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Abstract. Correct representation of seasonal leaf dynam-

ics is crucial for terrestrial biosphere models (TBMs), but

many such models cannot accurately reproduce observa-

tions of leaf onset and senescence. Here we optimised the

phenology-related parameters of the ORCHIDEE TBM us-

ing satellite-derived Normalized Difference Vegetation In-

dex data (MODIS NDVI v5) that are linearly related to the

model fAPAR. We found the misfit between the observa-

tions and the model decreased after optimisation for all bo-

real and temperate deciduous plant functional types, primar-

ily due to an earlier onset of leaf senescence. The model

bias was only partially reduced for tropical deciduous trees

and no improvement was seen for natural C4 grasses. Spa-

tial validation demonstrated the generality of the posterior

parameters for use in global simulations, with an increase

in global median correlation of 0.56 to 0.67. The simulated

global mean annual gross primary productivity (GPP) de-

creased by ∼ 10 PgC yr−1 over the 1990–2010 period due

to the substantially shortened growing season length (GSL –

by up to 30 days in the Northern Hemisphere), thus reduc-

ing the positive bias and improving the seasonal dynamics of

ORCHIDEE compared to independent data-based estimates.

Finally, the optimisations led to changes in the strength and

location of the trends in the simulated vegetation productivity

as represented by the GSL and mean annual fraction of ab-

sorbed photosynthetically active radiation (fAPAR), suggest-

ing care should be taken when using un-calibrated models in

attribution studies. We suggest that the framework presented

here can be applied for improving the phenology of all global

TBMs.

1 Introduction

Leaf phenology, the timing of leaf onset, growth and senes-

cence, is a critical component of the coupled soil–vegetation–

atmosphere system as it directly controls the seasonal ex-

changes of carbon, C, as well as affecting the surface en-

ergy balance and hydrology through changing albedo, sur-

face roughness, soil moisture and evapotranspiration. In turn

leaf phenology is largely governed by the climate, as leaf

onset and senescence are triggered by seasonal changes in

temperature, moisture and radiation. Leaf phenology is there-

fore sensitive to inter-annual climate variability and future

climate change (Cleland et al., 2007; Körner and Basler,

2010; Reyer et al., 2013), as well as to increasing atmo-

spheric CO2 concentrations (Reyes-Fox et al., 2014), and

will provide feedback on both climate and atmospheric C02

(Richardson et al., 2013). It is expected that climate warm-

ing will advance leaf onset in temperature limited north-

ern biomes. Such trends have already been observed in the

Northern Hemisphere (NH) using either satellite or in situ

observations (Badeck et al., 2004; Delbart et al., 2008; Jeong

et al., 2011; Myneni et al., 1997; Parmesan, 2007). However,

increasing temperatures may either advance or delay senes-

cence, depending on species-specific responses to other envi-

ronmental variables (Hänninen and Tanino, 2011; Piao et al.,

2007). Future changes of precipitation in a warming climate

will also likely affect tropical and semi-arid ecosystems that

are more controlled by moisture availability (e.g. Anyamba

and Tucker, 2005; Dardel et al., 2014; Fensholt et al., 2012).

In order to improve predictions of the impact of future cli-

mate change on vegetation and its interaction with the global

C and water cycles, it is crucial to have prognostic leaf phe-
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nology schemes in process-based terrestrial biosphere mod-

els (TBMs) that constitute the land component of Earth sys-

tem models (ESMs) (Kovalskyy and Henebry, 2012b; Levis

and Bonan, 2004). Many such models exist in the literature,

especially for temperate and boreal forests (e.g. Arora and

Boer, 2005; Caldararu et al., 2014; Chuine, 2000; Hänninen

and Kramer, 2007; Knorr et al., 2010; Kovalskyy and Hene-

bry, 2012a) and have been included in most TBMs. However,

model evaluation studies have shown that there are biases in

the growing season length and magnitude of the leaf area in-

dex (LAI) predicted by TBMs when compared to ground-

based observations of leaf emergence and LAI (Kucharik et

al., 2006; Richardson et al., 2012) or satellite-derived mea-

sures of vegetation greenness and LAI (Kim and Wang, 2005;

Lafont et al., 2012; Maignan et al., 2011; Murray-Tortarolo et

al., 2013). This can result in systematic errors in model pre-

dictions of the seasonal carbon, water and energy exchanges

(Kucharik et al., 2006; Richardson et al., 2012; Walker et al.,

2014).

As is always the case prior to model parameter calibra-

tion, it is unclear whether the misfit between modelled and

observed measures of leaf phenology is the result of inac-

curate parameter values, model structural error, or both. In

order to answer this question, the parameters first need to

be optimised using data assimilation (DA) techniques, and if

the models cannot reproduce the data within defined uncer-

tainties we expect to gain insights into possible directions for

model improvement. DA is also a useful way to better charac-

terise and possibly reduce uncertainty in model simulations,

and to determine the relative influence of parametric, struc-

tural and driver uncertainty (e.g. Migliavacca et al., 2012).

Many studies have optimised the parameters of phenol-

ogy models for a range of species with ground-based obser-

vations of the date of leaf onset (Blümel and Chmielewski,

2012; Chuine et al., 1998; Fu et al., 2012; Jeong et al., 2012),

the “green fraction” derived from ground-based digital pho-

tography (Migliavacca et al., 2011) or with spring onset dates

derived from carbon fluxes taken at flux tower sites (Melaas

et al., 2013). Melaas et al. (2013) went further and demon-

strated the transferability of parameters in time and between

sites by including multiple sites in the optimisation. All of

these studies have used DA to test different phenology model

structures, thereby contributing significantly to the debate

about whether a simple classical temperature-driven budburst

model is sufficient, or whether more complex chilling and/or

photoperiodic cues are needed to best predict leaf onset. Sev-

eral studies also investigated the impacts of optimising phe-

nology on the resulting C and water budgets (Migliavacca

et al., 2012; Picard et al., 2005; Richardson and O’Keefe,

2009).

Peñuelas et al. (2009) noted that medium- to coarse-

resolution satellite data might be more appropriate for op-

timising the phenology in TBMs, due to the large differ-

ence in scale between the resolution of a typical model

grid cell (1× 1◦) and ground-based data, which may cause

representation errors (Rayner, 2010). A few studies to date

have performed a global optimisation of model phenology

using satellite data, in the sense that multiple sites and/or

plant functional types (PFTs) are included in the assimila-

tion (Forkel et al., 2014; Knorr et al., 2010; Stöckli et al.,

2011). In this study we aim to reinforce this line of research

and to answer the following questions:

i. Can we constrain the phenology-related parameters and

processes of a typical process-based TBM at global

scale using satellite “greenness” index data?

ii. Does this produce a generic parameter set that results in

improved simulations of the seasonal cycle of the vege-

tation, or are further model structural developments re-

quired?

iii. What is the impact of the optimisation on mean patterns

and trends in vegetation productivity (as represented by

the mean fraction of absorbed photosynthetically ac-

tive radiation (fAPAR), amplitude and growing season

length (GSL)) at regional and global scales?

To achieve this we performed a global, multi-PFT, multi-

site optimisation of the phenology model parameters for

the six non-agricultural deciduous PFTs of the ORCHIDEE

TBM. The phenology models in ORCHIDEE are common to

many process-based TBMs. Note there is no specific phenol-

ogy model associated to evergreen PFTs, where leaf turnover

is simply a function of climate and leaf age.

Some of the carbon cycle-related parameters of OR-

CHIDEE (including phenology-related parameters) have

previously been optimised using in situ flux measurements

(e.g. Kuppel et al., 2014; Santaren et al., 2014; Bacour et al.,

2015). Here we focus purely on improving the timing of both

spring onset and autumn senescence of ORCHIDEE at global

scale, by using a novel approach to assimilate normalised

medium-resolution satellite-derived vegetation “greenness”

index data (MODIS NDVI collection 5) that are linearly re-

lated to the simulated daily fAPAR. The aim of a multi-site

(MS) (i.e. model grid cell) assimilation is to find a unique

parameter set for each PFT that results in a similar improve-

ment as a single-site (SS) optimisation, as the range of pos-

terior parameter values for individual sites/species can be

large (Richardson and O’Keefe, 2009). We hypothesise that

the MS approach may average out the site-based variability,

and thus provide one consistent PFT-generic parameter vec-

tor that can be used for global simulations (e.g. Kuppel et al.,

2014).

2 Methods and data

2.1 ORCHIDEE terrestrial biosphere model

ORCHIDEE is a global process-oriented TBM (Krinner et

al., 2005) and is the land surface component of the IPSL-

CM5 Earth System Model (Dufresne et al., 2013). In this
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study we used the “AR5” version that was used for the IPCC

Fifth Assessment Report (Ciais et al., 2013). The model cal-

culates carbon, water and energy fluxes between the land sur-

face and the atmosphere at a half-hourly time step. The water

and energy module computes the major biophysical variables

(albedo, roughness height, soil humidity) and solves the en-

ergy and hydrological budgets. The carbon module controls

the uptake of carbon into the system and respiration follow-

ing cycling of C through the litter and soil pools. Carbon

is assimilated via photosynthesis depending on light avail-

ability, CO2 concentration and soil moisture, based on the

work of Farquhar et al. (1980) for C3 plants and Collatz et

al. (1992) for C4 plants. The module includes the calcula-

tion on a daily time step of a prognostic LAI and alloca-

tion of newly formed photosynthates towards leaves, roots,

sapwood, reproductive structures and carbohydrate reserves,

depending on the availability of moisture, light availability

and heat (Friedlingstein et al., 1999). The phenology mod-

els that control the timing of leaf onset and senescence in

ORCHIDEE, depending on PFT, were described in Botta et

al. (2000) and Maignan et al. (2011) but are described in

more detail in Appendix A. The simulated fAPAR can be

calculated from the model LAI using the following Beer-

Lambert extinction law, assuming a spherical leaf angle dis-

tribution and that the sun is at nadir (following Bacour et al.,

2015):

fAPAR= 1− e−0.5LAI. (1)

ORCHIDEE’s functioning relies on the concept of plant

functional types (see Wullschleger et al. (2014) for a review).

A PFT groups plants that have the same physiological be-

haviour under similar climatic conditions. ORCHIDEE uses

13 PFTs that are listed in Table 1 (along with the phenol-

ogy model used). Different PFTs share the same processes

but usually with different parameter values, except for the

phenological models that are PFT-dependent (Table 1). The

model is driven by meteorological variables related to tem-

perature, precipitation, short- and long-wave incident radia-

tion, specific humidity, surface pressure and wind speed. Soil

texture and PFT fraction are also prescribed per grid cell.

2.2 Satellite data

2.2.1 Observing the seasonal cycle of vegetation

The seasonal cycle of the terrestrial vegetation is observed

daily, cloud cover permitting, at a global scale and medium-

scale spatial resolution (250 m) from several polar orbiting

spectroradiometers. Studies have shown that considerable

discrepancies exist between so-called “high-level” satellite

products such as LAI or fAPAR, especially when consider-

ing their magnitude (D’Odorico et al., 2014; Garrigues et

al., 2008; Pickett-Heaps et al., 2014). This is because ra-

diative transfer models are used to derive these products,

which introduces uncertainty due to undetermined parame-

Table 1. Standard PFTs used in ORCHIDEE, their short name and

corresponding phenology model (see Appendix A for a full descrip-

tion of the phenology models). Evergreen and agriculture PFTs do

not have a specific phenology model in the ORCHIDEE TBM.

PFT Description Short name Phenology model

1 Bare soil BS –

2 Tropical broadleaved evergreen TrBE –

3 Tropical broadleaved raingreen TrBR MOI

4 Temperate needleleaf evergreen TeNE –

5 Temperate broadleaved evergreen TeBE –

6 Temperate broadleaved deciduous TeBD NCD_GDD

7 Boreal needleleaf evergreen BoNE –

8 Boreal broadleaved deciduous BoBD NCD_GDD

9 Boreal needleleaf deciduous BoND NGD

10 Natural C3 grass NC3 MOI_GDD

11 Natural C4 grass NC4 MOI_GDD

12 C3 crops (agriculture) AC3 –

13 C4 crops (agriculture) AC4 –

ters or potentially incomplete descriptions of the radiative

transfer model physics. Instead therefore, we considered a

vegetation greenness index, the Normalized Difference Veg-

etation Index (NDVI), that is directly related to the near in-

frared (NIR) and red (RED) surface reflectance, ρ (NDVI=

ρ NIR− ρRED / ρ NIR+ρRED). This index is based on the

fact that photosynthesising vegetation reflects a high propor-

tion of the incoming NIR radiation, whilst absorbing most

of the red. NDVI has been shown to be linearly related to

fAPAR, though with uncertainties related to the issues men-

tioned above (Fensholt et al., 2004; Knyazikhin et al., 1998;

Myneni and Williams, 1994). Therefore although NDVI is

not directly related to a physical property of the vegetation,

it does capture its seasonal cycle together with inter-annual

anomalies, and therefore can be used to optimise the model

phenology (via the simulated fAPAR). In order to optimise

the seasonality (but not the magnitude) of modelled daily fA-

PAR using the NDVI data, we normalise both to their max-

imum and minimum values of the whole time series at each

site (following Bacour et al., 2015).

2.2.2 MODIS NDVI data and processing

NDVI observations are derived from the MOD09CMG col-

lection 5 (v5) surface red (620–670 nm) and near-infrared

(841–876 nm) daily global reflectance products available at

5 km from the MODerate resolution Imaging Spectrome-

ter (MODIS) on-board the NASA’s Terra satellite. The re-

flectance data were cloud-screened and corrected for atmo-

spheric and directional effects (related to the change of re-

flectance with observation geometry) following (Vermote et

al., 2009), and the corresponding NDVI was calculated for

the 2000–2008 period. The time series were interpolated on

a daily basis, in order to account for any missing values due

to cloud, using a third degree polynomial and considering

the 10 nearest valid acquisitions, with a maximum allowed

difference of 15 days. The NDVI values were then spatially

www.biogeosciences.net/12/7185/2015/ Biogeosciences, 12, 7185–7208, 2015
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averaged at the model forcing spatial resolution (0.72◦) for

each time step. The data have a noise range of ∼ 0.025 to

0.03, with highest values in densely forested areas (Vermote

et al., 2009). However, in this study the daily model and ob-

servation uncertainty used in the assimilation was defined as

the RMSE between the normalised prior model fAPAR simu-

lation (using default ORCHIDEE values) and the normalised

NDVI observations, following (Kuppel et al., 2012). This er-

ror thus accounts for the spatial and temporal averaging, the

error of the NDVI retrieval and the model structural error.

2.3 Data assimilation procedure

2.3.1 System description

The ORCHIDEE Data Assimilation System (http://orchidas.

lsce.ipsl.fr) is based on a variational data assimilation pro-

cedure that has been described in detail in previous studies

using ground-based net surface CO2 and energy fluxes (Kup-

pel et al., 2012; Santaren et al., 2007; Verbeeck et al., 2011).

Kuppel et al. (2012) presented the first results using a multi-

site (MS) version of the system at selected eddy-covariance

flux tower locations, where data from all sites were used to

optimise the model parameters at the same time for each PFT.

As with most statistical data assimilation approaches it fol-

lows a Bayesian framework, where prior knowledge of the

parameter values is updated based on new information from

the observations. Assuming that the probability distribution

functions (PDFs) of the model parameter and observation un-

certainties are Gaussian, the optimal parameter vector x can

be found by minimising the following cost–function J (x)

(Tarantola, 1987):

J (x)=
1

2
[(H(x)− y)R−1(H(x)− y)T

+ (x− xb)P
−1
b (x− xb)

T
], (2)

where y is the observation vector, H(x) the model outputs,

given parameter vector x, R the uncertainty matrix of the ob-

servations (including observation and model errors), xb the a

priori parameter values (the standard values of ORCHIDEE)

and Pb the a priori uncertainty matrix of the parameters.

Hence, the cost function describes the misfit between the ob-

servations and corresponding model outputs, plus the misfit

between the current and prior parameter vectors, weighted

by prior information on the parameter and observation un-

certainties. Observation and model errors are assumed to be

uncorrelated in space and time, and parameters are assumed

to be independent; hence R and Pb are diagonal matrices.

The cost function is iteratively minimised using the gradient-

based L-BFGS-B algorithm (Byrd et al., 1995), which allows

the definition of boundary constraints for the parameters. The

prior parameter vector is most commonly used as the starting

point in the iterative minimisation, but it can be started from

any point (set of parameter values) in the parameter space.

The gradient of the J (x) is estimated using the tangent lin-

ear model, except for parameters that impose a threshold on

the model processes. For these, the finite difference method

is used.

The posterior parameter covariance can be approximated

from the inverse of the second derivative (Hessian) of the

cost function around its minimum, which is calculated using

the Jacobian of the TBM model with respect to fAPAR at the

minimum of J (x) (for the set of optimised parameters), H∞,

following Tarantola (1987):

Ppost = [H
T
∞R−1H∞+P−1

b ]
−1. (3)

The posterior parameter covariance can then be propa-

gated into the model state variables (fAPAR or net C flux)

space given the following matrix product and the hypothesis

of local linearity (Tarantola, 1987):

Rpost =HPpostH
T . (4)

The square root of the diagonal elements of Rpost corre-

sponds to the posterior error (standard deviation σ ), on the

state variables considered of each grid cell. In order to ap-

praise the knowledge improvement brought by the assimila-

tion, the error reduction is determined as 1−Rpost/Rprior).

2.3.2 Parameters to be optimised

Figure 1 shows a general schematic of how the parameters

of the phenological equations used in ORCHIDEE (Botta

et al., 2000) control the timing of the seasonal cycle of the

LAI as well as the rate of leaf growth and fall. The pa-

rameters that are optimised for each PFT are given in Ta-

ble 2 and are briefly described here. A more detailed de-

scription can be found in Appendix A. The start of the sea-

sonal cycle of temperature-driven PFTs is constrained by

optimising the growing degree day threshold, GDDthreshold

(Eqs. A1 and A2), the threshold for the number of growing

days, NGDthreshold and the LAIthreshold (Eq. A4) parameters,

which all play a part in controlling leaf onset and rate of

canopy growth. As the GDDthreshold is calculated in differ-

ent ways depending on the PFT-dependent phenology model

used, and as the NGDthreshold acts in a similar way to the

GDD models, we introduced one single multiplicative effec-

tive parameter, Kpheno_crit, to optimise the GDDthreshold and

NGDthreshold for all phenology models. Thus the GDDthreshold

and the NGDthreshold become the following:

GDDthreshold =Kpheno_critGDDthreshold (5)

NGDthreshold =Kpheno_critNGDthreshold, (6)

with an a priori value of 1. In a similar manner a new ef-

fective parameter, Klai_happy was introduced to compute the

LAIthreshold parameter, which is the LAI below which the car-

bohydrate reserves are used for leaf growth at the beginning

of the growing season, following the equation

LAIthreshold =Klai_happyLAImax. (7)

Biogeosciences, 12, 7185–7208, 2015 www.biogeosciences.net/12/7185/2015/
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Table 2. ORCHIDEE parameters optimised. For each PFT the prior values, minimum and maximum values (in squared brackets) and multi-

site posterior mean values (in bold) are given. Note the prior uncertainty on the parameters is defined as 40 % of the full parameter range.

Parameter TrBR TeBD BoBD BoND NC3 NC4

Lagecrit (days) 180 [120,240] 180 [90,240] 180 [90,240] 180 [90,240] 120 [60,180] 120 [60,180]

120 160.6 240 90 60 165.9

Kpheno_crit (−) – 1.0 [0.7, 1.8] 1.0 [0.7, 1.8] 1.0 [0.7, 1.8] 1.0 [0.7, 1.8] 1.0 [0.7, 1.8]

1.13 0.87 1.1 0.77 0.9

Klai_happy (−) 0.5 [0.35, 0.7] 0.5 [0.35, 0.7] 0.5 [0.35, 0.7] 0.5 [0.35, 0.7] 0.5 [0.35, 0.7] 0.5 [0.35, 0.7]

0.7 0.4 0.36 0.35 0.35 0.47

Tsenes (◦C) – 12.0 [2, 22] 7.0 [−3, 17] 2.0 [−8, 12] −1.375

[−11.38,

9.38]

5.0 [−1,11]

16.6 14.6 12 9.375 0.85

Lfall (−) 10.0 [2, 50] 10.0 [2, 50] 10.0 [2, 50] 10.0 [2, 50] – –

10.0 29.5 4.7 9.0

MoistTmin (days) 50 [10, 100] – – – 35.0 [5, 70] 35.0 [5, 70]

10 36.4 55.95

Moistsenes, no_senes(−) 0.3 [0.2, 0.8]

–

–

–

–

–

–

–

–

0.3 [0.25, 0.7]

–

0.3 [0.25, 0.7]

0.8 0.65 0.39

Critical leaf age!
Lagecrit!

Rate of leaf fall!
Lfall!

For 
grasses!

Temperature or 
moisture threshold for 
senescence!
Tsenes  and 
Moistno_senes!

Fraction of 
carbohydrate 
reserve used 
for leaf 
growth!
Klai_happy!

Scalar of temperature threshold and/
or time since moisture minimum!
Kpheno_crit and MoistTmin!

Figure 1. Schematic to show how the optimised parameters control

the timing of the leaf phenology in ORCHIDEE. The dotted arrow

shows that the temperature and moisture threshold for senescence

also affects the rate of leaf fall for grasses by slowing down the

turnover rate once this threshold has been reached (whereas for trees

only the Lfall parameter is used).

Although it is not strictly a phenology model parameter, we

optimise Klai_happy as it is partly responsible for the rate of

leaf growth. LAImax is a fixed parameter in this study as we

only examine the seasonal cycle of the vegetation, not its

magnitude.

The end of the seasonal cycle is constrained by optimis-

ing the critical leaf age for senescence, Lagecrit (Eq. A5), the

senescence temperature threshold, Tthreshold (Eq. A6) and the

rate of leaf fall, Lfall (Eq. A8) parameters. Lagecrit and Lfall

are optimised directly, and Tthreshold is optimised through the

C0 parameter (Eq. A6), and is henceforth called Tsenes.

For phenology models that are driven by soil moisture con-

ditions (“MOI” models – see Appendix A and Table 1) the

parameter that controls leaf onset is the “minimum time since

the last moisture minimum” (MoistTmin), and the parameters

that control senescence are Moistsenes and Moistno_senes, the

critical moisture levels below and above which senescence

does and does not occur, respectively. These PFT-dependent

parameters are optimised directly; i.e. no effective parame-

ters are introduced to scale the original ORCHIDEE param-

eter.

The prior parameter values are taken from the ORCHIDEE

standard (non-optimised) version and are detailed in Table 2.

The maximum and minimum bounds of the parameters were

set based on literature and “expert” knowledge. Prior uncer-

tainty on the parameters was taken to be 40 % of the param-

eter range following Kuppel et al. (2012).

2.3.3 PFTs optimised and site selection

The six deciduous, non-agricultural PFTs of ORCHIDEE are

optimised in this study. For each of the PFTs that were op-

timised we selected 30 sites (where one site is equal to one

model grid cell at 0.72◦ resolution – see Sect. 2.4) that ful-

filled several constraints (Fig. 2). First the grid cells have to

be representative of the considered PFT and thus contain a

high fraction of the PFT in question. This was mostly > 0.6

except for the boreal broadleaved deciduous (BoBD) PFT

where the fractional cover is never greater than 0.4. For this

PFT, all the grid points selected contained 40 % BoBD trees

and high fractions (0.5–0.6) of natural C3 grasses (NC3);

thus both PFTs were optimised for these grid cells simultane-

ously. Second, the site locations should be as representative

as possible of the PFT spatial distribution. This is achieved

by a random sampling of grid cells with a fractional coverage

above the given threshold. Lastly each NDVI time series was

visually inspected and discarded if it was too noisy or con-

www.biogeosciences.net/12/7185/2015/ Biogeosciences, 12, 7185–7208, 2015
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tained an incomplete seasonal cycle. Whilst we could not be

100 % certain that no land cover change or disturbance had

taken place for the grid cells selected, none of the time series

showed discernible signs of a shift in vegetation. A total of

15 of the sites were used in the optimisation, and the other

15 were kept for spatial validation following the optimisa-

tions (see Fig. 2). To separate the 30 sites into 2 sets of 15 for

optimisation and validation, we ordered all sites by their grid

cell row number and took alternate points for each list.

2.4 Optimisations and simulations performed

In this study ORCHIDEE is used in forced offline mode

and is driven by 3-hourly ERA-Interim meteorological fields

(Dee et al., 2011), on a regular 0.72◦ grid, which are linearly

interpolated to a half hour time step within ORCHIDEE.

We use the Olson land cover classification, which contains

96 classes at a resolution of 5 km, to derive the PFT frac-

tions at 0.72◦ following (Vérant et al., 2004). The soil texture

classes are derived from Zobler (1986). The impact of land

use change, forest management, harvesting and fires were not

included in any simulation.

2.4.1 Multi-site optimisation

For each PFT optimised, the 15 optimisation sites (see

Sect. 2.3.3) were first optimised simultaneously (i.e. all sites

were included in the same cost function), over the 2000–2008

period using the multi-site (MS) approach detailed in Kuppel

et al. (2012). Following (Santaren et al., 2014) we tested the

ability of the algorithm to find the global minimum of the

cost function by starting the iterative minimisation algorithm

(see Sect. 2.3.1) at different points in the parameter space,

choosing 20 random “first guess” sets of parameters and per-

forming a MS optimisation for each. The results of these tests

are presented in Sect. 3.1.

2.4.2 Single-site optimisation

A single site (SS) optimisation was then performed for each

of the same 15 optimisation sites. The assimilations were ex-

actly the same as for the MS optimisation, except each site

was optimised separately. The posterior parameter vector re-

sulting from the “best” random first guess MS optimisation

(taken as the greatest % reduction in the cost function) was

used as the first guess for the SS optimisation. The first guess

with the greatest % reduction in the cost function was equiv-

alent to the first guess that resulted in the lowest value of

the cost function, as the % reduction was calculated using

the value of the cost function using the default (prior) OR-

CHIDEE parameters.

2.4.3 Site-based validation

The same MS posterior parameter vector for each PFT was

then used to perform a simulation at each of the 15 extra

spatial validation sites (see Sect. 2.3.3) over the same time

period. In addition, prior and posterior simulations at all 30

optimisation and validation sites were extended to cover the

2009–2010 period in order to perform a temporal validation.

2.4.4 Global-scale evaluation

Finally two global-scale simulations (with increasing atmo-

spheric CO2 concentration and changing climate) were per-

formed for the 1990–2010 period with both the prior and MS

posterior parameter values, in order to evaluate the impact of

the optimisation on the global mean patterns and trends in

annual mean fAPAR, amplitude and GSL. The same ERA-

Interim 0.72◦ forcing data were used as for the site-based

optimisations. Note that no spinup of the soil C pools was

needed for this study.

2.5 Post-processing and analysis

The prior and posterior RMSE and correlation coefficient, R,

were calculated for both the MS and SS optimisations at all

sites for a comparison. The values for the spatial and tempo-

ral validation simulations were evaluated to assess the spatial

and temporal generality of the posterior vectors. For all the

analyses performed in this study, metrics given per PFT at

global scale were derived for grid cells that contained >= a

certain PFT fraction following the rules used to select the

optimisation sites (see Sect. 2.3.3).

2.5.1 Calculation of the start of leaf onset and

senescence, GSL and trend analysis

The curve-fitting method of Thoning et al. (1989) was used

to fit a function to the daily time series of observations and

model output as described in Maignan et al. (2008). The

function consists of two parts; a second-order polynomial

that is used to account for the long-term trend, and a fourth

order Fourier function to approximate the annual cycle. The

residuals of the fit to this function were filtered with two

low pass filters in Fourier space (80 and 667 cut-off days)

and then added back to the function to produce a smoothed

function that captures the seasonal and inter-annual variabil-

ity and long-term trend. The detrended curve can be calcu-

lated by subtracting the trend from the smoothed function.

The start of season (SOS – leaf onset) and end of season

(EOS – the start of leaf senescence) were defined as the up-

ward and downward crossing points of the “zero-line” of the

de-trended curve per calendar year (see Fig. 1 in Maignan

et al., 2008). These values were calculated for all grid cells

with only one seasonal cycle per year (this includes grid cells

in the SH where the growing season spans 2 calendar years).

The GSL was calculated as the number of days per calendar

year when the detrended curve is greater than zero. There-

fore unlike the SOS and EOS, the GSL was also calculated

for grid cells that contain multiple growing seasons within a

calendar year.
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Figure 2. Global distributions of fractional cover for the six PFTs optimised in this study. Red upright triangles mark the location of the

optimisation sites, and yellow upside-down triangles mark the location of the validation sites.

For the trend analysis, a linear least squares regression was

used to calculate the long-term trend in the annual fAPAR

amplitude, growing season length (GSL) and the mean fA-

PAR time series.

2.5.2 Global evaluation with MODIS NDVI

The global simulations were evaluated with the same

MODIS NDVI data that were used at the site level for the op-

timisation, following the protocol of Maignan et al. (2011).

The following metrics were used for evaluation of both the

prior and posterior simulations.

The correlation between the normalised simulated fAPAR

and MODIS NDVI weekly time series.

The bias (in days) between the modelled and observed

SOS and EOS dates (model – observations) were also ex-

amined so as to investigate the impact on the timing of the

phenology more directly (a positive bias indicates the model

date is later than the date calculated from the observations).

The above metrics were calculated for each grid cell. Fol-

lowing this a global median value was calculated, as well as

a median correlation per PFT.

3 Results

3.1 Convergence of the optimisation algorithm

We initially tested the ability of the MS optimisation to find

the global minimum of the cost function (J (x)) by starting

at 20 different random “first guess” points in the parameter

space. For the forest PFTs and natural C3 grasses, the final

cost function value was mostly within ∼ 30 % of the mini-

mum (lowest) cost function value (up to 50 % for TeBD –

Table 3, 2nd column), and in the majority of cases a 30–

60 % reduction in the cost function was achieved (Table 3,

3rd column). The skill of the optimisation algorithm is highly

dependent on the PFT in question; the lowest final value of

the cost function and the highest % reduction (normalised to
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Table 3. Metrics to describe the ability of the optimisation algo-

rithm to find the global minimum of the cost function for the MS op-

timisation using 20 different random “first guess” parameters. The

2nd column shows the final value (after 25 iterations of the BFGS

optimiser) for the random test that resulted in the lowest value of

J (x)(the cost function), which corresponds to the highest % reduc-

tion in J (x). The 3rd column gives an indication of the distribution

of the final values for all 20 tests with respect to the lowest value ob-

tained (given in column 1). This is represented as the difference be-

tween the final value of J (x) for each test and the minimum value of

J (x), divided by the same minimum value. The 4th column shows

the % reduction of J (x) normalised to the value of J (x) for the de-

fault parameters of ORCHIDEE. The two values for the 3rd and 4th

columns represent the interquartile range (25th to 75th percentiles)

for the spread across the 20 random tests.

PFT Minimum Fractional difference % Reduction

J (x) from Jmin (J/Jb)

TrBR 9720 0.24–0.25 44.1–44.6

TeBD 4730 0.2–0.5 28–44

BoBD 4260 0.07–0.32 54–63

BoND 2000 0.02–0.31 77–82

NC3 6590 0.08–0.34 29–44

NC4 19 160 0.03–0.1 4–11

the value of J (x) for the default parameters of ORCHIDEE)

across all 20 random tests was seen for the BoND PFT. There

was a higher spread in the % reduction for natural C3 grasses

and the TeBD PFTs, suggesting the cost function is not as

smooth (i.e. contains more local minima) as for the BoND

PFT (for example). This is possibly linked to the need for a

greater number of species for certain PFTs or due to differing

parameter sensitivities under different climate regimes (the

NC3 sites have a particularly wide global distribution). Nev-

ertheless, examining these results we feel confident that for

these PFTs the assimilation system converges to a value of

the cost function that is reasonably close to the likely global

minimum. Thus for the SS optimisations, the site-based val-

idation and the global-scale evaluation we used the MS pos-

terior vector that resulted in the minimum value of the cost

function.

However the picture is different for natural C4 grasses

(NC4). Only 2 out of the 20 random first guess tests resulted

in a > 10 % reduction in the cost function, and although the

spread of final values of the cost function was low and close

to the minimum value (Table 3, column 2), the final value was

between 2 and 10 times higher than that achieved for other

PFTs (Table 3, column 1). This suggests that the optimisa-

tion algorithm cannot find a better fit to the data than with

the default parameter values. It is possible that the BFGS al-

gorithm is not adequate for exploring the parameter space for

NC4 grasses, but given that none of the random tests resulted

in a noticeable reduction in the cost function, it is more likely

that the model sensitivity to the parameters is lower than for

Figure 3. Time series (zoom to 2003–2007) for one example BoND

PFT site (72◦ N, 120.24◦ E) of (a) the normalised modelled total fA-

PAR and MODIS NDVI data; (b) the un-scaled model total fAPAR

and MODIS NDVI data; (c) the corresponding modelled LAI for the

BoND PFT only. The black curve corresponds to the MODIS NDVI

data, the blue curve is the prior model simulation, the orange curve

shows the model simulation using the posterior parameters from the

SS optimisation, and the red curve corresponds to the model sim-

ulation at this site using the MS posterior parameter values. The

prior and posterior RMSE and R are given in the upper left box.

The MODIS NDVI and model fAPAR time series were normalised

to their maximum and minimum value over the 2000–2008 period

for the optimisation (see Sect. 2.2.1).

other PFTs. This in turn suggests that the phenology model

structure itself is inadequate for this NC4 grasses.

3.2 Improvement in the model–data fit at the site level

3.2.1 Temperate and boreal PFTs

There is an improvement in the model–data fit after both

SS and MS optimisations for all temperate and boreal

broadleaved and needleleaved deciduous forests (TeBD,

BoND, BoBD) and for natural C3 grasses (NC3), largely re-

sulting from an earlier onset of senescence in the model and

therefore a substantially shortened growing season length

(Figs. 3 and 4). The shift in the start of leaf growth is much

smaller, which is not surprising as the prior model more

closely matches the observations. Of the four PFTs listed

above, only TeBD trees have a slightly later leaf onset as a

result of the optimisation. Figure 3 shows the full time se-

ries at one site of both the normalised and un-normalised

fAPAR and NDVI, together with the simulated LAI, for the

BoBD PFT. This site is provided as an example of the typ-

ical changes in temporal behaviour seen for the four PFTs

listed above. Figure 4 shows the mean seasonal cycle of the

normalised fAPAR/NDVI across all sites and years (2000–

2008) for each of the four PFTs and demonstrates that the

patterns seen in Fig. 3 are similar for all the boreal and tem-

perate deciduous PFTs.
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Figure 4. The mean seasonal cycle of the normalised modelled fA-

PAR before and after optimisation, compared to that of the MODIS

NDVI data, for the temperate and boreal deciduous PFTs (TeBD,

BoBD, BoND and NC3). Black=MODIS NDVI data; blue= prior

model; orange= single-site optimisation; red=multi-site optimisa-

tion.

The optimisations resulted in a significant reduction in

the RMSE (34–61 %) and increase in correlation (poste-

rior R > 0.82) between the normalised modelled fAPAR and

MODIS NDVI data for all four temperate and boreal PFTs

(Table 4). The variation in the RMSE and R at each site for

prior, multi-site optimisation and the spread for all the single-

site optimisations for all four PFTs are shown in Fig. S1 in

the Supplement. The improvement is greatest for the Boreal

PFTs (median reduction in RMSE across all sites for both

SS and MS optimisations of ∼ 50–60 % and an increase in

R from 0.41 to 0.9), but nonetheless the optimisations of

the temperate broadleaved deciduous (TeBD) and natural C3

grasses (NC3) PFTs result in a median reduction of uncer-

tainty of between ∼ 20–40% and an increase in R of up to

∼ 0.2.

There is a discernible slowing down in the rate of leaf

growth towards the end of the leaf onset after the assimila-

tion, which particularly results in an improved fit to the ob-

servations for the TeBD, BoND and NC3 PFTs. However it is

noticeable that although parameters that partially control the

rate of leaf growth and fall are included in the optimisation,

the model generally grows and sheds leaves too fast com-

pared to the observations, except for the BoBD PFT, which

results in the model having an unnatural “box-like” temporal

profile (Fig. 4 and see Sect. 4.3 for further discussion).

The MS optimisation (red line in Figs. 3 and 4) largely

results in a similar reduction in RMSE and increase in R

as the SS optimisations at each individual site except for

TeBD trees, although a similar magnitude of improvement

is achieved for this PFT as for the others (Table 4 and

Fig. S1). This suggests that the MS parameter vector is uni-

versal enough to be used to perform global simulations.
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Figure 5. Example time series (2002–2008 period) for the trop-

ical deciduous PFTs for which phenology is driven by moisture

availability. The two panels compare the normalised simulated

fAPAR to the normalised MODIS NDVI (black curve) prior to

(blue curve) and after the optimisations (orange curve=SS opti-

misations; red curve=MS optimisation) for a (a) TrBR tree site

(5.77◦ S, 25.92◦ E) and a (b) NC4 grass site (10.08◦ N, 4.32◦W).

The prior and posterior RMSE and R are given in the upper left

boxes. The grey vertical lines show the daily precipitation.

3.2.2 Tropical deciduous forest and C4 grasses

For both the tropical broadleaved raingreen (TrBR) and nat-

ural C4 grass (NC4) PFTs, the median prior fAPAR simula-

tion performs reasonably well compared to the observations,

with RMSEs of 0.29 and 0.23 andR of 0.73 and 0.81, respec-

tively (Table 4 and Fig. S1). Following optimisation there is

an improvement in the median model–data misfit both for

the SS and MS optimisation for TrBR trees across all sites,

but the spread in posterior RMSE and R values remains high

(Fig. S1). Figure 5a shows an example of the typical issues

seen for some TrBR sites that have not been resolved by op-

timising the phenological parameters. The growing season

is always slightly out of phase, even after the optimisation,

with the simulated SOS and EOS lagging that of the obser-

vations. The observed start of leaf growth coincides with the

start of increased precipitation, as would be expected, but the

simulated onset does not, despite the fact that the onset phe-

nology model is solely driven by soil water availability. Pos-

sible causes of inconsistencies in the model will be discussed

in Sect. 4.4. At the end of the growing season the optimisa-

tion results in a more gradual start of leaf turnover at many

sites, thus better matching the observation temporal profile,

but still the end of the leaf fall lags that of the observations

(Fig. 5a). Finally at some of the sites the observations show a

smaller, second period of growth in some years (not shown),

but the model also does not capture this.

There is no change in the median RMSE and R for the

NC4 PFT with the MS optimisation, although the prior

model–data misfit is relatively small (Fig. S1). The SS opti-

misations do result in a small reduction in the median RMSE

(0.21) but no improvement in the median correlation. This is

not surprising given the results of the random first guess tests

presented in Sect. 3.1. A comparison of the observed and

modelled time series of NDVI and fAPAR at each site again

reveals where the model is not able to fully reproduce the

seasonality seen in the observations. At many sites the model

predicts a positively biased (i.e. too late) SOS, followed by

a drop in fAPAR in the first half to middle of the year that

is not seen in the observations, and does not correspond to a

decline in precipitation (e.g. Fig. 5b). The optimisation can

result in the partial removal of this feature, particularly for SS

optimisations at certain sites, but at the expense of a further

delay to the start of leaf growth. Neither the SS or MS opti-

misations are able to reduce the model–data misfit by forcing

an earlier start of senescence at any of the sites. As there is

no discernible improvement after the MS optimisation of the

NC4 PFT, the posterior parameters are not used in the further

analysis of global changes to the gross primary productivity

(GPP), GSL or trends. It is likely that the phenology models

that are used in water limited ecosystems (TrBR and NC4)

need revising (see discussion in Sect. 4.4).

3.3 Validation of the optimised phenology

3.3.1 Spatial and temporal validation

Table 4 also shows the RMSE and R for the extra 15 sites

that were not included in the optimisation (spatial valida-

tion), and for all sites for the period 2009–2010 that were

not included in the optimisation (temporal validation). These

validation exercises were performed with just the MS poste-

rior parameter vector for each PFT. Similar magnitudes and

patterns of improvement are observed between the PFTs as

for the sites used for optimisation – the largest improvement

is seen for the BoND PFT, and there is no improvement for

NC4 grasses. These results again give confidence in the gen-

erality of the MS posterior vector and its use in regional and

global scale simulations, except for the NC4 PFTs for which

there was an insufficient improvement post-optimisation.

3.3.2 Validation at global scale with MODIS NDVI

The global median correlation between the model and the

MODIS NDVI data have increased from 0.56 to 0.67 after

the optimisation, demonstrating an overall improvement in

the simulated fAPAR time series. As seen at the site level,

the largest increase in correlation between the modelled and

observed time series is for the boreal PFTs. There is also a

modest improvement for natural C3 grasses (Table 5). Fig-

ure 6 shows the spatial distribution of the correlation for the

both posterior simulation and the difference after optimisa-
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Table 5. Median prior and posterior correlation between mod-

elled fAPAR and satellite NDVI daily time series and inter-annual

anomalies of the annual mean. The metrics are computed for each

PFT for grid cells that contained >= fraction that was used to select

the sites for the PFT in question (see Sect. 2.3.3).

PFT Time series correlation IAV correlation

Prior Posterior Prior Posterior

TrBE 0.18 0.19 0.21 0.13

TrBR 0.71 0.85 0.31 0.29

TeNE 0.29 0.44 0.30 0.42

TeBE 0.32 0.19 0.54 0.44

TeBD 0.88 0.89 0.30 0.44

BoNE 0.35 0.45 0.25 0.22

BoBD 0.52 0.86 0.48 0.40

BoND 0.33 0.81 0.02 0.13

NC3 0.56 0.76 0.29 0.32

NC4 0.70 0.74 0.30 0.30

AC3 0.36 0.35 0.49 0.50

AC4 0.48 0.48 0.33 0.35

tion (posterior – prior). The difference map shows that R has

mainly improved for boreal regions in the north of Canada

and in Siberia, the C3 grasslands in central Asia and west-

ern North America, and the high altitude regions of the An-

des (due to improvements in BoBD, BoND and NC3 PFTs)

with slight changes for tropical raingreen trees in savannah-

dominated regions in Africa. A decrease in R was seen in

part of the drylands of western North America and along the

western boundary of South America.

The global median end of season (EOS) bias (model –

observations) between the model and MODIS data was re-

duced dramatically as a result of the optimisation (prior: 33

days; posterior 5 days). Note that a positive bias indicates the

model date is later than the date derived from the MODIS

data. Again, boreal PFTs and NC3 grasses showed consider-

able improvement, as expected from the site-level behaviour

(Sect. 3.2), but grid cells containing high fractions of temper-

ate and boreal evergreen trees were also positively affected

(Table 6). The bias in the start of season (SOS) dates also

decreased (prior and posterior global median bias of 22 and

14 days, respectively), with improvements seen for all PFTs

except TeBD trees and crops (Table 6).

3.4 Posterior parameters and processes constrained

The prior value, prior range and posterior value from the MS

optimisation for each parameter (per PFT) are shown in Ta-

ble 2. Figure 7 shows the prior and posterior parameter values

for both the SS and MS optimisation for each parameter and

each PFT. In Fig. 7 the mean and standard error of the mean

of the SS posterior parameters are shown (circle with error

bars), together which the value obtained at each individual

site (crosses). For the prior simulation and MS optimisation

Table 6. Median prior and posterior bias between model- and

observation-derived start of season (SOS) and end of season (EOS)

dates (model – observations). The metrics are computed for each

PFT for grid cells that contained >= fraction that was used to select

the sites for the PFT in question (see Sect. 2.3.3). A negative bias

indicates the modelled date is earlier than the one calculated from

the observations.

PFT SOS bias EOS bias

Prior Posterior Prior Posterior

TrBE 20 −3 −146 −3

TrBR 30 13 9 12

TeNE 38 20 41 −33

TeBE 70 49 42 −4

TeBD 4 6 14 13

BoNE 38 29 52 13

BoBD 18 10 43 8

BoND 5 1 36 2

NC3 25 15 42 −1

NC4 32 15 −7 −2

AC3 −17 −17 19 18

AC4 8 8 18 18

the error bar corresponds to the standard deviation of the pa-

rameter value (calculated using Eq. 3). The MS uncertainty

is lower than spread of SS posterior values, suggesting that it

underestimates the true uncertainty of the posterior parame-

ters. This may be the case given the assumptions of linearity

of the model and of Gaussian and uncorrelated errors.

The lower posterior values of Kpheno_crit reduced the pos-

itive bias in the SOS dates, for temperate and boreal decid-

uous trees and natural C3 grasses, thus providing a better fit

to the model. For all temperate and boreal PFTs the poste-

rior value of theKlai_happy parameter, which is used to calcu-

late the LAI value below which leaf growth is supported by

the carbohydrate reserves, decreases for both the SS and MS

optimisation. In ORCHIDEE the rate of leaf growth slows

down after this LAI threshold is reached as the C now comes

from photosynthesis, which may be limited by various fac-

tors. Lower values of Klai_happy therefore result in an earlier

end to the period of rapid canopy growth at the beginning of

the season and thus a smoother temporal profile follows dur-

ing the final stages of growth. This partially compensates for

the “box-like” model behaviour, but structural deficiencies

related to spatial variability need to be addressed further (see

Sect. 4.3). The lower value of Klai_happy (together with the

earlier start to senescence) is also responsible for the reduc-

tion in the peak LAI at some sites for some PFTs, particularly

BoND trees (see Fig. 3 for example). It may be hypothesised

that the optimisation resulted in a reduction in the C allocated

to the carbohydrate reserve, which therefore may also have

contributed to the decrease in the peak LAI. However an ex-

amination of the simulated carbohydrate reserve showed this

not to be the case (results not shown). In any case this ob-
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Figure 6. Global maps showing the correlation between the simulated fAPAR and MODIS NDVI data in the weekly time series for the

posterior simulation (left column) and the difference after optimisation (posterior – prior) (right column). Note POST refers to the posterior

simulation after optimisation, and PRIOR to the simulation using the standard parameters of ORCHIDEE.

served reduction in peak LAI was not a common result of the

optimisation when considering all PFTs.

The earlier start of senescence is overwhelmingly caused

by an increase of Tsenes for all temperate and boreal trees and

natural C3 grasses in both the SS and MS optimisations, as

well as a lowering of the critical leaf age (Lagecrit), though

this is not the case for BoBD trees (Fig. 7). It is important

to remember however that the optimisations at BoBD sites

also included high fractions of natural C3 grass that were op-

timised at the same time (see methods Sect. 2.3.3) and there-

fore the same parameter can have strong interactions between

the two PFTs, as can be seen in for the Lagecrit parameter in

the correlation matrices in Fig. S2. The Lfall parameter has

not changed considerably after the optimisation, suggesting

that the rate of leaf fall matches that of the observations when

parameters that govern the start of leaf senescence have been

optimised. However, one exception to this is seen for TeBD

trees, where the rate of leaf fall has decreased following op-

timisation (Fig. 4a), and thus the model better matches the

observations.

The phenology of C3 grasses is also controlled by soil

moisture availability. The moisture-related leaf onset param-

eter, MoistTmin, does not appear to be as important as the

temperature-related leaf onset parameter (Kpheno_crit). How-

ever, the increase in the value of both Tsenes and Moistsenes

post-optimisation show that both moisture and temperature

conditions are responsible for the marked shortening of the

growing season length for natural C3 grasses (Fig. 4), as

would be expected given the wide geographical distribution

of this PFT.

For the tropical raingreen forests (TrBR), there is a de-

crease in the posterior SS and MS values of MoistTmin and

an increase for the Moistsenes parameter, which results in an

earlier start of both leaf growth and senescence, again reduc-

ing the positive bias in the SOS and EOS dates predicted by

the model. However the parameters are “edge-hitting”, which

suggests the optimisation has not necessarily found the opti-

mum solution. This may explain why the model remains out

of phase with the observations as described above (Fig. 5a).

Although the phenology of C4 grasses is governed by both

temperature and moisture conditions, the fact that there is

no change in the value and uncertainty of the temperature-

related parameters,Kpheno_crit and Tsenes shows a lack of sen-

sitivity to both (Fig. 7), which is not surprising as the location

of the C4 grasses pixels used in this study are mainly located

in moisture-limited tropical regions. The SS and MS poste-

rior values of the moisture-related parameters, MoistTmin and

Moistsenes, have changed (increased), but the spread of the

SS optimised parameter values is large, which accounts for

the lack of improvement in the median RMSE and correla-

tion between the time series of the model and observations

(Table 4).

3.5 Change in global patterns and trends of mean

annual fAPAR, amplitude and GSL

Figure 8 shows the change (posterior – prior) in the mean

annual GSL, fAPAR amplitude and mean simulated fAPAR

globally over the 1990–2010 period. As expected from the

site-level results for temperate and boreal PFTs (Fig. 4 and

Table 4), there was a strong decrease in the mean GSL in

the high latitudes and grasslands across much of the NH

(median of −30 and −10 days for boreal (60–90◦ N) and

temperate (30–60◦ N) regions, respectively), as well as in

equatorial Africa (median of −28 days) (Fig. 8a). An in-

crease in the GSL of ∼ 7 days was mostly observed in the

Sahel and Miombo savannah regions of Africa. A decrease

in fAPAR amplitude was also seen in Siberia and in water-

limited grasslands in southern Africa, the western United

States and central Asia (Fig. 8b). Although the primary aim

of the assimilation was to constrain the timing of the phe-

nology, changes in the amplitude are the result of the inter-
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Figure 7. The prior (blue), MS posterior (red) and SS posterior (or-

ange) parameter values (circles) and uncertainty (error bars – vari-

ance calculated in Eq. 3) for each parameter and each PFT. For the

SS optimisations the circle and error bars represent the mean and

standard error of the mean of all sites, and the crosses give the

posterior values for each site. Refer to Table 1 for a description

of the PFTs and Fig. 1 and Appendix A for a description of each

parameter. The y axis range represents the maximum upper and

lower bounds for each parameter across all PFTs, and the horizontal

dashed lines represent the parameter range for each individual PFT.

play between parameters controlling the rate of leaf growth

and fall and the timing of senescence that ultimately result in

a lower maximum LAI, as discussed in Sect. 3.4. The com-

bined result was a strong decrease in the annual mean fAPAR

in most regions of the globe that are not dominated by ever-

green trees, crops or bare soil, except for the Sahelian region

in Africa (Fig. 8c).

Figure 9 shows the linear trend (yr−1) in the annual mean

fAPAR for the 1990–2010 period, both for the prior and pos-

terior simulation and their difference. The trends of the an-

nual mean are shown as it is a more comprehensive met-

ric compared to the daily/monthly time series of fAPAR,

the GSL or fAPAR annual amplitude. The large-scale spatial

(b)!

(a)!

(c)!

Figure 8. The difference (posterior – prior) of the simulated annual

mean (over the 1990–2010 period) (a) GSL (days); (b) amplitude

of the normalised fAPAR (range 0–1) and (c) mean normalised fA-

PAR.

patterns of positive and negative trends over the 1990–2010

period were not altered significantly after the assimilation,

however the strength of the trend is generally reduced. This

can be seen in Fig. 9 as positive “greening” trends mostly

correspond to regions where there was a decrease in the slope

of the trend after optimisation (orange areas in Fig. 9c), and

vice versa for negative “browning” trends (purple areas in

Fig. 9c). This was not always the case however, for example

the “greening” trend in central Siberia (around 60◦ N) and

the “browning” trend in parts of the Sahelian both increase
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in strength following the assimilation. Note that an examina-

tion of the trends in other metrics (SOS, EOS, GSL or annual

amplitude) did reveal different changes in the spatial patterns

following the assimilation. For example the increase in GSL

actually increased slightly in north-western Siberia, and the

decline in GSL in Mongolia (also seen as a browning trend

in the annual mean in Fig. 9) increased by ∼ 2–3 days after

the optimisation (results not shown). Further details are not

discussed here.

We chose not to compare the simulated trends with that of

the MODIS NDVI. This was partly because the 2000–2010

period is likely too short to calculate a robust trend, as the

influence of inter-annual variability will be stronger; indeed

the trends over the longer 1990–2010 period are more geo-

graphically distinct. Secondly it was not the aim of this study

to validate the modelled trends, nor would it be appropriate,

because we have used a version of the model that does not in-

clude land use change, disturbance and other effects that will

contribute to changes in vegetation greenness at global scale.

The results presented here serve to highlight that different

parameter values can change the strength, sign and location

of the trends. However, it is worth noting that the sign of

the simulated trend does not always match the MODIS data,

especially for drier, warmer semi-arid regions. For example,

the browning trend seen in the Kazakh Steppe in the MODIS

data is stronger in ORCHIDEE and extends further east into

Mongolia (results not shown). Similarly, the model predicts

a decline in fAPAR across much of sub-Sahelian Africa that

is not seen in the MODIS NDVI. The optimisation did not re-

sult in a change in the trend direction for this region, though

generally it did reduce its strength. Overall the greening trend

in the NH (>∼ 30◦ N) was well captured by the model both

before and after optimisation.

4 Discussion

4.1 Optimisation performance

Whilst the SS optimisations result in a reduction in the

model–data misfit across a range of sites, this study has

shown that a MS optimisation can achieve a similar improve-

ment with one unique parameter vector. This is an important

result, and reinforces the conclusions of Kuppel et al. (2014)

that the MS posterior parameters can be used with confidence

to perform global simulations. Previous site-level optimisa-

tions of phenology models have resulted in a wide range of

parameterisations of growing degree day sum, chilling re-

quirements and light availability (Migliavacca et al., 2012;

Richardson and O’Keefe, 2009); therefore it is difficult to

know which values to use for regional-to-global scale simu-

lations. In most cases the MS optimisation averages out the

variability due to specific site characteristics. The validation

at the site and global scale using daily MODIS NDVI data

demonstrates the generality of the MS posterior parameter

Figure 9. Linear trend (yr−1) in the annual mean of the simulated

normalised fAPAR for the 1990–2010 period: (a) prior simulation;

(b) posterior simulation; (c) difference between the prior and poste-

rior (posterior – prior).

vectors given the ORCHIDEE model structure. This gives

confidence in using these values in regional-to-global scale

simulations of the carbon and water fluxes and for future pre-

dictions with this model.

Although the optimisation resulted in a dramatic improve-

ment in the seasonal leaf dynamics for temperate and boreal
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ecosystems, the impact in the inter-annual variability (IAV)

as a result of the optimisation for any variable – mean an-

nual fAPAR, mean spring/autumn fAPAR, GSL, SOS, EOS

– was minimal (results not shown). This was disappointing as

generally there is a low correlation in the IAV between OR-

CHIDEE and the MODIS data, and IAV in spring phenology

has been shown to be a dominant control on C flux anomalies

(Keenan et al., 2012).

4.2 Validity of the posterior parameters and optimised

phenology models

As data assimilation schemes are expected to result in a re-

duction in the prior data–model misfit it is useful to assess if

the posterior parameter values are indeed realistic, which is

conditioned on the prior range as well as the interaction (cor-

relation) between the parameters. However validating these

values remains difficult, as there is no database that corre-

sponds directly to phenology model parameters, which may

have a different meaning in different models.

Leaf lifespan (LL) however can more easily be measured

and therefore can be found in the literature and in plant trait

databases (Kattge et al., 2011; Wright et al., 2004). Although

leaf lifespan is not the same as the critical age for senes-

cence parameter (Lagecrit), the leaf lifespan should be sim-

ilar if not lower than Lagecrit, and thus serves as a benchmark

to a certain degree. Reich (1998) gave 4–6 months for cold-

temperate and boreal broadleaved and needleleaved decidu-

ous trees, similar to the mean values for the same functional

types in the TRY database (Kattge et al., 2011). These values

encompass the range of optimised values for temperate and

boreal broadleaved (TeBD and BoBD) PFTs (160 and 240

days, respectively, Table 2). The posterior value of Lagecrit

for the boreal needleleaved (BoND) PFT was lower than this

range at 90 days, and was at the lower boundary of the pa-

rameter range. The TRY database gives a mean value of 3.85

and 1.68 months for C3 and C4 grasses, respectively (Kattge

et al., 2011). These values are higher than the posterior value

of the C3 grasses (60 days) and lower than the posterior value

for C4 grasses (166 days). The values of Lagecrit for NC3 and

BoND PFTs were therefore too low and it is also notable that

the values of Tsenes were also at their upper bounds for these

two PFTs.

Most of the posterior values for the moisture-related phe-

nology parameters for the tropical broadleaved raingreen and

natural C4 grasses (TrBR and NC4) PFTs were also at their

upper or lower bounds, even with liberal parameter bounds

due to lack of prior knowledge. For example the posterior

value of MoistTmin, the number of days since the last mois-

ture minimum before leaf onset, was unrealistically low at

10 days for TrBR trees. In turn the threshold of relative

soil moisture needed for senescence (Moistsenes) was 0.8 and

0.7 % for TrBR and NC4 PFTs, respectively, which is likely

too high. Assuming the prior range of the parameters does

encompass the likely variability, such “edge-hitting” poste-

rior parameter values can indicate that other processes may

be missing. Indeed certain studies (Galvagno et al., 2013;

Rosenthal and Camm, 1997) have suggested that photope-

riod is also important in determining autumnal senescence in

deciduous conifers (e.g. BoND PFT). Possible deficiencies

in the models that control tropical deciduous phenology are

discussed further in Sect. 4.4.

In order to better evaluate the model parameterisa-

tions, we suggest that the phenology observation and mod-

elling community could engage in an elicitation exer-

cise (O’Hagan, (1998, 2012); http://www.tonyohagan.co.uk/

shelf/). This would involve gathering knowledge on param-

eter ranges of typical phenological model parameters from

experts in the field, in order to derive probability distribu-

tions of the parameter values. However, even if this exercise

is carried out, measurements made at the species and site lev-

els will be difficult to scale across species and to the coarse

resolution used in TBMs.

The onset models used for temperate and boreal PFTs

in ORCHIDEE are mostly simple spring warming models,

though some include a chilling requirement (Table 1). Their

comparative ability to reproduce the observations could add

to evidence that more complex representations including

light availability may not be needed (Fu et al., 2012; Picard

et al., 2005; Richardson and O’Keefe, 2009). Other studies

however have showed improved performance when a pho-

toperiod term was included for species with a late leaf on-

set (Hunter and Lechowicz, 1992; Migliavacca et al., 2012;

Schaber and Badeck, 2003). Several authors (e.g. Fu et al.,

2012; Linkosalo et al., 2008) have pointed out that whilst the

simple warming onset models may perform well under cur-

rent climate conditions, future predictions may require ad-

ditional complexity; for example the model-defined chilling

period may not be sufficient in warmer conditions. More im-

portantly perhaps, any model that requires a fixed start date

from which thresholds are calculated may be inconsistent

under increased temperatures, as warming will start before

the defined start date (Blümel and Chmielewski, 2012). Ide-

ally therefore these models should also be tested under fu-

ture warming scenarios, although (Wolkovich et al., 2012)

showed the magnitude of species’ phenological response to

temperature increases is lower in warming experiments com-

pared to historical observations.

4.3 Accounting for spatial variability

The coarse-resolution observations used in this study will

include the spatial variability in the timing of phenological

events for different species within a PFT, or even due to spe-

cific site characteristics (edaphic conditions, terrain/slope,

local meteorological effects) within the same species (Fisher

and Mustard, 2007). During senescence in particular, spatial

variability in the rate of leaf fall, and to some extent the leaf

colouration, will likely contribute to the decline in “green-

ness” seen in NDVI observations. ORCHIDEE does not ex-
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plicitly represent this variability, instead vegetation is repre-

sented as a mean stand (which is also responsible for the un-

natural “box-like” temporal profile seen for some sites/PFTs)

and thus the posterior value ofLfall parameter likely accounts

for such missing structural processes and sub-grid variability.

This could explain why the SS optimisations for the TeBD

PFT result in a wide variety of values for this parameter

(Fig. 7). This leads us to question whether phenology should

be optimised at the species level (Chuine et al., 2000; Olsson

et al., 2013), and/or whether there is a need to include a term

that accounts for spatial variability in the model (e.g. Knorr et

al., 2010). If the phenology models were optimised at species

level there would need to be an increase in the number of

points included in the optimisation in order to properly ac-

count for the variability between grid cells, which may result

in strong correlations between the same parameters shared

by the different species (e.g. Fig. S2c). On the other hand,

prescribing a spatial variability term is a non-trivial issue, as

it would not only encompass physiological differences be-

tween species but also variation in other site characteristics,

as mentioned above. These issues have previously been dis-

cussed (e.g. Morisette et al., 2009; Bacour et al., 2015).

4.4 Phenology in ecosystems driven by water

availability

The processes that govern leaf phenology in ORCHIDEE

cannot reproduce the observations as well in regions where

moisture availability, and not temperature, is likely the

dominant control. The optimisation has revealed structural

deficiencies as the probable cause of inaccurate simula-

tions, rather than incorrect parameter values. In addition to

problematic, “edge-hitting” posterior parameter values (see

Sect. 4.2) the prior and posterior model incorrectly simulates

a strong decline in vegetation productivity in the Sahelian re-

gion, which is opposite to that seen in satellite observations

(results not shown, but see Traore et al. (2014a). Traore et

al. (2014a) suggested that incorrect trends predicted by OR-

CHIDEE could be related to the phenology models, however

this study shows that is not the case. Even without a compar-

ison to observations, ORCHIDEE does not always appear to

have the correct response to precipitation, with two periods

of simulated growth seen in one rainy season but without any

decline in rainfall. This unexpected model behaviour is not

corrected by the optimisation and needs investigating.

It is likely that the phenology models in ORCHIDEE are

too simplistic for these regions and/or that the computation of

soil water availability or the plant water stress function are in-

adequate. Such issues are likely encountered in other TBMs

as they rely on similar models. Knorr et al. (2010) pointed

out that evaporative demand, and not just moisture availabil-

ity, should be considered in phenology models. (Traore et al.,

2014b) evaluated the inter-annual variability of the soil mois-

ture of ORCHIDEE across Africa using satellite-derived es-

timates, and found that the new 11-layer hydrology version

performed better than the 2-layer version that was used in this

study. The latest version of ORCHIDEE (Naudts et al., 2015)

has a more mechanistic representation of plant water stress

using water potential in the soil–plant continuum, which may

lead to better predictions of leaf dynamics in drought-prone

regions.

Although there are fewer studies focusing on the mod-

elling of plant moisture-availability driven phenology, some

models do exist for the dry tropics/semi-arid regions. Such

models aim to simulate the vegetation response to soil and

groundwater availability or atmospheric demand, both em-

pirically (Archibald and Scholes, 2007; Do et al., 2005), or

in a more mechanistic way by including non-linear feedbacks

via transpiration (Choler et al., 2010). Similar approaches

could be included in TBMs in order to better represent leaf

growth and turnover in semi-arid grassland and savannah

ecosystems in the dry tropics.

4.5 Importance of constraining phenology for global

change studies

Observed increases in GSL and/or increases in vegetation

density have been shown to result in concurrent impacts on

the C surface fluxes on seasonal time scales (Dragoni et al.,

2011; Piao et al., 2007; Richardson et al., 2009), although

the magnitude and sign of the effect on net C fluxes is still

a topic of debate (see Barichivich et al., 2013; Keenan et

al., 2014; Piao et al., 2008; Richardson et al., 2010; White

and Nemani, 2003). An in-depth analysis of the impact of

the modified leaf phenology on the C, water and energy cy-

cles and the subsequent feedbacks to the atmosphere was be-

yond the scope of this study. However, the changes in leaf

phenology described above resulted in a ∼ 10 PgC yr−1 de-

crease in the simulated global mean annual GPP (uptake of

C) over the 1990–2010 period (prior: 172.2 PgC yr−1, pos-

terior: 162.5 PgC yr−1 calculated using PFT fraction- and

area-weighted fluxes for each grid cell). Reductions in GPP

(results not shown) follow the same global spatial pattern

as the difference in annual mean fAPAR (Fig. 8c). The de-

cline in GPP is predominantly caused by the shorter GSL in

the high latitudes and grasslands across the NH (median of

−30 and −10 days for boreal and temperate regions, respec-

tively), and in equatorial Africa and western South Amer-

ica (Fig. 8a). The exception to this is eastern Siberia, where

the decrease in fAPAR amplitude, due to the lower peak

LAI for BoND trees discussed in Sect. 3.4, contributes to

an even stronger reduction in GPP. In east Africa and South

America, the lower fAPAR amplitude is predominantly re-

sponsible for the decrease in GPP. The mean annual GPP

only increased in the Sahel and northern Australia, which

is due to the fact that the optimisation resulted in an in-

crease in both the GSL and fAPAR amplitude in these re-

gions (Fig. 8).The decrease in GPP per day change in the

GSL (1GPP /1GSL) was ∼ 3–4 gCm−2 d−1 for boreal and

temperate regions and an increase of ∼ 2 gCm−2d−1 in the
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Sahel. Large variations in this ratio are seen across the NH

depending on the PFT in question, owing to their different

physiologies (TeBD: 31 gCm−2 d−1; BoBN: 10 gCm−2 d−1;

BoBD: 5 gCm−2 d−1; NC3: 3 gCm−2 d−1). The reduction in

the mean annual GPP (1990–2010) partially accounts for the

large positive bias in ORCHIDEE compared to data-driven

global estimates of ∼ 120 PgC yr−1 (Jung et al., 2011). Note

also that the increase in time series correlation and reduction

in the bias of SOS and EOS dates have resulted in a improve-

ment in the timing and magnitude of the simulated GPP and

ET compared to the data-driven product (Jung et al., 2009).

We suggest therefore that the bias in the timing of simulated

onset and senescence and GPP estimates in other TBMs, as

seen in the Richardson et al. (2012) model intercomparison

for example, would be reduced if the phenology-related pa-

rameters were optimised using a similar framework. Also,

the impact on energy and water fluxes in particular could re-

sult in strong feedbacks to climate (Peñuelas et al., 2009),

possibly leading to different predictions under future warm-

ing.

Aside from making predictions of the carbon, water and

energy budgets, TBMs are routinely used in trend attribution

studies. A good example in this context would be the ex-

ploration of the causes of “greening” or “browning” trends

in vegetation productivity (Hickler et al., 2005; Piao et al.,

2006), or the impact of such trends on resource use efficiency

(Traore et al., 2014b) or the C cycle (Piao et al., 2007). The

fact that the optimisation resulted in changes in the strength

and location of these trends (Fig. 9) demonstrates that such

analyses are partly dependent upon model parameters, which

can be a considerable source of uncertainty (Enting et al.,

2012).

5 Conclusions

This study has demonstrated that a time series of normalised

coarse-resolution satellite NDVI data can be used to opti-

mise the parameters of phenology models commonly used in

TBMs, and crucially that a multi-site optimisation can find a

unique parameter vector that enables better predictions of the

seasonal leaf dynamics at global scale. This type of model

calibration framework is thus imperative for Earth system

model development. The results also highlight that optimis-

ing the parameters allows model developers to distinguish

between inaccurate model representations resulting from in-

correct parameter values and model structural deficiencies.

In ORCHIDEE the models used for predicting the leaf phe-

nology in temperate and boreal regions are able to reproduce

the seasonal cycle of the vegetation well after calibration,

but ecosystems driven by water availability require further

modification, particularly for natural C4 grasses. The opti-

misation also led to changes in the strength and location of

“greening” and “browning” trends in the model, suggesting

caution should be exercised when using un-calibrated mod-

els for trend attribution studies. Furthermore, the observed

trends were not well captured in some regions, which is a key

aspect to improve upon when considering future simulations

of climate, CO2 and anthropogenic change.

Data availability

The MODIS MOD09CMG collection 5 surface reflectance

data are freely available to download from the Land Pro-

cesses Distributed Active Archive Center (LP DAAC) data

portal (https://lpdaac.usgs.gov). The authors wish to thank

M. Jung for providing access to the GPP MTE data, which

were downloaded from the GEOCARBON data portal (https:

//www.bgc-jena.mpg.de/geodb/projects/Data.php).
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Appendix A: Phenology models in ORCHIDEE

A1 Leaf onset

In temperate and boreal regions the onset of leaves is mainly

driven in the spring by an accumulation of warm temper-

atures (see the review of Hänninen and Kramer, 2007).

The well-known growing degree day (GDD) model (Chuine,

2000) sums up the temperatures above a given temperature

threshold, T0 (for example 0 ◦C), starting at a given date

(for example the first of January in the Northern Hemi-

sphere). The onset of leaves starts when the GDD reaches

a plant/PFT-specific threshold. In ORCHIDEE, T0 is −5 ◦C,

and the GDD sum is calculated from the beginning of the

dormancy period, which starts when the leaves were lost or

when GPP decreased below a certain threshold.

This simple model may be refined. For example the GDD

threshold has been reported to depend on a “chilling require-

ment” for some species; i.e. their physiology requires cold

temperatures to trigger the mechanism that will allow bud-

burst to occur (e.g. Orlandi et al., 2004). This ensures that the

dormancy has been broken after a required cold period, and

thus prevents a too-early awakening. The Number of Chill-

ing Days (NCD) GDD model initiates leaf onset earlier with

an increase in the number of chilling days, defined as a day

with a daily mean air temperature below a PFT-dependent

threshold accumulated after a given starting date (e.g. Botta

et al., 2000; Cannell and Smith, 1986; Murray et al., 1989).

The GDD threshold therefore decreases as NCD increases.

This experimental relationship is a negative exponential with

three PFT-specific parameters (Botta et al., 2000):

GDDthreshold =
A0

eA1NCD
−A2, (A1)

where A0, A1 and A2 are parameters that have been cali-

brated against satellite data (Botta et al., 2000). The growing

season begins if the daily calculated GDD is higher than the

calculated GDDthreshold. This model (hereafter referred to as

the “NCD_GDD” model) is used for the temperate and bo-

real broadleaved deciduous (TeBD and BoBD) PFTs in OR-

CHIDEE.

The start of the growing season for the boreal needleleaved

deciduous (BoND) PFT occurs when the number of grow-

ing days (NGD), i.e. days with a mean daily temperature

above the threshold temperature, T0 (−5 ◦C), has exceeded a

PFT-dependent threshold (NGDthreshold). The NGD is calcu-

lated from the beginning of the dormancy period. This model

(hereafter referred to as the “NGD” model) was proposed by

Botta et al. (2000) for boreal and arctic biomes, and is de-

signed to initiate leaf onset after the end of the soil frost.

For C3 and C4 natural grasses and crops (NC3, NC4, AC3,

AC4), the GDD threshold is given by a second-degree poly-

nomial of the long term mean annual air surface temperature

Tl :

GDDthreshold = B0+B1T1+B2T
2
1 , (A2)

where B0, B1 and B2 are PFT-dependent parameters. In ad-

dition, leaf onset is initiated only when a moisture availabil-

ity criterion is met, namely when the moisture minimum oc-

curred a sufficiently long time ago, as specified by a PFT-

dependent threshold parameter (MoistTmin):

time since moisture minimum > MoistTmin. (A3)

This moisture availability criterion corresponds to Model 4b

in Botta et al. (2000), who assume leaf onset in tropical

biomes requires a certain amount of accumulation of water

in the soil. Both the moisture availability and GDD threshold

criteria (hereafter referred to the “MOI_GDD” model) must

be met for leaf onset to occur in grasses and crops.

For the tropical broadleaved raingreen (deciduous) (TrBR)

PFT, the start of the growing season depends only on the

moisture availability criterion (hereafter referred to as the

“MOI” model) previously described for grasses and crops.

When the onset of leaves is declared, the allocation mod-

ule first allocates carbon from the carbohydrate reserves to-

wards leaves and roots as long as the LAI is lower than a

given threshold, which is a function of the maximum LAI,

LAImax, a PFT-dependent value:

LAIthreshold = 0.5LAImax. (A4)

The onset parameter values are listed in Table 2.

A2 Leaf age and leaf senescence

To account for the fact that the photosynthetic efficiency of

leaves depends on their age,Lage, they are separated into four

age classes. Biomass newly allocated to leaves goes into the

first age class and leaf biomass, Bl , is then transferred from

one class to the next based on a PFT-specific critical leaf age

value, Lagecrit. The long-term reference temperature modu-

lates the critical leaf age of grasses in order to account for

the fact that leaves can live longer in colder climates. The

leaf age continually affects the turnover of the leaves both

during the growing season and once senescence has begun.

Different turnover processes control leaf fall, the first one is

a simple aging process based on the Lagecrit parameter. For

trees, when leaf age is greater than half the critical leaf age a

turnover rate is applied following

1Bl = Blmin

0.99,
1t

Lagecrit

(
Lagecrit

Lage

)4

 , (A5)

where1Bl is the leaf biomass lost through this aging process

and 1t is the daily time step.

The second turnover process is a senescence process (the

end of the growing season and the shedding of leaves) that is

based on climatic conditions. This only exists for deciduous

PFTs. For tree PFTs whose senescence is driven by sensitiv-

ity to cold temperatures (TeBD, BoND, BoBD and grasses),
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senescence begins when the monthly air surface temperature

goes below a threshold temperature, defined as a second or-

der polynomial of the long-term mean annual air surface tem-

perature Tl :

Tthreshold = C0+C1Tl +C2T
2
l , (A6)

where C0, C1 and C2 are PFT-dependent parameters.

For phenology models that are driven by soil moisture con-

ditions (“MOI” models – see Appendix A and Table 1) the

parameter that controls leaf onset is the “minimum time since

the last moisture minimum” (MoistTmin), and the parameters

that control senescence are Moistsenes and Moistno_senes, the

critical moisture levels below and above which senescence

does and does not occur, respectively. These PFT-dependent

parameters are optimised directly; i.e. no effective parame-

ters are introduced to scale the original ORCHIDEE param-

eter.

For grasses, the climatic senescence is controlled by both

temperature and moisture conditions. The senescence param-

eter prior values are listed in Table 2. Note that no senescence

models in ORCHIDEE currently include a photoperiod term

for either onset or senescence.

www.biogeosciences.net/12/7185/2015/ Biogeosciences, 12, 7185–7208, 2015
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