in this study)
[Zhang et al., 2011; Goll et al., 2012]. Also, the impact of tropospheric ozone on photosynthesis is
included only in a few models [Sitch et al., 2007; Anav et al., 2011]. Finally, several processes related to
the decomposition of soil carbon are poorly simulated or not represented at all [Todd-Brown et al., 2013].

The lack of all these parameterizations within carbon cycle models could result in an overall overestimation of
global GPP that might explain themismatch with the data-driven GPP (i.e., MTE andMODIS). Thus, the priority
for developing carbon cycle modeling with processes that current models treat either very simplistically or
not at all is imperative in the next future to improve present GPP estimates and better quantify the future
uptake of carbon dioxide by the world’s vegetation.

However, although one would expect that a model that includes several relevant processes for the carbon
cycle should be more realistic than a simpler model, this does not automatically increase its reliability and
robustness [Prentice et al., 2014]. In fact, adding more processes to the existing models leads to an increase
in models’ complexity but also to an increase of the uncertainty associated to the introduction of new
model parameters. In particular, increasing the complexity of existing models could lead to models fitting
well the observations over the sites where they have been tuned, but they could produce divergent
results over areas different from the domain of calibration [Prentice et al., 2014].

This is suggesting also that more long term observations are needed, in particular, in areas currently under
represented. The recent development of international research infrastructures such ICOS (www.icos-ri.eu),
NEON (www.neoninc.org), and AmeriFlux (http://ameriflux.lbl.gov) that are investing in organized and
high-quality networks will help to provide more observations for model constrain and validation.

Finally, the new advances in space-borne retrieval suggest how it is possible to constrain the GPP directly
from satellite observations of chlorophyll fluorescence, providing therefore a new and reliable tool to
improve our knowledge on the global carbon cycle.

Appendix A: Photosynthesis at the Leaf Level

A1. CLM4CN

Following Collatz et al. [1991, 1992] and Oleson et al. [2010] the leaf photosynthesis (A, molm�2 s�1) is
estimated as the minimum of three assimilation limited rates: the Rubisco (leaf enzyme) limited rate wc,
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the light-limited ratewj, and the carbon compound export limitation (C3 plants) or PEP-carboxylase limitation
(C4 plants) we, namely,

A ¼ min wc;wj;we
� �

(A1)

The Rubisco-limited rate of carboxylation is (molm�2 s�1):

wc ¼
Vm ci � Γ�ð Þ

ci þ Kc 1þ oi
Ko

� � for C3 plants

Vm for C4 plants

8>><
>>: (A2)

where ci is the partial pressure of CO2 in interior leaf (Pa), Oi is the partial pressure of O2 in interior leaf (Pa),
Kc (Pa) is the Rubisco Michaels-Menten constant for CO2 (Kc=30×2.1

Q10), Ko (Pa) is Rubisco inhibition constant
for oxygen O2 (Ko=30000×1.2

Q10), Γ* (Pa) is the CO2 compensation point (Γ* = 0.5 ×Oi/[2600×0.57
Q10]), and

Vm is a PFT-dependent value representing the maximum catalytic capacity of Rubisco at saturating levels of
Ribulose bisphosphate (RuBP) and intercellular partial pressure of CO2 (molm�2 s�1), which varies with leaf
temperature (Tl) and soil water:

Vm ¼ Vmax f T T lð Þ f w θð Þ (A3)

where Vmax represents the maximum rate of carboxylation of the enzyme Rubisco at 25°C in the presence of
saturating soil water, and it is assumed to be a function of leaf nitrogen as over 20% of leaf nitrogen is
invested in Rubisco [Dai et al., 2004]. The temperature dependence fT(T1) of Vm is calculated as follows:

f T T lð Þ ¼
2:1Q10

1þ e0:3 Tl�s2ð Þ for C3

2:1Q10

1þ e0:3 Tl�s2ð Þ½ �= 1þ e0:2 s4�Tlð Þ½ � for C4

8>>><
>>>:

(A4)

with Q10 (unitless) is a temperature coefficient (Q10= [T1� 298.16]/10), s2 is the high-temperature inhibition
parameter (K), and s4 is the low-temperature inhibition parameter (K).

The effect of soil water stress on assimilation is given by

f w θð Þ ¼
XN
i¼1

ri
ψmax � ψi

ψmax þ ψsat;i

 !
(A5)

Here N is the total number of soil layers, ri (unitless) is the root fraction within soil layer i, Ψmax (mm) is the
maximum value of soil matrix potential before leaves wilt (�1.5 × 105mm), Ψ sat,i (mm) is the saturated soil
water matrix potential, and Ψ i (mm) is the soil water matrix potential. The factor (Ψmax�Ψ i)/(Ψmax +Ψ sat,i)
ranges from 0 at the permanent wilting point to 1 at field capacity [Dai et al., 2004].

The maximum rate of carboxylation allowed by the capacity to generate RuBP (i.e., the light-limited rate),
wj (molm�2 s�1) is

wj ¼
J ci � Γ�ð Þ
ci þ 2Γ�

for C3 plants

J for C4 plants

8<
: (A6)

Here J is the electron transport rate for given absorbed PAR, and it is defined as

J ¼ min εIs;
Jm
4

� �
(A7)

where Is refers to the PAR absorbed by the leaf (molm�2 s�1) and ε is the quantum yield of electron transport.
Jm is potential electron transport rate (molm�2 s�1), which varies with leaf temperature and soil water [Tezara
et al., 1999]:

Jm ¼ Jmaxf T T lð Þf w θð Þ (A8)
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with Jmax being the potential maximum (light saturated) electron transport rate (Jmax = 2.1Vmax) and fT (T1) the
temperature dependence of Jm:

f T T lð Þ ¼
e

10�Q10�Ea
298�R�Tl

� �
� 1þ e

298�S�H
298�Rð Þ� �

1þ e
S�Tl�H
R�Tl

� � (A9)

Here H is a curvature parameter for Jmax (H=2.2 × 105 Jmol�1 K�1), R is the universal gas constant
(R= 8.314 Jmol�1 K�1), S is the electron-transport temperature response parameter (S= 710 Jmol�1), and
Ea is the activation energy (E=37,000 Jmol�1).

Finally, the carbon compound export limitation (C3 plants) or PEP-carboxylase limitation (C4 plants) is defined
as follows:

we ¼
0:5Vm for C3 plants

2�104Vm
ci

Patm
for C4 plants

8<
: (A10)

where Patm is the atmospheric pressure at surface (Pa).

Considering the nitrogen limitation on potential GPP, it is calculated from leaf photosynthetic rate without
nitrogen constraint. The nitrogen required to achieve this potential GPP is diagnosed, and the actual GPP
is decreased for nitrogen limitation. Thus, potential GPP must be reduced by multiplying the photosynthetic
parameter Vm (maximum rate of carboxylation) by a PFT-specific factor scaled between 0 and 1 that represents
nitrogen constraints on GPP [Lawrence et al., 2011]:

Vm ¼ Vmax f T T lð Þ f w θð Þf Nð Þ (A11)

where f(N) are the PFT-dependent nitrogen factors.

A2. JULES

As CLM4CN, the leaf photosynthesis is estimated as the minimum of three assimilation limited rates: the
Rubisco-limited rate wc, the light-limited rate wj, and the carbon compound export limitation (C3 plants) or
PEP-carboxylase limitation (C4 plants) we. Further details on the photosynthesis parameterization and the
differences with respect to CLM4CN are given by Clark et al. [2011].

A3. ORCHIDEE

C3 and C4 photosynthesis is calculated following Farquhar et al. [1980] and Collatz et al. [1992], respectively.
Considering the C3 PFTs, the leaf assimilation (A) is defined as follows [Krinner et al., 2005]:

A ¼ Vc 1� Γ�
Ci

� �
(A12)

where Vc (μmolm�2 s�1) is the rate of carboxylation, Γ* (ppm) is the CO2 compensation point when there is
no nonphotorespiratory respiration, and Ci is the CO2 concentration at the carboxylation site.

The rate of carboxylation is expressed as the more limiting factor between the Rubisco activityWc and RuBP
regeneration Wj (μmolm�2 s�1):

Vc ¼ min Wc;Wj
� �

(A13)

The Rubisco-limited rate is given by

Wc ¼ Vcmax þ Ci

Ci þ Kc 1þ Oi
Ko

� � (A14)

with Vcmax (μmolm�2 s�1) representing themaximum rate of RuBP carboxylation, Kc and Ko are the Michaelis-
Menten constants for enzyme catalytic activity for CO2 and O2, respectively, and Oi is the intercellular
concentration of oxygen.
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The RuBP regeneration-limited rate is defined as follows:

Wj ¼ Vj

1þ 2Γ�
Ci

(A15)

where Vj is the potential rate of RuBP regeneration and it depends on the incident photon flux I. Vj can be
empirically described using a nonrectangular hyperbola,

Vj ¼ 1
2Θ

αj I þ Vjmax �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αj I þ Vjmax
� �2 � 4Θαj IV jmax

q	 

(A16)

where αj is the quantum yield of RuBP regeneration, Vjmax is the maximum potential rate of RuBP
regeneration at quantum saturation, and Θ is the curvature of the quantum response.

The water stress influences the photosynthetic capacity (i.e., Vjmax and Vcmax). The water stress factor γw is
defined after McMurtrie et al. [1990]:

γw ¼
1 if f w > f w1

1� f w � f w0
f w1 � f w0

if f w0 < f w < f w1

0 if f w < f w0

8>><
>>: (A17)

where fw is the water fraction available for the plant in the root zone (fw=0 at wilting point and fw= 1 at field
capacity); fw0 = 0.028 and fw1 = 0.5 are the soil water fractions inducing, respectively, closure and maximum
opening of the stomata [Krinner et al., 2005].

In addition, the maximum rubisco-limited potential photosynthetic capacity (that is unstressed
photosynthetic capacity at optimum temperature) is parameterized as a function of leaf age, increasing
from a relatively low initial value to a prescribed optimum during the first days after leaf onset, staying
constant at this maximum for a given period (a few months, depending on the PFT), and then decreasing
to a lower value for old leaves [Ishida et al., 1999]. Thus, the photosynthetic capacity (given through Vjmax

and Vcmax, respectively) depends on leaf age through:

V c;jð Þmax að Þ ¼ V c;jð Þmax;opt � erel að Þ (A18)

where a is the leaf age, erel is the relative photosynthetic efficiency, and V(c,j)max,opt is the PFT-dependent
optimum photosynthetic capacity. Four cohorts of increasing leaf age are defined between onset and leaf
fall from senescence.

Glossary

APAR absorbed photosynthetically active radiation
CESM1-BGC Community Earth System Model, version 1–BioGeoChemistry
CLMCN4 Community Land Model Carbon-Nitrogen version 4
CMIP5 Fifth Climate Model Intercomparison Project
COS carbonyl sulfide
CRU Climate Research Unit
DGVM Dynamic Global Vegetation Models
DOE U.S. Department of Energy
ESM Earth System Model
fAPAR Fraction of Absorbed Photosynthetically Active Radiation
FLUXNET FLUX NETwork
GOSAT Greenhouse Gases Observing Satellite
GPP gross primary production
HadGEM2-ES Hadley Centre Global Environmental Model version 2 Earth System
IAV interannual variability
ICOS Integrated Carbon Observation System
IPSL-CM5A-MR Institut Pierre Simon Laplace Coupled Model version 5A–Medium Resolution
ITCZ Intertropical Convergence Zone
JJA June July August
JULES Joint UK Land Environment Simulator
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LAI leaf area index
LMDz Laboratoire de Météorologie Dynamique
LUE light use efficiency
MODIS Moderate Resolution Imaging Spectroradiometer
MPI-ESM Max Planck Institute Earth System Model
MTE model tree ensemble
NCEP National Centers for Environmental Prediction
NEE net ecosystem exchange
NEON National Ecological Observatory Network
NorESM1-ME Norwegian Earth System Model
NPP net primary production
ORCHIDEE ORganizing Carbon and Hydrology in Dynamic EcosystEms
PAR photosynthetically active radiation
PFT plant functional type
RCP Representative Concentration Pathways
Reco ecosystem respiration
RMSD root-mean-square deviation
SIF Sun-induced fluorescence
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