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ABSTRACT

The Regularized Nonlinear Acceleration (RNA) algorithm is an acceleration
method capable of improving the rate of convergence of many optimization
schemes such as gradient descend, SAGA or SVRG. Until now, its analysis is lim-
ited to convex problems, but empirical observations shows that RNA may be ex-
tended to wider settings. In this paper, we investigate further the benefits of RNA
when applied to neural networks, in particular for the task of image recognition
on CIFAR10 and ImageNet. With very few modifications of exiting frameworks,
RNA improves slightly the optimization process of CNNs, after training.

1 INTRODUCTION

Successful Deep Convolutional Neural Networks(CNNs) for large-scale classification are typically
optimized through a SGD algorithm (Krizhevsky et al., 2012). Refining this optimization scheme
is a complicated task because it requires a lot of engineering that is not well understood mathe-
matically (Mallat, 2016; Bach, 2014). Instead, we propose to wrap an adhoc acceleration tech-
nique applied at regular interval, to which we refer as Regularized Nonlinear Acceleration algorithm
(RNA) (Scieur et al., 2016). It is generic as it does not depend on the optimization algorithm, but
simply requires several successive steps of the flow of gradient which is a minimal adaptation in
many frameworks. This meta-algorithm has been applied successfully to the gradient descend in the
smooth and strongly convex cases, with convergence and rate guarantees (Scieur et al., 2016). Re-
cent works Scieur et al. (2017) show in addition that it improves standard optimization scheme such
as SAGA or SVRG (Defazio et al., 2014; Johnson & Zhang, 2013), which indicates it is a strong
candidate as an accelerated method in stochastic non convex cases.

RNA is an ideal meta-learning algorithm for deep CNNs, because contrary to many acceleration
methods ?Güler (1992), the optimization can be performed off-line and does not involve any extra-
learning process that can be potentially expensive. It means one can study the optimization a poste-
riori. Its computations are not expensive, because it consists in a well-chosen linear combinations
of several optimization steps. It requires roughly to invert a matrix which is small, in comparison
with the number of parameters.

In this work, we study its application to several recent architectures, like a ResNet (He et al., 2016),
applied to challenging standard datasets, like CIFAR10 or ImageNet. Our contribution are as follow:
first we demonstrate that it is possible to achieve an accuracy similar to the final epoch two times
earlier; secondly, we show that RNA improves slightly the final classification performances, at no
cost. We provide an implementation that can be incorporated with only few lines of code in many
python deep learning frameworks, like PyTorch1.

2 ACCELERATING WITH REGULARIZED NONLINEAR ACCELERATION

This section intuitively describe the derivation of RNA procedure and we refer the reader to (Scieur
et al., 2016) for more extensive explanations and theoretical guarantees. For the sake of simplicity,
we consider a sequence {θk}0≤k≤K of K + 1 elements of Rd resulting from the different succes-
sive steps of an iterative optimization algorithm. For example, each θk could correspond to the
parameters of a neural network at epoch i trained via a gradient descent algorithm, i.e.:

θk+1 = θk − η∇f(θk) ,
1Code can be found ???
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with η the step size (or learning rate) of the algorithm. Local minimization of f is naturally achieved
by θ∗ where∇f(θ∗) = 0. RNA aims to linearly combine the parameters {θk}k into θ̂:

θ̂ =
∑
k≤K

ckθk s.t.
∑
k≤K

ck = 1 , (1)

so that ∇f(θ̂) becomes smaller. In other terms, RNA output θ̂ which solves approximatively

minc
∥∥∇f (∑k≤K ckθk

)∥∥2 subject to
∑

k≤K ck = 1. (2)

In the next subsection, we describe the algorithm and intuitively explain the acceleration mechanism
when using the optimization method (1), because this restrictive setting makes the analysis simpler.

2.1 REGULARIZED NONLINEAR ACCELERATION ALGORITHM

In practice, (2) corresponds to a difficult task. Instead, we will assume that the function f is approxi-
mately quadratic in the neighbourhood of {θk}k≤K . This approximation is common in optimization
for the design of (quasi-)second order methods, such as the Newton’s method or BFGS. Thus, ∇f
can be considered almost as a linear function, which means:

−∇f
(∑

k≤K ckθk

)
≈
∑

k≤K ck∇f (θk) . (3)

From a finite difference scheme, one can easily recover {∇f(θk)}k from the iterates in (1), because
for any k,−η∇f(θk) = (θk+1−θk). As linearized iterates of a flow tends to be aligned, minimizing
the `2-norm of (3) requires to incorporate some regularization to avoid ill-conditionning effects:

minc ‖Rc‖2 + λ‖c‖2 subject to
∑

k≤K ck = 1.

Where R = [θ1 − θ0, . . . , θK − θK−1]. This corresponds exactly to the combination of steps 2
and 3 of Algorithm 1. Similar ideas hold is the stochastic case Scieur et al. (2017), under limited
assumption on the signal to noise ratio.

Algorithm 1 Regularized Nonlinear Acceleration (RNA), computational complexity of each step in
paranthesis.
Input: Sequence of vectors {θ0, θ1, . . . , θk} ∈ Rd , regularization parameter λ > 0.

1: Compute R = [θ1 − θ0, . . . , θK − θK−1] O(K)
2: Solve (RTR+ λI)z = 1. O(K2d+K3)
3: Normalize c = z/(

∑
k≤K zk). O(K)

Output: θ̂ =
∑

k≤K ckθk. O(Kd)

2.2 PRACTICAL USAGE

We release a software based on PyTorch that consists in minimal modifications of existing standard
procedures. As claimed, the RNA procedure does not require any access to the data, yet simply
to store regularly some parameters in a buffer. An on the fly acceleration on CPU is achievable,
because all the considered matrix are small and storage as well does not consume resources..

3 APPLICATIONS TO CNNS

3.1 CLASSIFICATION PIPELINES

Because the RNA algorithm is generic, it can be easily applied on many different existing training
codes. We used the method with various CNN on CIFAR10 and ImageNet; the first dataset consists
of 50k RGB images of size 322 whereas the latter is more challenging with 1.2M images of size
2242. Data augmentation via random translation is applied. In both cases, we trained our CNN via
a SGD of momentum 0.9 and a weight decay of 10−5, until convergence. The initial learning rate is
0.1, and is decreased by 10 at epoch 150, 250 and 30, 60, 90 respectively for CIFAR and ImageNet.
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Figure 1: Comparison of Top-1 error between vanilla and extrapolated network.

Network Vanilla Extrapolated

VGG 6.18% 5.86%
Resnet18 4.71% 4.64%
Densenet 121 4.50% 4.42%

Network Vanilla Extrapolated

AlexNet 43.72% 43.72%
Resnet18 30.11% 29.64%

Table 1: Lowest Top-1 error on CIFAR10 (Left) and ImageNet (Right)

For ImageNet, we used the fame AlexNet (Krizhevsky et al., 2012) and ResNet (He et al., 2016) be-
cause they are standard architectures on vision. For CIFAR dataset, we employed the standard VGG,
ResNet and DenseNet (Huang et al., 2017). The AlexNet is trained with drop-out (Srivastava et al.,
2014) on its fully connected layers, whereas the others CNNs are trained with Batch-normalization
(Ioffe & Szegedy, 2015).

The RNA was used off-line using the parameters K = 10 and λ = 10−8, using the parameters
produced by the final iteration of each epochs. We then reported the new classification performances
at each epoch.

3.2 NUMERICAL RESULTS

Figure 1 corresponds to the performances on the validation set, of the vanilla and extrapolated CNN
via RNA, at each epoch. Observe that the RNA accuracies are smoother than the original CNNs
which shows an effective variance reduction. In addition, we observe the impact of acceleration:
quickly, the extrapolated network presents good generalization performance, even competitive with
the best one. Several iterations after a learning rate drop are necessary to obtain an acceleration
because it corresponds to a brutal change in the optimization. Furthermore, selecting the λ hyper
parameters can be tricky: for example, a larger λ at epoch 40 removes the outlier validation perfor-
mance of Figure 1, for the ResNet-18. This is a direct implication of our decision to use generic
parameters to make the comparison as fair as possible, but adaptive strategy have been discussed in
Scieur et al. (2017).

The Tables 3.2 reports the lowest validation error of the vanilla architectures compared to their
extrapolated counterpart. In every setting, the off-line optimization performed by the RNA has only
slightly improved the final accuracy of the CNN. But we remind that these improvement have been
obtained after the training procedure, in an offline fashion, without extra-learning.

4 FUTURE WORK

EDOUARD: possible de retirer, j’anticipe les reviewers
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Several questions are opened: is it possible to keep performances while restarting from the extrap-
olated CNN? Can we improve the RNA performances by feeding more succesive iterations to the
algorithm? Can we extend current proofs to deep pipelines?
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