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h i g h l i g h t s
� Intercomparisons were carried out to test the performance and uncertainty of receptor models.
� More than 85% of the reported sources met the model quality objectives.
� Two thirds of the output uncertainties were coherent with those in the input data.
� PMF v2, v3 and CMB 8.2 estimated the source contributions satisfactorily.
� The accuracy of receptor models is in line with the needs of air quality management.
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The performance and the uncertainty of receptor models (RMs) were assessed in intercomparison ex-
ercises employing real-world and synthetic input datasets. To that end, the results obtained by different
practitioners using ten different RMs were compared with a reference. In order to explain the differences
in the performances and uncertainties of the different approaches, the apportioned mass, the number of
sources, the chemical profiles, the contribution-to-species and the time trends of the sources were all
evaluated using the methodology described in Belis et al. (2015).

In this study, 87% of the 344 source contribution estimates (SCEs) reported by participants in 47
different source apportionment model results met the 50% standard uncertainty quality objective
established for the performance test. In addition, 68% of the SCE uncertainties reported in the results
were coherent with the analytical uncertainties in the input data.

The most used models, EPA-PMF v.3, PMF2 and EPA-CMB 8.2, presented quite satisfactory perfor-
mances in the estimation of SCEs while unconstrained models, that do not account for the uncertainty in
the input data (e.g. APCS and FA-MLRA), showed below average performance. Sources with well-defined
chemical profiles and seasonal time trends, that make appreciable contributions (>10%), were those
better quantified by the models while those with contributions to the PM mass close to 1% represented a
challenge.

The results of the assessment indicate that RMs are capable of estimating the contribution of the major
pollution source categories over a given time window with a level of accuracy that is in line with the
needs of air quality management.
© 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Source Apportionment (SA) is the practice of deriving infor-
mation about the pollution sources and the amount they contribute
to measured concentrations. Receptor models (RMs) apportion the
measured mass of pollutants to its emission sources by using
multivariate analysis to solve a mass balance equation (Friedlander,
1973; Schauer et al., 1996; Thurston and Spengler, 1985). RMs
derive information from measurements including estimations of
their uncertainty and have been extensively used in Europe to es-
timate the contribution of emission sources to atmospheric pollu-
tion at a given site or area (Belis et al., 2013; Viana et al., 2008a). In
the Chemical Mass Balance (CMB) approach, both chemical con-
centrations of pollutants, including their uncertainties, and chem-
ical fingerprints of the sources (source profiles) are used as input. In
the multivariate factor analytical approach (MFA), only environ-
mental concentrations and uncertainties of pollutants are used as
input data and themodel computes the factor profiles and themass
contributed by the factors. The CMB approach is sensitive to the
selection of sources, their stability and the collinearity among them.
Differences between the methods used to analyse the source and
ambient samples may also impact the results. On the other hand,
MFA models identify factors that have to be attributed to emission
sources. For a more thorough discussion about the pros and cons of
the two approaches see Hopke (2010), Watson et al. (2008) and
Belis et al. (2013).

Previous studies provided first estimates of the output vari-
ability by comparing the results of different RMs on the same
dataset (Hopke et al., 2006; Larsen et al., 2008; Favez et al., 2010;
Viana et al., 2008b; Pandolfi et al., 2008). In the present work,
carried out in the frame of FAIRMODE (Forum for Air Quality
Modelling), intercomparison exercises aimed at quantitatively
assessing the performance and the uncertainty of RMs by
comparing the results reported from different practitioners on the
same dataset using different RM techniques.
2. Methodology

The methodology adopted in this research to assess the model
results evaluates all the aspects of a source apportionment study,
including the variability due to the influence of different practi-
tioners using the same model on the same data (Belis et al., 2015).
The procedure includes: complementary, preliminary and perfor-
mance tests.

The “complementary tests” aim at providing ancillary infor-
mation about the performance of the solutions in terms of appor-
tioned mass and number of source categories. The “preliminary
tests” are targeted at establishing whether the entities identified in
the results, either a factor or a source (hereon, factor/source), are
attributable to a given source category. In addition to the correla-
tion coefficient (hereafter, Pearson), the standardized identity dis-
tance (SID), that prevents the distortions caused by source profiles
with dominant species, is used (more details in Belis et al., 2015).
The “ff tests” are the comparison among factor/sources attributed
by participants to the same source category in all the solutions
while “fr tests” refer to the comparison between reported factor/
sources and a reference value. The objective of the “performance
tests” is to evaluate whether the source contribution estimates
(SCEs) are coherent with a 50% standard uncertainty target value
using the z-score performance indicator complemented by the z0-
score and zeta-score indicators (Thomson et al., 2006; ISO 13528,
2005). In this study, SCE denotes the mass attributed to a source

http://creativecommons.org/licenses/by/4.�0/


C.A. Belis et al. / Atmospheric Environment 123 (2015) 240e250242
or factor in the results obtained with either CMB or MFA ap-
proaches. The methodology is fully described in the companion
paper by Belis et al. (2015) and was implemented using the open
source software R (and R-studio). Source categories with less than
five factors/sources were not evaluated and profiles attributed by
participants to more than one category were tested in each of the
proposed categories.

Considering that source apportionment studies are mostly tar-
geted at identifying and quantifying the typical sources in the
studied area, the performance tests were conducted on the average
SCE over the whole time window represented in every dataset.
Moreover, the SCE time series were evaluated using the root mean
square error normalised by the standard deviation/uncertainty of
the reference value (RMSEu), as discussed in Belis et al. (2015).

The intercomparison exercises were structured in two rounds
involving 16 and 21 organizations respectively. In the first round, 22
results were reported and 25 were provided in the second one. A
real-world PM2.5 dataset collected in Saint Louis (USA) was used in
Round 1 (Table 1). The dataset used for the intercomparison was
developed by merging two datasets: one of inorganic species
collected every day (Lee et al., 2006) and one of organic species
collected every sixth day over the same time window (Jaeckels
et al., 2007). In the final dataset, the structure of the uncertainties
of the different species was heterogeneous with differences be-
tween species deriving from the data treatment in the original
datasets and variability within single species due to the different
analytical batches that were necessary to cover the whole moni-
toring campaign. In addition, the uncertainty of organic tracers was
complex to quantify due to the possible influence of atmospheric
chemistry and radiation on the degradation of these compounds
(Galarneau, 2008; Hennigan et al., 2010).

The site and time window in which the real-world dataset was
collected was not revealed to the intercomparison participants. The
dataset containing the concentrations of 44 species in 180 samples
with their analytical uncertainties was distributed to participants
together with the analytical parameters (uncertainty of the method
and minimum detection limits) and the emission inventory of the
study area.

In Round 1, the following preliminary tests were performed:
Pearson and SID between factor/source profiles, Pearson between
log-transformed factor/source profiles, and Pearson between fac-
tor/source time trends. Only ff tests were accomplished in this
round because of the absence of independent unbiased reference
values.

In the performance tests of Round 1, the SCE reference value for
each source category was the average of the results reported by the
participants. The reference values were obtained by calculating the
Table 1
Outline of the datasets used in every round of the intercomparison exercises.

Round 1

Type of data Real-world dataset
Site Saint Louis (USA)
Time window June 2001eMay 2003
Pollutant PM2.5

Number of samples 178, 24 h samples
Number of chemical

species
44

Carbonaceous species OC/EC (steps)
Ionic species sulphate, nitrate, ammonium
Elements Al, As, Ca, Cr, Cu, Fe, K, Mn, Ni, Pb, Rb, Si, Sr, Ti, V, Zna

Ba, Co, Hg, P, Se, Zr
Organic species indeno(cd)pyrene, benzo(ghi)perylene, benzo(a)pyrene, co

benz(a)anthracene, fluoranthene, pyrene, benzo(b,k)fluora
fluoranthene

a The species in this line are common to both datasets.
robust average (Analytical Methods Committee, 1989) using only
the SCEs of source/factors that passed the preliminary tests
(Table 2).

In the second round, a synthetic dataset with known reference
values that were unbiased and independent from the results re-
ported by participants was used (Supplementary Material S1). The
chemical species included in the synthetic dataset (Round 2) are
reported in Table 1 and the procedure followed to generate it is
given in Belis et al. (2015).

Since the site was not disclosed to participants, the emission
inventory of the study area and a set of 23 local source profiles
(more than one for every source category) were distributed to them
in order to: a) provide the necessary information to create the input
files for CMB models, and b) support the interpretation of the
models’ output.

In addition to the preliminary tests performed in the previous
round, the Pearson between the factor/source contribution-to-
species of the Round 2 results was also computed. All of the pre-
liminary tests were performed by comparing factor/sources re-
ported by participants with the reference source for the considered
source category (fr tests).

The model abbreviations used in this document are: CMB8.2,
Chemical Mass Balance v. 8.2 by U.S. EPA; ME, Multilinear Engine;
PCA, Principal Component Analysis; APCS, Absolute Principal
Component Score; FA-MLRA, Factor Analysis-Multilinear Regres-
sion; COPREM, constrained physical receptor model and PMF,
Positive Matrix Factorization. The code “PMF200 denotes the pro-
gram PMF2 described by Paatero (1997). The codes “EPAPMF3,
EPAPMF4, and EPAPMF500 denote the respective releases of the U.S.
EPA program “EPA PMF”.

3. Results and discussion

3.1. Complementary tests

3.1.1. Mass apportionment
The sample-wise comparison between the sum of the SCEs in

every result and the gravimetric mass are summarised using nor-
malised target diagrams (Fig. 1). More than 70% of the solutions in
Round 1 rank in the area of acceptance (outer circle). Most scores
rank in the lower quadrants indicating a tendency to underestimate
the observed mass (the distance to the horizontal axis is propor-
tional to the PM2.5 mass that was not apportioned). On the contrary,
the evident overestimation of the mass observed in two solutions is
likely due to problems in the conversion of normalised data to
concentration values rather than to errors in the apportionment of
the mass. In Round 2, the majority of solutions (ca. 90%) rank in the
Round 2

Synthetic dataset
Milan (Italy)
JanuaryeDecember 2005
PM2.5

364, 24 h samples
38

OC/EC (total)
sulphate, nitrate, ammonium, chloride

Sb, Sn, Na, Mo, Cd, Mg
ronene, benzo(e)pyrene, dibenz[a,h]anthracene, levoglucosana

nthene, benzo(j) chrysene, benzo(b)fluoranthene, benzo(k)
fluoranthene



Table 2
Source categories, codes and reference values used in every round of the intercomparison.

Round 1 Round 2

Code Source category Reference SCE (mg/m3) Code Source category Reference SCE (mg/m3)

BioB Biomass burning/wood burning 1.59 BioB Biomass burning/wood burning 4.33
BRA Road dust/brake abrasion 0.83 SO4 Ammonium sulphate 7.12
COPPER Copper production 0.57 NO3 Ammonium nitrate 12.69
DIE Diesel vehicles 0.42 DUST Soil dust/crustal 4.01
DUST Soil dust/crustal 0.74 ROAD Road dust 2.68
GAS Gasoline vehicles 0.59 SALT Sea salt/road salting 0.52
INDU Industrial emissions/combustion 1.07 TRA Exhaust emission from vehicles 6.63
LEAD Lead smelter 0.42 INDU Industrial emissions/point sources 5.11
NO3 Ammonium nitrate 2.98
SEC Secondary aerosol 6.36
SHIP Ship emissions 1.63
SO4 Ammonium sulphate 5.99
STEEL Steel processing 1.57
TRA Traffic exhaust 2.44
ZINC Zinc smelter 0.58

Fig. 1. Target diagrams summarizing the mass apportionment in the first (left) and second (right) rounds. The outer circle delimits the acceptance area and the inner circle
represents the boundary of scores with Pearson equal to 0.7. Only scores outside the inner circle are labelled with the model abbreviation and solution code. RMSD’: unbiased root
mean square difference (Jolliff et al., 2009).
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area of acceptance and show little bias indicating that many solu-
tions achieved a quite satisfactory apportionment of the gravi-
metric mass to its sources. In these tests, no clear relation between
the type of model used and the performance is observed.
3.1.2. Number of factor/sources
There are different techniques to determine the number of

sources (e.g. Henry et al., 1984). The procedures followed by par-
ticipants to determine the number of sources were based on multi-
criteria, the most common of which were: a) the impact of the
number of factors on themodel diagnostics, b) the stability of factor
profiles across different models set up, and c) the physical meaning
of the factor profiles and their comparability with source profiles
from the literature.

In Round 1, nine factor/sources per solution are reported on the
average (Table 3). One half of the solutions identifies between six
and ten factor/sources while six solutions report more than 10. An
approximation of the expected number of factor/sources for this
round is derived from the original solution of the inorganic dataset
obtained using PMF (Lee et al., 2006), which identified 10 different
source categories. In this round, the estimations of PMF and CMB
are relatively close. In Round 2, more than half of the solutions
report the exact number of factor/sources used to design the
dataset (8) and all the solutions, except one, report between six and
nine factor/sources.

The tests suggest that the reliability of the performance di-
agnostics influence the ability of the tools to establish the most
suitable number of factor/sources. Often, unconstrained MFA tools
rank far from the average. The higher number of factor/sources in
COPREM is likely due to the attempt to apportion the secondary
organic aerosols (not present in the synthetic dataset) and the split
of ammonium sulphate into (NH4)2SO4 and (NH4)HSO4.

No relevant differences in the number of factor/sources are
observed between CMB8.2 and the different versions of PMF.

3.2. Identity and uncertainty of the factor/sources

3.2.1. Factor/source identity

3.2.1.1. Chemical profiles. Fig. 2 shows the distribution of the
Pearson and SID values used for comparing the chemical profile of



Table 3
Average number of reported factor/sources by model.

Model Round average CMB8.2 PMF2 EPA
PMF3

EPA
PMF4

EPA
PMF5

ME-2 COPREM PCA APCS FA-MLRA Reference

Round 1 9 8 9 9 e e 6 13 7 11 e 10a

Round 2 9 8 8 7 7 8 8 13 e e 6 8

a Indicative reference.

Fig. 2. Similarity of factor/source chemical profiles in each source category (ff tests) in Round 1 calculated using Pearson (left) and SID (right). Pearson: values above the broken line
rank in the area of acceptance. SID: accepted values are those below the broken line. The number of tested factor/sources is reported on top of each bar.
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each factor/source to all of the others attributed by practitioners to
the same source category (ff tests) in Round 1. More than 75% of the
Pearson values are above the limit of acceptance (broken line),
indicating that the majority of the source categories present rela-
tively comparable chemical compositions. The most heterogeneous
categories (SHIP, BRA, DUST, SEC, STEEL and ZINC) show between
25% and 75% of factor/sources in the rejection area.

In this step, the number of factor/sources passing the SID test is,
in the majority of cases, lower than those passing the Pearson.
Therefore, there are more categories with profiles in the rejection
area (e.g. DIE and LEAD).

Considering the two indicators, SHIP and BRA are amongst the
most heterogeneous categories. The dissimilarities observedwithin
SHIP are likely due to the variety of chemical profiles allocated to
this source category in the reported solutions. Due to similar fuel
and combustion conditions, SHIP source profiles may be difficult to
distinguish from stationary sources such as energy plants, oil re-
fineries and other industrial processes (Viana et al., 2014). Only six
profiles were attributed to the heterogeneous category BRA. Some
of them, obtained with unconstrained factor analysis (APCS), are of
difficult interpretation due to the extremely high concentration of
Ca or the absence of Ba.

In Round 2, Pearson and SID tests point out SALT and TRA as
categories where a discrete number of chemical profiles diverge
from the reference (Fig. 3; see discussion in sections 3.2.1.2 and
3.2.1.3). In addition, Pearson test highlights also factor/sources in
INDU as poorly comparable to their reference source chemical
profile. This source category is, by definition, quite heterogeneous
considering that it includes factor/sources attributed to different
types of industries, combustion processes, without excluding
regional (secondary) aerosol. Because of their simple chemical
composition, SO4 and NO3 are the source categories in which fac-
tor/source profiles resemble more the reference profile in the
Pearson tests. Nevertheless, these source categories are much less
homogeneous when tested using SID, which gives more weight to
minor components in the factor/source profiles. This may indicate
there are different sources of precursors associated to these sec-
ondary compounds.

The very limited changes observed in the Pearson values with
log-transformed data in the two steps suggest that this kind of
transformation is not solving efficiently the problem of dominant
species in the profiles. For a more detailed discussion about the
indicators of similarity see the companion paper by Belis et al.
(2015).

The correlation (Pearson) between factor/sources identified in
Round 1, on the basis of their time series, is summarized in Fig. 4
(left). The time series of BioB, COPPER, LEAD, NO3 and ZINC are
quite comparable among the different reported results. For the
industrial sources, the time correlation is attributed to the effect of
the intermittent pattern determined by the changes in wind di-
rection and the time windows in which the emitting facility was in
operation. Other sources, such as BioB and NO3, are synchronous
due to common seasonal patterns determined by the trends in the
emission rates and in atmospheric variables (e.g. air temperature,
thermal inversion).

Factor/sources in the categories BRA, DIE, INDU, SEC, SHIP, and
TRA display different temporal patterns. Most of these sources
show also medium to poor correlation among the different chem-
ical profiles (Fig. 2). The poor time correlations in factor/sources of
the categories TRA, DIE and GAS may, at least in part, be connected
with the time resolution of the data used for Round 1. One sample
every sixth day may not be optimal to capture a sufficient number
of weekends to show the week day/weekend patterns.

In Round 2, the time trends of the factor/sources are quite
comparable with the reference for the majority of the source
categories.

Despite the good correlations among the reported chemical
profiles, likely determined by the presence of a combination of



Fig. 3. Comparison of factor/source chemical profiles with the reference profile for every source category (fr tests) in Round 2 calculated using Pearson (left) and SID (right).
Pearson: values above the broken line rank in the area of acceptance. SID: accepted values are those below the broken line. The number of tested factor/sources is reported on top of
each bar.

Fig. 4. Comparison of factor/source time series in Round1 (ff tests, left) and in Round 2 (fr tests, right) using Pearson. Values above the broken line rank in the area of acceptance.
The number of tested factor/sources is reported on top of each bar.
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organic carbon and characteristic trace elements (e.g. Cu, Sn and
Cr), ROAD is the source category with the lowest correlation be-
tween the reported time trends and the reference. This has been
interpreted as the influence, to varying extents in each solution, of
elements like Si, Al, and Mg that are also typical of DUST profiles
and that may blur the boundary between these two categories. Also
INDU shows quite variable results in this test and the consider-
ations made for Round 1 are valid also in this case.

Source categories with inhomogeneous chemical profiles, such
as INDU, often present poorly correlated time trends suggesting
that an imperfect separation and identification of the sources leads
to a poor fit in both the chemical composition and the temporal
pattern. Nevertheless, this general rule is not always valid. For
instance, the time trends of SALT in Round 2 are quite comparable
(Fig. 4) even though the chemical profiles of the factor/sources
attributed to it are not homogeneous (Fig. 3). This apparent
contradiction is explained by the high variance between the SALT
time trends in the different reported results that is not detected by
the Pearson test because the oscillations are synchronous.
3.2.1.2. Contribution-to-species. The contributions of sources to the
mass of every single species in the dataset expressed as percentage
(contribution-to-species) were reported only in Round 2 (Fig. 5).
The results reported in the different solutions are quite comparable
among each other and with the reference source. As already
observed in the tests for chemical profiles, INDU and ROAD show a
number of records in the action area. Also the factor/sources in
NO3, that are comparable with the reference in terms of time trend,
show a non-negligible share of scores in the action area. In this
category, the lower scores observed in the contribution-to-species
may be attributed to the lower influence of dominating species, like
ammonium nitrate, and higher influence of minor species such as
Ca, As, Mo, Rb, Cl and PAHs.

On the other hand, factor/sources in the SALT category, which
show poor correlation with the concentrations in the reference
profile, are well correlated with the reference in terms of
contribution-to-species. In the SALT chemical profiles, Cl and Na
represent on average 81% and 49% of the source mass, respectively,
and their relationship is close to the stoichiometric ratio in sodium



Fig. 5. Comparison of factor/source contribution-to-species with the reference profile
for every source category (fr tests) in Round 2. Values above the broken line rank in the
area of acceptance. The number of tested factor/sources is reported on top of each bar.

Fig. 6. Evaluation of chemical profiles uncertainties, using the weighted difference
(WD) indicator in Round 2 (fr tests). Values below the broken line rank in the area of
acceptance. The number of tested factor/sources is reported on top of each bar.
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chloride. As for the contribution-to-species, the ratio between the
two elements (39% and 58% of the SALT mass, respectively) in-
dicates that the share of Cl in SALT is lower than the one it would
have been if the only source consisted of NaCl. This mismatch in-
dicates the contribution of additional sources to this element other
than sea and road salt (e.g. INDU).

3.2.2. Chemical profile uncertainty
In order to assess the uncertainty of the factor/source profiles,

the weighted differences (WD, Karagulian and Belis, 2012) between
the source profiles reported by participants and the corresponding
reference profiles were computed.

The interpretation ofWD scores depends on the relevance of the
reference value for the factor/sources being tested. If a factor/source
has been attributed to the wrong source category, the reference is
not appropriate to evaluate that factor/source. For that reason, WD
are interpreted by taking into account the results of the chemical
profile tests (see section 3.2.1.1).

In Round 1, the fr tests were carried out using external reference
profiles available in the literature and are, therefore, used only for
informative purposes (not reported).

The WD test shows that, in Round 2, SALT is the category with
the highest proportion of scores outside the area of acceptance
(above the broken line) followed by NO3, INDU, SO4 and ROAD
(Fig. 6). The analysis of the chemical profile's uncertainty using the
WD indicator shows that, in this round, 65% of factor/sources pre-
sent acceptable WD scores. In addition, the joint evaluation with
the chemical profile test suggests that only 18% of the factor/source
profiles, which allocation to source categories was confirmed,
underestimated their uncertainty.

3.3. Performance tests

In this section the results of the tests aiming at evaluating the
SCEs, the most important output of a source apportionment study,
are presented. The assessment of the SCE time trends is discussed in
the companion paper by Belis et al. (2015).

3.3.1. Reported source contribution estimates
The distributions of the SCEs reported by participants in Round

1 and 2 are shown in SupplementaryMaterial S2. The coefficients of
variation (CVs) of the SCE reported by participants for every source
category are, on average, 0.77 and 0.45 in the first and second
round, respectively. NO3 and SO4 are the source categories with the
lowest CV (between 0.26 and 0.48). In Round 1, CVs higher than the
unity are observed in DUST, SHIP, INDU and ZINC while GAS, DIESEL
and BRA show values in the range 0.80e1.00. In Round 2, the SCEs
are higher, because of the higher PM levels, and their relative
variability within source categories is lower than in Round 1. The
highest CV is the one of SALT (0.70) followed by DUST and INDU
(0.60 and 0.55. respectively). As in Round 1, the lowest CVs are
those in SO4 and NO3 (0.28 and 0.31, respectively).

3.3.2. Z-scores
Fig. 7 summarises the z-scores assigned to each factor/source

reported by participants in Round 1. The z-scores are in the
acceptance area 85% of the time, 3% in the warning area, and 12% in
the action area. The majority of solutions, 19 out of 22, present at
least 75% of the scores in the acceptance area. Only solution G2
presents themajority of scores in the action area. Such performance
is likely due to the problems in mass quantification highlighted in
the complementary tests (section 3.1.1).

DUST is the source category with the highest variability and the
highest number of scores in the action area due to overestimation
(6 scores) while SHIP and BRA are the ones with the highest
number of scores in the action area due to underestimation (4 and 2
scores, respectively). Source categories DIE, GAS, BIOB, INDU and
ZINC present three or less profiles with scores in the upper action
area each. Inaccuracy in the SCE estimation of DUST, SHIP and BRA
have been associated with the lack of homogeneity in the chemical
profiles of the source factors attributed to them, as pointed out in
the preliminary tests. Alternatively, those factors/sources with poor
scores in DIE and GAS are likely connected to results affected by the
limited number of weekend days included in the dataset, as indi-
cated by the preliminary test on time trends. The few z-scores of
INDU ranking in the action areamay be associatedwith divergences
in both time trends and chemical profiles.

In Round 1, about 80% of the reported factor/sources were ob-
tained either with EPAPMF3, PMF2 or CMB8.2. In each of these
models, more than 80% of the z-scores are placed in the area of
acceptance. Interpretation of the results of the other models should
be made with caution due to the limited number of reported so-
lutions obtained with them.

An 89% of the z-scores assigned to factor/sources reported by
participants in Round 2 are in the acceptance area, while 2% and 9%
are in the warning and action areas, respectively (Fig. 8). The ma-
jority of solutions, 21 out of 25, had more than 75% of the scores in
the acceptance area.



Fig. 7. Z-scores attributed to the factor/profiles in Round 1 arranged by source category (left) and by model (right). Scores outside the zone between continuous lines rank in the
action area, those in the space between the continuous and the broken lines rank in the warning area and those in the zone within the broken lines rank in the acceptance area. The
number of tested factor/sources is reported on top of each bar.
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SALT is the only source category with more than half of the
scores in the action area. The overestimation of the SALT SCEs in the
majority of solutions is likely due to the small contribution of this
source category, which represents only 1% of the total PM mass.
These low-contributing factors are likely to be severely affected by
the remaining ambiguity derived from scaling indeterminacy. Their
contributions and composition could be underestimated/over-
estimated by a large unknown coefficient (Amato et al., 2009). The
negative SCE reported in a result obtained with FA-MLRA also
contributed to the poor performance in this source category and
further highlights the limitations of fully unconstrained factor
analytical methods. A common drawback of tools without non-
negativity constraints is the attribution of negative SCEs to minor
sources to compensate the excess of mass attributed to others.

As in Round 1, INDU shows some z-scores ranking either in the
Fig. 8. Z-scores attributed to the factor/sources in Round 2 arranged by source category (lef
action area, those in the space between the continuous and the broken lines rank in the warn
number of tested factor/sources is reported on top of each bar.
warning or in the action areas. The performance of this source
category in the two rounds is likely caused by the poor match in the
chemical composition and time trends between the factor/sources
reported in the solutions and the reference values. A limited degree
of overestimation is also observed in ROAD, as shown by one of the
scores in the action area. As discussed in Section 3.2.1.2, this can be
attributed to the interference of DUST, especially during windy
days, that may also lead to inaccuracies in the time trends. A pro-
pensity to underestimate source categories with high SCEs such as
NO3 and to a lesser extent SO4 (29% and 17% of the PM mass,
respectively) is present in many solutions. Nevertheless, the bias is
too small to give rise to poor scores.

In Round 2, about 75% of the reported SCEs derive from solutions
obtained with EPAPMF3, PMF2 and CMB8.2 and their performances
are comparable to those observed in Round 1. Although a limited
t) and by model (right). Scores outside the zone between continuous lines rank in the
ing area and those in the zone within the broken lines rank in the acceptance area. The
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number of solutions are available for the other models, it is worth
mentioning the good performances of COPREM, EPAPMF5 and ME-
2. FA-MLRA is the only model with 50% of the scores either in the
warning or action areas.

The z0-score indicator was used in Round 2 to assess the dif-
ference between solutions and the reference value taking into ac-
count the reference's uncertainty. No substantial differences were
observed between z-scores and z0-scores indicating that the un-
certainty of the reference had no impact on the evaluation of par-
ticipant's performance.

3.3.3. The uncertainty of the source contribution estimates
In source apportionment modelling, there are different sources

of error: random error, modelling error (bias), and rotational am-
biguity (Paatero et al., 2013). One important source of random error
is the one present in the input data and is commonly approximated
from their analytical uncertainty. Modelling error arises in situa-
tions in which the RM assumptions (Belis et al., 2013) are seriously
infringed. It may derive fromwrong number of sources or variation
of sources in time and is mostly contributing to the bias kind of
error. Also atmospheric composition and meteorology acting
selectively on the degradation of organic tracers (Galarneau, 2008)
are a component of the bias error.

Many RM tools supply the output uncertainty. In EPA PMF ver-
sions, the uncertainty of the output profiles is estimated using re-
sampling and more recently also with displacement methods
while the CMB EPA 8.2 model performs a propagation of the input
analytical uncertainty. Many practitioners using non-US EPA tools
compute the output uncertainty with resampling and error prop-
agation techniques in post-processing. The rotational ambiguity is
not discussed in this section because only one of the used of tools
(EPA PMF v5) was designed to estimate this kind of uncertainty.
More discussion about the uncertainty test can be found in the
companion paper by Belis et al. (2015).

The tests described in the previous sections were mostly ori-
ented to assess: a) the bias by comparison with a reference value
and b) the reproducibility intended as the range of results that can
be obtained from a single dataset (with a given degree of noise) by
different practitioners using the same or different tools. In the
following, the analysis will focus on the assessment of the SCEs
uncertainty estimation accomplished by RMs by comparing them
with the one of the reference. Considering that unbiased reference
values are available only for the synthetic dataset, in this section are
discussed only the results of Round 2.

The mean of the reported relative standard uncertainties for the
SCE of the whole timewindow in Round 2 is 13%. The lowest values
are those in NO3 source categories and the highest are those in
INDU. As for the models, the lowest uncertainties are those re-
ported in ME-2 and CMB8.2 solutions and the highest are those of
COPREM solutions. No uncertainty was reported for the SCEs ob-
tained with FA-MLRA. The uncertainty attributed to the reference
was equivalent to the noise introduced in the synthetic dataset
(20% standard deviation) that was derived from the analytical un-
certainty in the input dataset (Belis et al., 2015). The zeta-score test
indicates that a 68% of the declared factor/source SCE uncertainties
are coherent with the one of the reference while a 19%, ranking in
the action area, are likely underestimated (Fig. 9).

SALT is the only source category with the majority of the zeta-
scores in the action area (75%). Likely, models do not allow for
the higher relative uncertainty due the very low SCEs in this source
category compared to the others. Uncertainty underestimation is
observed also in ROAD, which shows a 60% of the scores either in
the warning or in the action areas.

A considerable proportion of factor/sources obtained with
EPAPMF4 and EPAPMF3 show underestimated uncertainties (29%
and 24% of scores in the action area, respectively). COPREM showed
uncertainties higher than the reference in a 31% of the factor/
sources. The satisfactory performance of CMB8.2 (more than 90%
successful scores) suggests that propagating the uncertainty of the
source profiles can provide a satisfactory estimation of the SCEs
uncertainty.

3.3.4. The impact of the operator
The variability between solutions obtained by different practi-

tioners using the same tool and the same input data are an indicator
of the maximum impact of the operator subjectivity on the repro-
ducibility. The tools with the highest number of reported solutions:
EPAPMF3, PMF2, and CMB8.2 present a high consistency among
solutions obtained by different practitioners using the same tool.
The standard deviations of the SCE mean in each of these models
ranges between 0.2 and 0.3 mg/m3 and 1.4e1.7 mg/m3, in the first
and second rounds, respectively. These values are, in addition, close
to the standard deviation of the overall mean (0.2 mg/m3 and 1.7 mg/
m3, in the first and second rounds, respectively). These results
suggest a limited impact of the practitioners' subjectivity, on
average. However, “outliers” were often associated with less
experienced practitioners in terms of both years of use of the tool
and number of studies performed.

4. Key findings of the intercomparison

The tests on chemical profiles confirmed, in themajority of cases
(83%), the attribution of factors/profiles to source categories in the
reported results and the majority of the SCEs (87%) reported by
participants met the 50% standard uncertainty quality objective
established for the performance test. A high share of the tested
solutions (70%e80%) apportioned a considerable amount of the
PM2.5 mass to its pollution sources and many solutions estimated a
number of sources close to the expected value.

In this study, the estimation of source contribution was most
critical for SALT, DUST, SHIP and categories associated with mobile
sources. The majority of the solutions overestimated the SCE of
SALT, a source category with a contribution of about 1% of the PM
mass. Such relative contribution may be considered a first
approximation of the lower limit that the tested methodologies are
able to quantify. Poor scores attributed to some DUST and ROAD
SCEs were ascribed to the similarities in the chemical composition
between road dust and crustal material that may have interfered
with the allocation of mass between these sources. The uncorre-
lated time trends and, in some cases, the heterogeneous chemical
profiles observed in INDU and SHIP were attributed to the lack of a
common definition of these categories. Sources with appreciable
contributions and chemical profiles dominated by few species, such
as NO3 and SO4, were more efficiently recognised by the models
even though there was a tendency to slightly underestimate their
SCEs.

The most commonly used models, EPAPMF3, PMF2, and CMB8.2
showed quite satisfactory performance with successful z-scores
ranging between 80% and 100%. The good agreement between CMB
and PMF may be partially due to the main RM assumptions being
substantially respected in the used datasets: limited alteration of
the species between source and receptor and relatively stable
source profiles. In addition, both types of tools account for the
uncertainties in the input data, have built-in performance in-
dicators and have been available long enough to allow a wide
number of practitioners be familiar with them. For those models
used in a limited number of solutions, only preliminary conclusions
can be drawn at this stage. In general, fully unconstrained models
which do not account for the input data uncertainty (e.g. FA-MLRA
and APCFA) showed performances below the average. This result is



Fig. 9. Zeta-scores attributed to the factor/sources in Round 2 arranged by source category (left) and by model (right). Scores ranking above or below the continuous lines are in the
action area, those in the space between the continuous and the broken lines are in the warning area and those in the zone within the broken lines are in the acceptance area. The
number of tested factor/sources is reported on top of each bar.
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likely because in these tools, the noise deriving from the uncer-
tainty structure of the datasets is incorporated into the factor/
sources (Paatero and Hopke, 2003).

The tests used to assess the SCE uncertainty reported in the
solutions confirmed that the RMs output uncertainty estimation is
coherent with the analytical/random uncertainty of the input data.
Other components of the uncertainty could be evaluated in
specially designed intercomparisons where RMs are either
compared with other types of models or synthetic datasets with
known perturbing factors are used. Processes altering the factor/
source chemical profiles could be detected in the preliminary tests
by comparison with the reference source profiles. In addition,
diagnostic ratios could be used to detect long-range transport or
photochemical age of aerosols (Hien et al., 2004; Decarlo et al.,
2010).

The slightly better performance observed in Round 2 compared
to Round 1 is likely connected to the differences between simulated
and measured data. Round 1 was more challenging for the partic-
ipants due to the inconsistencies in the uncertainties they had to
deal with in a blind test with limited information about a non-
European study area. On the contrary, the synthetic dataset con-
tained internally consistent data with a lower level of noise and
fewer source categories.

In the real-world, the variability of profiles in time and the
chemical reactivity of organic species may affect the source/re-
ceptor relationships. Datasets from areas with complex atmo-
spheric transport and chemistry are likely more challenging for
models to quantify the sources (especially secondary and/or distant
ones) than areas influenced mainly by local sources. In this study,
there are no indications that the variability of profiles and degra-
dation of markers affected the comparability of results among
participants working on the same dataset. On the other hand, it was
observed that the time resolution of the datasets influenced the
ability of RMs to capture the time patterns of mobile sources.
5. Conclusions

The results of this study indicate that RMs are capable of esti-
mating the contributions of the main pollution source categories
within a given time window with a level of accuracy that is in line
with the needs of air quality management.
Further intercomparisons evaluated with the same or compa-

rable methodologies are needed to create a weight-of-evidence
about the characteristics and capabilities of the models and tools.

Future work to improve the capacity of these models should
focus on: a) the development and availability of source profiles
relevant for the study area, b) better definition of the source cate-
gories, c) experimental design to improve the uncertainty estima-
tion, d) development of speciated PM data series with appropriate
time resolution and extended set of markers.

Moreover, the implementation of the existing common guide-
lines (Belis et al., 2014) would lead tomore comparable results with
recognised quality standards in line with those reported in the
present work.
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