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Abstract. Exchanges of carbon, water and energy between the land surface and the atmosphere are monitored

by eddy covariance technique at the ecosystem level. Currently, the FLUXNET database contains more than

500 registered sites, and up to 250 of them share data (free fair-use data set). Many modelling groups use the

FLUXNET data set for evaluating ecosystem models’ performance, but this requires uninterrupted time series

for the meteorological variables used as input. Because original in situ data often contain gaps, from very short

(few hours) up to relatively long (some months) ones, we develop a new and robust method for filling the gaps

in meteorological data measured at site level. Our approach has the benefit of making use of continuous data

available globally (ERA-Interim) and a high temporal resolution spanning from 1989 to today. These data are,

however, not measured at site level, and for this reason a method to downscale and correct the ERA-Interim data

is needed. We apply this method to the level 4 data (L4) from the La Thuile collection, freely available after

registration under a fair-use policy. The performance of the developed method varies across sites and is also

function of the meteorological variable. On average over all sites, applying the bias correction method to the

ERA-Interim data reduced the mismatch with the in situ data by 10 to 36%, depending on the meteorological

variable considered. In comparison to the internal variability of the in situ data, the root mean square error

(RMSE) between the in situ data and the unbiased ERA-I (ERA-Interim) data remains relatively large (on average

over all sites, from 27 to 76 % of the standard deviation of in situ data, depending on the meteorological variable

considered). The performance of the method remains poor for the wind speed field, in particular regarding its

capacity to conserve a standard deviation similar to the one measured at FLUXNET stations.

The ERA-Interim reanalysis data de-biased at FLUXNET sites can be downloaded from the PANGAEA data

centre (http://doi.pangaea.de/10.1594/PANGAEA.838234).

1 Introduction

In the late 1970s and early 1980s, exchanges of carbon, wa-

ter and energy between the land surface and the atmosphere

began to be monitored by the eddy covariance technique at

the ecosystem level (Desjardins and Lemon, 1974; Ander-

son et al., 1984; Anderson and Verma, 1986; Ohtaki, 1984;

Desjardins et al., 1984; Baldocchi, 2003, for a review). Since

this period, several networks of eddy sites have been built,

on regional or continental scales: Euroflux in 1996 for Eu-

rope (Aubinet et al., 2000; Valentini et al., 2000), AmeriFlux

in 1997 for North America (Running et al., 1999), AsiaFlux

in 1999 for Asia (Kim et al., 2009) and OzFlux in early 2000

for Australia. Currently most of these networks evolved in

long-term research infrastructures, such as Integrated Carbon

Observation System (ICOS) (www.icos-infrastrucutre.eu),
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National Ecological Observatory Network (NEON) (www.

neoninc.org) and AmeriFlux (http://ameriflux.lbl.gov/). On

the global scale, the FLUXNET project that combines these

regional and continental networks into an integrated global

network started in 1998 (Baldocchi et al., 2001). Currently,

the FLUXNET database contains more than 500 registered

sites, and up to 250 of them share data (more info on http:

//www.fluxdata.org). As stated in Baldocchi et al. (2001), the

three main scientific goals of the FLUXNET project are

1. to quantify the spatial differences in carbon dioxide and

water vapour exchange rates that may be experienced

within and across natural ecosystems and climatic gra-

dients;

2. to quantify the temporal dynamics and variability of car-

bon, water and energy flux densities; and

3. to quantify the variations in carbon dioxide and water

vapour fluxes due to changes in insolation, temperature,

soil moisture, photosynthetic capacity, nutrition, canopy

structure and ecosystem functional type.

These scientific goals have been largely achieved by several

publications; examples of other studies published in the last

years are Jung et al. (2010), Teuling et al. (2010), Beer et

al. (2010), Stoy et al. (2009) and Mahecha et al. (2010).

Many modelling groups have also used the FLUXNET

data set for evaluating models’ performance at simulating en-

ergy, water and carbon exchanges between the surface and

the atmosphere. Krinner et al. (2005) evaluate the tempo-

ral dynamics (mainly the mean diurnal cycle) of the sensi-

ble heat, latent heat, net ecosystem exchange (NEE) and net

radiation simulated by the Organising Carbon and Hydrol-

ogy In Dynamic Ecosystems (ORCHIDEE) model against

∼ 30 flux sites across the globe. The community land model

(CLM) has been evaluated at 15 FLUXNET sites focusing

mainly at the seasonal variability of the latent and sensi-

ble heat, the NEE and the GPP (gross primary productiv-

ity) (Stöckli et al., 2008). They also make use of the eval-

uation against FLUXNET data as a way of benchmarking

several versions of the CLM model. Similarly, Boussetta et

al. (2013) use 35 FLUXNET sites for evaluating and bench-

marking the Carbon Tiled ECMWF Scheme for Surface Ex-

changes over Land (CTESSEL) and Carbon Hydrology Tiled

ECMWF Scheme for Surface Exchanges over Land (CHT-

ESSEL) models, looking at the seasonal cycle of the latent

and sensible heat, of the NEE and of its components (GPP

and total ecosystem respiration (TER)), an analysis extended

also to other models by Balzarolo et al. (2014), who looked

also at the functional relationships (e.g. GPP–radiation or

respiration–temperature) in the data and in the models. Blyth

et al. (2010) focus on the evaluation of the evapotranspira-

tion simulated by the Joint UK Land Environment Simulator

(JULES) model against 10 FLUXNET sites on annual, sea-

sonal, weekly and diurnal timescales.

In most of these studies, where models are evaluated

against in situ FLUXNET data, the attempt is to assess the in-

trinsic performance of the models and to diagnose a model’s

parameterization errors or missing processes in the models.

Consequently, one wants to make use of meteorological data

measured at the FLUXNET sites, jointly with the flux data,

to force the models in such a way that errors due to inac-

curate meteorological forcing data are avoided. To comple-

ment this aim, other studies such as Zhao et al. (2012) ex-

amine how errors in meteorological variables impact simu-

lated ecosystem fluxes at FLUXNET sites by using several

reanalysis (SAFRAN (Système d’Analyse Fournissant des

Renseignements Atmosphériques à la Neige), REMO (Re-

gional Model), ERA-Interim) and in situ data sets.

While models require uninterrupted time series for the me-

teorological variables used as input, original in situ data of-

ten contain gaps, from very short (few hours) up to relatively

long (some months) ones. The reasons why meteorological

data are missing are few compared to those for flux data

(Baldocchi et al., 2001). In the case of meteorological data,

gaps are mainly due to calibration and maintenance opera-

tions or system breakdown, in particular in remote sites pow-

ered by solar panels. These gaps prevent the use of original

in situ meteorological data directly as inputs to the models. A

gapfilling procedure using adequate methods is consequently

needed.

In some of studies, simple gapfilling methods have been

developed. For instance, in Blyth et al. (2010), “gap filling

involved, for each precise time step that was missing, using

the average of values from other years at the same time step”.

In Stöckli et al. (2008), “up to two month long successive

gaps were filled by applying a 30 day running mean diurnal

cycle forwards and backwards through the yearly time series.

Years with more than 2 month of consecutive missing data

were not used”.

For long gaps, these simple methods may have strong lim-

itations. Even if the evaluation of the modelled fluxes is only

performed when in situ meteorological data are available, for

some processes accounting for lag effects, periods where no

in situ meteorological data are available may have an impor-

tant impact on modelled fluxes over later periods, when me-

teorological data are available.

Other studies develop more sophisticated gapfilling pro-

cedures. For example methods, such as artificial neural net-

works or look-up tables, that are based on the relations be-

tween variables, such as the one presented in Papale (2012),

and that are generally applied to fill gaps in the fluxes can be

successfully used also for gaps in meteorological data. The

problem is, however, that often during gap periods in me-

teorological data, all the variables are missing and so these

methods cannot be applied. Krinner et al. (2005) used the

ECMWF ERA15 1×1 degree reanalysis for gapfilling the in-

coming short-wave radiation and weather stations nearby the

FLUXNET sites for the other meteorological fields needed

for running the ORCHIDEE model.
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The main limitations of these more sophisticated gapfill-

ing methods are the lack of tools for evaluating their perfor-

mances and a non-standardized application.

To overcome these limitations, we develop a new, robust

and powerful method, making use of the ERA-Interim re-

analysis for filling the gaps in meteorological data measured

at FLUXNET sites. This approach has the benefit of making

use of continuous data available globally (ERA-Interim) and

a high temporal resolution spanning from 1989 to today. The

ERA-Interim reanalysis performs well in simulating most

of the atmospheric variables that are used for the gapfilling

method presented here (Dee et al., 2011), but precipitation

is overestimated in tropical areas (Dee et al., 2011; Balsamo

et al., 2015) compared to observation-based estimates of the

GPCP (Global Precipitation Climatology Project; Adler et

al., 2003). Zhao et al. (2012) and Balzarolo et al. (2014) have

shown that using raw ERA-Interim data instead of local at-

mospheric observations has little or no impact on the scores

of the simulations of a land surface model with respect to

local observations of CO2 and energy fluxes. However, the

good performance is partly explained by the fact that inter-

nal model errors may compensate for the errors contained in

the ERA-Interim data (Zhao et al., 2012). Beyond the qual-

ity of the simulated fluxes, the most important thing is to use

data for the gapfilling method that are consistent with the

original in situ data. In this respect, diagnosed bias against

in situ data should be removed. For this reason a method to

downscale and correct the ERA-Interim data is needed. The

overall objective of the present paper is to describe in detail

the method and tools used to fill the gaps and evaluate the

results, estimating error and uncertainty in the gapfilled data.

We first present the data sets used (the FLUXNET data

set and the ERA-Interim reanalysis) and the methods de-

veloped for filling the gaps. We then present the results of

our gapfilling procedure for the overall fair-use data set of

FLUXNET sites and discuss the potential use of this method

for the ecosystem modelling community and its main limita-

tions.

2 Methods

2.1 FLUXNET data set

We use level 4 data (L4) from the La Thuile collection (http:

//www.fluxdata.org), based on a fair-use policy, as available

in August 2013 (153 sites). Half-hourly values of air tem-

perature (Ta_f; ◦C), global radiation (Rg_f; Wm−2), vapour

pressure deficit (VPD_f; hPa), wind horizontal speed (WS_f;

ms−1), precipitation (Precip_f; mmtimestep−1) and incom-

ing longwave radiation (LWin; Wm−2) are the six meteoro-

logical variables that will be gapfilled. These data were qual-

ity controlled and then gapfilled using a look-up table. For

this reason we selected only original measured data (qc = 0),

setting all the other half-hours (qc > 0) as missing values.

FLUXNET data are given in Coordinated Universal Time

(UTC). The time (z, expressed in relation to UTC) of

many FLUXNET sites can be found at http://www.fluxdata.

org/DataInfo/Dataset20Doc20Lib/CommonAnc.aspx. At the

same address, coordinates (latitude and longitude) of each

site are also available.

The variables are classified into two main groups:

1. instantaneous: this group includes air temperature,

vapour pressure deficit and wind speed, which are state

variables where the instantaneous measurement is rele-

vant as is;

2. averaged: includes the radiation and the precipitation

where the relevant value is a flux measured over a time

range.

Timestamps in the data indicate the time of measurement in

the case of “instantaneous” variables, and in the case of “av-

eraged” variables, the end of the averaging period, which is,

in general, 30 min (i.e. first data in the year are for 01 Jan-

uary; 00:30 for the instantaneous variables and for 01 Jan-

uary; 00:00–00:30 for the averaged variables).

2.2 ERA-Interim reanalysis

The ERA-Interim (ERA-I) is the latest reanalysis (Dee et al.,

2011) from the European Centre for Medium-range Weather

Forecast (ECMWF). It is available from 1989 to the present,

on a regular grid (0.7◦), at a 3-hourly time resolution. In

such a reanalysis, time is expressed in UTC+ 0 over all the

globe. The ERA-I variables that we use are the temperature

at 2 m (t2m, K), the surface solar radiation downwards (Sw;

Wm−2), the dew point temperature at 2 m (dt2m; K), the

U and V components of the wind speed at 10 m (u10 and

v10; ms−1), the total precipitation (Pr; metres of water per

time step) and the surface thermal radiation downwards (Lw;

Wm−2). Similarly to the FLUXNET data set, the timestamp

indicates the time of the instantaneous measurement or the

end of the averaging period for the averaged variables (i.e.

first data in the year are for 01 January; 03:00 for the instan-

taneous variables and for 01 January; 00:00–03:00 for the

averaged variables).

2.3 Gapfilling procedure

2.3.1 Harmonizing variables’ units

We first change the units of some ERA-I variables to agree

with FLUXNET units: t2m from K to ◦C and Pr from m to

mm. A vapour pressure deficit inferred from dt2m and t2m,

labelled VPD_erai (hPa), is also calculated for comparison

with VPD_f such that

VPD_erai= esat− e, (1)

with e (hPa) being the vapour pressure and esat (hPa) the sat-

uration vapour pressure.
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The Magnus–Tetens relationship (Murray, 1967) is used to

calculate e and esat:

e = a exp

(
b× dt2m

dt2m− c
)

(2)

and

esat = a exp

(
b× t2m

t2m− c
)
, (3)

with dt2m and t2m expressed in ◦C and a, b and c being

three constants (a = 6.11×10−2; b = 21.874 if t2m< 0 else

17.269; c = 265.49 if t2m< 0 else 237.29).

2.3.2 Harmonizing variables’ time periods

In order to compare ERA-I and FLUXNET data at similar

time steps, original FLUXNET meteorological variables, de-

noted by F , are re-indexed from the FLUXNET (half-hourly

resolution) to the ERA-I (3-hourly resolution) time grid, tak-

ing into consideration differences in time zone.

For the instantaneous fields (Ta_f, VPD_f, and WS_f), the

re-indexed variable denoted FE is defined by the following

pseudo-algorithm (Alg. 1).
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2.3.2 Harmonizing variables’ time periods

In order to compare ERA-I and FLUXNET data at similar
time steps, original FLUXNET meteorological variables, de-
notedF , are re-indexed from the FLUXNET (half-hourly
resolution) to the ERA-I (three-hourly resolution) time grid,
taking into consideration differences in time zone.

For the instantaneous fields (Ta_f, VPD_f, WS_f and
Pa_f), the re-indexed variable denotedFE is defined by the
following pseudo-algorithm (Alg. 1).
Algorithm 1

for j = 1 : nE
{

FE,j = F(jrE+z)/rF

}

where nF and nE are the length (expressed in number
of values) of the FLUXNET and ERA-I time series respec-
tively, rF andrE, the time resolution (expressed in hours) of
the FLUXNET and ERA-I time series respectively andz the
difference in local time respect to UTC.

WhenFj is not defined (j < 1 or j > nF), the associated
FE,j variable is set to−9999 as a missing value.

In the Appendix is given an application of each pseudo-
algorithm defined in this paper for a site located in time zone
UTC+ 2.

For the averaged fields (Rg_f, Precip_f and LWin), the re-
indexed variable is defined by Alg. (2).
Algorithm 2

for j = 1 : nE
{

Fcum = 0
for k = (((j − 1)rE + z)/rF + 1) : ((jrE + z)/rF )
{

Fcum+ = Fk

}
FE,j =

Fcum
rE/rF

}

When an elementFk is not defined (k < 1 or k > nF ) or is
defined as missing value (−9999), the associatedFE,j vari-
able is set to−9999 as a missing value.

2.3.3 De-biasing the ERA-I data

We denote the original ERA-I meteorological data,E. In or-
der to correct for the observed bias betweenE andFE, the
slope (s) and the intercept (i) of the linear regression ofFE
againstE are used. The de-biased ERA-I meteorological data
is denotedEd and calculated as followed, for all fields except
the precipitation field:

Ed
= sE + i (4)

For the Global Radiation and Wind Speed fields, when cal-
culating the regression coefficients of the linear relationship,
we force the intercept to 0 in order to avoid of having possi-
bly negative radiations, or too flat regression slope for Wind
Speed.

For the Precipitation field, we do not expect that the timing
of precipitations in the ERA-I dataset is accurate enough, for
using the linear regression betweenFE andE as a way to
de-biasE. Instead, we simply use the ratio of the sum of the
elements ofFE over the sum of the elements ofE, denoted
f . f is written as:

f =

nE∑
j=1

FE,j

nE∑
j=1

Ej

(5)

The de-biased Precipitation field of the ERA-I dataset,Ed, is
then defined asEd

= f E.

2.3.4 Reconstructing a diurnal cycle to the ERA-I data

In order to use the de-biased meteorological fields of the
ERA-I dataset to fill the gaps in the meteorological fields of
the FLUXNET dataset, they need to be interpolated from the
original 3-hourly time step to the half-hourly time step.

For the instantaneous fields (all fields, except the Global
Radiation, the Long Wave Radiation and the Precipitation
fields), the 3-hourly data are simply linearly interpolated
in order to reconstruct a diurnal cycle at a half-hourly
resolution. The half-hourly de-biased field of ERA-I dataset
is denotedEd

F and is written as:
Algorithm 3

for j = 1 : nF
{

l = ((j − 1)rF − z)/rE

Ed
F,j = Ed

int(l) (mod(l,1)) + Ed
int(l+1) (1− mod(l,1))

}

The Global Radiation field is distributed as a function
of the solar angle, based on a code initially developed by
J. C. Morrill within the frame of the GSWP (Dirmeyer, 2011)
and used in the ORCHIDEE model (Krinner et al., 2005) for
instance (http://dods.ipsl.jussieu.fr/orchidee/DOXYGEN/
webdoc/d1/db6/solar_8f90_source.html). The solar angle
is a function of the longitude and latitude (lon, lat), the
day of the year (doy) and the hour (hour in UTC+ 0 time).
The solar angle is denotedα(lon,lat,doy,hour) that we will
restrict in the following toα(hour).

For the global radiation,Ed
F is defined as the correspond-

ing Ed value, weighted by the ratio of the current solar angle
to the mean solar angle over the 3-h time period (over which
theEd value is defined).Ed

F is written as:
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and used in the ORCHIDEE model (Krinner et al., 2005) for
instance (http://dods.ipsl.jussieu.fr/orchidee/DOXYGEN/
webdoc/d1/db6/solar_8f90_source.html). The solar angle
is a function of the longitude and latitude (lon, lat), the
day of the year (doy) and the hour (hour in UTC+ 0 time).
The solar angle is denotedα(lon,lat,doy,hour) that we will
restrict in the following toα(hour).

For the global radiation,Ed
F is defined as the correspond-

ing Ed value, weighted by the ratio of the current solar angle
to the mean solar angle over the 3-h time period (over which
theEd value is defined).Ed

F is written as:
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When an elementFk is not defined (k < 1 or k > nF ) or
is defined as missing value (−9999), the associatedFE,j

variable is set to−9999 as a missing value.

2.3.3 De-biasing the ERA-I data

We denote the original ERA-I meteorological data byE. In
order to correct for the observed bias betweenE andFE, the
slope (s) and the intercept (i) of the linear regression ofFE
againstE are used. The de-biased ERA-I meteorological data
is denotedEd and calculated as follows, for all fields except
the precipitation field:

Ed = sE + i. (4)

For the global radiation and wind speed fields, when calcu-
lating the regression coefficients of the linear relationship,
we force the intercept to 0 in order to avoid having possi-
bly negative radiation or too flat a regression slope for wind
speed.

For the precipitation field, we do not expect that the timing
of precipitations in the ERA-I data set is accurate enough for
the linear regression betweenFE andE to be used as a way to
de-biasE. Instead, we simply use the ratio of the sum of the
elements ofFE over the sum of the elements ofE, denoted
asf . f is written as

f =

nE∑
j=1

FE,j

nE∑
j=1

Ej

. (5)

The de-biased precipitation field of the ERA-I data set,Ed,
is then defined asEd = f E.

2.3.4 Reconstructing a diurnal cycle to the ERA-I data

In order to use the de-biased meteorological fields of the
ERA-I data set to fill the gaps in the meteorological fields
of the FLUXNET data set, they need to be interpolated from
the original 3-hourly time step to the half-hourly time step.

For the instantaneous fields (all fields, except for the
global radiation, the longwave radiation and the precipita-
tion fields), the 3-hourly data are simply linearly interpolated
in order to reconstruct a diurnal cycle at a half-hourly
resolution. The half-hourly de-biased field of the ERA-I data
set is denotedEd

F and is written as
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2.3.2 Harmonizing variables’ time periods

In order to compare ERA-I and FLUXNET data at similar
time steps, original FLUXNET meteorological variables, de-
notedF , are re-indexed from the FLUXNET (half-hourly
resolution) to the ERA-I (three-hourly resolution) time grid,
taking into consideration differences in time zone.

For the instantaneous fields (Ta_f, VPD_f, WS_f and
Pa_f), the re-indexed variable denotedFE is defined by the
following pseudo-algorithm (Alg. 1).
Algorithm 1

for j = 1 : nE
{

FE,j = F(jrE+z)/rF

}

where nF and nE are the length (expressed in number
of values) of the FLUXNET and ERA-I time series respec-
tively, rF andrE, the time resolution (expressed in hours) of
the FLUXNET and ERA-I time series respectively andz the
difference in local time respect to UTC.

WhenFj is not defined (j < 1 or j > nF), the associated
FE,j variable is set to−9999 as a missing value.

In the Appendix is given an application of each pseudo-
algorithm defined in this paper for a site located in time zone
UTC+ 2.

For the averaged fields (Rg_f, Precip_f and LWin), the re-
indexed variable is defined by Alg. (2).
Algorithm 2

for j = 1 : nE
{

Fcum = 0
for k = (((j − 1)rE + z)/rF + 1) : ((jrE + z)/rF )
{

Fcum+ = Fk

}
FE,j =

Fcum
rE/rF

}

When an elementFk is not defined (k < 1 or k > nF ) or is
defined as missing value (−9999), the associatedFE,j vari-
able is set to−9999 as a missing value.

2.3.3 De-biasing the ERA-I data

We denote the original ERA-I meteorological data,E. In or-
der to correct for the observed bias betweenE andFE, the
slope (s) and the intercept (i) of the linear regression ofFE
againstE are used. The de-biased ERA-I meteorological data
is denotedEd and calculated as followed, for all fields except
the precipitation field:

Ed
= sE + i (4)

For the Global Radiation and Wind Speed fields, when cal-
culating the regression coefficients of the linear relationship,
we force the intercept to 0 in order to avoid of having possi-
bly negative radiations, or too flat regression slope for Wind
Speed.

For the Precipitation field, we do not expect that the timing
of precipitations in the ERA-I dataset is accurate enough, for
using the linear regression betweenFE andE as a way to
de-biasE. Instead, we simply use the ratio of the sum of the
elements ofFE over the sum of the elements ofE, denoted
f . f is written as:

f =

nE∑
j=1

FE,j

nE∑
j=1

Ej

(5)

The de-biased Precipitation field of the ERA-I dataset,Ed, is
then defined asEd

= f E.

2.3.4 Reconstructing a diurnal cycle to the ERA-I data

In order to use the de-biased meteorological fields of the
ERA-I dataset to fill the gaps in the meteorological fields of
the FLUXNET dataset, they need to be interpolated from the
original 3-hourly time step to the half-hourly time step.

For the instantaneous fields (all fields, except the Global
Radiation, the Long Wave Radiation and the Precipitation
fields), the 3-hourly data are simply linearly interpolated
in order to reconstruct a diurnal cycle at a half-hourly
resolution. The half-hourly de-biased field of ERA-I dataset
is denotedEd

F and is written as:
Algorithm 3

for j = 1 : nF
{

l = ((j − 1)rF − z)/rE

Ed
F,j = Ed

int(l) (mod(l,1)) + Ed
int(l+1) (1− mod(l,1))

}

The Global Radiation field is distributed as a function
of the solar angle, based on a code initially developed by
J. C. Morrill within the frame of the GSWP (Dirmeyer, 2011)
and used in the ORCHIDEE model (Krinner et al., 2005) for
instance (http://dods.ipsl.jussieu.fr/orchidee/DOXYGEN/
webdoc/d1/db6/solar_8f90_source.html). The solar angle
is a function of the longitude and latitude (lon, lat), the
day of the year (doy) and the hour (hour in UTC+ 0 time).
The solar angle is denotedα(lon,lat,doy,hour) that we will
restrict in the following toα(hour).

For the global radiation,Ed
F is defined as the correspond-

ing Ed value, weighted by the ratio of the current solar angle
to the mean solar angle over the 3-h time period (over which
theEd value is defined).Ed

F is written as:
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The global radiation field is distributed as a function of
the solar angle, based on a code initially developed by
J. C. Morrill within the frame of the GSWP (Global Soil
Wetness ProjectCE12; Dirmeyer, 2011) and used, for ex-
ample, in the ORCHIDEE model (Krinner et al., 2005)
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where nE (nF) is the length expressed in the number of val-

ues of the ERA-I (FLUXNET) time series, rE (rF) the time

resolution expressed in hours of the ERA-I (FLUXNET)

time series and z the difference in local time from UTC.

When Fj is not defined (j < 1 or j > nF), the associated

FE,j variable is set to −9999 as a missing value.

Appendix A gives an application of each pseudo-algorithm

defined in this paper for a site located in time zone UTC+ 2.

For the averaged fields (Rg_f, Precip_f and LWin), the

re-indexed variable is defined by Alg. (2).
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with dt2m and t2m expressed in◦C anda, b and c being
three constants (a = 6.11×10−2; b = 21.874 if t2m< 0 else
17.269;c = 265.49 if t2m< 0 else 237.29).

2.3.2 Harmonizing variables’ time periods

In order to compare ERA-I and FLUXNET data at similar
time steps, original FLUXNET meteorological variables, de-
noted byF , are re-indexed from the FLUXNET (half-hourly
resolution) to the ERA-I (3-hourly resolution) time grid, tak-
ing into consideration differences in time zone.

For the instantaneous fields (Ta_f, VPD_f, WS_f and
Pa_f), the re-indexed variable denotedFE is defined by the
following pseudo-algorithm (Alg. 1).
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In order to compare ERA-I and FLUXNET data at similar
time steps, original FLUXNET meteorological variables, de-
noted byF , are re-indexed from the FLUXNET (half-hourly
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2.3.2 Harmonizing variables’ time periods

In order to compare ERA-I and FLUXNET data at similar
time steps, original FLUXNET meteorological variables, de-
notedF , are re-indexed from the FLUXNET (half-hourly
resolution) to the ERA-I (three-hourly resolution) time grid,
taking into consideration differences in time zone.

For the instantaneous fields (Ta_f, VPD_f, WS_f and
Pa_f), the re-indexed variable denotedFE is defined by the
following pseudo-algorithm (Alg. 1).
Algorithm 1

for j = 1 : nE
{

FE,j = F(jrE+z)/rF

}

where nF and nE are the length (expressed in number
of values) of the FLUXNET and ERA-I time series respec-
tively, rF andrE, the time resolution (expressed in hours) of
the FLUXNET and ERA-I time series respectively andz the
difference in local time respect to UTC.

WhenFj is not defined (j < 1 or j > nF), the associated
FE,j variable is set to−9999 as a missing value.

In the Appendix is given an application of each pseudo-
algorithm defined in this paper for a site located in time zone
UTC+ 2.

For the averaged fields (Rg_f, Precip_f and LWin), the re-
indexed variable is defined by Alg. (2).
Algorithm 2

for j = 1 : nE
{

Fcum = 0
for k = (((j − 1)rE + z)/rF + 1) : ((jrE + z)/rF )
{

Fcum+ = Fk

}
FE,j =

Fcum
rE/rF

}

When an elementFk is not defined (k < 1 or k > nF ) or is
defined as missing value (−9999), the associatedFE,j vari-
able is set to−9999 as a missing value.

2.3.3 De-biasing the ERA-I data

We denote the original ERA-I meteorological data,E. In or-
der to correct for the observed bias betweenE andFE, the
slope (s) and the intercept (i) of the linear regression ofFE
againstE are used. The de-biased ERA-I meteorological data
is denotedEd and calculated as followed, for all fields except
the precipitation field:

Ed
= sE + i (4)

For the Global Radiation and Wind Speed fields, when cal-
culating the regression coefficients of the linear relationship,
we force the intercept to 0 in order to avoid of having possi-
bly negative radiations, or too flat regression slope for Wind
Speed.

For the Precipitation field, we do not expect that the timing
of precipitations in the ERA-I dataset is accurate enough, for
using the linear regression betweenFE andE as a way to
de-biasE. Instead, we simply use the ratio of the sum of the
elements ofFE over the sum of the elements ofE, denoted
f . f is written as:

f =

nE∑
j=1

FE,j

nE∑
j=1

Ej

(5)

The de-biased Precipitation field of the ERA-I dataset,Ed, is
then defined asEd

= f E.

2.3.4 Reconstructing a diurnal cycle to the ERA-I data

In order to use the de-biased meteorological fields of the
ERA-I dataset to fill the gaps in the meteorological fields of
the FLUXNET dataset, they need to be interpolated from the
original 3-hourly time step to the half-hourly time step.

For the instantaneous fields (all fields, except the Global
Radiation, the Long Wave Radiation and the Precipitation
fields), the 3-hourly data are simply linearly interpolated
in order to reconstruct a diurnal cycle at a half-hourly
resolution. The half-hourly de-biased field of ERA-I dataset
is denotedEd

F and is written as:
Algorithm 3

for j = 1 : nF
{

l = ((j − 1)rF − z)/rE

Ed
F,j = Ed

int(l) (mod(l,1)) + Ed
int(l+1) (1− mod(l,1))

}

The Global Radiation field is distributed as a function
of the solar angle, based on a code initially developed by
J. C. Morrill within the frame of the GSWP (Dirmeyer, 2011)
and used in the ORCHIDEE model (Krinner et al., 2005) for
instance (http://dods.ipsl.jussieu.fr/orchidee/DOXYGEN/
webdoc/d1/db6/solar_8f90_source.html). The solar angle
is a function of the longitude and latitude (lon, lat), the
day of the year (doy) and the hour (hour in UTC+ 0 time).
The solar angle is denotedα(lon,lat,doy,hour) that we will
restrict in the following toα(hour).

For the global radiation,Ed
F is defined as the correspond-

ing Ed value, weighted by the ratio of the current solar angle
to the mean solar angle over the 3-h time period (over which
theEd value is defined).Ed

F is written as:
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Algorithm 1

for j = 1 : nE
{

FE,j = F(jrE+z)/rF

}

Here, nF and nE are the length (expressed in the num-
ber of values) of the FLUXNET and ERA-I time series,
respectively,rF and rE are the time resolution (expressed
in hours) of the FLUXNET and ERA-I time series, respec-
tively, andz is the difference in local time with respect to
UTC.

WhenFj is not defined (j < 1 or j > nF), the associated
FE,j variable is set to−9999 as a missing value.

The Appendix gives an application of each pseudo-
algorithm defined in this paper for a site located in time zone
UTC+ 2.

For the averaged fields (Rg_f, Precip_f and LWin), the
re-indexed variable is defined by Alg. (2).
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2.3.2 Harmonizing variables’ time periods

In order to compare ERA-I and FLUXNET data at similar
time steps, original FLUXNET meteorological variables, de-
notedF , are re-indexed from the FLUXNET (half-hourly
resolution) to the ERA-I (three-hourly resolution) time grid,
taking into consideration differences in time zone.

For the instantaneous fields (Ta_f, VPD_f, WS_f and
Pa_f), the re-indexed variable denotedFE is defined by the
following pseudo-algorithm (Alg. 1).
Algorithm 1

for j = 1 : nE
{

FE,j = F(jrE+z)/rF

}

where nF and nE are the length (expressed in number
of values) of the FLUXNET and ERA-I time series respec-
tively, rF andrE, the time resolution (expressed in hours) of
the FLUXNET and ERA-I time series respectively andz the
difference in local time respect to UTC.

WhenFj is not defined (j < 1 or j > nF), the associated
FE,j variable is set to−9999 as a missing value.

In the Appendix is given an application of each pseudo-
algorithm defined in this paper for a site located in time zone
UTC+ 2.

For the averaged fields (Rg_f, Precip_f and LWin), the re-
indexed variable is defined by Alg. (2).
Algorithm 2

for j = 1 : nE
{

Fcum = 0
for k = (((j − 1)rE + z)/rF + 1) : ((jrE + z)/rF )
{

Fcum+ = Fk

}
FE,j =

Fcum
rE/rF

}

When an elementFk is not defined (k < 1 or k > nF ) or is
defined as missing value (−9999), the associatedFE,j vari-
able is set to−9999 as a missing value.

2.3.3 De-biasing the ERA-I data

We denote the original ERA-I meteorological data,E. In or-
der to correct for the observed bias betweenE andFE, the
slope (s) and the intercept (i) of the linear regression ofFE
againstE are used. The de-biased ERA-I meteorological data
is denotedEd and calculated as followed, for all fields except
the precipitation field:

Ed
= sE + i (4)

For the Global Radiation and Wind Speed fields, when cal-
culating the regression coefficients of the linear relationship,
we force the intercept to 0 in order to avoid of having possi-
bly negative radiations, or too flat regression slope for Wind
Speed.

For the Precipitation field, we do not expect that the timing
of precipitations in the ERA-I dataset is accurate enough, for
using the linear regression betweenFE andE as a way to
de-biasE. Instead, we simply use the ratio of the sum of the
elements ofFE over the sum of the elements ofE, denoted
f . f is written as:

f =

nE∑
j=1

FE,j

nE∑
j=1

Ej

(5)

The de-biased Precipitation field of the ERA-I dataset,Ed, is
then defined asEd

= f E.

2.3.4 Reconstructing a diurnal cycle to the ERA-I data

In order to use the de-biased meteorological fields of the
ERA-I dataset to fill the gaps in the meteorological fields of
the FLUXNET dataset, they need to be interpolated from the
original 3-hourly time step to the half-hourly time step.

For the instantaneous fields (all fields, except the Global
Radiation, the Long Wave Radiation and the Precipitation
fields), the 3-hourly data are simply linearly interpolated
in order to reconstruct a diurnal cycle at a half-hourly
resolution. The half-hourly de-biased field of ERA-I dataset
is denotedEd

F and is written as:
Algorithm 3

for j = 1 : nF
{

l = ((j − 1)rF − z)/rE

Ed
F,j = Ed

int(l) (mod(l,1)) + Ed
int(l+1) (1− mod(l,1))

}

The Global Radiation field is distributed as a function
of the solar angle, based on a code initially developed by
J. C. Morrill within the frame of the GSWP (Dirmeyer, 2011)
and used in the ORCHIDEE model (Krinner et al., 2005) for
instance (http://dods.ipsl.jussieu.fr/orchidee/DOXYGEN/
webdoc/d1/db6/solar_8f90_source.html). The solar angle
is a function of the longitude and latitude (lon, lat), the
day of the year (doy) and the hour (hour in UTC+ 0 time).
The solar angle is denotedα(lon,lat,doy,hour) that we will
restrict in the following toα(hour).

For the global radiation,Ed
F is defined as the correspond-

ing Ed value, weighted by the ratio of the current solar angle
to the mean solar angle over the 3-h time period (over which
theEd value is defined).Ed

F is written as:
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When an elementFk is not defined (k < 1 or k > nF ) or
is defined as missing value (−9999), the associatedFE,j

variable is set to−9999 as a missing value.

2.3.3 De-biasing the ERA-I data

We denote the original ERA-I meteorological data byE. In
order to correct for the observed bias betweenE andFE, the
slope (s) and the intercept (i) of the linear regression ofFE
againstE are used. The de-biased ERA-I meteorological data
is denotedEd and calculated as follows, for all fields except
the precipitation field:

Ed
= sE + i. (4)

For the global radiation and wind speed fields, when calcu-
lating the regression coefficients of the linear relationship,
we force the intercept to 0 in order to avoid having possi-
bly negative radiation or too flat a regression slope for wind
speed.

For the precipitation field, we do not expect that the timing
of precipitations in the ERA-I data set is accurate enough for
the linear regression betweenFE andE to be used as a way to
de-biasE. Instead, we simply use the ratio of the sum of the
elements ofFE over the sum of the elements ofE, denoted
asf . f is written as

f =

nE∑
j=1

FE,j

nE∑
j=1

Ej

. (5)

The de-biased precipitation field of the ERA-I data set,Ed,
is then defined asEd

= f E.

2.3.4 Reconstructing a diurnal cycle to the ERA-I data

In order to use the de-biased meteorological fields of the
ERA-I data set to fill the gaps in the meteorological fields
of the FLUXNET data set, they need to be interpolated from
the original 3-hourly time step to the half-hourly time step.

For the instantaneous fields (all fields, except for the
global radiation, the longwave radiation and the precipita-
tion fields), the 3-hourly data are simply linearly interpolated
in order to reconstruct a diurnal cycle at a half-hourly
resolution. The half-hourly de-biased field of the ERA-I data
set is denotedEd

F and is written as
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2.3.2 Harmonizing variables’ time periods

In order to compare ERA-I and FLUXNET data at similar
time steps, original FLUXNET meteorological variables, de-
notedF , are re-indexed from the FLUXNET (half-hourly
resolution) to the ERA-I (three-hourly resolution) time grid,
taking into consideration differences in time zone.

For the instantaneous fields (Ta_f, VPD_f, WS_f and
Pa_f), the re-indexed variable denotedFE is defined by the
following pseudo-algorithm (Alg. 1).
Algorithm 1

for j = 1 : nE
{

FE,j = F(jrE+z)/rF

}

where nF and nE are the length (expressed in number
of values) of the FLUXNET and ERA-I time series respec-
tively, rF andrE, the time resolution (expressed in hours) of
the FLUXNET and ERA-I time series respectively andz the
difference in local time respect to UTC.

WhenFj is not defined (j < 1 or j > nF), the associated
FE,j variable is set to−9999 as a missing value.

In the Appendix is given an application of each pseudo-
algorithm defined in this paper for a site located in time zone
UTC+ 2.

For the averaged fields (Rg_f, Precip_f and LWin), the re-
indexed variable is defined by Alg. (2).
Algorithm 2

for j = 1 : nE
{

Fcum = 0
for k = (((j − 1)rE + z)/rF + 1) : ((jrE + z)/rF )
{

Fcum+ = Fk

}
FE,j =

Fcum
rE/rF

}

When an elementFk is not defined (k < 1 or k > nF ) or is
defined as missing value (−9999), the associatedFE,j vari-
able is set to−9999 as a missing value.

2.3.3 De-biasing the ERA-I data

We denote the original ERA-I meteorological data,E. In or-
der to correct for the observed bias betweenE andFE, the
slope (s) and the intercept (i) of the linear regression ofFE
againstE are used. The de-biased ERA-I meteorological data
is denotedEd and calculated as followed, for all fields except
the precipitation field:

Ed
= sE + i (4)

For the Global Radiation and Wind Speed fields, when cal-
culating the regression coefficients of the linear relationship,
we force the intercept to 0 in order to avoid of having possi-
bly negative radiations, or too flat regression slope for Wind
Speed.

For the Precipitation field, we do not expect that the timing
of precipitations in the ERA-I dataset is accurate enough, for
using the linear regression betweenFE andE as a way to
de-biasE. Instead, we simply use the ratio of the sum of the
elements ofFE over the sum of the elements ofE, denoted
f . f is written as:

f =

nE∑
j=1

FE,j

nE∑
j=1

Ej

(5)

The de-biased Precipitation field of the ERA-I dataset,Ed, is
then defined asEd

= f E.

2.3.4 Reconstructing a diurnal cycle to the ERA-I data

In order to use the de-biased meteorological fields of the
ERA-I dataset to fill the gaps in the meteorological fields of
the FLUXNET dataset, they need to be interpolated from the
original 3-hourly time step to the half-hourly time step.

For the instantaneous fields (all fields, except the Global
Radiation, the Long Wave Radiation and the Precipitation
fields), the 3-hourly data are simply linearly interpolated
in order to reconstruct a diurnal cycle at a half-hourly
resolution. The half-hourly de-biased field of ERA-I dataset
is denotedEd

F and is written as:
Algorithm 3

for j = 1 : nF
{

l = ((j − 1)rF − z)/rE

Ed
F,j = Ed

int(l) (mod(l,1)) + Ed
int(l+1) (1− mod(l,1))

}

The Global Radiation field is distributed as a function
of the solar angle, based on a code initially developed by
J. C. Morrill within the frame of the GSWP (Dirmeyer, 2011)
and used in the ORCHIDEE model (Krinner et al., 2005) for
instance (http://dods.ipsl.jussieu.fr/orchidee/DOXYGEN/
webdoc/d1/db6/solar_8f90_source.html). The solar angle
is a function of the longitude and latitude (lon, lat), the
day of the year (doy) and the hour (hour in UTC+ 0 time).
The solar angle is denotedα(lon,lat,doy,hour) that we will
restrict in the following toα(hour).

For the global radiation,Ed
F is defined as the correspond-

ing Ed value, weighted by the ratio of the current solar angle
to the mean solar angle over the 3-h time period (over which
theEd value is defined).Ed

F is written as:
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The global radiation field is distributed as a function of
the solar angle, based on a code initially developed by
J. C. Morrill within the frame of the GSWP (Global Soil
Wetness ProjectCE12; Dirmeyer, 2011) and used, for ex-
ample, in the ORCHIDEE model (Krinner et al., 2005)
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Here,nF andnE are the length (expressed in the number of
values) of the FLUXNET and ERA-I time series, respec-
tively, rF andrE are the time resolution (expressed in hours)
of the FLUXNET and ERA-I time series, respectively, andz

is the difference in local time with respect to UTC.
WhenFj is not defined (j < 1 or j > nF), the associated

FE,j variable is set to−9999 as a missing value.
The Appendix gives an application of each pseudo-

algorithm defined in this paper for a site located in time zone
UTC+ 2.

For the averaged fields (Rg_f, Precip_f and LWin), the
re-indexed variable is defined by Alg. (2).
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2.3.2 Harmonizing variables’ time periods

In order to compare ERA-I and FLUXNET data at similar
time steps, original FLUXNET meteorological variables, de-
notedF , are re-indexed from the FLUXNET (half-hourly
resolution) to the ERA-I (three-hourly resolution) time grid,
taking into consideration differences in time zone.

For the instantaneous fields (Ta_f, VPD_f, WS_f and
Pa_f), the re-indexed variable denotedFE is defined by the
following pseudo-algorithm (Alg. 1).
Algorithm 1

for j = 1 : nE
{

FE,j = F(jrE+z)/rF

}

where nF and nE are the length (expressed in number
of values) of the FLUXNET and ERA-I time series respec-
tively, rF andrE, the time resolution (expressed in hours) of
the FLUXNET and ERA-I time series respectively andz the
difference in local time respect to UTC.

WhenFj is not defined (j < 1 or j > nF), the associated
FE,j variable is set to−9999 as a missing value.

In the Appendix is given an application of each pseudo-
algorithm defined in this paper for a site located in time zone
UTC+ 2.

For the averaged fields (Rg_f, Precip_f and LWin), the re-
indexed variable is defined by Alg. (2).
Algorithm 2

for j = 1 : nE
{

Fcum = 0
for k = (((j − 1)rE + z)/rF + 1) : ((jrE + z)/rF )
{

Fcum+ = Fk

}
FE,j =

Fcum
rE/rF

}

When an elementFk is not defined (k < 1 or k > nF ) or is
defined as missing value (−9999), the associatedFE,j vari-
able is set to−9999 as a missing value.

2.3.3 De-biasing the ERA-I data

We denote the original ERA-I meteorological data,E. In or-
der to correct for the observed bias betweenE andFE, the
slope (s) and the intercept (i) of the linear regression ofFE
againstE are used. The de-biased ERA-I meteorological data
is denotedEd and calculated as followed, for all fields except
the precipitation field:

Ed
= sE + i (4)

For the Global Radiation and Wind Speed fields, when cal-
culating the regression coefficients of the linear relationship,
we force the intercept to 0 in order to avoid of having possi-
bly negative radiations, or too flat regression slope for Wind
Speed.

For the Precipitation field, we do not expect that the timing
of precipitations in the ERA-I dataset is accurate enough, for
using the linear regression betweenFE andE as a way to
de-biasE. Instead, we simply use the ratio of the sum of the
elements ofFE over the sum of the elements ofE, denoted
f . f is written as:

f =

nE∑
j=1

FE,j

nE∑
j=1

Ej

(5)

The de-biased Precipitation field of the ERA-I dataset,Ed, is
then defined asEd

= f E.

2.3.4 Reconstructing a diurnal cycle to the ERA-I data

In order to use the de-biased meteorological fields of the
ERA-I dataset to fill the gaps in the meteorological fields of
the FLUXNET dataset, they need to be interpolated from the
original 3-hourly time step to the half-hourly time step.

For the instantaneous fields (all fields, except the Global
Radiation, the Long Wave Radiation and the Precipitation
fields), the 3-hourly data are simply linearly interpolated
in order to reconstruct a diurnal cycle at a half-hourly
resolution. The half-hourly de-biased field of ERA-I dataset
is denotedEd

F and is written as:
Algorithm 3

for j = 1 : nF
{

l = ((j − 1)rF − z)/rE

Ed
F,j = Ed

int(l) (mod(l,1)) + Ed
int(l+1) (1− mod(l,1))

}

The Global Radiation field is distributed as a function
of the solar angle, based on a code initially developed by
J. C. Morrill within the frame of the GSWP (Dirmeyer, 2011)
and used in the ORCHIDEE model (Krinner et al., 2005) for
instance (http://dods.ipsl.jussieu.fr/orchidee/DOXYGEN/
webdoc/d1/db6/solar_8f90_source.html). The solar angle
is a function of the longitude and latitude (lon, lat), the
day of the year (doy) and the hour (hour in UTC+ 0 time).
The solar angle is denotedα(lon,lat,doy,hour) that we will
restrict in the following toα(hour).

For the global radiation,Ed
F is defined as the correspond-

ing Ed value, weighted by the ratio of the current solar angle
to the mean solar angle over the 3-h time period (over which
theEd value is defined).Ed

F is written as:
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Algorithm 2

for j = 1 : nE
{

Fcum = 0
for k = (((j − 1)rE + z)/rF + 1) : ((jrE + z)/rF )
{

Fcum+ = Fk

}
FE,j = Fcum

rE/rF

}

When an elementFk is not defined (k < 1 or k > nF ) or
is defined as missing value (−9999), the associatedFE,j

variable is set to−9999 as a missing value.

2.3.3 De-biasing the ERA-I data

We denote the original ERA-I meteorological data byE. In
order to correct for the observed bias betweenE andFE, the
slope (s) and the intercept (i) of the linear regression ofFE
againstE are used. The de-biased ERA-I meteorological data
is denotedEd and calculated as follows, for all fields except
the precipitation field:

Ed = sE + i. (4)

For the global radiation and wind speed fields, when calcu-
lating the regression coefficients of the linear relationship,
we force the intercept to 0 in order to avoid having possi-
bly negative radiation or too flat a regression slope for wind
speed.

For the precipitation field, we do not expect that the timing
of precipitations in the ERA-I data set is accurate enough for
the linear regression betweenFE andE to be used as a way to
de-biasE. Instead, we simply use the ratio of the sum of the
elements ofFE over the sum of the elements ofE, denoted
asf . f is written as

f =

nE∑
j=1

FE,j

nE∑
j=1

Ej

. (5)

The de-biased precipitation field of the ERA-I data set,Ed,
is then defined asEd = f E.

2.3.4 Reconstructing a diurnal cycle to the ERA-I data

In order to use the de-biased meteorological fields of the
ERA-I data set to fill the gaps in the meteorological fields
of the FLUXNET data set, they need to be interpolated from
the original 3-hourly time step to the half-hourly time step.

For the instantaneous fields (all fields, except for the
global radiation, the longwave radiation and the precipita-
tion fields), the 3-hourly data are simply linearly interpolated
in order to reconstruct a diurnal cycle at a half-hourly
resolution. The half-hourly de-biased field of the ERA-I data
set is denotedEd

F and is written as
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with dt2m and t2m expressed in◦C anda, b and c being
three constants (a = 6.11×10−2; b = 21.874 if t2m< 0 else
17.269;c = 265.49 if t2m< 0 else 237.29).

2.3.2 Harmonizing variables’ time periods

In order to compare ERA-I and FLUXNET data at similar
time steps, original FLUXNET meteorological variables, de-
noted byF , are re-indexed from the FLUXNET (half-hourly
resolution) to the ERA-I (3-hourly resolution) time grid, tak-
ing into consideration differences in time zone.

For the instantaneous fields (Ta_f, VPD_f, WS_f and
Pa_f), the re-indexed variable denotedFE is defined by the
following pseudo-algorithm (Alg. 1).
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time steps, original FLUXNET meteorological variables, de-
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2.3.2 Harmonizing variables’ time periods

In order to compare ERA-I and FLUXNET data at similar
time steps, original FLUXNET meteorological variables, de-
notedF , are re-indexed from the FLUXNET (half-hourly
resolution) to the ERA-I (three-hourly resolution) time grid,
taking into consideration differences in time zone.

For the instantaneous fields (Ta_f, VPD_f, WS_f and
Pa_f), the re-indexed variable denotedFE is defined by the
following pseudo-algorithm (Alg. 1).
Algorithm 1

for j = 1 : nE
{

FE,j = F(jrE+z)/rF

}

where nF and nE are the length (expressed in number
of values) of the FLUXNET and ERA-I time series respec-
tively, rF andrE, the time resolution (expressed in hours) of
the FLUXNET and ERA-I time series respectively andz the
difference in local time respect to UTC.

WhenFj is not defined (j < 1 or j > nF), the associated
FE,j variable is set to−9999 as a missing value.

In the Appendix is given an application of each pseudo-
algorithm defined in this paper for a site located in time zone
UTC+ 2.

For the averaged fields (Rg_f, Precip_f and LWin), the re-
indexed variable is defined by Alg. (2).
Algorithm 2

for j = 1 : nE
{

Fcum = 0
for k = (((j − 1)rE + z)/rF + 1) : ((jrE + z)/rF )
{

Fcum+ = Fk

}
FE,j =

Fcum
rE/rF

}

When an elementFk is not defined (k < 1 or k > nF ) or is
defined as missing value (−9999), the associatedFE,j vari-
able is set to−9999 as a missing value.

2.3.3 De-biasing the ERA-I data

We denote the original ERA-I meteorological data,E. In or-
der to correct for the observed bias betweenE andFE, the
slope (s) and the intercept (i) of the linear regression ofFE
againstE are used. The de-biased ERA-I meteorological data
is denotedEd and calculated as followed, for all fields except
the precipitation field:

Ed
= sE + i (4)

For the Global Radiation and Wind Speed fields, when cal-
culating the regression coefficients of the linear relationship,
we force the intercept to 0 in order to avoid of having possi-
bly negative radiations, or too flat regression slope for Wind
Speed.

For the Precipitation field, we do not expect that the timing
of precipitations in the ERA-I dataset is accurate enough, for
using the linear regression betweenFE andE as a way to
de-biasE. Instead, we simply use the ratio of the sum of the
elements ofFE over the sum of the elements ofE, denoted
f . f is written as:

f =

nE∑
j=1

FE,j

nE∑
j=1

Ej

(5)

The de-biased Precipitation field of the ERA-I dataset,Ed, is
then defined asEd

= f E.

2.3.4 Reconstructing a diurnal cycle to the ERA-I data

In order to use the de-biased meteorological fields of the
ERA-I dataset to fill the gaps in the meteorological fields of
the FLUXNET dataset, they need to be interpolated from the
original 3-hourly time step to the half-hourly time step.

For the instantaneous fields (all fields, except the Global
Radiation, the Long Wave Radiation and the Precipitation
fields), the 3-hourly data are simply linearly interpolated
in order to reconstruct a diurnal cycle at a half-hourly
resolution. The half-hourly de-biased field of ERA-I dataset
is denotedEd

F and is written as:
Algorithm 3

for j = 1 : nF
{

l = ((j − 1)rF − z)/rE

Ed
F,j = Ed

int(l) (mod(l,1)) + Ed
int(l+1) (1− mod(l,1))

}

The Global Radiation field is distributed as a function
of the solar angle, based on a code initially developed by
J. C. Morrill within the frame of the GSWP (Dirmeyer, 2011)
and used in the ORCHIDEE model (Krinner et al., 2005) for
instance (http://dods.ipsl.jussieu.fr/orchidee/DOXYGEN/
webdoc/d1/db6/solar_8f90_source.html). The solar angle
is a function of the longitude and latitude (lon, lat), the
day of the year (doy) and the hour (hour in UTC+ 0 time).
The solar angle is denotedα(lon,lat,doy,hour) that we will
restrict in the following toα(hour).

For the global radiation,Ed
F is defined as the correspond-

ing Ed value, weighted by the ratio of the current solar angle
to the mean solar angle over the 3-h time period (over which
theEd value is defined).Ed

F is written as:
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Algorithm 1

for j = 1 : nE
{

FE,j = F(jrE+z)/rF

}

Here, nF and nE are the length (expressed in the num-
ber of values) of the FLUXNET and ERA-I time series,
respectively,rF and rE are the time resolution (expressed
in hours) of the FLUXNET and ERA-I time series, respec-
tively, andz is the difference in local time with respect to
UTC.

WhenFj is not defined (j < 1 or j > nF), the associated
FE,j variable is set to−9999 as a missing value.

The Appendix gives an application of each pseudo-
algorithm defined in this paper for a site located in time zone
UTC+ 2.

For the averaged fields (Rg_f, Precip_f and LWin), the
re-indexed variable is defined by Alg. (2).
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2.3.2 Harmonizing variables’ time periods

In order to compare ERA-I and FLUXNET data at similar
time steps, original FLUXNET meteorological variables, de-
notedF , are re-indexed from the FLUXNET (half-hourly
resolution) to the ERA-I (three-hourly resolution) time grid,
taking into consideration differences in time zone.

For the instantaneous fields (Ta_f, VPD_f, WS_f and
Pa_f), the re-indexed variable denotedFE is defined by the
following pseudo-algorithm (Alg. 1).
Algorithm 1

for j = 1 : nE
{

FE,j = F(jrE+z)/rF

}

where nF and nE are the length (expressed in number
of values) of the FLUXNET and ERA-I time series respec-
tively, rF andrE, the time resolution (expressed in hours) of
the FLUXNET and ERA-I time series respectively andz the
difference in local time respect to UTC.

WhenFj is not defined (j < 1 or j > nF), the associated
FE,j variable is set to−9999 as a missing value.

In the Appendix is given an application of each pseudo-
algorithm defined in this paper for a site located in time zone
UTC+ 2.

For the averaged fields (Rg_f, Precip_f and LWin), the re-
indexed variable is defined by Alg. (2).
Algorithm 2

for j = 1 : nE
{

Fcum = 0
for k = (((j − 1)rE + z)/rF + 1) : ((jrE + z)/rF )
{

Fcum+ = Fk

}
FE,j =

Fcum
rE/rF

}

When an elementFk is not defined (k < 1 or k > nF ) or is
defined as missing value (−9999), the associatedFE,j vari-
able is set to−9999 as a missing value.

2.3.3 De-biasing the ERA-I data

We denote the original ERA-I meteorological data,E. In or-
der to correct for the observed bias betweenE andFE, the
slope (s) and the intercept (i) of the linear regression ofFE
againstE are used. The de-biased ERA-I meteorological data
is denotedEd and calculated as followed, for all fields except
the precipitation field:

Ed
= sE + i (4)

For the Global Radiation and Wind Speed fields, when cal-
culating the regression coefficients of the linear relationship,
we force the intercept to 0 in order to avoid of having possi-
bly negative radiations, or too flat regression slope for Wind
Speed.

For the Precipitation field, we do not expect that the timing
of precipitations in the ERA-I dataset is accurate enough, for
using the linear regression betweenFE andE as a way to
de-biasE. Instead, we simply use the ratio of the sum of the
elements ofFE over the sum of the elements ofE, denoted
f . f is written as:

f =

nE∑
j=1

FE,j

nE∑
j=1

Ej

(5)

The de-biased Precipitation field of the ERA-I dataset,Ed, is
then defined asEd

= f E.

2.3.4 Reconstructing a diurnal cycle to the ERA-I data

In order to use the de-biased meteorological fields of the
ERA-I dataset to fill the gaps in the meteorological fields of
the FLUXNET dataset, they need to be interpolated from the
original 3-hourly time step to the half-hourly time step.

For the instantaneous fields (all fields, except the Global
Radiation, the Long Wave Radiation and the Precipitation
fields), the 3-hourly data are simply linearly interpolated
in order to reconstruct a diurnal cycle at a half-hourly
resolution. The half-hourly de-biased field of ERA-I dataset
is denotedEd

F and is written as:
Algorithm 3

for j = 1 : nF
{

l = ((j − 1)rF − z)/rE

Ed
F,j = Ed

int(l) (mod(l,1)) + Ed
int(l+1) (1− mod(l,1))

}

The Global Radiation field is distributed as a function
of the solar angle, based on a code initially developed by
J. C. Morrill within the frame of the GSWP (Dirmeyer, 2011)
and used in the ORCHIDEE model (Krinner et al., 2005) for
instance (http://dods.ipsl.jussieu.fr/orchidee/DOXYGEN/
webdoc/d1/db6/solar_8f90_source.html). The solar angle
is a function of the longitude and latitude (lon, lat), the
day of the year (doy) and the hour (hour in UTC+ 0 time).
The solar angle is denotedα(lon,lat,doy,hour) that we will
restrict in the following toα(hour).

For the global radiation,Ed
F is defined as the correspond-

ing Ed value, weighted by the ratio of the current solar angle
to the mean solar angle over the 3-h time period (over which
theEd value is defined).Ed

F is written as:
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When an elementFk is not defined (k < 1 or k > nF ) or
is defined as missing value (−9999), the associatedFE,j

variable is set to−9999 as a missing value.

2.3.3 De-biasing the ERA-I data

We denote the original ERA-I meteorological data byE. In
order to correct for the observed bias betweenE andFE, the
slope (s) and the intercept (i) of the linear regression ofFE
againstE are used. The de-biased ERA-I meteorological data
is denotedEd and calculated as follows, for all fields except
the precipitation field:

Ed
= sE + i. (4)

For the global radiation and wind speed fields, when calcu-
lating the regression coefficients of the linear relationship,
we force the intercept to 0 in order to avoid having possi-
bly negative radiation or too flat a regression slope for wind
speed.

For the precipitation field, we do not expect that the timing
of precipitations in the ERA-I data set is accurate enough for
the linear regression betweenFE andE to be used as a way to
de-biasE. Instead, we simply use the ratio of the sum of the
elements ofFE over the sum of the elements ofE, denoted
asf . f is written as

f =

nE∑
j=1

FE,j

nE∑
j=1

Ej

. (5)

The de-biased precipitation field of the ERA-I data set,Ed,
is then defined asEd

= f E.

2.3.4 Reconstructing a diurnal cycle to the ERA-I data

In order to use the de-biased meteorological fields of the
ERA-I data set to fill the gaps in the meteorological fields
of the FLUXNET data set, they need to be interpolated from
the original 3-hourly time step to the half-hourly time step.

For the instantaneous fields (all fields, except for the
global radiation, the longwave radiation and the precipita-
tion fields), the 3-hourly data are simply linearly interpolated
in order to reconstruct a diurnal cycle at a half-hourly
resolution. The half-hourly de-biased field of the ERA-I data
set is denotedEd

F and is written as
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2.3.2 Harmonizing variables’ time periods

In order to compare ERA-I and FLUXNET data at similar
time steps, original FLUXNET meteorological variables, de-
notedF , are re-indexed from the FLUXNET (half-hourly
resolution) to the ERA-I (three-hourly resolution) time grid,
taking into consideration differences in time zone.

For the instantaneous fields (Ta_f, VPD_f, WS_f and
Pa_f), the re-indexed variable denotedFE is defined by the
following pseudo-algorithm (Alg. 1).
Algorithm 1

for j = 1 : nE
{

FE,j = F(jrE+z)/rF

}

where nF and nE are the length (expressed in number
of values) of the FLUXNET and ERA-I time series respec-
tively, rF andrE, the time resolution (expressed in hours) of
the FLUXNET and ERA-I time series respectively andz the
difference in local time respect to UTC.

WhenFj is not defined (j < 1 or j > nF), the associated
FE,j variable is set to−9999 as a missing value.

In the Appendix is given an application of each pseudo-
algorithm defined in this paper for a site located in time zone
UTC+ 2.

For the averaged fields (Rg_f, Precip_f and LWin), the re-
indexed variable is defined by Alg. (2).
Algorithm 2

for j = 1 : nE
{

Fcum = 0
for k = (((j − 1)rE + z)/rF + 1) : ((jrE + z)/rF )
{

Fcum+ = Fk

}
FE,j =

Fcum
rE/rF

}

When an elementFk is not defined (k < 1 or k > nF ) or is
defined as missing value (−9999), the associatedFE,j vari-
able is set to−9999 as a missing value.

2.3.3 De-biasing the ERA-I data

We denote the original ERA-I meteorological data,E. In or-
der to correct for the observed bias betweenE andFE, the
slope (s) and the intercept (i) of the linear regression ofFE
againstE are used. The de-biased ERA-I meteorological data
is denotedEd and calculated as followed, for all fields except
the precipitation field:

Ed
= sE + i (4)

For the Global Radiation and Wind Speed fields, when cal-
culating the regression coefficients of the linear relationship,
we force the intercept to 0 in order to avoid of having possi-
bly negative radiations, or too flat regression slope for Wind
Speed.

For the Precipitation field, we do not expect that the timing
of precipitations in the ERA-I dataset is accurate enough, for
using the linear regression betweenFE andE as a way to
de-biasE. Instead, we simply use the ratio of the sum of the
elements ofFE over the sum of the elements ofE, denoted
f . f is written as:

f =

nE∑
j=1

FE,j

nE∑
j=1

Ej

(5)

The de-biased Precipitation field of the ERA-I dataset,Ed, is
then defined asEd

= f E.

2.3.4 Reconstructing a diurnal cycle to the ERA-I data

In order to use the de-biased meteorological fields of the
ERA-I dataset to fill the gaps in the meteorological fields of
the FLUXNET dataset, they need to be interpolated from the
original 3-hourly time step to the half-hourly time step.

For the instantaneous fields (all fields, except the Global
Radiation, the Long Wave Radiation and the Precipitation
fields), the 3-hourly data are simply linearly interpolated
in order to reconstruct a diurnal cycle at a half-hourly
resolution. The half-hourly de-biased field of ERA-I dataset
is denotedEd

F and is written as:
Algorithm 3

for j = 1 : nF
{

l = ((j − 1)rF − z)/rE

Ed
F,j = Ed

int(l) (mod(l,1)) + Ed
int(l+1) (1− mod(l,1))

}

The Global Radiation field is distributed as a function
of the solar angle, based on a code initially developed by
J. C. Morrill within the frame of the GSWP (Dirmeyer, 2011)
and used in the ORCHIDEE model (Krinner et al., 2005) for
instance (http://dods.ipsl.jussieu.fr/orchidee/DOXYGEN/
webdoc/d1/db6/solar_8f90_source.html). The solar angle
is a function of the longitude and latitude (lon, lat), the
day of the year (doy) and the hour (hour in UTC+ 0 time).
The solar angle is denotedα(lon,lat,doy,hour) that we will
restrict in the following toα(hour).

For the global radiation,Ed
F is defined as the correspond-

ing Ed value, weighted by the ratio of the current solar angle
to the mean solar angle over the 3-h time period (over which
theEd value is defined).Ed

F is written as:
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The global radiation field is distributed as a function of
the solar angle, based on a code initially developed by
J. C. Morrill within the frame of the GSWP (Global Soil
Wetness ProjectCE12; Dirmeyer, 2011) and used, for ex-
ample, in the ORCHIDEE model (Krinner et al., 2005)
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Here,nF andnE are the length (expressed in the number of
values) of the FLUXNET and ERA-I time series, respec-
tively, rF andrE are the time resolution (expressed in hours)
of the FLUXNET and ERA-I time series, respectively, andz

is the difference in local time with respect to UTC.
WhenFj is not defined (j < 1 or j > nF), the associated

FE,j variable is set to−9999 as a missing value.
The Appendix gives an application of each pseudo-

algorithm defined in this paper for a site located in time zone
UTC+ 2.

For the averaged fields (Rg_f, Precip_f and LWin), the
re-indexed variable is defined by Alg. (2).
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2.3.2 Harmonizing variables’ time periods

In order to compare ERA-I and FLUXNET data at similar
time steps, original FLUXNET meteorological variables, de-
notedF , are re-indexed from the FLUXNET (half-hourly
resolution) to the ERA-I (three-hourly resolution) time grid,
taking into consideration differences in time zone.

For the instantaneous fields (Ta_f, VPD_f, WS_f and
Pa_f), the re-indexed variable denotedFE is defined by the
following pseudo-algorithm (Alg. 1).
Algorithm 1

for j = 1 : nE
{

FE,j = F(jrE+z)/rF

}

where nF and nE are the length (expressed in number
of values) of the FLUXNET and ERA-I time series respec-
tively, rF andrE, the time resolution (expressed in hours) of
the FLUXNET and ERA-I time series respectively andz the
difference in local time respect to UTC.

WhenFj is not defined (j < 1 or j > nF), the associated
FE,j variable is set to−9999 as a missing value.

In the Appendix is given an application of each pseudo-
algorithm defined in this paper for a site located in time zone
UTC+ 2.

For the averaged fields (Rg_f, Precip_f and LWin), the re-
indexed variable is defined by Alg. (2).
Algorithm 2

for j = 1 : nE
{

Fcum = 0
for k = (((j − 1)rE + z)/rF + 1) : ((jrE + z)/rF )
{

Fcum+ = Fk

}
FE,j =

Fcum
rE/rF

}

When an elementFk is not defined (k < 1 or k > nF ) or is
defined as missing value (−9999), the associatedFE,j vari-
able is set to−9999 as a missing value.

2.3.3 De-biasing the ERA-I data

We denote the original ERA-I meteorological data,E. In or-
der to correct for the observed bias betweenE andFE, the
slope (s) and the intercept (i) of the linear regression ofFE
againstE are used. The de-biased ERA-I meteorological data
is denotedEd and calculated as followed, for all fields except
the precipitation field:

Ed
= sE + i (4)

For the Global Radiation and Wind Speed fields, when cal-
culating the regression coefficients of the linear relationship,
we force the intercept to 0 in order to avoid of having possi-
bly negative radiations, or too flat regression slope for Wind
Speed.

For the Precipitation field, we do not expect that the timing
of precipitations in the ERA-I dataset is accurate enough, for
using the linear regression betweenFE andE as a way to
de-biasE. Instead, we simply use the ratio of the sum of the
elements ofFE over the sum of the elements ofE, denoted
f . f is written as:

f =

nE∑
j=1

FE,j

nE∑
j=1

Ej

(5)

The de-biased Precipitation field of the ERA-I dataset,Ed, is
then defined asEd

= f E.

2.3.4 Reconstructing a diurnal cycle to the ERA-I data

In order to use the de-biased meteorological fields of the
ERA-I dataset to fill the gaps in the meteorological fields of
the FLUXNET dataset, they need to be interpolated from the
original 3-hourly time step to the half-hourly time step.

For the instantaneous fields (all fields, except the Global
Radiation, the Long Wave Radiation and the Precipitation
fields), the 3-hourly data are simply linearly interpolated
in order to reconstruct a diurnal cycle at a half-hourly
resolution. The half-hourly de-biased field of ERA-I dataset
is denotedEd

F and is written as:
Algorithm 3

for j = 1 : nF
{

l = ((j − 1)rF − z)/rE

Ed
F,j = Ed

int(l) (mod(l,1)) + Ed
int(l+1) (1− mod(l,1))

}

The Global Radiation field is distributed as a function
of the solar angle, based on a code initially developed by
J. C. Morrill within the frame of the GSWP (Dirmeyer, 2011)
and used in the ORCHIDEE model (Krinner et al., 2005) for
instance (http://dods.ipsl.jussieu.fr/orchidee/DOXYGEN/
webdoc/d1/db6/solar_8f90_source.html). The solar angle
is a function of the longitude and latitude (lon, lat), the
day of the year (doy) and the hour (hour in UTC+ 0 time).
The solar angle is denotedα(lon,lat,doy,hour) that we will
restrict in the following toα(hour).

For the global radiation,Ed
F is defined as the correspond-

ing Ed value, weighted by the ratio of the current solar angle
to the mean solar angle over the 3-h time period (over which
theEd value is defined).Ed

F is written as:
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tion fields), the 3-hourly data are simply linearly interpolated
in order to reconstruct a diurnal cycle at a half-hourly
resolution. The half-hourly de-biased field of the ERA-I data
set is denotedEd

F and is written as
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resolution) to the ERA-I (three-hourly resolution) time grid,
taking into consideration differences in time zone.

For the instantaneous fields (Ta_f, VPD_f, WS_f and
Pa_f), the re-indexed variable denotedFE is defined by the
following pseudo-algorithm (Alg. 1).
Algorithm 1

for j = 1 : nE
{

FE,j = F(jrE+z)/rF

}

where nF and nE are the length (expressed in number
of values) of the FLUXNET and ERA-I time series respec-
tively, rF andrE, the time resolution (expressed in hours) of
the FLUXNET and ERA-I time series respectively andz the
difference in local time respect to UTC.

WhenFj is not defined (j < 1 or j > nF), the associated
FE,j variable is set to−9999 as a missing value.

In the Appendix is given an application of each pseudo-
algorithm defined in this paper for a site located in time zone
UTC+ 2.

For the averaged fields (Rg_f, Precip_f and LWin), the re-
indexed variable is defined by Alg. (2).
Algorithm 2

for j = 1 : nE
{

Fcum = 0
for k = (((j − 1)rE + z)/rF + 1) : ((jrE + z)/rF )
{

Fcum+ = Fk

}
FE,j =

Fcum
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}

When an elementFk is not defined (k < 1 or k > nF ) or is
defined as missing value (−9999), the associatedFE,j vari-
able is set to−9999 as a missing value.

2.3.3 De-biasing the ERA-I data

We denote the original ERA-I meteorological data,E. In or-
der to correct for the observed bias betweenE andFE, the
slope (s) and the intercept (i) of the linear regression ofFE
againstE are used. The de-biased ERA-I meteorological data
is denotedEd and calculated as followed, for all fields except
the precipitation field:

Ed
= sE + i (4)

For the Global Radiation and Wind Speed fields, when cal-
culating the regression coefficients of the linear relationship,
we force the intercept to 0 in order to avoid of having possi-
bly negative radiations, or too flat regression slope for Wind
Speed.

For the Precipitation field, we do not expect that the timing
of precipitations in the ERA-I dataset is accurate enough, for
using the linear regression betweenFE andE as a way to
de-biasE. Instead, we simply use the ratio of the sum of the
elements ofFE over the sum of the elements ofE, denoted
f . f is written as:

f =

nE∑
j=1

FE,j

nE∑
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Ej

(5)

The de-biased Precipitation field of the ERA-I dataset,Ed, is
then defined asEd

= f E.

2.3.4 Reconstructing a diurnal cycle to the ERA-I data

In order to use the de-biased meteorological fields of the
ERA-I dataset to fill the gaps in the meteorological fields of
the FLUXNET dataset, they need to be interpolated from the
original 3-hourly time step to the half-hourly time step.

For the instantaneous fields (all fields, except the Global
Radiation, the Long Wave Radiation and the Precipitation
fields), the 3-hourly data are simply linearly interpolated
in order to reconstruct a diurnal cycle at a half-hourly
resolution. The half-hourly de-biased field of ERA-I dataset
is denotedEd

F and is written as:
Algorithm 3

for j = 1 : nF
{

l = ((j − 1)rF − z)/rE

Ed
F,j = Ed

int(l) (mod(l,1)) + Ed
int(l+1) (1− mod(l,1))

}

The Global Radiation field is distributed as a function
of the solar angle, based on a code initially developed by
J. C. Morrill within the frame of the GSWP (Dirmeyer, 2011)
and used in the ORCHIDEE model (Krinner et al., 2005) for
instance (http://dods.ipsl.jussieu.fr/orchidee/DOXYGEN/
webdoc/d1/db6/solar_8f90_source.html). The solar angle
is a function of the longitude and latitude (lon, lat), the
day of the year (doy) and the hour (hour in UTC+ 0 time).
The solar angle is denotedα(lon,lat,doy,hour) that we will
restrict in the following toα(hour).

For the global radiation,Ed
F is defined as the correspond-

ing Ed value, weighted by the ratio of the current solar angle
to the mean solar angle over the 3-h time period (over which
theEd value is defined).Ed

F is written as:
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Algorithm 3

for j = 1 : nF
{

l = ((j − 1)rF − z)/rE

Ed
F,j = Ed

int(l) (mod(l,1)) + Ed
int(l+1) (1− mod(l,1))

} .

The global radiation field is distributed as a function
of the solar angle, based on a code initially developed
by J. C. Morrill within the frame of the GSWP (Global
Soil Wetness ProjectCE12; Dirmeyer, 2011) and used, for
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The global radiation field is distributed as a function of
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When an element Fk is not defined (k < 1 or k > nF ) or

is defined as missing value (−9999), the associated FE,j

variable is set to −9999 as a missing value.

2.3.3 De-biasing the ERA-I data

We denote the original ERA-I meteorological data by E. In

order to correct for the observed bias between E and FE, the

slope (s) and the intercept (i) of the linear regression of FE

againstE are used. The de-biased ERA-I meteorological data

is denoted Ed and calculated as follows, for all fields except

the precipitation field:

Ed = sE+ i. (4)

For the global radiation and wind speed fields, when calcu-

lating the regression coefficients of the linear relationship,

we force the intercept to 0 in order to avoid having possi-

bly negative radiation or too flat a regression slope for wind

speed.

For the precipitation field, we do not expect that the timing

of precipitations in the ERA-I data set is accurate enough for

the linear regression between FE andE to be used as a way to

de-bias E. Instead, we simply use the ratio of the sum of the

elements of FE over the sum of the elements of E, denoted

as f . f is written as

f =

nE∑
j=1

FE,j

nE∑
j=1

Ej

. (5)

The de-biased precipitation field of the ERA-I data set, Ed,

is then defined as Ed = fE.

2.3.4 Reconstructing a diurnal cycle to the ERA-I data

In order to use the de-biased meteorological fields of the

ERA-I data set to fill the gaps in the meteorological fields

of the FLUXNET data set, they need to be interpolated from

the original 3-hourly time step to the half-hourly time step.

For the instantaneous fields (all fields, except for the

global radiation, the longwave radiation and the precipita-

tion fields), the 3-hourly data are simply linearly interpolated

in order to reconstruct a diurnal cycle at a half-hourly

resolution. The half-hourly de-biased field of the ERA-I data

set is denoted Ed
F and is written as
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with dt2m and t2m expressed in◦C anda, b and c being
three constants (a = 6.11×10−2; b = 21.874 if t2m< 0 else
17.269;c = 265.49 if t2m< 0 else 237.29).

2.3.2 Harmonizing variables’ time periods

In order to compare ERA-I and FLUXNET data at similar
time steps, original FLUXNET meteorological variables, de-
noted byF , are re-indexed from the FLUXNET (half-hourly
resolution) to the ERA-I (3-hourly resolution) time grid, tak-
ing into consideration differences in time zone.

For the instantaneous fields (Ta_f, VPD_f, WS_f and
Pa_f), the re-indexed variable denotedFE is defined by the
following pseudo-algorithm (Alg. 1).
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Pa_f), the re-indexed variable denotedFE is defined by the
following pseudo-algorithm (Alg. 1).
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2.3.2 Harmonizing variables’ time periods

In order to compare ERA-I and FLUXNET data at similar
time steps, original FLUXNET meteorological variables, de-
notedF , are re-indexed from the FLUXNET (half-hourly
resolution) to the ERA-I (three-hourly resolution) time grid,
taking into consideration differences in time zone.

For the instantaneous fields (Ta_f, VPD_f, WS_f and
Pa_f), the re-indexed variable denotedFE is defined by the
following pseudo-algorithm (Alg. 1).
Algorithm 1

for j = 1 : nE
{

FE,j = F(jrE+z)/rF

}

where nF and nE are the length (expressed in number
of values) of the FLUXNET and ERA-I time series respec-
tively, rF andrE, the time resolution (expressed in hours) of
the FLUXNET and ERA-I time series respectively andz the
difference in local time respect to UTC.

WhenFj is not defined (j < 1 or j > nF), the associated
FE,j variable is set to−9999 as a missing value.

In the Appendix is given an application of each pseudo-
algorithm defined in this paper for a site located in time zone
UTC+ 2.

For the averaged fields (Rg_f, Precip_f and LWin), the re-
indexed variable is defined by Alg. (2).
Algorithm 2

for j = 1 : nE
{

Fcum = 0
for k = (((j − 1)rE + z)/rF + 1) : ((jrE + z)/rF )
{

Fcum+ = Fk

}
FE,j =

Fcum
rE/rF

}

When an elementFk is not defined (k < 1 or k > nF ) or is
defined as missing value (−9999), the associatedFE,j vari-
able is set to−9999 as a missing value.

2.3.3 De-biasing the ERA-I data

We denote the original ERA-I meteorological data,E. In or-
der to correct for the observed bias betweenE andFE, the
slope (s) and the intercept (i) of the linear regression ofFE
againstE are used. The de-biased ERA-I meteorological data
is denotedEd and calculated as followed, for all fields except
the precipitation field:

Ed
= sE + i (4)

For the Global Radiation and Wind Speed fields, when cal-
culating the regression coefficients of the linear relationship,
we force the intercept to 0 in order to avoid of having possi-
bly negative radiations, or too flat regression slope for Wind
Speed.

For the Precipitation field, we do not expect that the timing
of precipitations in the ERA-I dataset is accurate enough, for
using the linear regression betweenFE andE as a way to
de-biasE. Instead, we simply use the ratio of the sum of the
elements ofFE over the sum of the elements ofE, denoted
f . f is written as:

f =

nE∑
j=1

FE,j

nE∑
j=1

Ej

(5)

The de-biased Precipitation field of the ERA-I dataset,Ed, is
then defined asEd

= f E.

2.3.4 Reconstructing a diurnal cycle to the ERA-I data

In order to use the de-biased meteorological fields of the
ERA-I dataset to fill the gaps in the meteorological fields of
the FLUXNET dataset, they need to be interpolated from the
original 3-hourly time step to the half-hourly time step.

For the instantaneous fields (all fields, except the Global
Radiation, the Long Wave Radiation and the Precipitation
fields), the 3-hourly data are simply linearly interpolated
in order to reconstruct a diurnal cycle at a half-hourly
resolution. The half-hourly de-biased field of ERA-I dataset
is denotedEd

F and is written as:
Algorithm 3

for j = 1 : nF
{

l = ((j − 1)rF − z)/rE

Ed
F,j = Ed

int(l) (mod(l,1)) + Ed
int(l+1) (1− mod(l,1))

}

The Global Radiation field is distributed as a function
of the solar angle, based on a code initially developed by
J. C. Morrill within the frame of the GSWP (Dirmeyer, 2011)
and used in the ORCHIDEE model (Krinner et al., 2005) for
instance (http://dods.ipsl.jussieu.fr/orchidee/DOXYGEN/
webdoc/d1/db6/solar_8f90_source.html). The solar angle
is a function of the longitude and latitude (lon, lat), the
day of the year (doy) and the hour (hour in UTC+ 0 time).
The solar angle is denotedα(lon,lat,doy,hour) that we will
restrict in the following toα(hour).

For the global radiation,Ed
F is defined as the correspond-

ing Ed value, weighted by the ratio of the current solar angle
to the mean solar angle over the 3-h time period (over which
theEd value is defined).Ed

F is written as:
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Algorithm 1

for j = 1 : nE
{

FE,j = F(jrE+z)/rF

}

Here, nF and nE are the length (expressed in the num-
ber of values) of the FLUXNET and ERA-I time series,
respectively,rF and rE are the time resolution (expressed
in hours) of the FLUXNET and ERA-I time series, respec-
tively, andz is the difference in local time with respect to
UTC.

WhenFj is not defined (j < 1 or j > nF), the associated
FE,j variable is set to−9999 as a missing value.

The Appendix gives an application of each pseudo-
algorithm defined in this paper for a site located in time zone
UTC+ 2.

For the averaged fields (Rg_f, Precip_f and LWin), the
re-indexed variable is defined by Alg. (2).
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In order to compare ERA-I and FLUXNET data at similar
time steps, original FLUXNET meteorological variables, de-
notedF , are re-indexed from the FLUXNET (half-hourly
resolution) to the ERA-I (three-hourly resolution) time grid,
taking into consideration differences in time zone.

For the instantaneous fields (Ta_f, VPD_f, WS_f and
Pa_f), the re-indexed variable denotedFE is defined by the
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algorithm defined in this paper for a site located in time zone
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{
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for k = (((j − 1)rE + z)/rF + 1) : ((jrE + z)/rF )
{

Fcum+ = Fk

}
FE,j =

Fcum
rE/rF

}

When an elementFk is not defined (k < 1 or k > nF ) or is
defined as missing value (−9999), the associatedFE,j vari-
able is set to−9999 as a missing value.

2.3.3 De-biasing the ERA-I data

We denote the original ERA-I meteorological data,E. In or-
der to correct for the observed bias betweenE andFE, the
slope (s) and the intercept (i) of the linear regression ofFE
againstE are used. The de-biased ERA-I meteorological data
is denotedEd and calculated as followed, for all fields except
the precipitation field:

Ed
= sE + i (4)

For the Global Radiation and Wind Speed fields, when cal-
culating the regression coefficients of the linear relationship,
we force the intercept to 0 in order to avoid of having possi-
bly negative radiations, or too flat regression slope for Wind
Speed.

For the Precipitation field, we do not expect that the timing
of precipitations in the ERA-I dataset is accurate enough, for
using the linear regression betweenFE andE as a way to
de-biasE. Instead, we simply use the ratio of the sum of the
elements ofFE over the sum of the elements ofE, denoted
f . f is written as:

f =

nE∑
j=1

FE,j

nE∑
j=1

Ej

(5)

The de-biased Precipitation field of the ERA-I dataset,Ed, is
then defined asEd

= f E.

2.3.4 Reconstructing a diurnal cycle to the ERA-I data

In order to use the de-biased meteorological fields of the
ERA-I dataset to fill the gaps in the meteorological fields of
the FLUXNET dataset, they need to be interpolated from the
original 3-hourly time step to the half-hourly time step.

For the instantaneous fields (all fields, except the Global
Radiation, the Long Wave Radiation and the Precipitation
fields), the 3-hourly data are simply linearly interpolated
in order to reconstruct a diurnal cycle at a half-hourly
resolution. The half-hourly de-biased field of ERA-I dataset
is denotedEd

F and is written as:
Algorithm 3
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{

l = ((j − 1)rF − z)/rE

Ed
F,j = Ed

int(l) (mod(l,1)) + Ed
int(l+1) (1− mod(l,1))

}

The Global Radiation field is distributed as a function
of the solar angle, based on a code initially developed by
J. C. Morrill within the frame of the GSWP (Dirmeyer, 2011)
and used in the ORCHIDEE model (Krinner et al., 2005) for
instance (http://dods.ipsl.jussieu.fr/orchidee/DOXYGEN/
webdoc/d1/db6/solar_8f90_source.html). The solar angle
is a function of the longitude and latitude (lon, lat), the
day of the year (doy) and the hour (hour in UTC+ 0 time).
The solar angle is denotedα(lon,lat,doy,hour) that we will
restrict in the following toα(hour).

For the global radiation,Ed
F is defined as the correspond-

ing Ed value, weighted by the ratio of the current solar angle
to the mean solar angle over the 3-h time period (over which
theEd value is defined).Ed

F is written as:
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set is denotedEd

F and is written as
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2.3.2 Harmonizing variables’ time periods

In order to compare ERA-I and FLUXNET data at similar
time steps, original FLUXNET meteorological variables, de-
notedF , are re-indexed from the FLUXNET (half-hourly
resolution) to the ERA-I (three-hourly resolution) time grid,
taking into consideration differences in time zone.

For the instantaneous fields (Ta_f, VPD_f, WS_f and
Pa_f), the re-indexed variable denotedFE is defined by the
following pseudo-algorithm (Alg. 1).
Algorithm 1

for j = 1 : nE
{

FE,j = F(jrE+z)/rF

}

where nF and nE are the length (expressed in number
of values) of the FLUXNET and ERA-I time series respec-
tively, rF andrE, the time resolution (expressed in hours) of
the FLUXNET and ERA-I time series respectively andz the
difference in local time respect to UTC.

WhenFj is not defined (j < 1 or j > nF), the associated
FE,j variable is set to−9999 as a missing value.

In the Appendix is given an application of each pseudo-
algorithm defined in this paper for a site located in time zone
UTC+ 2.

For the averaged fields (Rg_f, Precip_f and LWin), the re-
indexed variable is defined by Alg. (2).
Algorithm 2

for j = 1 : nE
{

Fcum = 0
for k = (((j − 1)rE + z)/rF + 1) : ((jrE + z)/rF )
{

Fcum+ = Fk

}
FE,j =

Fcum
rE/rF

}

When an elementFk is not defined (k < 1 or k > nF ) or is
defined as missing value (−9999), the associatedFE,j vari-
able is set to−9999 as a missing value.

2.3.3 De-biasing the ERA-I data

We denote the original ERA-I meteorological data,E. In or-
der to correct for the observed bias betweenE andFE, the
slope (s) and the intercept (i) of the linear regression ofFE
againstE are used. The de-biased ERA-I meteorological data
is denotedEd and calculated as followed, for all fields except
the precipitation field:

Ed
= sE + i (4)

For the Global Radiation and Wind Speed fields, when cal-
culating the regression coefficients of the linear relationship,
we force the intercept to 0 in order to avoid of having possi-
bly negative radiations, or too flat regression slope for Wind
Speed.

For the Precipitation field, we do not expect that the timing
of precipitations in the ERA-I dataset is accurate enough, for
using the linear regression betweenFE andE as a way to
de-biasE. Instead, we simply use the ratio of the sum of the
elements ofFE over the sum of the elements ofE, denoted
f . f is written as:

f =

nE∑
j=1

FE,j

nE∑
j=1

Ej

(5)

The de-biased Precipitation field of the ERA-I dataset,Ed, is
then defined asEd

= f E.

2.3.4 Reconstructing a diurnal cycle to the ERA-I data

In order to use the de-biased meteorological fields of the
ERA-I dataset to fill the gaps in the meteorological fields of
the FLUXNET dataset, they need to be interpolated from the
original 3-hourly time step to the half-hourly time step.

For the instantaneous fields (all fields, except the Global
Radiation, the Long Wave Radiation and the Precipitation
fields), the 3-hourly data are simply linearly interpolated
in order to reconstruct a diurnal cycle at a half-hourly
resolution. The half-hourly de-biased field of ERA-I dataset
is denotedEd

F and is written as:
Algorithm 3

for j = 1 : nF
{

l = ((j − 1)rF − z)/rE

Ed
F,j = Ed

int(l) (mod(l,1)) + Ed
int(l+1) (1− mod(l,1))

}

The Global Radiation field is distributed as a function
of the solar angle, based on a code initially developed by
J. C. Morrill within the frame of the GSWP (Dirmeyer, 2011)
and used in the ORCHIDEE model (Krinner et al., 2005) for
instance (http://dods.ipsl.jussieu.fr/orchidee/DOXYGEN/
webdoc/d1/db6/solar_8f90_source.html). The solar angle
is a function of the longitude and latitude (lon, lat), the
day of the year (doy) and the hour (hour in UTC+ 0 time).
The solar angle is denotedα(lon,lat,doy,hour) that we will
restrict in the following toα(hour).

For the global radiation,Ed
F is defined as the correspond-

ing Ed value, weighted by the ratio of the current solar angle
to the mean solar angle over the 3-h time period (over which
theEd value is defined).Ed

F is written as:
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The global radiation field is distributed as a function of
the solar angle, based on a code initially developed by
J. C. Morrill within the frame of the GSWP (Global Soil
Wetness ProjectCE12; Dirmeyer, 2011) and used, for ex-
ample, in the ORCHIDEE model (Krinner et al., 2005)
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Here,nF andnE are the length (expressed in the number of
values) of the FLUXNET and ERA-I time series, respec-
tively, rF andrE are the time resolution (expressed in hours)
of the FLUXNET and ERA-I time series, respectively, andz

is the difference in local time with respect to UTC.
WhenFj is not defined (j < 1 or j > nF), the associated

FE,j variable is set to−9999 as a missing value.
The Appendix gives an application of each pseudo-

algorithm defined in this paper for a site located in time zone
UTC+ 2.

For the averaged fields (Rg_f, Precip_f and LWin), the
re-indexed variable is defined by Alg. (2).
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2.3.2 Harmonizing variables’ time periods

In order to compare ERA-I and FLUXNET data at similar
time steps, original FLUXNET meteorological variables, de-
notedF , are re-indexed from the FLUXNET (half-hourly
resolution) to the ERA-I (three-hourly resolution) time grid,
taking into consideration differences in time zone.

For the instantaneous fields (Ta_f, VPD_f, WS_f and
Pa_f), the re-indexed variable denotedFE is defined by the
following pseudo-algorithm (Alg. 1).
Algorithm 1

for j = 1 : nE
{

FE,j = F(jrE+z)/rF

}

where nF and nE are the length (expressed in number
of values) of the FLUXNET and ERA-I time series respec-
tively, rF andrE, the time resolution (expressed in hours) of
the FLUXNET and ERA-I time series respectively andz the
difference in local time respect to UTC.

WhenFj is not defined (j < 1 or j > nF), the associated
FE,j variable is set to−9999 as a missing value.

In the Appendix is given an application of each pseudo-
algorithm defined in this paper for a site located in time zone
UTC+ 2.

For the averaged fields (Rg_f, Precip_f and LWin), the re-
indexed variable is defined by Alg. (2).
Algorithm 2

for j = 1 : nE
{

Fcum = 0
for k = (((j − 1)rE + z)/rF + 1) : ((jrE + z)/rF )
{

Fcum+ = Fk

}
FE,j =

Fcum
rE/rF

}

When an elementFk is not defined (k < 1 or k > nF ) or is
defined as missing value (−9999), the associatedFE,j vari-
able is set to−9999 as a missing value.

2.3.3 De-biasing the ERA-I data

We denote the original ERA-I meteorological data,E. In or-
der to correct for the observed bias betweenE andFE, the
slope (s) and the intercept (i) of the linear regression ofFE
againstE are used. The de-biased ERA-I meteorological data
is denotedEd and calculated as followed, for all fields except
the precipitation field:

Ed
= sE + i (4)

For the Global Radiation and Wind Speed fields, when cal-
culating the regression coefficients of the linear relationship,
we force the intercept to 0 in order to avoid of having possi-
bly negative radiations, or too flat regression slope for Wind
Speed.

For the Precipitation field, we do not expect that the timing
of precipitations in the ERA-I dataset is accurate enough, for
using the linear regression betweenFE andE as a way to
de-biasE. Instead, we simply use the ratio of the sum of the
elements ofFE over the sum of the elements ofE, denoted
f . f is written as:

f =

nE∑
j=1

FE,j

nE∑
j=1

Ej

(5)

The de-biased Precipitation field of the ERA-I dataset,Ed, is
then defined asEd

= f E.

2.3.4 Reconstructing a diurnal cycle to the ERA-I data

In order to use the de-biased meteorological fields of the
ERA-I dataset to fill the gaps in the meteorological fields of
the FLUXNET dataset, they need to be interpolated from the
original 3-hourly time step to the half-hourly time step.

For the instantaneous fields (all fields, except the Global
Radiation, the Long Wave Radiation and the Precipitation
fields), the 3-hourly data are simply linearly interpolated
in order to reconstruct a diurnal cycle at a half-hourly
resolution. The half-hourly de-biased field of ERA-I dataset
is denotedEd

F and is written as:
Algorithm 3

for j = 1 : nF
{

l = ((j − 1)rF − z)/rE

Ed
F,j = Ed

int(l) (mod(l,1)) + Ed
int(l+1) (1− mod(l,1))

}

The Global Radiation field is distributed as a function
of the solar angle, based on a code initially developed by
J. C. Morrill within the frame of the GSWP (Dirmeyer, 2011)
and used in the ORCHIDEE model (Krinner et al., 2005) for
instance (http://dods.ipsl.jussieu.fr/orchidee/DOXYGEN/
webdoc/d1/db6/solar_8f90_source.html). The solar angle
is a function of the longitude and latitude (lon, lat), the
day of the year (doy) and the hour (hour in UTC+ 0 time).
The solar angle is denotedα(lon,lat,doy,hour) that we will
restrict in the following toα(hour).

For the global radiation,Ed
F is defined as the correspond-

ing Ed value, weighted by the ratio of the current solar angle
to the mean solar angle over the 3-h time period (over which
theEd value is defined).Ed

F is written as:
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When an elementFk is not defined (k < 1 or k > nF ) or
is defined as missing value (−9999), the associatedFE,j

variable is set to−9999 as a missing value.

2.3.3 De-biasing the ERA-I data

We denote the original ERA-I meteorological data byE. In
order to correct for the observed bias betweenE andFE, the
slope (s) and the intercept (i) of the linear regression ofFE
againstE are used. The de-biased ERA-I meteorological data
is denotedEd and calculated as follows, for all fields except

the precipitation field:

Ed = sE + i. (4)

For the global radiation and wind speed fields, when calcu-
lating the regression coefficients of the linear relationship,
we force the intercept to 0 in order to avoid having possi-
bly negative radiation or too flat a regression slope for wind
speed.

For the precipitation field, we do not expect that the timing
of precipitations in the ERA-I data set is accurate enough for
the linear regression betweenFE andE to be used as a way to
de-biasE. Instead, we simply use the ratio of the sum of the
elements ofFE over the sum of the elements ofE, denoted
asf . f is written as

f =

nE∑
j=1

FE,j

nE∑
j=1

Ej

. (5)

The de-biased precipitation field of the ERA-I data set,Ed,
is then defined asEd = f E.

2.3.4 Reconstructing a diurnal cycle to the ERA-I data

In order to use the de-biased meteorological fields of the
ERA-I data set to fill the gaps in the meteorological fields
of the FLUXNET data set, they need to be interpolated from
the original 3-hourly time step to the half-hourly time step.

For the instantaneous fields (all fields, except for the
global radiation, the longwave radiation and the precipita-
tion fields), the 3-hourly data are simply linearly interpolated
in order to reconstruct a diurnal cycle at a half-hourly
resolution. The half-hourly de-biased field of the ERA-I data
set is denotedEd

F and is written as
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2.3.2 Harmonizing variables’ time periods

In order to compare ERA-I and FLUXNET data at similar
time steps, original FLUXNET meteorological variables, de-
notedF , are re-indexed from the FLUXNET (half-hourly
resolution) to the ERA-I (three-hourly resolution) time grid,
taking into consideration differences in time zone.

For the instantaneous fields (Ta_f, VPD_f, WS_f and
Pa_f), the re-indexed variable denotedFE is defined by the
following pseudo-algorithm (Alg. 1).
Algorithm 1

for j = 1 : nE
{

FE,j = F(jrE+z)/rF

}

where nF and nE are the length (expressed in number
of values) of the FLUXNET and ERA-I time series respec-
tively, rF andrE, the time resolution (expressed in hours) of
the FLUXNET and ERA-I time series respectively andz the
difference in local time respect to UTC.

WhenFj is not defined (j < 1 or j > nF), the associated
FE,j variable is set to−9999 as a missing value.

In the Appendix is given an application of each pseudo-
algorithm defined in this paper for a site located in time zone
UTC+ 2.

For the averaged fields (Rg_f, Precip_f and LWin), the re-
indexed variable is defined by Alg. (2).
Algorithm 2

for j = 1 : nE
{

Fcum = 0
for k = (((j − 1)rE + z)/rF + 1) : ((jrE + z)/rF )
{

Fcum+ = Fk

}
FE,j =

Fcum
rE/rF

}

When an elementFk is not defined (k < 1 or k > nF ) or is
defined as missing value (−9999), the associatedFE,j vari-
able is set to−9999 as a missing value.

2.3.3 De-biasing the ERA-I data

We denote the original ERA-I meteorological data,E. In or-
der to correct for the observed bias betweenE andFE, the
slope (s) and the intercept (i) of the linear regression ofFE
againstE are used. The de-biased ERA-I meteorological data
is denotedEd and calculated as followed, for all fields except
the precipitation field:

Ed
= sE + i (4)

For the Global Radiation and Wind Speed fields, when cal-
culating the regression coefficients of the linear relationship,
we force the intercept to 0 in order to avoid of having possi-
bly negative radiations, or too flat regression slope for Wind
Speed.

For the Precipitation field, we do not expect that the timing
of precipitations in the ERA-I dataset is accurate enough, for
using the linear regression betweenFE andE as a way to
de-biasE. Instead, we simply use the ratio of the sum of the
elements ofFE over the sum of the elements ofE, denoted
f . f is written as:

f =

nE∑
j=1

FE,j

nE∑
j=1

Ej

(5)

The de-biased Precipitation field of the ERA-I dataset,Ed, is
then defined asEd

= f E.

2.3.4 Reconstructing a diurnal cycle to the ERA-I data

In order to use the de-biased meteorological fields of the
ERA-I dataset to fill the gaps in the meteorological fields of
the FLUXNET dataset, they need to be interpolated from the
original 3-hourly time step to the half-hourly time step.

For the instantaneous fields (all fields, except the Global
Radiation, the Long Wave Radiation and the Precipitation
fields), the 3-hourly data are simply linearly interpolated
in order to reconstruct a diurnal cycle at a half-hourly
resolution. The half-hourly de-biased field of ERA-I dataset
is denotedEd

F and is written as:
Algorithm 3

for j = 1 : nF
{

l = ((j − 1)rF − z)/rE

Ed
F,j = Ed

int(l) (mod(l,1)) + Ed
int(l+1) (1− mod(l,1))

}

The Global Radiation field is distributed as a function
of the solar angle, based on a code initially developed by
J. C. Morrill within the frame of the GSWP (Dirmeyer, 2011)
and used in the ORCHIDEE model (Krinner et al., 2005) for
instance (http://dods.ipsl.jussieu.fr/orchidee/DOXYGEN/
webdoc/d1/db6/solar_8f90_source.html). The solar angle
is a function of the longitude and latitude (lon, lat), the
day of the year (doy) and the hour (hour in UTC+ 0 time).
The solar angle is denotedα(lon,lat,doy,hour) that we will
restrict in the following toα(hour).

For the global radiation,Ed
F is defined as the correspond-

ing Ed value, weighted by the ratio of the current solar angle
to the mean solar angle over the 3-h time period (over which
theEd value is defined).Ed

F is written as:
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Algorithm 3

for j = 1 : nF
{

l = ((j − 1)rF − z)/rE

Ed
F,j = Ed

int(l) (mod(l,1)) + Ed
int(l+1) (1− mod(l,1))

} .

The global radiation field is distributed as a function
of the solar angle, based on a code initially developed
by J. C. Morrill within the frame of the GSWP (Global
Soil Wetness ProjectCE12; Dirmeyer, 2011) and used, for
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The global radiation field is distributed as a function

of the solar angle, based on a code initially developed

by J. C. Morrill within the frame of the GSWP (Global

Soil Wetness Project; Dirmeyer, 2011) and used, for ex-

ample, in the ORCHIDEE model (Krinner et al., 2005)
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(http://dods.ipsl.jussieu.fr/orchidee/DOXYGEN/webdoc/d1/

db6/solar_8f90_source.html). The solar angle is a function

of the longitude and latitude (long, lat), the day of the year

(doy) and the hour (hour in UTC+ 0). The solar angle

is denoted α(long,lat,doy,hour); in the following, we will

reduce this to α(hour).

For the global radiation, Ed
F is defined as the correspond-

ing Ed value, weighted by the ratio of the current solar angle

to the mean solar angle over the 3-h time period (over which

the Ed value is defined). Ed
F is written as
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example, in the ORCHIDEE model (Krinner et al., 2005)
(http://dods.ipsl.jussieu.fr/orchidee/DOXYGEN/webdoc/d1/
db6/solar_8f90_source.html). The solar angle is a function
of the longitude and latitude (long, lat), the day of the year
(doy) and the hour (hour in UTC+ 0). The solar angle
is denotedα(long,lat,doy,hour); in the following, we will
reduce this toα(hour).

For the global radiation,Ed
F is defined as the correspond-

ing Ed value, weighted by the ratio of the current solar angle
to the mean solar angle over the 3-h time period (over which
theEd value is defined).Ed

F is written as
N. Vuichard and D. Papale: Meteorological continuous data measured at FLUXNET sites 5

Algorithm 4

for j = 1 : nF
{

l = ((j − 1)rF − z)/rE
αcum = 0
for k = mod(int (l)rE + rF + z,24) : mod(int (l + 1)rE + z,24)
{

αcum = α (k)
}
Ed

F,j =
α(mod(jrF,24))

αcum
Ed

int(l+1)
}

The Incoming Longwave Radiation field is assumed to
be uniformly distributed and consequentlyEd

F is written as:

Ed
F,j = Ed

int(l+1) for 1 ≤ j ≤ nF (6)

For the precipitation field, a mean number of hours of
precipitation (h) over a 3-h rainy period was calculated
using the FLUXNET dataset and used to distribute the
precipitations. In this case,Ed

F was written as:
Algorithm 5

for j = 1 : nF
{

l = ((j − 1)rF − z)/rE

ifmod (l,1) rE
rF

+ 1 ≤ round
(

h
rF

)
{

Ed
F,j =

rE

round
(

h
rF

)
rF

Ed
int(l+1)

}
elseEd

F,j = 0
}

2.4 Statistics used for evaluating the gapfilling method

In order to evaluate the gapfilling method, we compare, for
each meteorological variable at each site, theEd time-serie
to the in-situ time serieFE. We also make use of the original
ERA-I dataset,E.

We use first the Root Mean Square Error (RMSE) and the
Standard Deviation (SD) into two appropriate metrics in or-
der to evaluate how the gapfilling method performs:

Error_ Reduction= (1− RMSE(FE, Ed)/RMSE(FE,E))×
100

Relative_Error= RMSE(FE, Ed)/SD(FE) × 100
The error reduction enables to know how the bias correc-

tion applied to the ERA-I data contributes to improve the fit
to the in-situ data. An error reduction of 50 % means that the
bias correction cancels 50 % of the initial model/data mis-
match. An error reduction of 0 % means that the ERA-I time
series has no systematic error but only randomly-distributed
errors. The relative error shows how the Root Mean Square
Error between the in-situ data and the un-biased ERA-I data
compares with the Standard Deviation of the in-situ data. It

helps to compare the error to the internal variability of the
in-situ data.

We also evaluate how the Standard Deviation of the ERA-
interim products before and after correction differ from the
one of the FLUXNET dataset by calculating normalized
standard deviations (SD(E)/SD(FE) and SD(Ed)/SD(FE), re-
spectively) in order to evaluate how much the data variability
is maintained.

Last, we specifically evaluate the diurnal cycle interpo-
lated from the 3-hourly de-biased meteorological fields of
the ERA-I dataset. To this end, two new time-series have
been constructed fromF and Ed

F, by removing their daily
mean values. The correlation between these two time-series
of “anomaly” is calculated at each site, as well as the standard
deviation of the time-serie inferred from the ERA-I dataset,
normalized to the standard deviation of the one inferred from
the FLUXNET dataset.

3 Results and discussion

3.1 De-biasing ERA-interim time-series

The Mean Error Reduction for Air Temperature over all sites
equals 14 % (Fig. 1). Scores vary significantly across sites.
For most sites, the Mean Error Reduction is less than 40 %
(Fig. 1), showing that most of the downscaled/measured data
mismatch is due to non-systematic bias that our correction
approach cannot account for. Sites for which the Error Re-
duction is higher than 40 % (IT-LMa, IT-Col, IT-Pia, ES-
ES1, ES-ES2 and AT-Neu, Fig. 1) are mountain sites or
located near the cost, locations where the meteorological
local conditions (as seen by the meteorological stations at
FLUXNET sites) and the one provided by ERA-interim may
vary the most.

The Mean Relative Error varies across sites from low
values (13 % for RU-Ha2 and CA-NS3) to up to 50 % or
more (BW-Ghg, BW-Ghm, BR-Sa3, ID-Pag, US-Wi7). Sites
where the Relative Error is low are located in continental re-
gions where the Air Temperature varies largely (more than
40◦C) from winter to summer period leading to a very large
standard deviation of the Air Temperature signal. Oppositely,
BR-Sa3 and ID-Pag are sites where the month-to-month vari-
ations of Ta are less than 4◦C. The two sites in Botswana
have too few data (only in April 2003) for getting a signif-
icant standard deviation of the Air Temperature signal. In-
deed, US-Wi7 is the only site where the high Relative Error
is due to a very high RMSE (5.4◦C after bias correction).
This is probably due to a shift in the in-situ Air-Temperature
timestamp, which leads to an important dephasing between
FLUXNET and ERA-interim time-series, at infra-daily time
scale.

The Error Reduction for VPD signal is of the same or-
der of the one obtained for Air Temperature (mean value of
14 %, maximum of up to 60 %) but the Relative Error is much
larger (mean value of 52 %) with only few sites having a Rel-
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Algorithm 4

for j = 1 : nF
{

l = ((j − 1)rF − z)/rE
αcum = 0
for k = mod(int (l)rE + rF + z,24) : mod(int (l + 1)rE + z,24)
{

αcum = α (k)
}
Ed

F,j = α(mod(jrF,24))
αcum

Ed
int(l+1)

} .

The incoming longwave radiation field is assumed to
be uniformly distributed and consequentlyEd

F is written as

Ed
F,j = Ed

int(l+1) for 1 ≤ j ≤ nF (6)

For the precipitation field, a mean number of hours of
precipitation (h) over a 3 h rainy period was calculated
using the FLUXNET data set and used to distribute the
precipitation. In this case,Ed

F was written as

N. Vuichard and D. Papale: Meteorological continuous data measured at FLUXNET sites 5

Algorithm 4

for j = 1 : nF
{

l = ((j − 1)rF − z)/rE
αcum = 0
for k = mod(int (l)rE + rF + z,24) : mod(int (l + 1)rE + z,24)
{

αcum = α (k)
}
Ed

F,j =
α(mod(jrF,24))

αcum
Ed

int(l+1)
}

The Incoming Longwave Radiation field is assumed to
be uniformly distributed and consequentlyEd

F is written as:

Ed
F,j = Ed

int(l+1) for 1 ≤ j ≤ nF (6)

For the precipitation field, a mean number of hours of
precipitation (h) over a 3-h rainy period was calculated
using the FLUXNET dataset and used to distribute the
precipitations. In this case,Ed

F was written as:
Algorithm 5

for j = 1 : nF
{

l = ((j − 1)rF − z)/rE

ifmod (l,1) rE
rF

+ 1 ≤ round
(

h
rF

)
{

Ed
F,j =

rE

round
(

h
rF

)
rF

Ed
int(l+1)

}
elseEd

F,j = 0
}

2.4 Statistics used for evaluating the gapfilling method

In order to evaluate the gapfilling method, we compare, for
each meteorological variable at each site, theEd time-serie
to the in-situ time serieFE. We also make use of the original
ERA-I dataset,E.

We use first the Root Mean Square Error (RMSE) and the
Standard Deviation (SD) into two appropriate metrics in or-
der to evaluate how the gapfilling method performs:

Error_ Reduction= (1− RMSE(FE, Ed)/RMSE(FE,E))×
100

Relative_Error= RMSE(FE, Ed)/SD(FE) × 100
The error reduction enables to know how the bias correc-

tion applied to the ERA-I data contributes to improve the fit
to the in-situ data. An error reduction of 50 % means that the
bias correction cancels 50 % of the initial model/data mis-
match. An error reduction of 0 % means that the ERA-I time
series has no systematic error but only randomly-distributed
errors. The relative error shows how the Root Mean Square
Error between the in-situ data and the un-biased ERA-I data
compares with the Standard Deviation of the in-situ data. It

helps to compare the error to the internal variability of the
in-situ data.

We also evaluate how the Standard Deviation of the ERA-
interim products before and after correction differ from the
one of the FLUXNET dataset by calculating normalized
standard deviations (SD(E)/SD(FE) and SD(Ed)/SD(FE), re-
spectively) in order to evaluate how much the data variability
is maintained.

Last, we specifically evaluate the diurnal cycle interpo-
lated from the 3-hourly de-biased meteorological fields of
the ERA-I dataset. To this end, two new time-series have
been constructed fromF and Ed

F, by removing their daily
mean values. The correlation between these two time-series
of “anomaly” is calculated at each site, as well as the standard
deviation of the time-serie inferred from the ERA-I dataset,
normalized to the standard deviation of the one inferred from
the FLUXNET dataset.

3 Results and discussion

3.1 De-biasing ERA-interim time-series

The Mean Error Reduction for Air Temperature over all sites
equals 14 % (Fig. 1). Scores vary significantly across sites.
For most sites, the Mean Error Reduction is less than 40 %
(Fig. 1), showing that most of the downscaled/measured data
mismatch is due to non-systematic bias that our correction
approach cannot account for. Sites for which the Error Re-
duction is higher than 40 % (IT-LMa, IT-Col, IT-Pia, ES-
ES1, ES-ES2 and AT-Neu, Fig. 1) are mountain sites or
located near the cost, locations where the meteorological
local conditions (as seen by the meteorological stations at
FLUXNET sites) and the one provided by ERA-interim may
vary the most.

The Mean Relative Error varies across sites from low
values (13 % for RU-Ha2 and CA-NS3) to up to 50 % or
more (BW-Ghg, BW-Ghm, BR-Sa3, ID-Pag, US-Wi7). Sites
where the Relative Error is low are located in continental re-
gions where the Air Temperature varies largely (more than
40◦C) from winter to summer period leading to a very large
standard deviation of the Air Temperature signal. Oppositely,
BR-Sa3 and ID-Pag are sites where the month-to-month vari-
ations of Ta are less than 4◦C. The two sites in Botswana
have too few data (only in April 2003) for getting a signif-
icant standard deviation of the Air Temperature signal. In-
deed, US-Wi7 is the only site where the high Relative Error
is due to a very high RMSE (5.4◦C after bias correction).
This is probably due to a shift in the in-situ Air-Temperature
timestamp, which leads to an important dephasing between
FLUXNET and ERA-interim time-series, at infra-daily time
scale.

The Error Reduction for VPD signal is of the same or-
der of the one obtained for Air Temperature (mean value of
14 %, maximum of up to 60 %) but the Relative Error is much
larger (mean value of 52 %) with only few sites having a Rel-
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2.4 Statistics used for evaluating the gapfilling method

In order to evaluate the gapfilling method, we compare the
Ed time series to the in situ time seriesFE for each meteoro-
logical variable at each site. We also make use of the original
ERA-I data set,E.

We use first the root mean square error (RMSE) and the
standard deviation (SD) in two appropriate metrics in order
to evaluate how the gapfilling method performs:

error_reduction= (1−RMSE(FE,Ed)/RMSE(FE,E))×100

relative_error= RMSE(FE,Ed)/SD(FE) × 100.

The error reduction enables to know how the bias correction
applied to the ERA-I data contributes to improving the fit to
the in situ data. An error reduction of 50 % means that the
bias correction cancels 50 % of the initial model–data mis-
match. An error reduction of 0 % means that the ERA-I time
series has no systematic error but only randomly distributed
errors. The relative error shows how the root mean square
error between the in situ data and the unbiased ERA-I data
compares with the standard deviation of the in situ data. It
helps to compare the error to the internal variability of the in
situ data.

We also evaluate how the standard deviation of the
ERA-Interim products before and after correction differs
from the one of the FLUXNET data set by calculat-
ing normalized standard deviations (SD(E)/SD(FE) and
SD(Ed)/SD(FE)CE13, respectively) in order to evaluate how
much the data variability is maintained.

Lastly, we specifically evaluate the diurnal cycle interpo-
lated from the 3-hourly de-biased meteorological fields of the
ERA-I data set. To this end, two new time series have been
constructed fromF and Ed

F by removing their daily mean
values. The correlation between these two “anomalous” time
series are calculated at each site, as is the standard deviation
of the time series inferred from the ERA-I data set, normal-
ized to the standard deviation of the one inferred from the
FLUXNET data set.
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The incoming longwave radiation field is assumed to be

uniformly distributed and consequently Ed
F is written as

Ed
F,j = Ed

int(l+1) for 1≤ j ≤ nF (6)

For the precipitation field, a mean number of hours of pre-

cipitation (h) over a 3 h rainy period is calculated using the

FLUXNET data set and used to distribute the precipitation.

In this case, Ed
F is written as
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example, in the ORCHIDEE model (Krinner et al., 2005)
(http://dods.ipsl.jussieu.fr/orchidee/DOXYGEN/webdoc/d1/
db6/solar_8f90_source.html). The solar angle is a function
of the longitude and latitude (long, lat), the day of the year
(doy) and the hour (hour in UTC+ 0). The solar angle
is denotedα(long,lat,doy,hour); in the following, we will
reduce this toα(hour).

For the global radiation,Ed
F is defined as the correspond-

ing Ed value, weighted by the ratio of the current solar angle
to the mean solar angle over the 3-h time period (over which
theEd value is defined).Ed

F is written as
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Algorithm 4

for j = 1 : nF
{

l = ((j − 1)rF − z)/rE
αcum = 0
for k = mod(int (l)rE + rF + z,24) : mod(int (l + 1)rE + z,24)
{

αcum = α (k)
}
Ed

F,j =
α(mod(jrF,24))

αcum
Ed

int(l+1)
}

The Incoming Longwave Radiation field is assumed to
be uniformly distributed and consequentlyEd

F is written as:

Ed
F,j = Ed

int(l+1) for 1 ≤ j ≤ nF (6)

For the precipitation field, a mean number of hours of
precipitation (h) over a 3-h rainy period was calculated
using the FLUXNET dataset and used to distribute the
precipitations. In this case,Ed

F was written as:
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2.4 Statistics used for evaluating the gapfilling method

In order to evaluate the gapfilling method, we compare, for
each meteorological variable at each site, theEd time-serie
to the in-situ time serieFE. We also make use of the original
ERA-I dataset,E.

We use first the Root Mean Square Error (RMSE) and the
Standard Deviation (SD) into two appropriate metrics in or-
der to evaluate how the gapfilling method performs:

Error_ Reduction= (1− RMSE(FE, Ed)/RMSE(FE,E))×
100

Relative_Error= RMSE(FE, Ed)/SD(FE) × 100
The error reduction enables to know how the bias correc-

tion applied to the ERA-I data contributes to improve the fit
to the in-situ data. An error reduction of 50 % means that the
bias correction cancels 50 % of the initial model/data mis-
match. An error reduction of 0 % means that the ERA-I time
series has no systematic error but only randomly-distributed
errors. The relative error shows how the Root Mean Square
Error between the in-situ data and the un-biased ERA-I data
compares with the Standard Deviation of the in-situ data. It

helps to compare the error to the internal variability of the
in-situ data.

We also evaluate how the Standard Deviation of the ERA-
interim products before and after correction differ from the
one of the FLUXNET dataset by calculating normalized
standard deviations (SD(E)/SD(FE) and SD(Ed)/SD(FE), re-
spectively) in order to evaluate how much the data variability
is maintained.

Last, we specifically evaluate the diurnal cycle interpo-
lated from the 3-hourly de-biased meteorological fields of
the ERA-I dataset. To this end, two new time-series have
been constructed fromF and Ed

F, by removing their daily
mean values. The correlation between these two time-series
of “anomaly” is calculated at each site, as well as the standard
deviation of the time-serie inferred from the ERA-I dataset,
normalized to the standard deviation of the one inferred from
the FLUXNET dataset.

3 Results and discussion

3.1 De-biasing ERA-interim time-series

The Mean Error Reduction for Air Temperature over all sites
equals 14 % (Fig. 1). Scores vary significantly across sites.
For most sites, the Mean Error Reduction is less than 40 %
(Fig. 1), showing that most of the downscaled/measured data
mismatch is due to non-systematic bias that our correction
approach cannot account for. Sites for which the Error Re-
duction is higher than 40 % (IT-LMa, IT-Col, IT-Pia, ES-
ES1, ES-ES2 and AT-Neu, Fig. 1) are mountain sites or
located near the cost, locations where the meteorological
local conditions (as seen by the meteorological stations at
FLUXNET sites) and the one provided by ERA-interim may
vary the most.

The Mean Relative Error varies across sites from low
values (13 % for RU-Ha2 and CA-NS3) to up to 50 % or
more (BW-Ghg, BW-Ghm, BR-Sa3, ID-Pag, US-Wi7). Sites
where the Relative Error is low are located in continental re-
gions where the Air Temperature varies largely (more than
40◦C) from winter to summer period leading to a very large
standard deviation of the Air Temperature signal. Oppositely,
BR-Sa3 and ID-Pag are sites where the month-to-month vari-
ations of Ta are less than 4◦C. The two sites in Botswana
have too few data (only in April 2003) for getting a signif-
icant standard deviation of the Air Temperature signal. In-
deed, US-Wi7 is the only site where the high Relative Error
is due to a very high RMSE (5.4◦C after bias correction).
This is probably due to a shift in the in-situ Air-Temperature
timestamp, which leads to an important dephasing between
FLUXNET and ERA-interim time-series, at infra-daily time
scale.

The Error Reduction for VPD signal is of the same or-
der of the one obtained for Air Temperature (mean value of
14 %, maximum of up to 60 %) but the Relative Error is much
larger (mean value of 52 %) with only few sites having a Rel-
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{
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The incoming longwave radiation field is assumed to
be uniformly distributed and consequentlyEd

F is written as

Ed
F,j = Ed

int(l+1) for 1 ≤ j ≤ nF (6)

For the precipitation field, a mean number of hours of
precipitation (h) over a 3 h rainy period was calculated
using the FLUXNET data set and used to distribute the
precipitation. In this case,Ed

F was written as

N. Vuichard and D. Papale: Meteorological continuous data measured at FLUXNET sites 5

Algorithm 4

for j = 1 : nF
{

l = ((j − 1)rF − z)/rE
αcum = 0
for k = mod(int (l)rE + rF + z,24) : mod(int (l + 1)rE + z,24)
{

αcum = α (k)
}
Ed

F,j =
α(mod(jrF,24))

αcum
Ed

int(l+1)
}

The Incoming Longwave Radiation field is assumed to
be uniformly distributed and consequentlyEd

F is written as:
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F,j = Ed

int(l+1) for 1 ≤ j ≤ nF (6)

For the precipitation field, a mean number of hours of
precipitation (h) over a 3-h rainy period was calculated
using the FLUXNET dataset and used to distribute the
precipitations. In this case,Ed

F was written as:
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2.4 Statistics used for evaluating the gapfilling method

In order to evaluate the gapfilling method, we compare, for
each meteorological variable at each site, theEd time-serie
to the in-situ time serieFE. We also make use of the original
ERA-I dataset,E.

We use first the Root Mean Square Error (RMSE) and the
Standard Deviation (SD) into two appropriate metrics in or-
der to evaluate how the gapfilling method performs:

Error_ Reduction= (1− RMSE(FE, Ed)/RMSE(FE,E))×
100

Relative_Error= RMSE(FE, Ed)/SD(FE) × 100
The error reduction enables to know how the bias correc-

tion applied to the ERA-I data contributes to improve the fit
to the in-situ data. An error reduction of 50 % means that the
bias correction cancels 50 % of the initial model/data mis-
match. An error reduction of 0 % means that the ERA-I time
series has no systematic error but only randomly-distributed
errors. The relative error shows how the Root Mean Square
Error between the in-situ data and the un-biased ERA-I data
compares with the Standard Deviation of the in-situ data. It

helps to compare the error to the internal variability of the
in-situ data.

We also evaluate how the Standard Deviation of the ERA-
interim products before and after correction differ from the
one of the FLUXNET dataset by calculating normalized
standard deviations (SD(E)/SD(FE) and SD(Ed)/SD(FE), re-
spectively) in order to evaluate how much the data variability
is maintained.

Last, we specifically evaluate the diurnal cycle interpo-
lated from the 3-hourly de-biased meteorological fields of
the ERA-I dataset. To this end, two new time-series have
been constructed fromF and Ed

F, by removing their daily
mean values. The correlation between these two time-series
of “anomaly” is calculated at each site, as well as the standard
deviation of the time-serie inferred from the ERA-I dataset,
normalized to the standard deviation of the one inferred from
the FLUXNET dataset.

3 Results and discussion

3.1 De-biasing ERA-interim time-series

The Mean Error Reduction for Air Temperature over all sites
equals 14 % (Fig. 1). Scores vary significantly across sites.
For most sites, the Mean Error Reduction is less than 40 %
(Fig. 1), showing that most of the downscaled/measured data
mismatch is due to non-systematic bias that our correction
approach cannot account for. Sites for which the Error Re-
duction is higher than 40 % (IT-LMa, IT-Col, IT-Pia, ES-
ES1, ES-ES2 and AT-Neu, Fig. 1) are mountain sites or
located near the cost, locations where the meteorological
local conditions (as seen by the meteorological stations at
FLUXNET sites) and the one provided by ERA-interim may
vary the most.

The Mean Relative Error varies across sites from low
values (13 % for RU-Ha2 and CA-NS3) to up to 50 % or
more (BW-Ghg, BW-Ghm, BR-Sa3, ID-Pag, US-Wi7). Sites
where the Relative Error is low are located in continental re-
gions where the Air Temperature varies largely (more than
40◦C) from winter to summer period leading to a very large
standard deviation of the Air Temperature signal. Oppositely,
BR-Sa3 and ID-Pag are sites where the month-to-month vari-
ations of Ta are less than 4◦C. The two sites in Botswana
have too few data (only in April 2003) for getting a signif-
icant standard deviation of the Air Temperature signal. In-
deed, US-Wi7 is the only site where the high Relative Error
is due to a very high RMSE (5.4◦C after bias correction).
This is probably due to a shift in the in-situ Air-Temperature
timestamp, which leads to an important dephasing between
FLUXNET and ERA-interim time-series, at infra-daily time
scale.

The Error Reduction for VPD signal is of the same or-
der of the one obtained for Air Temperature (mean value of
14 %, maximum of up to 60 %) but the Relative Error is much
larger (mean value of 52 %) with only few sites having a Rel-
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2.4 Statistics used for evaluating the gapfilling method

In order to evaluate the gapfilling method, we compare the
Ed time series to the in situ time seriesFE for each meteoro-
logical variable at each site. We also make use of the original
ERA-I data set,E.

We use first the root mean square error (RMSE) and the
standard deviation (SD) in two appropriate metrics in order
to evaluate how the gapfilling method performs:

error_reduction= (1−RMSE(FE,Ed)/RMSE(FE,E))×100

relative_error= RMSE(FE,Ed)/SD(FE) × 100.

The error reduction enables to know how the bias correction
applied to the ERA-I data contributes to improving the fit to
the in situ data. An error reduction of 50 % means that the
bias correction cancels 50 % of the initial model–data mis-
match. An error reduction of 0 % means that the ERA-I time
series has no systematic error but only randomly distributed
errors. The relative error shows how the root mean square
error between the in situ data and the unbiased ERA-I data
compares with the standard deviation of the in situ data. It
helps to compare the error to the internal variability of the in
situ data.

We also evaluate how the standard deviation of the
ERA-Interim products before and after correction differs
from the one of the FLUXNET data set by calculat-
ing normalized standard deviations (SD(E)/SD(FE) and
SD(Ed)/SD(FE)CE13, respectively) in order to evaluate how
much the data variability is maintained.

Lastly, we specifically evaluate the diurnal cycle interpo-
lated from the 3-hourly de-biased meteorological fields of the
ERA-I data set. To this end, two new time series have been
constructed fromF and Ed

F by removing their daily mean
values. The correlation between these two “anomalous” time
series are calculated at each site, as is the standard deviation
of the time series inferred from the ERA-I data set, normal-
ized to the standard deviation of the one inferred from the
FLUXNET data set.
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2.4 Statistics used for evaluating the gapfilling method

In order to evaluate the gapfilling method, we compare the

Ed time series to the in situ time series FE for each meteoro-

logical variable at each site. We also make use of the original

ERA-I data set, E.

We use first the root mean square error (RMSE) and the

standard deviation (SD) in two appropriate metrics in order

to evaluate how the gapfilling method performs:

error_reduction= (1−RMSE(FE,E
d)/RMSE(FE,E))×100

relative_error= RMSE(FE,E
d)/SD(FE)× 100.
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Figure 1. Distribution across sites of the error reduction (top panel)

and relative error (bottom panel) of the bias correction method for

air temperature, vapour pressure deficit, wind speed, global radia-

tion and longwave incoming radiation. The box extends from the

lower (25 %) to upper quartile (75 %) values of the data, with a red

line at the median. The whiskers extend from the box to show the

range of the data within 1.5× (25–75 %) data range. Outliers are

marked by crosses beyond the end of the whiskers.

The error reduction enables to know how the bias correction

applied to the ERA-I data contributes to improving the fit to

the in situ data. An error reduction of 50 % means that the

bias correction cancels 50 % of the initial model–data mis-

match. An error reduction of 0 % means that the ERA-I time

series has no systematic error but only randomly distributed

errors. The relative error shows how the root mean square

error between the in situ data and the unbiased ERA-I data

compares with the standard deviation of the in situ data. It

helps to compare the error to the internal variability of the in

situ data.

We also evaluate how the standard deviation of the ERA-

Interim products before and after correction differs from the

one of the FLUXNET data set by calculating normalized

standard deviations (SD(E) / SD(FE) and SD(Ed) / SD(FE),

respectively) in order to evaluate how much the data vari-

ability is maintained.

Lastly, we specifically evaluate the diurnal cycle interpo-

lated from the 3-hourly de-biased meteorological fields of the

ERA-I data set. To this end, two new time series have been

constructed from F and Ed
F by removing their daily mean

values. The correlation between these two “anomaly” time

series is calculated at each site, as is the standard deviation

of the time series inferred from the ERA-I data set, normal-

ized to the standard deviation of the one inferred from the

FLUXNET data set.

www.earth-syst-sci-data.net/7/157/2015/ Earth Syst. Sci. Data, 7, 157–171, 2015

http://dods.ipsl.jussieu.fr/orchidee/DOXYGEN/webdoc/d1/db6/solar_8f90_source.html
http://dods.ipsl.jussieu.fr/orchidee/DOXYGEN/webdoc/d1/db6/solar_8f90_source.html


162 N. Vuichard and D. Papale: Filling the gaps in meteorological FLUXNET data

Ta VPD WS Rg LWin
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4

N
o
rm

a
liz

e
d
 S

D

SD before and after correction

Figure 2. Distribution across sites of the normalized standard devi-

ation of the ERA-I data before (left) and after (right) bias correction

for air temperature, vapour pressure deficit, wind speed, global ra-

diation and longwave incoming radiation. The box extends from the

lower (25 %) to upper quartile (75 %) values of the data, with a red

line at the median. The whiskers extend from the box to show the

range of the data within 1.5× (25–75 %) data range. Outliers are

marked by crosses beyond the end of the whiskers.

3 Results and discussion

3.1 De-biasing ERA-Interim time series

The mean error reduction for air temperature over all sites

equals 14 % (Fig. 1). Scores vary significantly across sites.

For most sites, the error reduction is less than 40 % (Fig. 1),

showing that most of the mismatch between downscaled and

measured data is due to non-systematic bias that our correc-

tion approach cannot account for. Sites for which the error

reduction is higher than 40 % (IT-LMa, IT-Col, IT-Pia, ES-

ES1, ES-ES2 and AT-Neu; Fig. 1) are mountain sites or lo-

cated near the coast, locations where the meteorological lo-

cal conditions (as recorded by the meteorological stations at

FLUXNET sites) and meteorological conditions provided by

ERA-Interim may vary the most.

The relative error varies across sites from low values (13 %

for RU-Ha2 and CA-NS3) to up to 50 % or more (BW-Ghg,

BW-Ghm, BR-Sa3, ID-Pag, US-Wi7). Sites where the rela-

tive error is low are located in continental regions where the

air temperature varies significantly (by more than 40 ◦C) be-

tween the winter and summer period, leading to a very large

standard deviation of the air temperature signal. Conversely,

BR-Sa3 and ID-Pag are sites where the month-to-month vari-

ations in Ta are less than 4 ◦C. The two sites in Botswana

have too few data (only in April 2003) to obtain a significant

standard deviation of the air temperature signal. Indeed, US-

Wi7 is the only site where the high relative error is due to a

very high RMSE (5.4 ◦C after bias correction). This is prob-

ably due to a shift in the in situ air temperature timestamp,

which leads to an important dephasing between FLUXNET

and ERA-Interim time series on timescales shorter than a

day.

The error reduction for the VPD (vapour pressure deficit)

signal is of the same order as the one obtained for air temper-

ature (mean value of 14 %, maximum of up to 60 %), but the

relative error is much larger (mean value of 52 %), with only

few sites having a relative error less than 40 %. The large

relative error, which reflects the difficulty of correcting the
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Figure 3. Distribution across sites of the error on the mean an-

nual precipitation as measured at FLUXNET stations when using

the ERA-I product, in absolute (mm yr−1, left panel) and relative

values (%, right panel). The box extends from the lower (25 %) to

upper quartile (75 %) values of the data, with a red line at the me-

dian. The whiskers extend from the box to show the range of the

data within the 1.5× (25–75 %) data range. Outliers are marked by

crosses beyond the end of the whiskers.

ERA-Interim signal, might be partly due to the way we cal-

culate VPD for ERA-Interim. It is inferred from the dt2m and

t2m fields, which leads to the potential accumulation of the

sources of errors from both of them.

Wind speed is the meteorological field for which the error

reduction is the largest (mean value of 36 %). This large bias

correction mainly reflects the fact that the reference heights

at which the wind speed data are provided by ERA-interim

(10 m) and measured at site level are different. Even though

the error on wind speed is largely reduced, the remaining er-

ror after bias correction is still large, with a mean relative

error over all sites of 76 % (minimum relative error is 40 %

at NL-Haa, with an RMSE of less than 1 ms−1).

The mean error reduction over all sites for global radia-

tion equals 11 % (with only 21 sites having an error reduc-

tion higher than 20 %). The global radiation is the field for

which the mean error reduction is the lowest. The highest

error reductions are obtained for the sites US-Wi7 and US-

Wi8, whose global radiation values appear abnormally low,

especially when compared to nearby sites such as US-Wi4 or

US-Wi5. This could be due to a problem in the units of the

original data or in the data processing and correction before

their publication in the La Thuile collection. The relative er-

ror after bias correction for global radiation (mean value of

34 %) is of the same order as the one obtained for air tem-

perature (mean value of 27 %), but it varies much less across

sites.

The longwave incoming radiation has a mean error reduc-

tion and relative error similar to the VPD field (17 and 57 %,

respectively), with large site-to-site variations.

Figure 2 represents the normalized standard deviation

(NSD) of the ERA-I products (Ta, VPD, WS, Rg and

LWin) before and after the bias correction, and, conse-

quently, it gives insights into how the de-biasing procedure

impacts the internal variability of the meteorological fields
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(in comparison with the measured variability). Overall, the

bias correction tends to reduce the spread of the NSD across

sites. This is especially true for the global radiation field. The

mean NSD is not significantly modified by the bias correc-

tion for air temperature (mean NSD before correction of 0.91

compared to 0.87 after correction) and global radiation (1.06

compared to 0.93). By contrast, the bias correction impacts

negatively on the NSD of the vapour deficit (mean NSD of

0.94 vs. 0.77), the wind speed (mean NSD of 0.98 vs. 0.65)

and the longwave incoming radiation (mean NSD of 0.80

vs. 0.64) from ERA-I. These negative impacts show the lim-

its of a bias correction method based on linear regression for

meteorological fields for which the bias between FLUXNET

and ERA-I data do not vary linearly.

Regarding the precipitation field, for which we only cor-

rect for the cumulative flux over the observation period,

the error reduction can be large, both in terms of abso-

lute and relative values. Figure 3 and Table B1 show the

distribution across sites of the error on the mean annual

precipitation (MAP) field when using ERA-Interim precip-

itation fields, in absolute values (mmyr−1) and relatively

to the MAP measured locally at FLUXNET sites (%). At

BR-Sa3, the observed value equals 1250 mmyr−1 while the

ERA-Interim precipitation field equals 2500 mmyr−1. Con-

sequently, the error (1250 mmyr−1) is as large as the ob-

served value (relative error of 100 %). Similarly, there are

other sites where ERA-Interim largely overestimates the ob-

served value: the CA-NS1-7 sites (relative error no less than

78 %), SK-Tat (177 %) and US-SP1 (156 %). By contrast,

there are other sites where ERA-Interim underestimates the

observed values: AU-How (41 %), AU-Tum (53 %), AU-Wac

(59 %) and CZ-BK1 (60 %). Interestingly, for many of these

sites where model and data disagree the most, the clima-

tological mean (CM, as reported on the FLUXNET web-

site) is in better agreement with the mean annual precip-

itation as estimated by ERA-Interim than with that from

the observations: BR-Sa3 (CM= 2043 mmyr−1), CA-NS1-

7 (CM= 500 mmyr−1), CZ-BK1 (CM= 1025 mmyr−1) and

US-SP1 (CM= 1310 mmyr−1). This is probably due to an

underestimation of the precipitation measurements at the

FLUXNET sites, where the WMO standard methodology to

measure the precipitation is not always used. In addition the

precipitation value measured at sites in cold environments

does not always include snow precipitation, leading to un-

derestimation of the total values. On average, over all sites,

the mean relative error equals 34 % of the observed annual

mean precipitation. When removing the 13 above-listed sites

where model and data disagree the most, the relative error

decreases to 24 %.

3.2 Reconstructing a diurnal cycle to the ERA-I data

We evaluate here how good the interpolation of the ERA-

I data from original 3-hourly to half-hourly time steps is

(Fig. 4).
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Figure 4. Taylor diagram representing the NSD and correlation (R)

between the diurnal signals of the ERA-I and FLUXNET product

for air temperature, vapour pressure deficit, wind speed, global ra-

diation and longwave incoming radiation.
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For air temperature, on average, over all sites, the mean

correlation (R value) between the ERA-I and the FLUXNET

time series equals 0.87, while the mean normalized standard

deviation of the FLUXNET time series (NSD) equals 0.88.

Across sites, there is a relative low spread of the correla-

tion score, with few sites having a correlation lower than 0.8.

NSD is more spread out, with values that range between 0.3

and 1.35.

For vapour pressure deficit, the model–data agreement in

terms of diurnal cycle is lower that the one obtained for air

temperature: mean R and NSD equal 0.72 and 0.69, respec-

tively. The spread between sites, both in terms ofR and NSD,

is relatively reduced, but for most of the sites, theR and NSD

values are close to the mean values.

Wind speed is the meteorological variable for which the

diurnal cycle inferred from the ERA-I data set is least in

agreement with the observation (mean R and NSD values of

0.47 and 0.69, respectively. The model performance varies

greatly among sites, especially for the NSD that ranges be-

tween 0.3 and 1. This is particularly amplified by the correc-

tion factor we apply to the original ERA-I data set (s factor,

Eq. 4). The s factor being at many sites lower than 1 tends to

reduce the diurnal amplitude of the time series.

The diurnal cycle of the global radiation inferred from the

ERA-I data set is in very good agreement with the observed

one. None of the sites have values lower than 0.8 and 0.75

for R and NSD, respectively. For both R and NSD, the mean

value over all sites equals 0.92.

The diurnal cycle for the incoming longwave radiation

does not match the observed one, with mean values across

sites of 0.51 and 0.64 forR and NSD, respectively. This score

is comparable to the one obtained for wind speed. Note, how-

ever, that the diurnal cycle of these two variables is much less

pronounced than the one of air temperature, global radiation

and vapour pressure deficit. Consequently, it is more chal-

lenging to catch the diurnal cycle of these two variables.

4 Concluding remarks

4.1 Gapfilling of in situ data

The method presented in this study has shown its capac-

ity for filling the gaps in meteorological data collected at

FLUXNET sites. The performance of the method developed

varies across sites and is also a function of the meteorologi-

cal variable. The results, however, show that when large gaps

are present, the proposed methodology is the best available

strategy (when no nearby stations are present). Nevertheless,

the performance of the method remains poor for the wind

speed field, in particular regarding its capacity to conserve a

standard deviation similar to the one measured at FLUXNET

stations. A significant effort should be undertaken to improve

the bias correction method that could in the future be based

on a non-linear fit between the ERA-I and FLUXNET data

set. In addition, some methodological issues remain, which

are discussed below.

4.2 Checking for data quality

The method presented in this study is based on the assump-

tion that the ERA-I data contain some biases that we can

correct in order to better match local meteorological in-

formation at FLUXNET sites. Nevertheless, one may ask

whether, for some specific variables at some sites, the diag-

nosed ERA-I vs. FLUXNET bias does not reveal a problem

in the FLUXNET measurements rather than a bias within the

ERA-I data. As presented in Sect. 3, this is possibly the case

for, among others, the precipitation field for different sites,

the global radiation (e.g. for site US-Wi8) and the air tem-

perature (site US-Wi7). It is not our purpose to point out

particular sites but rather to highlight that our method and

the associated graphical tools may serve also to support data-

quality controls.

4.3 Improving the FLUXNET data set for modelling

purposes

As underlined in Sect. 1, the FLUXNET data set is highly

valuable for modelling purposes in order to evaluate how ter-

restrial ecosystem models perform at site level. In order to

get the most valuable information at site level, it would be of

interest to add the atmospheric pressure field to the standard

FLUXNET data sets. Even if atmospheric pressure slightly

varies over time, this variable is a required input of many

ecosystem models and it would be good to benefit from the

data measured locally instead of using only data from reanal-

ysis. Similarly, measurement and vegetation heights are key

parameters for modelling the turbulent fluxes within and at

the top of the canopy; these are not yet standardly available

for all the sites in the FLUXNET data set. In our method,

we bias-correct the wind speed at a height of 10 m of ERA-

I to better match the observed values at site level, without

knowing the height at which these observations have been

collected. Using default values for vegetation and measure-

ment heights may have strong limitations on some modelled

energy fluxes (latent and sensible heat fluxes).
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Appendix A

We provide here a numerical application of the main equa-

tions used in the pseudo-algorithms developed in this study

for the first day of a data set for a site located in the time

zone UTC+ 2. The z parameter is consequently set to 2

(difference with respect to UTC), rF equals 0.5 (resolution

of FLUXNET meteorological data, half-hourly) and rE3 (3-

hourly resolution of the ERA-Interim data).

Table A1. Numerical application of the main equations used in the pseudo-algorithms based on the records from the ERA-Interim data set.

No. of records: j Corresponding timestamp Corresponding time Alg. (1) Alg. (2)

for instantaneous period for averaged

variables (UTC+ 0) variables (UTC+ 0)

(jrE+ z)/rF ((j − 1)rE+ z)
/
rF+ 1 (jrE+ z)

/
rF

1 03:00 00:00–03:00 12 7 12

2 06:00 03:00–06:00 18 13 18

3 09:00 06:00–09:00 24 19 24

4 12:00 09:00–12:00 30 25 30

5 15:00 12:00–15:00 36 31 36

6 18:00 15:00–18:00 42 37 42

7 21:00 18:00–21:00 48 43 48

8 00:00 21:00–00:00 54 49 54
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Appendix B

Table B1. Error reduction (ER, %) and relative error (RE, %) of the bias correction method for air temperature (Ta), vapour pressure deficit

(VPD), wind speed (WS), global radiation (Rg), longwave incoming radiation (LWin) and mean annual precipitation (mm yr−1) as measured

at FLUXNET stations (MAPf) and as given by the ERA-I product (MAPe).

Site Ta VPD WS Rg LWin Precip

ER RE ER RE ER RE ER RE ER RE MAPf MAPe

AT-Neu 41.7 29.5 12.4 57.2 33.1 99.1 2.8 33.9 – – 1401.6 1251.4

AU-Fog 8 42.9 33.3 54.9 15.4 94.1 0.3 28.7 54.4 40.5 1752 1424.4

AU-How 10.9 45.4 32.9 59 51.8 103.3 9.8 29.6 31.6 46.7 1927.2 1127

AU-Tum 24.1 44 25.9 58.7 0.7 109.2 5 29.9 – – 1226.4 570.4

AU-Wac 12.2 46.5 26.9 65.1 4.7 84.5 31.9 55.4 – – 1051.2 430.8

BE-Bra 5.2 22.7 4.4 44.6 46.6 62.7 15 32.6 – – 876 858.8

BE-Jal 36.7 27.4 22 65 24.5 88.8 12.9 49 – – 1401.6 928.2

BE-Lon 3.6 22.7 11.9 48.4 41.4 55.1 7.4 38.9 – – 700.8 796.4

BE-Vie 30.9 20.2 5.7 48 69.1 60.6 10.2 35.6 – – 876 850.5

BR-Sa3 19.2 66.4 – – – – 0.3 37.6 7.3 69.3 1226.4 2452.8

BW-Ghg 14.3 54.2 5.2 69.9 – – 5.1 38.7 24.2 98.7 – –

BW-Ghm 6.6 51.2 11.6 74 – – 6.3 36.8 19.5 97.4 – –

BW-Ma1 1 32.2 3.9 49.6 26.6 84.3 0.5 23.5 14.6 57.6 350.4 648.9

CA-Man 1.3 14.7 9.6 46 0 73.1 16.7 32.5 – – 350.4 604.1

CA-Mer 6.9 21.6 1.5 48.7 29.3 77.1 11.2 28.5 2.5 32.4 876 973.3

CA-NS1 36.5 13.1 17.8 38.4 38.5 65.8 2 29.3 – – 175.2 473.5

CA-NS2 34.3 14.1 21.5 38.4 15.3 62.4 10.9 28.3 – – 350.4 625.7

CA-NS3 8.4 13.4 0.6 38.7 50.4 58.8 4.2 28.1 – – 175.2 565.2

CA-NS4 3.7 18.4 4 40.9 67.2 66 2.4 27.9 – – 175.2 389.3

CA-NS5 1.7 15.3 0.5 38.2 65.1 62.9 3.3 28.3 – – 175.2 398.2

CA-NS6 12.8 12.9 6.5 38 42.1 58.4 2.2 28.7 – – 175.2 417.1

CA-NS7 11.6 13.8 9.5 37.2 73.4 67.8 4.1 29 – – 350.4 661.1

CA-Qcu 8.9 13.7 0.5 41.9 14.3 57.3 10.6 31.7 2.9 37.6 876 962.6

CA-Qfo 8.8 13.1 2.8 38.2 51.6 59.4 7.9 29.2 1.2 35.7 876 941.9

CA-SF1 13.1 21.8 10.2 49.2 39.7 65.5 2.9 30 6.7 43.8 525.6 710.3

CA-SF2 11.3 23.7 0.8 50.3 50.6 71.1 3.4 29.9 3.1 43.6 350.4 625.7

CA-SF3 5.9 18.6 0.5 42.1 38.1 62.9 5.1 29.3 5.3 45.2 350.4 539.1

CH-Oe1 3.3 24.3 3.6 46.1 15.7 80.7 3.1 32.1 29.6 59 1226.4 1066.4

CH-Oe2 15.2 24.4 6.3 51.4 25.8 75.2 1.8 34.3 45.2 94.3 – –

CZ-BK1 1 31.1 1.5 63.7 29.1 93.1 8.6 36.4 23.8 94.2 2102.4 824.5

CZ-wet 4.3 38.1 12.6 49.4 71 70.2 0 30.4 21.4 56.1 – –

DE-Bay 28.1 26.9 10.3 50.3 31.4 85.1 10.2 36.2 – – 1051.2 802.4

DE-Geb 10.4 20 4.8 40.1 16 57.1 4.9 29.3 1.8 52.5 525.6 710.3

DE-Gri 14.8 23.6 14.2 46.5 54.2 61.3 13.9 31.2 10.3 63.9 876 668.7

DE-Hai 8 24.7 7.4 47.2 33.1 74.8 5.5 31.3 5.8 45.9 700.8 620.2

DE-Kli 29.1 21.4 24.9 44.6 6.9 63.8 3.7 30.2 1.5 52.1 700.8 637.1

DE-Meh 0 18 1.2 38.2 24 55.6 5.9 30.2 2.9 48.9 525.6 665.3

DE-Tha 4.9 23.5 4.8 45.7 24.1 86.6 4.8 32.3 5.3 68.9 876 700.8

DE-Wet 26.5 28.7 16.6 51.2 4 90.1 8.3 33.3 4.9 52.5 1051.2 761.7

DK-Fou 8.1 20.7 0 43.5 43.7 67.2 6.7 31.2 – – 700.8 737.7

DK-Lva 20.5 20.6 3.3 44.3 20.5 67.7 7.9 33.4 – – 1051.2 796.4

DK-Ris 10.3 23.7 11.6 53.9 44.3 67.7 13.3 35.6 22.8 64.8 525.6 784.5

DK-Sor 17.2 24.8 4.9 61.4 57.1 60.6 13.3 35.9 1.3 64.7 876 639.4

ES-ES1 53.5 36.3 29.5 82.5 14.5 94.8 10.1 35.1 – – 525.6 316.6

ES-ES2 54.4 35.5 24.2 80.2 3 88.6 6 33.5 45.6 56.7 700.8 317.1

ES-LMa 6.8 22.4 6.7 27.4 10.8 92.7 8.3 30.1 4.4 56.2 700.8 393.7

ES-VDA 21.6 45.4 22.4 81.4 1.6 95.9 1 42.5 3 64.5 1051.2 607.6

FI-Hyy 5.1 15.4 8 38.7 29.4 65.6 8.1 29.5 – – 525.6 673.8

FI-Kaa 7 23.6 6 51.1 14.8 72.1 1 38.6 – – 525.6 657

FI-Sod 4.5 22 0 47.5 8.9 73.8 2.7 41.3 – – 350.4 547.5

FR-Fon 8.9 20.8 13 42.1 56.8 70.2 6.6 38.5 9.6 50.8 700.8 620.2

FR-Gri 0.6 20.1 0 41.7 48.9 58.6 5.2 37.5 23.4 45.6 525.6 657
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Table B1. Continued.

Site Ta VPD WS Rg LWin Precip

ER RE ER RE ER RE ER RE ER RE MAPf MAPe

FR-Hes 3.4 21.8 4 45.8 29.3 83.5 2.7 37.2 – – 1051.2 922.1

FR-LBr 4.8 27.2 4.8 46.9 11.5 92.5 6.6 38.8 22.9 45.6 876 658.6

FR-Lq1 12.5 37.8 9.8 67.9 0 85.4 11.4 56.7 – – 1051.2 991.7

FR-Lq2 12.5 37.8 9.8 67.9 0 85.4 11.4 56.7 – – 1051.2 991.7

FR-Pue 18 25.5 5.3 45.9 37.2 84.9 4 38.8 7.5 44.6 876 700.8

HU-Bug 5.3 30.4 2.4 51.7 21.7 73 17.1 37.1 – – 525.6 541.9

HU-Mat 3.6 24.1 9 47.4 40.2 100 7.3 37.4 – – 525.6 500.6

ID-Pag 36.3 67.9 17.2 76.7 13.4 123.6 2.2 41.3 – – 2102.4 1964.9

IE-Ca1 1.2 30.3 3.3 54.5 58.1 61.6 38.1 41.8 – – 700.8 910.1

IE-Dri 36.2 27.8 12.6 62.3 62.8 64.8 20 37.6 7.2 56.7 1226.4 922.1

IL-Yat 13.8 38.4 15.2 55.8 2.8 78.8 0.9 19.9 36.7 64.2 350.4 278.1

IS-Gun 39.6 32.4 25 60.8 24.1 73.2 13.5 36.9 – – 700.8 1187.8

IT-Amp 21.9 41.4 0 48.6 9 91 8.9 33.6 4.2 79.8 876 876

IT-BCi 31 28.4 19 69.8 3.9 94.2 9.5 26.5 31.4 60.1 1226.4 632.2

IT-Cas 11.7 26.5 27.5 50.7 57.3 97 3.6 25.1 52.7 54.5 876 818.7

IT-Col 55.4 35.2 35.3 65.8 16.7 88.5 17.4 36.3 32.1 65.5 1226.4 786.2

IT-Cpz 15.3 33.3 21.9 69.1 9.5 96.6 7.8 31.2 – – 876 755.2

IT-Lav 13 36.2 11.3 76.9 12 106.2 0.2 36.6 5.3 56.4 876 1233.8

IT-Lec 12.9 22.3 39.3 40 – – 3.5 33.7 – – 350.4 493.5

IT-LMa 71.3 29.3 30.9 54.6 41.4 116.1 40.6 37.3 – – 700.8 770.1

IT-Mal 35.3 39.5 39.1 93.6 0 110.8 9.9 38.8 – – 1401.6 1523.5

IT-MBo 15.2 29.1 18.6 70.6 6.3 112.5 0.8 34.6 1.7 69.9 876 1307.5

IT-Non 9.6 24.7 3.4 42.6 38.2 103.7 3 41.1 – – 876 818.7

IT-Pia 41.9 39.1 32.3 80.3 – – 0.2 40 – – 350.4 515.3

IT-PT1 30.3 23.7 32.7 48.8 33.3 97.8 2.1 32.5 – – 876 748.7

IT-Ren 20.7 32.7 10.8 68 3.3 92.9 0.5 42.5 8 60.3 700.8 1112.4

IT-Ro1 36.4 25.6 1.6 43.3 7.9 79.1 3.8 26.7 21.4 79.3 876 826.4

IT-Ro2 33.1 25.9 12.1 44.3 34.1 80.2 1.8 27 – – 876 803.7

IT-SRo 40.5 28.2 28.1 72.1 12.4 98.9 4.1 35.4 28.3 100 700.8 722.5

NL-Ca1 6.3 19.6 8 51.9 2.5 49 6.5 38 39.8 42 700.8 730

NL-Haa 7.8 23.7 – – 20.8 43.6 13 30.4 – – 876 730

NL-Hor 1.1 26.2 65.1 75.8 54.1 60.6 6.1 44.5 2.04 95.9 1051.2 756.3

NL-Lan 3.7 20.9 2.3 42.7 70 53 7.2 30.2 26.5 52 876 748.7

NL-Loo 8.1 17.9 11.2 40.6 65.9 60.3 10.3 31.6 32 49 876 730

NL-Lut 0.7 27.4 11.6 54.2 43.5 46.2 7.1 30.7 23.3 69.9 525.6 486.7

NL-Mol 5 16 1.8 39.4 75.6 57.9 6.3 30.2 63.7 59.7 525.6 510.3

PL-wet 6.4 25.8 5.9 41.5 54.8 63.9 4.8 30.9 16.2 56.4 525.6 491.2

PT-Esp 4.6 27.9 0.8 40.9 63.9 73.6 7.7 24.2 – – 700.8 574.4

PT-Mi1 8.3 22.7 7.4 36.8 0.8 75.2 7.2 21.2 – – 525.6 465.1

PT-Mi2 33.1 23.2 10.6 29.3 23.3 68.9 1.6 21.1 0.4 54.7 525.6 316.6

RU-Cok 8.2 34.6 26.9 86.4 0 63 0.2 44.2 16.9 97.6 175.2 473.5

RU-Fyo 5.2 15.4 0 42.6 70.6 76.5 1.8 30.7 5.2 43.7 525.6 772.9

RU-Ha1 18.7 16.1 13.7 42.6 0.6 73.2 7.9 33.8 – – 525.6 710.3

RU-Ha2 17.6 13.3 15.6 43.4 2.8 81.9 10.4 32.9 – – – –

RU-Ha3 20.7 23.8 15.3 45.4 9.1 100 2.6 32.7 – – – –

RU-Zot 7.7 18.5 11.2 43.1 42.5 78.5 2.1 40.3 4.4 44.7 350.4 730

SE-Deg 3.6 28.4 0 46.3 28.1 66.2 10.2 31.9 – – 525.6 720

SE-Faj 4.9 30.5 3.3 62.2 72.1 64.5 25.2 40.7 – – 525.6 584

SE-Fla 6.8 22.2 8 44.6 11.1 69.8 25 31.3 – – 700.8 865.2

SE-Nor 5.8 18.4 1.7 40.2 59.8 69.3 7.7 29.8 14.2 57.1 876 811.1

SE-Sk1 26.9 25.1 7.3 47.5 73.3 68.3 2.2 32 – – – –

SE-Sk2 4.7 19.9 6.8 71.6 60.3 87.5 11.5 32.1 5.6 53.5 – –

SK-Tat 1.2 34.2 15.6 69.5 – – 16.1 33.5 – – 175.2 486.7

UK-AMo 13.6 26.9 – – 13.4 57 26.5 35.4 – – 876 782.1
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Table B1. Continued.

Site Ta VPD WS Rg LWin Precip

ER RE ER RE ER RE ER RE ER RE MAPf MAPe

UK-EBu 1.8 32.7 4.7 55.8 – – 10.8 41.4 – – 1226.4 708.9

UK-ESa 5.7 25.8 10.5 54 67.7 60.1 6.5 38.7 – – 350.4 547.5

UK-Gri 10.1 30.5 9.8 66.8 3.6 98.9 4.5 41.3 – – 1051.2 1010.8

UK-Ham 8.7 23.9 44 60 75.1 52.3 3.1 32.1 – – 700.8 604.1

UK-Her 28.4 29.5 8 38.4 65.3 63.9 8.4 26.5 – – 700.8 667.4

UK-PL3 34.8 45.2 11.7 43 69.3 62.4 15.9 32.8 8.3 54.3 525.6 590.6

UK-Tad 10.7 25.9 – – 47.3 66 9.5 32.8 – – 525.6 740.3

US-ARM 9.2 18.7 8.8 39.3 22.8 82.2 11.4 28.1 40.2 80.6 700.8 560.6

US-Aud 5.7 28.7 10.7 41.8 2.3 72.6 2.4 23.8 44.1 37.7 350.4 302.1

US-Bar 1.8 20.1 0.4 47.5 48.7 84.9 1.8 31.8 – – 1401.6 1401.6

US-Bkg 23.3 17.7 30 52.8 33.2 57.8 4.5 29.3 5.4 36.6 700.8 715.1

US-Blo 29.8 32.8 36.8 45.3 41.2 83.7 39.8 19.3 – – 1226.4 734.4

US-Bo1 6.9 15.9 21.2 55.2 0 60.3 10.3 29.5 5.5 40.7 700.8 770.1

US-FPe 3.1 26.7 2.6 47.9 40.7 73.5 10 38.6 9.6 43 350.4 312.9

US-Goo 7 24.6 23.9 61.5 53.5 71.3 3.5 28.1 4.2 33.9 1576.8 1359.3

US-Ha1 16.7 20 25.1 56.9 47 73.4 33.7 29.8 – – 1226.4 1264.3

US-Ho1 1.4 19 1.7 45.4 32.9 74.8 24.9 30.6 – – 876 1200

US-Ho2 3.1 16.9 – – 49.5 74.8 26.9 29.5 – – 700.8 973.3

US-Los 9.8 27.6 – – 34.2 69.5 4.4 30.8 – – 700.8 796.4

US-Me4 2 33.1 12 37.6 36.3 94.6 12.9 32.4 – – 525.6 938.6

US-MMS 3.3 22.3 22.9 58.6 8.7 85.5 8.2 28.8 17.7 29.9 1051.2 1020.6

US-MOz 13.1 18 15.3 48.3 30.3 65.9 4.2 27.1 5.4 28.8 876 755.2

US-Ne1 9.4 18.5 22.4 53.3 19.1 60.3 10.5 28.2 – – 700.8 530.9

US-Ne2 13.3 18.9 26.2 54.1 27 62.2 7.4 28.1 – – 700.8 480

US-Ne3 12.5 17.9 21.2 49.4 28.6 61.7 11.5 28.3 – – 525.6 469.3

US-Oho 3.4 21.8 – – 73.5 60.2 18.1 36 – – 700.8 887.1

US-PFa 12.8 26.8 21.5 70.8 15 86.2 39.7 34.4 – – 700.8 722.5

US-SP1 8 30.8 8.2 55.7 42.9 79.3 9.8 36.7 – – 525.6 1347.7

US-SP2 15.8 37.5 1.5 58.9 41.7 83 7.1 33 – – 1051.2 1181.1

US-SP3 13.8 33.5 5.1 57.3 48.5 84.4 10.9 33.4 – – 1051.2 1251.4

US-SP4 17.8 27.2 25 53.3 58.2 70.2 30.8 28.6 – – 1226.4 943.4

US-Syv 26.5 17.8 17.6 46.1 19.5 74.8 15.8 30.2 – – 350.4 673.8

US-Ton 9.2 30.3 6.1 35.4 9.8 101.8 4.9 24.1 – – 525.6 597.3

US-UMB 10.9 21.5 13.4 55.9 46.6 69.4 27.6 31.5 – – 525.6 618.4

US-Var 3.1 26 11.7 29.6 54.7 91.9 4.6 25.7 – – 525.6 604.1

US-WBW 12.1 23.6 – – 16.4 92.7 1.4 29.3 – – – –

US-WCr 3 17 32.4 70.3 55.9 69.6 10.7 30.5 17.1 33.3 700.8 707.9

US-Wi0 11.6 40.6 23.8 50.7 57 71.2 25.3 36.6 – – 876 962.6

US-Wi1 8.2 29.6 7.6 59 72.1 78.3 42.7 52.7 – – 175.2 417.1

US-Wi2 16.6 35.2 4.9 56.7 79.1 74.3 27.4 51.3 – – 350.4 449.2

US-Wi4 9.8 24.8 9.7 52.3 60.8 74.3 22.5 48.3 – – 700.8 700.8

US-Wi5 13 26.3 8.9 52.9 62.9 69.3 19.9 48.8 – – 700.8 761.7

US-Wi6 13.8 28.3 14.5 50.1 42.3 71.7 24.3 36.9 – – 876 931.9

US-Wi7 0.6 70.2 3.5 93.1 53.8 87.8 59.3 55.5 – – 876 668.7

US-Wi8 11.4 23.9 14 50.7 77 80 66 36.2 – – 1051.2 1106.5

US-Wi9 18.1 34 12.5 49.1 59 74 23 52.5 – – 876 850.5

ZA-Kru 7.1 27.6 71.4 48.3 6.3 89.7 4.5 27.5 32.9 42 350.4 648.9
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