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Abstract

We consider the interaction between an air-water flow and a rigid structure using a fast
accurate numerical model. Following the 3D low Mach compressible Euler model previously
developed and validated, a compressible fluid-structure interaction model is proposed. In the
context of a fictitious domain, a volumic penalization is applied inside the body to ensure
a rigidity constraint through a penalized velocity in order to get the correct motion of the
rigid body. The accuracy of this simple model is improved using block-based adaptive mesh
refinement technique. The improvement and the validity of our fluid-structure interaction
procedure is investigated through the numerical simulation of the water entry of a cylinder
freely falling and impacting the water. This test case is compared to experimental data and
other numerical simulations.

Keywords: Euler equations, low Mach, compressible, bi-fluid, mesh refinement, fluid-structure
interaction, fictitious domain, penalization, projection method, interface-sharpening.

1 Introduction

We consider fluid-structure interaction (FSI) in the context of coastal engineering. From previous
work, we have proposed a powerful model to simulate air-water flow [11]. This model is based on
a low Mach compressible approach which solves Euler equations in two phases (air/water), where
the viscous term in the Navier-Stokes equation is neglected. The model is referred as an artificial
compressibility model since it uses an non-physical speed of sound using an isothermal equation
of state. This allows a less restrictive time-step for faster simulations. In order to get both fast
and accurate results, an adaptive mesh refinement has been designed to refine area of interest,
especially around a structure embedded in the flow and everywhere it is necessary. The numerical
production of entropy is used as mesh refinement criterion. This approach has been validated and
confronted to many hydrodynamic problems [19, 9, 10, 2].
FSI problems are encountered in a wide range of problems and various methods are available to
take into account the presence of an obstacle in a flow. Mittal and Iaccarino [16] give a relevant
detailed review of such methods. For sake of simplicity, we have chosen to implement a penalization
method. This method has been presented by Coquerelle and al. [6] in the case of incompressible
flows. Following [5], we propose the formulation in the case of compressible flows.
In order to validated this formulation, we present the numerical simulation of water entry problem.
Indeed, the interaction between free surface and rigid body is of main interest in ocean engineering:
floating structure, sloshing, green water loading on deck, objects dropping or rising onto water
surface. This leads to many experiments in the case of wedge or cylinder falling into water [12, 13, 7]
and numerical simulations [24, 15, 22, 23, 20, 14]. Here we propose to investigate the water entry
of a cylinder freely falling and impacting the water as described experimentally by Greenhow and
Lin [12] and we compare our numerical simulations with [22, 23]. The first part of the paper recalls
the air-water model and its numerical formulation using finite volume in adaptive mesh refinement
framework. Then, the fluid-structure interaction model is presented. The last part of the paper is
devoted to the validation of the FSI model, through the numerical simulation of the water entry
problem of a circular cylinder.



2 Two-fluid low Mach compressible Euler model

2.1 Governing equations

We consider an inviscid isothermal compressible flow ruled by Euler equations with a mixture of
air and water [11]. The mass and momentum conservation equations give :

∂ρ

∂t
+∇ · (ρu) = 0 (1)

and

∂(ρu)

∂t
+∇ · (ρu⊗ u + pI) = ρg , (2)

where ρ denotes the density, p the pressure and u the velocity. The volume fraction φ follows an
advection equation written in non-conservative form in order to avoid spurious oscillations at the
interface air-water [11] :

∂φ

∂t
+ u · ∇φ = 0 . (3)

Equations (1), (2) and (3) form a hyperbolic system which is closed with an artificial pressure law,

p = p0 + c20(ρ− (φρA + (1− φ)ρW ) , (4)

where p0 is the reference pressure, c0 speed of sound in the mixture and ρA and ρW the density of
air and water respectively. The artificial speed of sound of the mixture is taken much below the
physical expected value in order to avoid a too restrictive time step due to the explicit scheme in
time and to get a Mach number about 0.1 compatible with almost incompressible flow.

2.2 Numerical implementation

The numerical resolution of the hyperbolic system is based on a Godunov-type finite volume
scheme. We use an explicit second order Runge-Kutta time integration’s scheme. The spatial
discretization is improved using the second order Monotonic Upwind Scheme for Conservation
Laws reconstruction scheme (MUSCL) with Barth-Jespersen limiter. The equation (3) is known
to be numerically very diffusive. Following [21] , a mass-conserving interface-sharpening procedure
has been applied to counteract the effect of the numerical diffusion, which lead us to solve a
corrective system of equations by means of a splitting procedure [2]:

∂ρ

∂τ
= φ2(1− φ)2(φ− c)(ρA − ρW ) ,

∂ρu

∂τ
= φ2(1− φ)2(φ− c)u(ρA − ρW ) ,

∂φ

∂τ
= φ2(1− φ)2(φ− c) ,

(5)

where c is computed numerically to insure mass conservation, i.e.:

c =

∫
Ω
φ3(1− φ)2 dΩ∫

Ω
φ2(1− φ)2 dΩ

. (6)

2.3 Mesh refinement strategy

A dynamic block based adaptive mesh refinement method (BB-AMR) with a local multi-time step
algorithm has been developed to balance fast computations and accurate results. The compu-
tational domain is divided in multiple blocks and each of them can be meshed according to its
refinement. In general, considering a hyperbolic system of conservation law of the form ,

∂(w)

∂t
+∇ · f(w) = 0 ,



where w denotes the conservative variables and f the conservative flux, as for the one we use here,
a mathematical entropy can be derived, veryfing the Lax’s entropy condition :

∂s(w)

∂t
+∇ · ψ(w) ≤ 0 ,

where the entropy flux ψ(w) satisfy ∇T
wψ = ∇T

ws(w)f ′(w). In the present case, for the two-fluid
model, the expression of entropy and entropy flux can be :

s =
1

2
u2 + c20ρ ln ρ− c20(ρW − ρA)φ ,

ψ = (
1

2
ρu2 + c20ρ(ln ρ+ 1))u .

The numerical entropy production is used as mesh refinement criterion for each block dividing
the computational domain. Locally, the block is coarser or finer according to the value of its
numerical production of entropy relative to the numerical production of entropy of the whole
domain. More details can be found in [9, 10, 2]. The interest of such a criterion is that the
entropy acts both as an indicator error as well as a indicator of locations where shocks occur
(ie. areas that need to be refined) as mentionned in [17] and [8]. Contrarily to previous domain
decomposition method based on Cuthill-McKee scheme [2], which is time consuming, now Morton’s
code is applied to the block numbering. Indeed, using space filling curves in order to renumber the
blocks allows to browse all blocks preserving their locality (see e.g. [18, 1]). Following the space
filling curve, each block is affected to a domain (or MPI process) according to a predefined number
of cells. It insures well balanced process and, most of the time, lower domain interfaces (lower
process communications). The Z-order numbering is very easy to implement and is computed just
once. The spatial coordinates of the block’s center are transformed into integer and translated in
binary. Then, the Morton code consists on interleaving the binary identification in order to form
a single binary number. For example, let us consider the triplet (2, 5, 0)10 translated in binary
(101, 101, 000)2,then interleaved (010100010)2 and finally it corresponds to the number 162. An
example of Z-order curve and domain decomposition is presented Fig. 1.

Figure 1: Examples of Morton numbering: Four iteration of the Zorder curve (left) and application
to AMR mesh decomposed in 4 domains (right).

3 Fluid-structure interaction

Among all methods available to take into account an obstacle in a flow, we seek the one which
allows us both an easy and time-saving procedure. Following [6], we choose a monolithic approach
and consider the fluid-solid system as unified. The penalization method consist in considering the
rigid body as a particular ”rigid-fluid”. The idea is to add a source term in the continuity and
momentum equation in order to impose the density of the solid ρs and a velocity field compatible
with the motion of a rigid solid u. Introducing the Heaviside function χ (χ equals 1 inside the



solid and 0 otherwise) and a penalization parameter λ, the formulation of the penalized problem
can be formulated as:

∂ρ

∂t
+∇ · (ρu) = χλ(ρ− ρs) (7)

∂(ρu)

∂t
+∇ · (ρu⊗ u + pI) = ρg + χλρs(u− u). (8)

Numerically, the Heaviside function is determined using a ray-casting algorithm [3]. In fluid, the
last term of equation (8) vanishes and one recovers Euler equations. Inside the solid, the last term
of the equation (8) exists and its contribution is weighted by λ. λ is chosen very large so that
λρs(u− u) becomes dominant and it remains u = u, where u is the velocity we want to apply in
the solid and will be defined below. Numerically, the implementation of the penalization seems
simple as only an additional source term has to be added. One needs to be careful about the value
of the penalization parameter since it must be chosen relative to the time step in order to keep
stability because of the explicit time scheme. However, as pointed out in [6], the fluid structure
problem can be solved by solving successively the Euler equations and a ”correction” equation
through time-splitting. This correction corresponds to the projection of the velocity field onto a
”rigid” velocity field. More details can be found in [4].

To find the penalization velocity relative to the velocity of the fluid, the latter is projected onto
a ”rigid” velocity field, that is a velocity that verifies :

u = VG + ω ×GM , (9)

where × denotes the cross product, VG is the translation velocity, ω the angular velocity and GM
the vector between G the center of gravity of the solid and an arbitrary point in the solid.
The projection can be obtained by minimizing the following functional over the solid domain Ω:

min J =

∫
Ω

(ρu− ρsu)2 dΩ .

In the case where ρs is non uniform, the translation velocity and angular velocity are determined
solving: (∫

Ωs

ρ2
s dΩ

)
VG + ω ×

(∫
Ωs

ρ2
sGM dΩ

)
=

∫
Ωs

ρρsu dΩ, (10)(∫
Ωs

ρ2
sGM dΩ

)
×VG +

(∫
Ωs

ρ2
s

(
GM2Id − GM⊗GM

)
dΩ

)
·ω =

∫
Ωs

ρρsGM×u dΩ, (11)

where Id denotes the identity matrix and ⊗ the tensorial product. In the case where ρs is
uniform, the translation velocity and angular velocity are simply determined by:

VG =
1

|M |

∫
Ω

ρu dΩ, (12)

and

ω = J
−1
∫

Ω

GM× ρu dΩ, (13)

where J
−1

is the inverse of the inertia matrix of the solid and M its mass.

4 Water entry of a circular cylinder

Greenhow and Lin did a drop experiment of horizontal cylinder in calm water [12]. They considered
a cylinder of diameter 0.11 m, density 500 kg/m3 (half buoyant cylinder) and another one, with
the same diameter, but a density of 1000 kg/m3 (neutrally buoyant cylinder). This experiment
was many times used to validate numerical simulations. As in [22], we consider a water height of
0.65 m, and we chose a air height of 1,35 m over a width of 2 m, in order to reduce the influence of



the mirror boundary conditions imposed everywhere. The cylinder, with zero velocity, is dropped
from a height of 0.5 m, which is measured from the centre of the cylinder at rest to the calm
water surface. The computational domain is divided in 32× 32 blocks composed of one cell. The
maximum level of mesh refinement is 5. It means that the maximum number of cells per block
is (25, 25, 1), which corresponds to a mesh size of 1.9 mm. Initially, the mesh is refined at the
maximum level around the cylinder and at the air-water interface. During the computation, the
mesh is adapted according to the numerical production of entropy. Let Pω (resp.Pb) denotes the
average numerical production of entropy over all blocks (resp. one block), then if Pb < αminPΩ

the block is coarsen and if Pb > αminPΩ the mesh is refined. With αmin = 20% and αmax = 40%
the initial mesh is composed of more than 200000 cells and then around 80000 cells as presented
Fig. 2.

Figure 2: Number of cells during the adaptive mesh refinement procedure.

The computation, over 8 domains (or Mpi processes) run for 2 hours on one single IntelCoreI7
processor for a real time simulation of 1.2 seconds. The boundary of the cylinder, which circum-
ference is discretized in 64 parts, is meshed with triangle faces in order to define the heaviside
function χ. On Fig. 3, the position of the centre of the cylinder is plotted during time. The
cylinder impact the water at t = 0.3s. As the cylinder drop in the air, the variation of density is
not important and the curves are superposed. After, the half buoyant cylinder naturally rise the
surface. The calculated results for the motion of the cylinder into the water are compared with
the experimental data by Greenhow and Lin [12], and reasonable agreement is shown.

Figure 3: Position of the center of the cylinder during time. Red neutral buoyant cylinder, blue
half buoyant cylinder. Solid line numerical simulation, point experiment.

The free surface profiles at t = 0.385s for the half buoyant cylinder is shown Fig. 4. Our



simulation (figure at left and red solid line at right) is compared to the experimental result of
Greenhow and Lin [12] and to the result of Sun and Faltinsen [22] (green solid line) using boundary
element method (BEM) . We found a good agrement. One can notice that, thanks to the interface
sharpening procedure (5), the thickness of air-water interface is lower than 3 cells.

Figure 4: Penetration of the cylinder at t = 0.385s. Left: present numerical simulation. Right:
Experiment [12], free surface profile of present numerical simulation with red solid line, free surface
profile of BEM results by [22] with green solid line.

Fig. 5, water entry of half buoyant cylinder at t = 0.37s, t = 0.63s, t = 0.77s are presented.
On the left, according to the block based adaptive mesh refinement procedure the mesh and the
numerical production of entropy are presented. In the middle the density is plotted and describe
the free surface profiles. This results are compared to the results of Sun and al. [23] using weakly
compressible Smoothed particle hydrodynamics (SPH) method. We found also a good agreement.

Figure 5: Water entry of half buoyant cylinder at t = 0.37s, t = 0.63s, t = 0.77s. Left: mesh and
numerical production of entropy (green: zero, blue: negative value). Middle: density (red:water,
blue:air). Right: results of Sun and al. [23] using SPH method.



5 Conclusion

The aim of this study was to propose a fast and reliable procedure to treat fluid-structure inter-
action from an existing weakly compressible air-water model. By considering a fictitious domain
approach, we have developed a volumic penalization based on a prediction-correction method. The
body’s motion is imposed by a penalization velocity which is computed according to the flow’s dy-
namic. This approach was confronted to the water entry problem of a cylinder freely dropping into
calm water. The results were successfully compared to experimental and numerical results. The
fluid-structure solver has greatly benefited from Block Based Adaptive Mesh Refinement procedure
and can be considered as a good compromise between accuracy and time computing.
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