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Abstract 𝛿13CO2 measured in Antarctic ice cores provides constraints on oceanic and terrestrial carbon
cycle processes linked with millennial-scale changes in atmospheric CO2. However, the interpretation of
𝛿13CO2 is not straightforward. Using carbon isotope-enabled versions of the LOVECLIM and Bern3D models,
we perform a set of sensitivity experiments in which the formation rates of North Atlantic Deep Water
(NADW), North Pacific Deep Water (NPDW), Antarctic Bottom Water (AABW), and Antarctic Intermediate
Water (AAIW) are varied. We study the impact of these circulation changes on atmospheric 𝛿13CO2 as well
as on the oceanic 𝛿13C distribution. In general, we find that the formation rates of AABW, NADW, NPDW,
and AAIW are negatively correlated with changes in 𝛿13CO2: namely, strong oceanic ventilation decreases
atmospheric 𝛿13CO2. However, since large-scale oceanic circulation reorganizations also impact nutrient
utilization and the Earth’s climate, the relationship between atmospheric 𝛿13CO2 levels and ocean
ventilation rate is not unequivocal. In both models atmospheric 𝛿13CO2 is very sensitive to changes in AABW
formation rates: increased AABW formation enhances the transport of low 𝛿13C waters to the surface and
decreases atmospheric 𝛿13CO2. By contrast, the impact of NADW changes on atmospheric 𝛿13CO2 is less
robust and might be model dependent. This results from complex interplay between global climate, carbon
cycle, and the formation rate of NADW, a water body characterized by relatively high 𝛿13C.

1. Introduction

Recent technological advances now allow stable carbon isotope measurements in CO2 bubbles trapped in
Antarctic ice sheets (𝛿13CO2). 𝛿13CO2 has been measured across the deglaciation and the Holocene in Taylor
Dome [Smith et al., 1999], EPICA Dome C [Elsig et al., 2009; Lourantou et al., 2010], and Talos Dome ice cores
[Schmitt et al., 2012], thus providing strong constraints on carbon cycle changes occurring in the terrestrial
and oceanic reservoirs during that time [Indermühle et al., 1999; Brovkin et al., 2002; Joos et al., 2004; Elsig et al.,
2009; Menviel and Joos, 2012; Schmitt et al., 2012]. However, due to the number of processes possibly impact-
ing atmospheric 𝛿13CO2 on millennial timescales, the interpretation of changes in 𝛿13CO2 can prove difficult
[Broecker and McGee, 2013]. For example, the ∼0.3‰ 𝛿13CO2 decrease measured during Heinrich stadial 1 has
been attributed to enhanced Southern Ocean ventilation [Lourantou et al., 2010; Tschumi et al., 2011; Schmitt
et al., 2012], reduced iron fertilization [Lourantou et al., 2010; Broecker and McGee, 2013], and weakened North
Atlantic Deep Water (NADW) formation [Schmittner and Lund, 2015].

Carbon isotope fractionation occurs primarily during photosynthesis and air-sea gas exchange (Figure 1),
while fractionation during carbonate precipitation is usually small [Turner, 1982]. In the ocean, the largest
fractionation occurs during photosynthesis, when the light isotope (12C) is preferentially incorporated into
organic matter, thus leaving dissolved inorganic carbon enriched in the heavy isotope (13C). Due to the sub-
sequent remineralization of low 𝛿13C organic matter at depth, deep ocean 𝛿13C is 1 to 2‰ lower than the
surface ocean (Figure 1).

Numerical experiments performed with box models, and models of intermediate complexity can help con-
strain the impact of different terrestrial and oceanic processes on atmospheric 𝛿13CO2. Reduced terrestrial
carbon lowers 𝛿13CO2 by about 0.1‰ per 135–200 GtC [Joos et al., 2004; Brovkin et al., 2007; Köhler et al.,
2010; Elsig et al., 2009; Menviel and Joos, 2012]. Previous studies have shown that as fractionation between
atmospheric CO2 and dissolved inorganic carbon (DIC) is temperature dependent [Zhang et al., 1995],
lower sea surface temperature increases the magnitude of the fractionation by 0.12‰ per degree Celsius,
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Figure 1. Mean preindustrial 𝛿13C distribution (‰) and main processes influencing 𝛿13C with an estimated isotopic
difference (𝜖, gray oval). In the inserted graph, the zonally averaged surface ocean 𝛿13C (blue lines) as well as the zonally
averaged 𝛿13C resulting from an isotopic equilibrium with the atmosphere (black lines) are shown for the preindustrial
control run of LOVECLIM (solid) and the Bern3D (dashed). On land, a signature indicative of C3 plants is given.

which tends to decrease atmospheric 𝛿13CO2 [Lourantou et al., 2010]. Iron fertilization during the Last Glacial
Maximum (LGM) and the associated enhanced nutrient utilization could increase 𝛿13CO2 by about 0.2‰
[Köhler et al., 2010; Lourantou et al., 2010; Bouttes et al., 2011; Menviel et al., 2012]. Finally, Galbraith et al. [2015]
suggested that the lower atmospheric CO2 at the LGM and associated higher surface ocean pH could induce
an atmospheric 𝛿13CO2 increase of about 0.1‰.

Paleoproxy records and modeling studies have shown that significant changes in oceanic circulation occurred
on millennial timescales during the last glacial period and the deglaciation. For example, Heinrich stadials
[Heinrich, 1988] have been associated with weakened NADW [e.g., Broecker, 1997; Ganopolski and Rahmstorf ,
2001; Menviel et al., 2014b], strengthened North Pacific Deep Water (NPDW) [Saenko et al., 2004; Okumura
et al., 2009; Okazaki et al., 2010; Menviel et al., 2011; Rae et al., 2014], and enhanced Antarctic Bottom Water
(AABW) formation [Broecker, 1998; Anderson et al., 2009; Skinner et al., 2010; Toggweiler and Lea, 2010; Burke
and Robinson, 2012; Matsumoto and Yokoyama, 2013; Menviel et al., 2014a].

Previous numerical experiments [Köhler et al., 2010; Tschumi et al., 2011] suggested that enhanced Southern
Ocean ventilation would lead to an atmospheric 𝛿13CO2 decrease on centennial to millennial timescales.
An idealized numerical experiment in which NADW formation was shut off also led to a 𝛿13CO2 decrease
[Schmittner and Lund, 2015], but in this study the possible role of other water masses was not highlighted.
A more systematic study of the link between changes in oceanic circulation and 𝛿13CO2 is thus needed.

Here we employ two carbon isotope-enabled Earth System Models, LOVECLIM and the Bern3D, to investigate
the impact of changes in oceanic circulation on atmospheric 𝛿13CO2 under preindustrial conditions. This
systematic study includes variations in NADW, NPDW, Antarctic Intermediate Water (AAIW), and AABW arising
from changes in both buoyancy and dynamic forcing. Our study thus provides a framework to better
understand millennial-scale changes in atmospheric 𝛿13CO2.

2. Model and Experimental Setup
2.1. Carbon Isotope-Enabled LOVECLIM
The ocean component of LOVECLIM [Goosse et al., 2010] consists of a free-surface primitive equation model
with a horizontal resolution of 3∘ longitude, 3∘ latitude, and 20 depth layers. The atmospheric component is
a spectral T21, three-level model based on quasi-geostrophic equations of motion. LOVECLIM also includes a
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dynamic-thermodynamic sea ice model, a land surface scheme, a dynamic global vegetation model (VECODE)
[Brovkin et al., 1997], and a marine carbon cycle model (LOCH) [Menviel, 2008; Mouchet, 2011].

The terrestrial [Brovkin et al., 2002] and marine carbon cycle components of the model [Mouchet, 2011, 2013]
also include carbon isotopes (13C and 14C). The coupling of isotope cycles is fully coherent with the carbon
cycle in LOVECLIM, which allows computing the distribution of these isotopes among the atmosphere, the
ocean, and the continents in a prognostic way [Fichefet et al., 2012]. The air-sea gas exchange of CO2 depends
on sea ice fraction and on the gas transfer velocity, which is a function of the square of the wind speed and
of the square root of the Schmidt number [Wanninkhof , 1992]. Kinetic [Siegenthaler and Münnich, 1981] and
equilibrium fractionation [Mook et al., 1974] occur during air-sea 13C exchange (Appendix A). 13C fractionation
occurs during marine photosynthesis [Freeman and Hayes, 1992], but no fractionation during CaCO3

precipitation is included in LOVECLIM. Fractionation during carbonate precipitation is usually small [Turner,
1982] and highly species-dependent [Hoefs, 1997]. An extensive description of the equations governing the
carbon isotopes in LOCH can be found in Chapter 4 of Mouchet [2011] as well as in Mouchet [2013].

LOVECLIM represents generally well present-day climate [Menviel, 2008; Goosse et al., 2010], nutrient, export
production, and radiocarbon distributions [Menviel, 2008; Mouchet, 2011, 2013]. The main discrepancies
between the simulated modern state of the ocean and observations are due to relatively weak AAIW as well
as a weak halocline in the North Pacific.

2.2. Bern3D Earth System Model
The physical ocean model of the Bern3D+C Earth system model [Tschumi et al., 2011; Menviel and Joos, 2012] is
a three-dimensional frictional geostrophic balance ocean model [Müller et al., 2006] with a horizontal resolu-
tion of 36× 36 grid boxes and 32 unevenly spaced vertical layers. Monthly wind stress climatologies from the
National Centers for Environmental Prediction/National Center for Atmospheric Research reanalysis [Kalnay
et al., 1996] are applied. The atmospheric model is an Energy Balance Model, which includes a hydrological
cycle, and has the same temporal and horizontal resolutions as the ocean model [Ritz et al., 2011]. The marine
biogeochemical cycle model consists of a three-dimensional global model of the oceanic carbon cycle, fully
coupled to the physical ocean model and prognostic tracers including DIC, total alkalinity, 13C, 14C, phosphates
(PO3−

4 ), organic products, oxygen, silica, and iron [Parekh et al., 2008; Tschumi et al., 2008]. Carbon-13 frac-
tionation occurs during marine photosynthesis [Freeman and Hayes, 1992] and the formation of calcium
carbonate [Mook, 1986]. The air-sea gas exchange is implemented following the Ocean-Carbon Cycle Model
Intercomparison Project 2 protocol [Orr and Najjar, 1999; Najjar et al., 1999] but applying a linear relation-
ship between wind speed and gas exchange rate [Krakauer et al., 2006]. Air-sea 13C exchange is subjected to
kinetic fractionation [Siegenthaler and Münnich, 1981], and the global mean air-sea transfer rate is prescribed
according to Müller et al. [2008]. The sedimentary component represents sediment formation, dissolution,
remineralization, and sediment diagenesis in the top 10 cm beneath the sea floor in the pelagic ocean [Heinze
et al., 1999; Gehlen et al., 2006]. The accumulation of opal, CaCO3, and organic matter is calculated on the basis
of a set of dynamical equations for the sediment diagenesis process [Tschumi et al., 2011]. Land carbon is rep-
resented by the four-boxes model of Siegenthaler and Oeschger [1987], but the land carbon inventory is kept
constant in the experiments performed here.

Present-day nutrient and export production distributions [Parekh et al., 2008; Tschumi et al., 2008] as well as
radiocarbon [Müller et al., 2006; Gerber and Joos, 2013; Roth and Joos, 2013] distribution are generally well
simulated by the model, but AAIW formation and equatorward propagation are generally too weak.

2.3. Experiments Performed With LOVECLIM
A 10,000 year long preindustrial control run is integrated with a fixed atmospheric CO2 content of 280 ppmv
and an atmospheric 𝛿13CO2 of −6.45‰. The control run is then extended for 3500 years with prognostic
atmospheric CO2 and 𝛿13CO2.

To compare the performances of the model against present-day observations, a present-day run is also per-
formed with LOVECLIM. Starting from the equilibrium preindustrial run, LOVECLIM is forced from year 1400
to year 2000 A.D. with changes in atmospheric CO2 and 𝛿13CO2 as recorded in Law Dome ice core [Rubino
et al., 2013].

All sensitivity experiments start at the end of the control preindustrial state with constant preindustrial
boundary conditions. In all sensitivity experiments, atmospheric CO2 and 𝛿13CO2 are prognostic; however,
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Table 1. Experiments Performed With LOVECLIM and the Bern3D
Model Under Constant Preindustrial Boundary Conditions With
Prognostic Atmospheric CO2 and 𝛿13CO2

a

Experiment Region FW Flux (Sv) Wind Stress

LOVECLIM

Love-NA-W NA 0.05 -

Love-NA-Off NA 0.1 -

Love-SO-S SO −0.15 -

Love-SO-W SO 0.1 -

Love-SHW-S SO - +35%

Love-SHW-W SO - −30%

Love-SHW-Snas SO - +35%b

Love-SHW-Wnas SO - −30%b

Bern3D Model

Bern-NA-W NA 0.07 -

Bern-NA-Off NA 0.25 -

Bern-SO-S SO −0.15 -

Bern-SO-W SO 0.2 -
aNA indicates that the perturbation (freshwater input) is added

into the North Atlantic, while SO indicates a perturbation (freshwater
input/withdrawal or wind stress change) applied to the Southern
Ocean. S indicates that the forcing leads to stronger; W indicates
weaker or Off cessation of water mass formation (NADW for NA or
AABW for SO).

bIn experiments Love-SHW-Xnas, air-sea gas exchange is not
impacted by the imposed wind stress change.

as the purpose of the experiments is
to study the impact of ocean circula-
tion change, the terrestrial carbon cycle
is decoupled, i.e., there is no carbon flux
between the land and the atmosphere.

NADW formation is weakened (Love-
NA-W) by a freshwater input of 0.05
sverdrup (Sv; 106 m3/s) into the North
Atlantic (55∘W–10∘W, 50∘N–65∘N), and
NADW cessation is obtained by adding
0.1 Sv (Love-NA-Off, Table 1). In these
experiments, the Bering Strait is closed,
thus preventing freshwater to seep
through the Bering Strait into the North
Pacific. NADW cessation therefore leads
to formation of North Pacific Deep Water
(NPDW) through oceanic and atmo-
spheric teleconnections [Saenko et al.,
2004; Okumura et al., 2009; Menviel et al.,
2011]. The impact of NPDW formation on
oceanic 𝛿13C can therefore be inferred
from experiment Love-NA-Off.

Changes in AABW formation are obtained
either through buoyancy forcing (Love-
SO-W and Love-SO-S) or dynamic forcing
changes (Love-SHW-S and Love-SHW-W).
In Love-SO-W, AABW is weakened

through a meltwater input of 0.1 Sv in the Southern Ocean (50∘S–62∘S, 0∘E–280∘E), while AABW is enhanced
in Love-SO-S through a freshwater withdrawal (0.15 Sv). In Love-SHW-W, AABW is weakened through a 30%
decrease of the Southern Hemispheric westerly wind stress between 60∘S and 34∘S, while +35% stronger
Southern Hemispheric westerly wind stress enhances AABW formation in Love-SHW-S.

Variations in the wind intensity affect the air-sea CO2 exchange, which can have a significant impact on
𝛿13CO2. To quantify this effect, we perform two additional wind stress perturbation experiments similar to
Love-SHW-S and Love-SHW-W, in which the air-sea CO2 exchange is not impacted by the wind stress change
(Love-SHW-Snas and Love-SHW-Wnas).

2.4. Experiments Performed With the Bern3D Earth System Model
Similar to the experiments performed with LOVECLIM, changes in NADW and AABW are initiated by changing
the surface buoyancy forcing from a control preindustrial state and under constant preindustrial conditions,
with prognostic atmospheric CO2 and 𝛿13CO2 (Table 1). In Bern-NA-W and Bern-NA-Off, NADW weakening
is obtained by adding, respectively, 0.07 Sv and 0.25 Sv of freshwater into the North Atlantic. In Bern-SO-W,
AABW is weakened by adding 0.2 Sv of freshwater into the Southern Ocean, while AABW is strengthened in
Bern-SO-S by a freshwater withdrawal (0.15 Sv).

Finally, to compare the performances of the model against present-day observations, a present-day run is also
performed with the Bern3D model. Starting from the equilibrium preindustrial run, the Bern3D is forced from
year 1850 to year 2000 A.D. with changes in atmospheric CO2 and 𝛿13CO2 as recorded in Law Dome ice core
[Francey et al., 1999].

2.5. Attributing 𝜹
13C Changes

Changes in oceanic circulation drive changes in the solubility, the biological, and the carbonate pumps.
Disentangling the different contributions will thus help to understand the simulated oceanic 𝛿13C and 𝛿13CO2
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Figure 2. Preindustrial 𝛿13C distribution as simulated by (a–c) LOVECLIM and the (d–f ) Bern3D model. Surface 𝛿13C (‰)
is shown in Figures 2a and 2b, zonally averaged 𝛿13C (‰) over the Atlantic basin is shown in Figures 2c and 2d, and over
the Pacific basin is shown in Figures 2e and 2f. The meridional overturning stream function (Sv) over the Atlantic basin
(Figures 2c and 2d) and the Indo-Pacific basin are overlaid (Figures 2e and 2f) north of 30∘S, and the globally integrated
meridional overturning stream function (Sv) is shown over the Southern Ocean.

changes. 𝛿13C is defined as
(

(13C∕12C)Sample

(13C∕12C)Ref)
− 1

)
∗1000, (13C∕12C)Ref being the Vienna Peedee belemnite carbon

isotope standard (0.0112372) [Craig, 1957].

At depth, remineralization of organic matter (Corg) and dissolution of calcium carbonate (CCaCO3
) as well as the

preformed carbon (CPref) contribute to the DIC pool of 12C and 13C, so that

12C =12 Corg +12 CCaCO3
+12 CPref and 13C =13 Corg +13 CCaCO3

+13 CPref. (1)

Therefore,
𝛿13C = 1

12C
.
(
𝛿13Corg ∗12 Corg + 𝛿13CCaCO3

∗12 CCaCO3
+ 𝛿13CPref ∗12 CPref

)
. (2)

Since here 𝛿13CCaCO3
∼0, we can approximate

𝛿13C = 1
12C

.
(
𝛿13Corg ∗12 Corg + 𝛿13CPref ∗12 CPref

)
. (3)
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Figure 3. Present-day (years 1990–2000 A.D.) 𝛿13C distribution (‰) as simulated in LOVECLIM and the Bern3D model and compared to observations [Schmittner
et al., 2013]. Ocean surface 𝛿13C as simulated (shaded) in (a) LOVECLIM and (b) the Bern3D and compared to observations (color squared). 𝛿13C zonally averaged
over the Atlantic basin and the Pacific basin only taking into account the observation locations are shown in Figures 3c–3g and 3h–3l, respectively. (c and h) 𝛿13C
from observations, (d and i) the 𝛿13C LOVECLIM distributions, (e and j) 𝛿13C Bern3D distributions, (f and k) the difference between LOVECLIM and the
observations, and (g and l) the difference between the Bern3D model and the observations. The correlation coefficients (R) between LOVECLIM (the Bern3D
model) and the observations at the surface, in the Atlantic, and Pacific basins are 0.46 (0.51), 0.76 (0.74), and 0.65 (0.93), respectively.

Organic matter is depleted in 13C (𝛿13Corg ∼ −20‰), so that remineralization has a significant impact on
oceanic 𝛿13C. We can estimate the effect of organic matter remineralization in the ocean in the following way:

𝛿13CBIO =
𝛿13Corg ∗12 Corg

12C
=

𝛿13Corg ∗ Rc/p ∗ PRem

12C
(4)

with Rc/p the carbon over phosphate Redfield ratio (117) and PRem the phosphate generated through
remineralization. In the simulations performed with LOVECLIM, preformed phosphate (PPref) is a tracer, so
PRem = PTot − PPref. In the Bern3D, remineralized phosphate is estimated from the Apparent Oxygen Utilization
(AOU): PRem=AOU/Ro/p, with Ro/p the oxygen over phosphate Redfield ratio (170).

Δ𝛿13CTH reflects the changes in 𝛿13C due to air-sea gas exchange and temperature and is estimated by
Δ𝛿13CTH = Δ𝛿13C−Δ𝛿13CBIO.

3. Results
3.1. Preindustrial and Present-Day 𝜹

13C Distributions and Validation Against Observations
The 𝛿13C distribution in the ocean is governed by air-sea gas exchange, photosynthesis in the Sun-lit sur-
face layer, export of organic matter from the surface to the deep ocean, remineralization of organic matter
in the deep and ocean circulation (Figure 1). On global average, DIC is isotopically enriched in the surface
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Figure 4. (top to bottom) Time series of NADW, NPDW, |AABW| (Sv), as well as pCO2 (ppmv) and atmospheric 𝛿13CO2
(‰) anomalies for experiments performed with (left) LOVECLIM and (right) the Bern3D model. NADW and NPDW
represent the maximum overturning stream function in the North Atlantic and the North Pacific, respectively. AABW is
taken as the minimum of the global overturning stream function in the 80∘S–60∘S region and its absolute value is
shown. Experiments performed with both models and with weakened NADW (Love-NA-W and Bern-NA-W) are in cyan,
NADW cessation (Love-NA-Off and Bern-NA-Off) are in blue, weakened AABW (Love-SO-W and Bern-SO-W) are in green,
and strengthened AABW (Love-SO-S and Bern-SO-S) are in red. Experiments performed with LOVECLIM only: weaker
(Love-SHW-W, magenta) and stronger (Love-SHW-S, black) Southern Hemispheric westerlies as well as experiments in
which the CO2 air-sea gas exchange is not impacted by the wind stress changes (Love-SHW-Snas, dashed black and
Love-SHW-Wnas, dashed magenta).

ocean and depleted in the deep ocean. This vertical 𝛿13C gradient is established by the preferential uptake

of 12C during photosynthesis, leaving behind isotopically enriched DIC, and the export and subsequent rem-

ineralization in the deep of isotopically depleted organic matter. Physical transport (advection, diffusion, and

convection) tends to remove this vertical gradient by bringing isotopically depleted deep water to the surface

and vice-versa.

The role of air-sea exchange in shaping the 𝛿13C distribution is latitude dependent (Figure 1, inset). The equi-

librium fraction factor increases with decreasing ocean surface temperature (∼−0.12‰/∘C) [Mook et al., 1974;

Charles et al., 1993]. As a consequence, the 𝛿13C isotopic equilibrium with the atmosphere is higher for cold

polar than warm tropical waters (Figure 1, black lines in inset). In turn, air-sea gas exchange tends to enrich the
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Figure 5. 𝛿13C anomalies (‰) compared to the control run, averaged over the (a and c) Atlantic and (b and d) Pacific basin resulting from (a and b) a weakened
and (c and d) a cessation of NADW formation for experiments performed with LOVECLIM (Figures 5a and 5c) and the Bern3D model (Figures 5b and 5d). The
meridional overturning stream function (Sv) is overlaid for each experiment.

high-latitude surface oceans in 13C, thereby partly mitigating the low 𝛿13C due to upwelling of 13C-depleted

deep waters. At low latitudes, photosynthesis and organic matter export enrich surface water in 13C, whereas

air-sea exchange tends to deplete the surface ocean. Overall, this interplay results in relatively small latitudi-

nal gradients in surface ocean 𝛿13C, with slightly lower than average values in the Southern Ocean (Figure 1,

blue lines in inset).

The preindustrial 𝛿13C distribution as simulated in LOVECLIM and the Bern3D model is shown in Figure 2.

In Figure 3, the simulated oceanic 𝛿13C obtained for years 1990–2000 A.D. in the present-day experiments

performed with LOVECLIM and the Bern3D is compared to the present-day oceanic 𝛿13C observations com-

piled by Schmittner et al. [2013]. Observations are from World Ocean Circulation Experiment/GLobal Ocean

Data Analysis Project cruises performed in the 1990s, and thus, each observation point represents a day in

time, whereas model values are averaged over a 10 year period. Both preindustrial and modern atmospheric

𝛿13CO2 are ∼0.1‰ higher in the Bern3D model than in LOVECLIM, thus leading to globally higher oceanic

𝛿13C values in the Bern3D model.

Combustion of 13C-depleted fossil fuel since the industrial revolution increased the atmospheric CO2 content

while decreasing atmospheric 𝛿13CO2 [Keeling, 1979; Keeling et al., 2001]. This 𝛿13CO2 decrease led to oceanic

𝛿13C decrease from preindustrial to present, particularly in the subtropical gyres. The simulated present-day

𝛿13C distribution at the surface of the ocean is in general agreement with observations (Figures 3a and 3b).

Surface 𝛿13C is generally high at low latitude and midlatitude and low at high latitudes. The highest 𝛿13C

values are found in the Equatorial Pacific and Atlantic, as well as the South Pacific and South Atlantic

subtropical gyres.

Sustained primary production in the low-latitude upwelling zones and the subsequent advection of high 𝛿13C

waters, as well as surface ocean 13C enrichment due to CO2 outgassing [Lynch-Stieglitz et al., 1995] explain a

large part of the surface 𝛿13C distribution between 40∘S and 40∘N (not shown). On the other hand, upwelling

of low-𝛿13C waters and low-nutrient utilization leads to relatively low surface 𝛿13C in the Eastern Equatorial

Pacific and to some extent in the Eastern Equatorial Atlantic. South of the polar front in the Southern Ocean,

upwelling of low-𝛿13C waters, low-nutrient utilization, and invasion of depleted atmospheric CO2 lead to the

lowest surface 𝛿13C signature.

Both LOVECLIM and the Bern3D model correctly simulate the 𝛿13C signature of the main water masses

(Figure 3). 𝛿13C is the highest in North Atlantic Deep Water (NADW), lower in Antarctic Bottom Waters (AABW),
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Figure 6. Vertical 𝛿13C profile anomalies averaged over (a and d) the Atlantic basin north of 20∘S, (b and e) the Southern
Ocean, and (c and f) the Pacific basin north of 20∘S for the control runs (black), NADW cessation (Love-NA-Off and
Bern-NA-Off, blue), and strengthened AABW (Love-SO-S and Bern-SO-S, red).

and the lowest in the North Pacific. This gradual decrease in oceanic 𝛿13C from the deep Atlantic to Pacific is

due to remineralization of 13C-depleted organic carbon. As seen in Figure 2, nutrient-depleted NADW displays

a relatively high 𝛿13C (0.8–1.1‰), while nutrient-rich AABW is characterized by a low 𝛿13C (0.4–0.6‰). The

oldest, nutrient-rich waters lie in the deep North Pacific region and at intermediate depth in the Equatorial

regions, which feature very low 𝛿13C. In outcropping regions, air-sea gas exchange compensates for the

low-𝛿13C signal brought about by organic matter remineralization, particularly associated with the AABW and

AAIW pathways.

LOVECLIM underestimates 𝛿13C values by an average of 0.2‰ in the Atlantic basin, while it overestimates 𝛿13C

values by up to 0.6‰ in the intermediate North Pacific. As is also seen in its salinity structure [Menviel, 2008],

the weak halocline in the North Pacific leads to an overestimated transport of high surface North Pacific

𝛿13C into the intermediate North Pacific. In addition, in LOVECLIM, intermediate depth equatorial waters are
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Figure 7. Results of experiments featuring a cessation of NADW formation performed with (a–c) LOVECLIM (Love-NA-Off) and (d–f ) the Bern3D model
(Bern-NA-Off). Surface 𝛿13C anomalies (‰) compared to the preindustrial control run (Figures 7a and 7d); export production anomalies (gC/m2/yr) (Figures 7b
and 7e); and SST anomalies (∘C) with the 0.1 m sea ice level overlaid for the control pre-industrial run (black) and for Love-NA-Off or Bern-NA-Off (red)
(Figures 7c and 7f ).
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Figure 8. 𝛿13C anomalies (‰) compared to the control preindustrial run, averaged over the Atlantic (left) and Pacific basin (right) for (a–c) Love-SO-S and
(d–f ) Bern-SO-S. Δ𝛿13C (‰) (Figures 8a and 8d), Δ𝛿13CBIO (Figures 8b and 8e), and Δ𝛿13CTH Figures 8c and 8f.

associated with negative 𝛿13C and dissolved oxygen anomalies and positive AOU anomalies when compared
to observations [Menviel, 2008]. Weak Antarctic Intermediate Water (AAIW) formation, brought about by rela-
tively weak Southern Hemispheric westerlies [Menviel, 2008], could explain the negative 𝛿13C anomalies simu-
lated at intermediate depth in both the South Atlantic and South Pacific. In contrast, in the Bern3D model, the
North Pacific 𝛿13C distribution is very well represented (Figures 3j and 3l), but AABW has a relatively high 𝛿13C
signature (Figures 2 and 3).

3.2. Weakened North Atlantic Deep Water and Enhanced North Pacific Deep Water Formation
A 50% weakening (Love-NA-W and Bern-NA-W, cyan lines in Figure 4) and ∼500 m shallowing of NADW leads
to positive 𝛿13C anomalies in the upper 2000 m of the North Atlantic, with a mean anomaly of 0.09‰ over the
region 10∘N–60∘N (Figures 5a and 5b). These positive 𝛿13C anomalies are partly due to the reduced export
production at the surface of the North Atlantic (−16% and −34% in Love-NA-W and Bern-NA-W, respec-
tively), which reduces the remineralized carbon in the intermediate North Atlantic (Figures S1b and S1e in the
supporting information). In addition, in Love-NA-W, cooler conditions in that region further enhance the sur-
face 𝛿13C increase, which is then advected to intermediate depth (Figure S1c). Conversely, 𝛿13C decreases by
0.09‰ in the deep Atlantic due to increased remineralized carbon (Figures S1b and S1e), thus leading to a
greater vertical 𝛿13C gradient in the North Atlantic.

Cessation of NADW formation (Love-NA-Off and Bern-NA-Off) leads to negative 𝛿13C anomalies over most of
the Atlantic basin (Figures 5c and 5d). 𝛿13C is about 1‰ lower at intermediate depth in the Northern North
Atlantic as well as 0.4‰ and 0.2‰ lower in the deep North and South Atlantic, respectively.

Reduced ventilation of the deep/intermediate Atlantic leads to the accumulation of remineralized carbon,
which decreases 𝛿13CDIC. An increase in remineralized carbon in the deep and intermediate Atlantic is thus
the primary cause of the negative 𝛿13C anomalies simulated in the Atlantic basin (Figure S2). In both models,
NADW cessation leads to a greater vertical 𝛿13C gradient in the Atlantic basin (Figures 6a and 6d, blue lines).

NADW cessation is associated with weakened Northern Hemispheric poleward heat transport and thus neg-
ative SST anomalies in the North Atlantic (Figures 7c and 7f). Following the equilibrium relationship between
SST changes and surface 𝛿13C [Mook et al., 1974], a 4∘C surface cooling would lead to a 𝛿13C increase of 0.5‰
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Figure 9. Processes influencing atmospheric 𝛿13CO2 and Southern Ocean surface 𝛿13CDIC when AABW is enhanced
(from left to right): (i) Enhanced surface-to-deep exchange brings nutrient-rich 13C-depleted waters to the surface,
shortens the residence time of waters in the Sun-lit surface layer, and reduces the magnitude of nutrient utilization
by the marine biota. This lowers the oceanic vertical 𝛿13C gradient, surface ocean 𝛿13C, and atmospheric 𝛿13CO2.
(ii) Reduced sea ice cover enhances air-sea gas exchange and the net transfer of 13C from the atmosphere to the surface
of the Southern Ocean (see Figure 1), which decreases the 𝛿13C disequilibrium by increasing surface ocean 𝛿13C and
decreasing atmospheric 𝛿13CO2. (iii) Increased SST reduces the fractionation between atmospheric CO2 and surface
ocean DIC, thus reducing the net transfer of 13C from the atmosphere to the Southern Ocean, thereby lowering surface
ocean 𝛿13C and increasing atmospheric 𝛿13CO2. (iv) Lower wind speeds associated with weaker westerlies reduce gas
transfer rates and the net 13C gas transfer in the Southern Ocean, thereby decreasing Southern Ocean surface 𝛿13C and
increasing atmospheric 𝛿13CO2. It is the combination of these effects which ultimately determines the magnitude of the
atmospheric 𝛿13CO2 change.

at equilibrium. The equilibrium is rarely reached, particularly under sea ice (Figure S3). Enhanced nutrient uti-
lization also contributes to the positive surface 𝛿13C anomaly simulated in the North Atlantic in both models
(Figures 7 and S3). In the Southern Ocean during NADW cessation, enhanced export production and nutri-
ent utilization induce significant positive surface 𝛿13C anomalies (Figures 7b, 7e, S3e, and S3f ), which are only
partly compensated by the warmer surface conditions in that region. These positive 𝛿13C anomalies spread
from the Southern Ocean northward at intermediate depth in the AAIW core and to a smaller extent in the
AABW core (Figures 5c, 5d, 6b, and 6e).

These results are broadly consistent with results from idealized meltwater experiments in which NADW
formation was shut down [Marchal et al., 1998]. These authors also find negative anomalies in the deep North
Atlantic and positive anomalies in the Southern Ocean related to the biological cycle and air-sea gas exchange,
respectively. In contrast to LOVECLIM and the Bern3D model, the zonally averaged model used by Marchal
et al. [1998] simulates positive anomalies also in the deep Southern Ocean, probably due to extensive vertical
convection and mixing.

In LOVECLIM, strongly reduced NADW leads to the formation of North Pacific Deep Water (NPDW) through
oceanic and atmospheric teleconnections [Menviel et al., 2011]. In experiment Love-NA-Off, the maximum
NPDW transport is about 10 Sv at 1000 m, and NPDW reaches ∼2500 m depth (Figure 5c). NPDW is associated
with a positive 𝛿13C anomaly of up to 1‰ centered at 1500 m in the North Pacific (Figures 5c and 6c), which
decreases southward.

Enhanced ventilation of North Pacific intermediate/deep waters reduces the release of isotopically light car-
bon through remineralization and leads to positive 𝛿13C anomalies there (Figure S2a). The formation of NPDW
leads to the downwelling of nutrient-poor, high 𝛿13C waters. Young, nutrient-poor, high 𝛿13C waters thus
replace old, nutrient-rich, low 𝛿13C waters over most of the North Pacific.
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Figure 10. 𝛿13C anomalies (‰) compared to the control run, zonally averaged over the Atlantic (left) and Pacific basin (right) resulting from (a and b) weakened
and (c and d) strengthened AABW formation for experiments performed with LOVECLIM (Figures 10a, 10c, and 10e) and the Bern3D model (Figures 10b and 10d).
(e) Experiment with enhanced Southern Hemispheric westerlies performed with LOVECLIM. The Indo-Pacific, global, and Atlantic meridional stream functions (Sv)
are overlaid for each experiments.

3.3. Changes in Antarctic Bottom and Intermediate Waters
AABW strengthening either through changes in buoyancy forcing (Love-SO-S, Bern-SO-S) or increased
Southern Hemispheric westerlies (Love-SHW-S) enhances the ventilation of the deep Atlantic and Pacific
Oceans. The accumulation of isotopically depleted carbon originating from organic matter remineralization
is reduced, which leads to positive 𝛿13CBIO anomalies in the deep Atlantic and Pacific (Figures 8b and 8e).
Enhanced ventilation of the deep ocean leads to the upwelling of low 𝛿13C waters, which decreases surface
waters 𝛿13C (Figures 8 and 9) as well as the vertical 𝛿13C gradients (Figure 6, red).

In addition, previous studies have shown that stronger AABW enhances the poleward heat transport to high
southern latitudes [Talley, 1999], which leads to positive SST anomalies at the surface of the Southern Ocean
[Menviel et al., 2015]. This SST increase lowers 𝛿13C at the surface of the Southern Ocean (Figure 9). The imprint
of this signal is visible by particularly large negative 𝛿13CTH anomalies in the Southern Ocean in LOVECLIM
(Figure 8c).

Experiments Love-SO-S and Love-SHW-S display similar changes in AABW and NADW (Figure 4, red and black),
and thus simulated oceanic 𝛿13C anomalies are alike (Figure 10). However, stronger Southern Hemispheric
westerlies also enhance the formation of AAIW, which leads to positive 𝛿13C anomalies in the AAIW path, in
contrast to experiment Love-SO-S.

Weaker AABW reduces the ventilation rates of the deep Pacific and Atlantic Oceans with increased accumula-
tion of remineralized carbon. Negative 𝛿13C anomalies are thus simulated in both the deep Pacific and Atlantic
(Figures 10a and 10b). The impact of weaker AABW on oceanic 𝛿13C simulated in LOVECLIM and the Bern3D
model is also in qualitative agreement with the results obtained by Kwon et al. [2012].

3.4. Relationship Between Changes in Oceanic Circulation and Atmospheric 𝜹13CO2

Figure 4 shows the changes in atmospheric 𝛿13CO2 obtained in the different idealized experiments. NADW
cessation leads to a maximum of 0.05‰ 𝛿13CO2 increase, while weakened AABW transport induces a
maximum of 0.15‰ 𝛿13CO2 increase and enhanced AABW formation leads to 0.1‰ 𝛿13CO2 decrease.
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Figure 11. Scatterplot of changes in 𝛿13CO2 (‰, filled) obtained with a multiple linear regression and changes in AABW, NPDW, and NADW (Sv). (a and b)
Different angles of the scatterplots. The regression is performed on all the LOVECLIM experiments and is of the form: Δ𝛿13CO2= −0.0041*ΔAABW−0.0056*
ΔNPDW−0.003* ΔNADW, R2 = 0.45. Triangles represent the 𝛿13CO2 changes obtained at equilibrium. At equilibrium, the multiple linear regression is
Δ𝛿13CO2= −0.0069*ΔAABW −0.0042*ΔNPDW−0.0012*ΔNADW, R2 = 0.70. Positive (negative) ΔAABW values indicate stronger (weaker) AABW.

To get a clearer picture of the role of each water mass in controlling atmospheric 𝛿13CO2, we perform a
multiple linear regression analysis between changes in atmospheric 𝛿13CO2 and changes in NADW, AABW,
and NPDW formation rates for the LOVECLIM experiments (Love-NA-Off, Love-NA-W, Love-SO-S, Love-SO-W,
Love-SHW-Snas, and Love-SHW-Wnas). As seen in Figure 11, we find significant negative correlations between
Δ𝛿13CO2 and each of the water masses transport rate (R2 = 0.70). Enhanced transport of AABW, NPDW, or
NADW is thus associated with lower atmospheric 𝛿13CO2. Standardized regression coefficients (𝛽) are−0.6894,
−0.4415, and −0.3986 for, respectively, AABW, NADW, and NPDW. This indicates that AABW ventilation rates
are dominant in controlling 𝛿13CO2 variations in LOVECLIM.

Deep and intermediate water masses have a lower 𝛿13C signature than surface waters; therefore, increased
ventilation decreases the vertical 𝛿13C gradient (Figure 6) by bringing low 𝛿13C waters to the surface and high
𝛿13C waters to depth. At the same time, enhanced deep ocean ventilation lowers the accumulation of rem-
ineralized carbon in the deep ocean (Figure 8). Enhanced AABW and NPDW formation therefore increases
atmospheric CO2 [Menviel et al., 2014a], decreases surface 𝛿13C, and thus 𝛿13CO2 (Figure 4). This result is
confirmed by a multiple linear regression analysis performed on the Bern3D experiments, which displays a
significant negative correlation (R2 = 0.6) between changes in 𝛿13CO2 and AABW (𝛽 = −0.97). This is also in
agreement with previous studies which found a significant impact of AABW changes on 𝛿13CO2 [Tschumi et al.,
2011; Kwon et al., 2012].

As seen in Figure 4, 𝛿13CO2 anomalies simulated in experiment Love-SHW-S and Love-SHW-W are larger
than those simulated in Love-SO-S and Love-SO-W, respectively. These differences are due to the air-sea gas
exchange of 13C and to changes in AAIW transport. Enhanced air-sea gas exchange increases the net transfer
of 13C from the atmosphere to the surface of the Southern Ocean (Figure 1), which increases surface ocean
𝛿13C and decreases atmospheric 𝛿13CO2 by 0.06‰ in Love-SHW-S compared to Love-SHW-Snas (Figure 4, solid
and dashed black). The reverse is true for experiment Love-SHW-W, in which reduced air-sea gas exchange
increases 𝛿13CO2 by 0.06‰ compared to Love-SHW-Wnas (Figure 4, solid and dashed magenta). In addition,
stronger Southern Hemispheric westerlies strengthen AAIW, which enhances the ventilation of very low inter-
mediate 𝛿13C waters. This means that for similar changes in AABW, 𝛿13CO2 anomalies are larger when changes
are due to dynamic forcing. This result should however be taken with caution, as AAIW 𝛿13C signature is too
low in LOVECLIM.
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Our results are quantitatively different from the ones obtained with the UVic ESCM [Schmittner and Lund,
2015], where a 0.25‰ 𝛿13CO2 decrease is simulated following a shutdown of NADW formation over 3000 years
in an idealized North Atlantic meltwater experiment performed with interactive land biosphere. The simu-
lated 𝛿13C anomalies in their experiment are consistent with our results for a cessation of NADW formation
coupled with formation of NPDW and/or stronger AABW formation. While enhanced NPDW and AABW
formation could provide a potential explanation for the simulated decrease in atmospheric 𝛿13CO2, the results
obtained with the UVic ESCM, LOVECLIM, and the Bern3D also seem to indicate different model sensitivities
to changes in oceanic circulation.

In general, enhanced deep ocean ventilation reduces the vertical 𝛿13C gradient and leads to atmospheric
𝛿13CO2 decrease. However, changing oceanic circulation also impacts the climate and the oceanic carbon
cycle. The magnitude of the atmospheric 𝛿13CO2 change will thus also depend on additional processes.
For example, in LOVECLIM, stronger AABW (Love-SO-S) leads to a ∼1.6∘C SST increase over the Southern
Ocean [Menviel et al., 2015], which reduces air-sea equilibrium fractionation, thus decreasing surface ocean
𝛿13C, while increasing atmospheric 𝛿13CO2 (Figure 9). This provides a negative effect on the 𝛿13CO2 decrease
brought about by enhanced deep ocean ventilation. By contrast, in the Bern3D model, SST over the Southern
Ocean only increase by∼0.5∘C when AABW is enhanced (Bern-SO-S). In addition, due to the weak halocline in
the North Pacific in LOVECLIM, the lower atmospheric 𝛿13CO2 leads to a 𝛿13C decrease at intermediate depth
in the Pacific (Figure 8a), which buffers the atmospheric 𝛿13CO2 decrease. The different strength of these
negative effects in both models can explain the different sensitivity to changes in AABW and also in other
water masses.

4. Conclusions

Here we set out to understand the impact of changes in oceanic circulation on atmospheric 𝛿13CO2. The
main oceanic processes that can lead to an atmospheric 𝛿13CO2 decrease are higher equilibrium fractionation
during air-sea gas exchange, enhanced air-sea gas exchange, and lower surface ocean 𝛿13C (Figure 9).

Higher equilibrium fractionation is obtained by a cooling of sea surface waters, while enhanced air-sea gas
exchange occurs in the case of stronger surface winds or reduced sea ice coverage. Lower surface ocean 𝛿13C
results from a weaker oceanic 𝛿13C vertical gradient obtained either through weaker nutrient utilization or
stronger ocean ventilation (Figure 9).

To a first order approximation, enhanced formation of deep and bottom waters increases the ventilation of
low 13C waters to the surface, which reduces atmospheric 𝛿13CO2. However, enhanced deep ocean circula-
tion is often associated with higher surface ocean temperature which tends to increase atmospheric 𝛿13CO2

(Figure 9). Different model sensitivities with respect to changes in deep ocean circulation as well as modifica-
tions of background climate conditions will thus exert a strong constraint on the magnitude of the simulated
𝛿13CO2.

Analyses made on Antarctic ice cores suggest that atmospheric 𝛿13CO2 dropped by ∼0.3‰ during Heinrich
stadial 1 (HS1) [Lourantou et al., 2010; Schmitt et al., 2012], probably coincident with cessation of NADW forma-
tion [McManus et al., 2004]. In contrast with a previous study [Schmittner and Lund, 2015], our results suggest
that a cessation of NADW formation has little impact on atmospheric 𝛿13CO2 and thus cannot explain the
measured 𝛿13CO2 decrease. Paleoproxy records have suggested that Southern Ocean ventilation was stronger
during HS1 [e.g., Anderson et al., 2009; Skinner et al., 2010], and previous modeling studies have shown that
enhanced AABW during HS1 would increase atmospheric CO2 [Menviel et al., 2014a] and decrease atmospheric
Δ14C [Matsumoto and Yokoyama, 2013] in agreement with paleorecords. In addition, Tschumi et al. [2011] find
in their model that enhanced Southern Ocean ventilation decreases atmospheric 𝛿13CO2, and Southern Ocean
surface d13C, while increasing deep ocean 𝛿13C, Δ13C and oxygen. In addition, Southern Ocean opal export
and opal sediment burial increase, initially deepening the lysocline, all consistent with proxy information
[e.g., Broecker and Clark, 2001; Anderson et al., 2009; Schmitt et al., 2012; Jaccard et al., 2014].

AABW could have been enhanced during HS1 either through buoyancy forcing or through stronger/poleward
shifted Southern Hemispheric westerlies. For example, a reduced temperature gradient in the Southern
Hemisphere as well as a southward shift of the Intertropical Convergence Zone in response to weakened
NADW formation could enhance and shift the Southern Hemispheric westerlies poleward [Toggweiler et al.,
2006; Denton et al., 2010; Toggweiler and Lea, 2010; Lee et al., 2011]. Stronger Southern Hemispheric westerlies
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during HS1 would enhance AABW and AAIW, as well as the air-sea CO2 exchange. Here we simulate a 0.15‰
reduction in atmospheric 𝛿13CO2 when increasing the Southern Hemispheric westerlies by 35%. In addition,
reduced iron fertilization at the beginning of the deglaciation would diminish nutrient utilization over the
Southern Ocean, which would further decrease atmospheric 𝛿13CO2 by 0.1 to 0.2‰ [Lourantou et al., 2010;
Menviel et al., 2012; Broecker and McGee, 2013]. Our results thus suggest that enhanced AABW during HS1
combined with reduced iron fertilization could explain the 0.3‰ 𝛿13CO2 decrease. Further studies are
needed to investigate the impact of boundary conditions on changes in atmospheric 𝛿13CO2 and verify this
hypothesis.

Appendix A

Temperature dependent fractionation occurs during the air-sea gas exchange of CO2 as well as the dissocia-
tion of aqueous CO2 into bicarbonate (HCO−

3 ) and carbonate (CO2−
3 ) ions. Due to the long timescale required

for the oceanic surface to be in equilibrium with the atmosphere, water mass formation, sea ice cover, and
mixing also have an impact on oceanic 𝛿13C.

The kinetic fractionation factor during air-sea gas exchange has a weak dependence on temperature (T, ∘K)
[Siegenthaler and Münnich, 1981]:

𝛼K = 0.9995 ∗ (1.00019 − 0.373∕T) (A1)

During photosynthesis, 12C is preferentially taken up, so that organic matter is depleted in 13C. Freeman
and Hayes [1992] defined the isotopic difference between dissolved CO2 (𝛿13Cd) and primary photosynthate
(𝛿13Com) as

𝜖d−om =
(

(𝛿13Cd + 1000)
(𝛿13Com + 1000)

− 1
)

∗ 1000 ∼ 𝛿13Cd − 𝛿13Com (A2)

In this study, 𝜖d−om is set constant at 22‰ in LOVECLIM.
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