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BUBBLING ABOVE THE THRESHOLD OF THE SCALAR
CURVATURE IN DIMENSIONS FOUR AND FIVE.

BRUNO PREMOSELLI AND PIERRE-DAMIEN THIZY

ABSTRACT. On any closed manifold (M", g) of dimension n € {4,5} we exhibit new
blow-up configurations for perturbations of a purely critical stationary Schrodinger
equation. We construct positive solutions which blow-up as the sum of two isolated
bubbles, one of which concentrates at a point £ where the potential k of the equation
satisfies "9
k(€) > msg@%

where Sy is the scalar curvature of (M™,g). The latter condition requires the bubbles
to blow-up at different speeds and forces us to work at an elevated precision. We take
care of this by performing a construction which combines a priori asymptotic analysis
methods with a Lyapounov-Schmidt reduction.

1. INTRODUCTION

1.1. Statement of the results. Let ()M, g) be a smooth closed Riemannian manifold
of dimension n > 3. Let Ay = —divy(V-) be the Laplace-Beltrami operator and let k be
a smooth function in M such that A, + k is coercive. We are interested in this paper
in the existence of energy-bounded blowing-up families of positive solutions (u¢):->o to
critical stationary Schrodinger equations of the following type:

Ague + koue = w1 in M, (1.1)

£

where 2* = % is the critical power for the embedding of H'(M) into Lebesgue spaces

and (k:)e>0 is a smooth perturbation of k. We say that a family (uc)esq of solutions of

(1.1) has bounded energy if

lim sup [Juel| g1 (ary < +o00.
e—0

Since the work of Struwe [26] it is known that if (u. ).~ has bounded energy then, up to

a subsequence, there exist k € N, k sequences (f11,¢)e, - - ., (ftk)e Of positive real numbers
converging to zero and k sequences (§1¢)e, ..., (&kc)e of points of M such that
k
ue =ug+ »_ Wie+o(1) in H'(M), (1.2)
i=1

The first author is supported by a FNRS grant MIS F.4522.15.
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where the W; . are bubbling profiles given by
n—2
Hie

dg(gi,av')Q ’

Wis = 5
Pie T “ntn—2)

, (1.3)
dg is the geodesic distance and u. — ug as ¢ — 0. We say that the family (uc)->0 of
solutions of (1.1)) blows-up if

lim sup ||ue|coary = +o0.
e—0

If (ue)e>o has bounded energy and blows-up it is easily seen that & > 1 in (|1.2]).

In the last decades, a vast amount of work was poured into understanding when equations
possess blowing-up families of positive solutions — with and without the energy-
bound assumption. It turns out that the geometric potential £ = ¢, S, plays a threshold
role, where we have let ¢, = 4("n__21) and where S, denotes the scalar curvature of
(M,g). It was indeed proven in [6] that when n > 4 has no blowing-up positive
solutions whatsoever if k£ < ¢, Sy, and in [5] that has no energy-bounded blowing-
up positive solutions if k > ¢,5, (unless maybe if n = 6, see [5]). When n = 3 the
situation is completely different, see [9]. The latter result is based on the generalization
of decomposition to CO(M) obtained in [7]. On the other side, energy-bounded
blowing-up families of positive solutions of have been constructed when k. is a
small perturbation of ¢, Sy, see for instance [8, (17, 25]. In another direction, if k. = ¢, S,
for all €, equation is the Yamabe equation, and its compactness properties exhibit
intriguing dimensional phenomena, see [2], 5, [1T], 13| 14}, [15].

In this article we construct, in dimensions four and five, exotic bubbling configurations
for , where the potential k lies well above the threshold of the scalar curvature at
one of the concentration points. In particular, our equations are not perturbations of the
Yamabe equation. Let (M, g) be a n-dimensional closed Riemannian manifold, n € {4,5},
and let ¥ € C°(R™) be a smooth compactly supported function in By(Ry) C R”" for
some Ry > 1. Assume that ¥ > 0 in By(1) and that ¥ has a non-degenerate global
maximum at 0. Let {30 € M be fixed. We let iy denote the injectivity radius of (M, g)
and for 0 < § < iy/Rg we let hs be given by

hs(z) = (; expg,. (a:)) . (1.4)

In particular, hs is supported in the geodesic ball By(&2,0, Rod), and is allowed to change
sign if ¥ changes sign. Remember that (M, g) is said to be of positive Yamabe type if
Ay + cpSy is a positive operator. Our main result states as follows.

Theorem 1.1. Let (M, g) be a closed Riemannian manifold of dimension n € {4,5} of
positive Yamabe type, not conformally diffeomorphic to the standard sphere (S", gstq)-
Let &0 and &0 be distinct points in M and define hs as in (L.4). Let 6 > 0 small be
fized and let H be any function in the class C(H) defined in below. Then, for any
0 < e < g9 small enough, there exists a positive solution u. of:

Ague + (cnSg + hs + s:H)wE = ug*_l (1.5)
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in M. This family (ug)o<e<e, blows-up with finite energy at two distincts simple blow-up
points as € — 0 and has a zero weak limit.

Note that when (M, g) is of positive Yamabe type and hg is given by (1.4 the operator
Ag + ¢Sy + hs remains positive for small §. On the other side, the nonnegativity of
Ag + ¢pSg + hs is a necessary condition to the existence of positive solutions of (1.5
(see for instance [9], Lemma 2.1).

In the case of the standard sphere, remarkably, an analogue of Theorem is available —
unlike in the case of perturbations of the Yamabe equation when hs = 0 as investigated in
[8,[19]. Here the additional assumption that ¥ in has negative average compensates
for the vanishing of the Riemannian mass.

Theorem 1.2. Let &1 and &2 be distinct points in S, n € {4,5}, and define hs as in
(1.4). Assume in addition that there holds:

/ U(y)dy < 0.
R4

Let 6 > 0 small be fized and let H be any function in the class C(H) defined in ([1.7))
below. Then, for any 0 < € < gy small enough, there exists a positive solution u. of:

n(n — 2
pt (202
4
in M. This family (ue)o<e<e, blows-up with finite energy at two distincts simple blow-up
points as € — 0 and has a zero weak limit.

The families (ue). of positive solutions that we construct in Theorems and blow
up as a sum of two isolated simple bubbles of nonequivalent weights. The highest one
concentrates at a point & 5 satisfying hs(§2,5) > 0, while the lowest one concentrates at
&1,0. In our constructions, J is fixed small enough so that hs(£1,0) = 0 by . To our
knowledge, Theorems and [1.2] yield the first example of multi-bubble configurations
in dimensions 4 and 5 when the limiting operator A, + ¢,.Sy + hs is positive; clustering
phenomena in the degenerate case had been previously constructed in [27, 29]. The
weak limit of our families (u.)c is zero, and this is a necessary condition when n € {4,5}
by [5].

A few comments on the choice of hy and H are in order here. First, we point out that
Theorems and [1.2 require no smallness assumption on hs(&2,0) = ¥(0) and therefore
yield existence of (blowing-up) positive solutions for model equations like when the
limiting potential k is allowed to be much larger than ¢, S, at a blow-up point. Also, in
Theorem no equivariance assumption is needed on hs. The class C(H) of functions
H considered in Theorems [[.1] and [[.2] is defined as

C(H) ={H € C*(M) satistying and below }. (1.7)
These functions H are used to construct the lowest bubble and can be chosen with great
generality. By we can choose H > 0, in which case ¢, Sy + hs +cH in (and
its counterpart in ) approaches ¢, Sy + hs from above as € — 0. Remark also that
since we assumed W(0) > 0, the limiting potential always satisfies ¢, Sy + hs > ¢S4 at
the blow-up point & s (this is proved in Section [7| below). If we moreover assume ¥ > 0

+hs 4 5H>u5 = 21 (1.6)
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in R™, which is possible in Theorem it also satisfies ¢, Sy + hs > ¢, S, everywhere in
M. However it does not satisfy ¢, Sy + hs > ¢, 9, everywhere in M, in adequation with
the results of [5]. Considering the additional hs in the potential ¢, Sy 4+ hs brings in a
new set of technical problems which are not easily dealt with. They arise in Section [7}
where the smallness assumption on ¢ is quantified and to which we refer for more details.
We should also point out that, in some cases, Theorems and remain true when
hs given by is replaced by a suitable smooth function h. Sufficient conditions on h
ensuring this are given in Remark [7.1] below.

Finally, the constructions that we produce here can only occur in dimensions 4 and 5.
Indeed, as a consequence of the 3-dimensional sup-inf inequality, solutions of can
only blow-up as sums of bubbles of comparable weights when n = 3 (see [9], Theorem.
5.2, and see also [10] for other examples of bubbling phenomena in dimension 3). And
when n > 7, as a consequence of [], energy-bounded families (u.). of solutions of
only exist if lim. 0 ke = ¢, Sy at all blow-up points (this remains true if n = 6 under
additional assumptions, see [9] prop. 8.1). Let us also mention that the picture when we
drop the bounded-energy assumption is radically different: equivariant infinite-energy
solutions when k > ¢S, and when (M", g) is the standard sphere have been constructed
in [4] (when n > 5) and very recently in [31] (when n = 4).

1.2. Strategy of proof of Theorems and First, we explain how an a priori
blow-up analysis yields necessary conditions on the bubbling configuration in our setting.
Assume that we are given a family (uc)c of solutions of (or (1.6)) that blows-up
with two bubbles — which are not a priori assumed to be isolated. By the H!-theory of
[26] u. writes as

u. = Wi+ Wae +o(1) in HY(M), (1.8)
where W, i = 1,2 are given by for some families (u;c)e, @ = 1,2 of positive
numbers going to 0 and for some families ({1 ). and (§2.¢)- of points in M converging
towards &; and &3 as € — 0. If we assume now that h(&2) > 0, there is not much freedom
left: there necessarily holds that h(&;) = 0 and that (p1,). and (p2.). have to satisfy

1
€:C+01 ghl< > 1fn:4,
p1e = (C1 4 o(1)) 2, s (1.9)

pic = (Coto(1))pae if n =5,

as € — 0, for positive constants C1,Cs. In particular, §; and & are distinct and & is
the center of the highest bubble. Similarly, the value of 11 . is constrained in terms of €
by:

1
f1e1n <,U > = (C1+o(1))e ifn=4,
l,e

e = (Ch+ o(1)e if n =5,
for positive C7, CY. We refer to Appendix [A| where relations (1.9) and (1.10]) are proven.

(1.10)

Relations ([1.9)) and (1.10]) are therefore the starting point of our construction. Equation
(1.9) exhibits an asymmetry in the configuration of our bubbles, both in their weights
and in the localization of their centers. If we wanted to apply a Lyapunov-Schmidt
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finite-dimensional reduction in H'(M) to produce the constructions of Theorems
and this would force us to work with an extremely high precision, since an expansion
of I.(W1 . + Wa ) involves terms of order ,u%s, where I is the energy functional of
(or (L.6)). When n = 5, for instance, ,u%}s is comparable to u?s in view of (L.9), which
would force us to estimate the H'(M) norm of the error in the nonlinear procedure with
a precision o(uig). Finding a suitable ansatz for the approximated bubble W . that
both reaches this precision and comes with explicit estimates to be able to compute the
additional contributions in I.(Wj . + Ws.) seems both unnatural and technically out of
reach.

We overcome this technical difficulty by combining a priori pointwise asymptotic analysis
techniques to a nonlinear finite-dimensional procedure in H*(M). This new approach
was recently developed by the first author in [21] 22] to construct instability examples
for critical elliptic systems in a coupled supercritical setting. It goes as follows: we
first perform the standard nonlinear procedure in H'(M) and construct a candidate
solution Wy . + Wa . + ¢, of (or (1.6)) up to kernel elements, with ¢. controlled in
H'(M). We use here the classical Lyapunov-Schmidt approach that has been developed
in the last decades, see for instance [16] 20} 23] 25 B2] and the references therein. Since
the H'(M) bound on ¢. is not precise enough to proceed as usual, we then obtain a
thorough pointwise decription of the blow-up behavior of ¢. using techniques in the
spirit of those developed in [7] and [9]. In particular, we do not proceed via an expansion
of the reduced-energy in our approach: we conclude our proof by showing that the kernel
elements can be annihilated for suitable values of the parameters, and we use for this
the latter pointwise estimates on ¢..

In view of , the bubbling configurations that we investigate in this work can
be thought of as the low-dimensional counterpart of towering phenomena in higher
dimensions. Examples of towering phenomena for positive solutions have recently been
constructed in dimensions n > 7 in [I7], carrying out a nice improvement of the usual
energy methods, but taking advantage of a radial symmetry assumption. In this respect
our approach, which relies on a priori analysis methods to perform the finite-dimensional
reduction, allows us to overcome the absence of symmetry in the configuration of our
bubbles. We believe our method will prove useful in future work when addressing
the construction of involved bubbling configurations, for instance in the absence of
symmetries.

The structure of the article is as follows. In Section [2f we introduce the bubbling profiles
Wi and Wa,.. An elevated precision is required on W . while a naive choice of Wy is
enough. In Section [3|we apply the standard nonlinear reduction procedure in H*'(M) and
construct a solution Wy . + Wa . + ¢, of up to kernel elements. Sections and |§|
are the core of the analysis of the paper. In Section We turn the H' bound on ¢, into a
global C? one and show that ¢. = o(W1 ¢+ Wa,) in C%(M). This requires an adaptation
of the techniques of [7], since Wj . + Wa . + ¢. is only a solution of up to kernel
elements and can change sign. In Section 5] we improve the global estimate of Section [4]
into a sharp higher-order pointwise control on ¢. around &». This again involves blow-up
arguments. Section [] consists in an asymptotic expansion of the coefficients of the kernel
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elements. On one side, those pertaining to the kernel associated to the lowest bubble
W1, are simply expanded using energy estimates. On the other side, those coming from
the highest bubble W5 . cannot be dealt with in this way and are instead computed
using the precise pointwise asymptotics of Section [5} The analysis in Sections [4] [f] and
|§| does not use and can be performed in full generality. Section 7| contains the
concluding vanishing argument in the proof of Theorems [I.1] and Finally, Appendix
describes the a priori analysis considerations leading to .

Acknowledgments: The authors warmly thank Olivier Druet and Emmanuel Hebey
for stimulating discussions and valuable comments on the manuscript.

2. NOTATIONS AND BUBBLING PROFILES

Let (M, g) be a closed Riemannian manifold of dimension n € {4,5} of positive Yamabe

type — that is, such that A, + ¢, S, is coercive, where ¢,, = 4&7721) and S is the scalar

curvature of (M, g). By the standard conformal normal coordinates result of Lee-Parker
[12], there exists A € C°°(M x M) such that by letting A¢ = A(&, ) there holds that:

Af(g) =1, VAg(f) =0, (2-1)

that
1

Sgg (E) = 07 vsgg (E) = 07 Aggsgg (5) = E‘Wg(g)‘?;v (22)
4
where Sy, denotes the scalar curvature of the conformal metric g¢ = Ag*Q g, and that,

for any point £ € M there holds for arbitrarily large given N:
[(exp) " g¢| () = 1+ O(lyl™), (23

Cl-uniformly in € € M and iny € TeM, |yl < C. Here expg5 denotes the exponential
map for the metric g¢ at { with the identification of Tz M to R" via a smooth orthonormal
basis of T¢ M defined in an open set containing §. For any £ € M, we let Gy, denote the
Green’s function of the operator Ay, + ¢, S, in M. Since n € {4,5}, the result of [12]
asserts that for any £ € M one has:

1

Gl (& X0’ () = (g — " + A(O) + Olly) (2:4)

as |y| — 0, where w,,_; is the volume of the standard sphere S"~*. The constant A(¢) in
is called the mass of Gy, at . It smoothly depends on ¢ and there holds A(§) > 0
for any & € M provided (M, g) is not conformally diffeomorphic to the standard sphere,
and A = 0 otherwise. For the sake of clarity we also recall the conformal covariance
property of the conformal laplacian: for any v € C°°(M) and £ € M,

(Ag + cnSg) (Agv) = Ag*fl (Agg + cnS’gg) (v).
If G4 denotes the Green’s function of Ay + ¢,Sy in M this yields in particular that :
for any 2 € M,y € M\[a}, Gylo,y) = Ae(@)Goe (0, p)Acly).  (25)



Let &1 0 and &0 be distinct points of M, and let 79 > 0 be such that

870 < min (ig(M), dg(§1,07§2,0)7£ié1]\f;[ dge (£1,0,€2,0)), (2.6)

where i, denotes the injectivity radius of (M,g) and dy and dg. respectively denote
the Riemannian distance associated to the metric g and g¢. Let H and h be smooth
functions in M. Assume that H is supported in By, . (&1,0,2r0), where By, , denotes
the geodesic ball with respect to the metric g, o, that Ag +cpSy+his coercive and that
h is supported in M\Bg51 . (£1,0,210), so that the supports of h and H are disjoint. The
precise form of H and h will only come into play in Section |7, and we do not assume
for now that holds. The blow-up analysis performed in Sections || and [5| and the
expansions in Section [6] will only rely on the assumption on their supports. Similarly,
whether (M, g) is conformally diffeomorphic to the standard sphere or not only comes
into play in Section [7}

Let p1 > 0 and & € M. Following [§] we define, for x € M:

Wi (@) = (n — 2)wn—1Gy, (61, 7)Ag, (2) X

dggl (51; :IZ)2 ) -3

n—2
d9§1 (§17 w)n72ul : </’L% + ’I’Z(Tl _ 2)

if dggl (1,2) <o, (2.7)
2

o n=2 r 1-3 :
i (i ) g €0:0) 2 o

For 1 > 0 and &§ € M, let T 4, ¢, be the unique solution in M of:
(Ag + (CnSg + h))TLtl,fl = 7hW17M17§1‘ (2.8)

It is a smooth function in M since h is supported in M\ By, (£1,0,2r0). Let x € C*° (RT)
be a smooth nonnegative function, with y =1 in [0, 7] and x = 0 in [2rg, +00). Define,
for p1, 2 >0, &1,& € M, and for x € M:

W17H1:£1 (QC) = W17M1,51 (1‘) + Tlnul,ﬁl (37)7

n—2 d 2 1 n (2.9)
Wasa(@) = x(dy (€2, 2))pie? (13 + 020 )13

n(n — 2)

As announced in the introduction, the choice of W5 ,,, ¢, is rougher than the choice of
Wi 41 6,5 in particular, the conformal correction at &> is not required. Note also that
Wo 1, ¢, 18 compactly supported in By(&2,2r9). We also define the following approximate
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kernel elements, for 1 < j <n and x € M:

Z101.6 (%) = (n = 2wn_1dg, (§1,2)" Gy, (£1,2)x (dggl (51,1‘)) Ag, (z)

w2 (g (€1,2)? dge (€1,2)2) 2
X iy 2 <( 1; u?) (/ﬁ+f§éni;> :

)
Z1 e (2) = (0 = 2)eon-1dye, (€1,2)" G, (61,0 (dge, (61,2) ) Ay (@)

n — d , 2\ ~ %
X pif <<expgf1> 1(x),ej(§1)> (§)<M%+:Er(z§i ;) ) ;

)2\ "2
Zo0 s = X (dy(€2,2)) (né&’ )(u . fm > |
Zajumes = X do(€2)) s ((ex0g) " (2):65(62) e 52)< 75((5272)0 .

(2.10)
In (2.10)) we denoted by the same notation (e1(y), -, en(y)) two families of orthonormal

vector fields, respectively for g¢, and g, defined in open sets containing respectively &;
and 52.

We conclude this subsection with a remark. Let £ € ngl (&1,0,70). By ., and since

h(y) = 0 for any dge, (&1,y) < 1o by (2.6), T1 4, ¢, in (2.8) is represented, with -, .
and (2.7)), as:

Tl,#l,il (1‘) = _(n - 2)“”—1( (n - 2 2 / Gh x y g(yafl)dvg(y)

2

&
where G}, denotes the Green’s function of Ay + ¢, Sy + h in M and the O(py? ) term is
in C?(M) and is independent of the choice of y; and &;. Similarly we also obtain that,
for any y € M\{& 1 }:

Gyf61.2) = Galér.) + | Gyl€r,m)hly)Ga (. ). (2.12)
The latter with and (2.7)), (2.9) and ( - ) shows in particular that, for dg, (&1,x) > 1o,

we have:
n+2

Wi e = (0= 2w 1 (n(n — 2))"% e Gh(ﬁh )+ 0y ” ) in C3(M).  (2.13)

3. REDUCED PROBLEM IN H'(M)

Let € > 0 and let t1,ty be positive numbers. We define:

4 4 .
e = ifn=4 ctoe” = ifn=4
H1e(ty) = o H2e(ti te) = 3.1
() {5751 ifn=>5 ol ) {g?’tg if n =>5. (3.1)
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As explained in the introduction, this choice of j1 . and o, is not a lucky guess but is

necessary and driven by conditions (1.9 and (1.10|). The blowing-up solutions of (|L.5|)
and (|1.6)) that we construct in this paper are bubbles modeled on (2.9)) for the choice of

{1, po given by (3.1). For t1,ty > 0 and &;1,& € M we thus let, for 0 < j < n:
Wicneo = Wi )60
Waeti oo = W2,,u2,s(t1,t2),§2’
Zl:£7j7t17£1 = Zlyjnu‘lys(tl)’gl’

Z27€7j7t1,t2,52 = Z2,#2,s(t1,t2),£2’

(3.2)

where 111 -(t1) and po(t1,t2) are given by (3.1). Let Ag be a connected compact set in
(0, +00), and let:

A= AQ X Bg§170 (6170,7“0) X Ao X Bg(fz(), 7’0). (33)

Throughout the paper, for the sake of clarity and since no confusion will occur, whenever
(t1,e,&1,6,t2,6,62,)e Will denote a family of points in A, the families p11 (1), 2. (16, t2,),
leaatl,svgl,e’ Zl:j7€7t17£1,67 W2761t1,57t2,57§2,e’ Z27j7€7t1,57t2,€7£2,a7 0 < j < n will just be de-
noted by pu1, o, Wi, .... Similarly, (1,616, 2, &2.)e Will often simply be denoted by
(t1,&1,t2,62). Given (t1c,&16,t2,6,82,¢)e, and adopting these notations, we will also let,
for any z € M:

01(x) = 1 + dg, (&1, ) and O(z) = p2 + dg(&2, ). (3.4)
The points & and & will be thought of as the centers, respectively, of the lowest and
the highest bubble. By the choice of A in (3.3)), they will always satisfy
dge, (£1,0,61) < ro and dy(§2,0,82) < 7o,

so that by (2.6 the supports of Z; ; or H are disjoint from the supports of W, Z3 ), or
h, for 0 < j, k < n. In particular, W5 is supported in the region where h is nontrivial.

As a first step of our proof, we apply the standard finite-dimensional reduction scheme
to this family of bubbling profiles. For any € > 0 and (¢1,&1,t2,&2) € A, where A is as

in (3.3)), let

Kty 61 126, = SPa0{ Z1 5, Z2 1,0 < j, k < n}, (3.5)
where the Z; ; are defined in (3.2), and let K ith& 2.6 be its orthogonal for the scalar
product:

(u,v) = / ((Vu, V) + (enSg + h + SH)uv) dvg. (3.6)
M

In the following, all the H'(M)-norms appearing, denoted by || - | &1 (ar), will be taken
with respect to this scalar product. Also, throughout this paper, if (f:)c, (gc)e denote
families of numbers or functions, the notation “f. < g.” will be used to denote the
existence of a positive constant C independent of € such that f. < C'g. for any e small
enough. If g. > 0, we will also write “f. = O(ge)” to say that |f.| < g..

The following result is the starting point of our analysis:
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Proposition 3.1. There exists ¢g > 0 such that for any 0 < € < gy and for any
(t1,&1,t2,&2) € A, there exists ¢:(t1,&1,t2,&2) € Kitl’ém’& such that

11 W1+W2+¢5(t1)£17t27£2)

KL
€,t1,61,t2,82

*

- (Ag + ¢nSg + h+aH>_1(W1 + Wa + ¢e(t1,§1,t2,§2)) ] =0,

+
(3.7)
where W1 and Wy are as in (3.2)) and where I 1 denotes the orthogonal projection

e,t1,81,2,€2
on Ké:t17§17t2752 for " . In addition, for any 0 < ¢ < g9, ¢ € CO(A’ Hl(M))
and there exists a positive constant C' such that, for any 0 < ¢ < g9 and for any
(tl,aagl,autla,gla)a € A there holds:

n—2

¢ (t1.e, E1ertae, Eo.e) vy < Cepy (3.8)

where py is given by (3.1)) for t1 =t1.. Also, ¢:(t1,&1,t2,&2) is the unique solution of
B in K2y, ¢, 1.6, satisfying (B.5).

In (3.7) we have let, for any v € H' (M), u; = max(u, 0).

Proof. The existence, continuity and uniqueness properties of ¢. for 0 < ¢ < gy for some
go > 0, as well as , are a consequence of the general framework developed in [25]
(Proposition 5.1), in which and fall. The result of [25] generalizes previous ideas
developed in [16, 20]. It remains to prove . Let (t1,6,&1,65t2,6582,)0<e<e, € A. We
claim that the following estimate holds: there exists a positive constant C', independent
on € and on the choice of the family (¢1¢,&1¢,t2,,82,)e, such that for any 0 < e < g9,

n—2

le + W= (Bg+enSy+ hteH) - (w1 + WQ)Q*_1 < Cepy? ,  (3.9)

HY(M)

where we used again the notations Wy, Wa, 1, ps, &1, €2 as above. First, a simple test
function computation using (3.2)), together with Sobolev and trace inequalities shows
that

HW1 Wy — (Ag +enSy+h+ 5H>_1 (W1 + WQ)Q*_1

HY(M)
5 H(Ag + CnSg +h +€H) (W1 + WZ) — (Wl + WQ)Q*_I

+ a W +a W n— 9
19 W1+ o Wil 2 (9B, (€1,70))

where 0;, W1 and 9,,; W1 denote the derivative with respect to the unit outward and
inward normal for g, to aBgsl (&1,70). By (3.2) and (2.8) and since the supports of Wy
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and H are disjoint we write, in M\0By, (&1,70), that:
(DgtenSy+h+eH) (W) + Wa) — (W1 + W) = (Ag + Sy +eH)Wy — WE
FeHT + W2 — (Wi + 7)) 7' + (Bg + nSy + h)Wo — WE!
FWETL W (w4 W)L

(3.10)
On one side, straightforward computatlons using and ( - give:
2% —1 - 2% —1 2% -1 2*—1
ey + W=t = (0 4+ 1) T W W (W W) L
2 n—2
Sem? +pi 7+ (pe) 7
On the other side, straightforward computations give that there holds:
n +2
’amWI + 8outVVI‘ < Ml in 8Bg§1 (617 TO)
and that, both in By, (£1,70) and in M\ By, (£1,70), there holds:
251 2 ri :
)(A +CnS +EH)W1 W ’ SJ/,Ll ’I”l <M1+n(n_2)> 5 (311)
where we have let 71 = dg, (&1, -) (see for instance [8], Proposition 2.2). As a consequence:
A A ox n—2
H(Ag +enSy + eH) Wy — W72 1H 22 gy P10 W o+ Do Wall 2o Sep,? .

Ln+2 (M (0Bg,, (&1,70))

Finally, straightforward computations using (3.2]) show that there holds, for any x € M:

n—2
’(Ag + enSy + h) Wa(z) — W2 _1(w)‘ < py? Oo(z)2™, (3.12)
where 65 is defined in (3.4). This gives in the end:
n—2
H(Ag +cnSg + h)Wa(z) — Wy 71(@) L2 ) SO

Combining all these computations into (3.10]) and using the explicit expression of i1, o
3.9)

given by (3.1)) concludes the proof of (3.9). Estimate (3.8) then follows from (3.9) by
the result of [25]. O

4. CY-THEORY AND UNIFORM @ priori POINTWISE ESTIMATES ON ¢,
p

Let €9 be given by Proposition . For 0 < e < g9, let (t1,&1,t2,&2) € A and let

¢e = ¢e(t1,&1,t2,&2) be given by Proposition Equation (3.7)) shows that there exist
Af; = A5 (L6, 12,62), 0= 1,2, 0 < j <n, such that ¢. satisfies:

(Ag + cnSy + h + sH)uE — (us){‘*l + Z XS <Ag + cnSg+h+ 5H> Zii,  (40)
ij

where we have let:
Ue = ua,tl,ﬁhtz,fz — Wl + W2 + nga (42)



12 BRUNO PREMOSELLI AND PIERRE-DAMIEN THIZY

and Wy = Wiy ¢, -..are given by . Since ¢, € K$t1’§17t27£2, integrating
against Z; j for 1 <¢ <2 and 0 < j <n and using yields the existence of a positive
constant C' such that for any 0 < € < gg and for any (1,81, t26,82,6)e<e, € A there
holds, for all 1 <i<2and 0 < j < mn:

n—2

|)\§7j — |)\§7]‘(t1,5>£1,67t2,€7£2,€)| S CE,LLI 2. (4'3)
We aim at constructing a solution of and via by finding an element
(t1,6,&1,6,t2,6,62,)e which annihilates all the A7 ;- This goes through an asymptotic
expansion in CY(A) of the A as e — 0, where A is given in . However, as explained
in the introduction, having A > 0 in the region where the center of the highest bubble
W, is expected to be localized requires these expansions to be carried out with a high
precision that cannot be reached with the mere H' estimate . In this section we
therefore obtain a priori global pointwise asymptotic estimates on ¢.. These will be
refined into sharp second-order estimates on ¢, around &» in the next section.

We show that ¢. is, in a pointwise sense, globally small compared to W; and Wa:

Proposition 4.1. There exists 1 > 0 and a family of positive numbers (Ve)o<e<e, with
lim._,o v = 0 such that there holds, for any 0 < e < ey and for any (t1,£1,t2,&2) € A:

‘¢E(t17£15t2a£2)(x)| < 1/5<W1(.ZU)+W2(33)) fO’)” any:UGM. (44)
Here again Wi and Wy are given by (3.2) and A is as in (3.3). In particular, up to

assuming that €1 is small enough, we will assume that ve < 5 for 0 <e <ey.

Proof of Proposition[f] The proof of Proposition [4] is divided into two Lemmas. The
first one establishes, for a fixed €, continuity properties of the mapping ¢. in strong
spaces.

Lemma 4.2. There ezists €1 > 0 such that, for any 0 < € < &1 the mappings:
(t17€17t27§2) €EAr— WLE,thEl + WQ,E,tl,tmﬁz € CO(M)
(t17€17t2)£2) € A — ¢€(t17€17t2)£2) € CO(M)

are well-defined and continuous.

Proof. For the first map, the assertion simply follows from the explicit expression of the
right-hand side given by and by the regularity properties of A¢,. We thus prove
the Lemma for the second map. First, by and we let €1 > 0 be such that, for
any 0 < € < 1 and any (t1,&1,t2,&2) € A there holds:

n—2

1
[pe(t1, E1st2, E2) | (ary < iKn > (4.5)

where we have let:

4
Ky= |[— (4.6)

n(n — 2)wy;
and w, is the volume of the standard unit n-sphere. Let 0 < ¢ < 1 be fixed and
(t1,&1,t2,&2) € A. First, since Z; j is smooth for any i € {1,2} and j € {0,--- ,n}, by
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(4.1) and by an adaptation of Trudinger’s argument [30] (see also [9], Theorem 2.15) we
get that

(Wi + Wa + ¢e)+ € L¥(M)

for some s > 2*. Then, with (4.1, a bootstrap procedure applies and shows that
u. € C?(M), and hence that ¢. € C°(M). Note however that ¢. is not smooth on the
sphere {dg. (£1,0,y) = 7o} since Wi is not.

Let now (t1 %, &1,k 2k, €2,5)k>1 be a sequence of points of A converging towards (¢1,0, 1,0, t2,0,£2,0)
and let ¢p = ¢e(tik, &1k t2k, E2,6) for any k > 1 and ¢do = ¢c(t1,0,61,0,t2,0,62,0)- By
Proposition br — ¢o in H' (M) as k — +o0o. Assume first that the sequence (¢ )x

is uniformly (in k) bounded in L>(M). Then (3.2), and standard elliptic theory

in show that every subsequence of (¢y)r admits a subsequence which converges in
C%(M), and therefore to ¢g. In this case, thus, ¢p — ¢o in C°(M) as k — +oc.

We therefore assume that, up to a subsequence, ||¢k||pry — +00 as k — +oo. A
Green’s representation formula for uy given by with and standard properties
of Green’s functions (see [24]) show, since (W7 + W + ¢5)+ > 0, that there exists a
positive constant C;, independent of k, such that:

inf ¢, > — 4.

1]1\14 Cbk = Os ( 7)
for any &k > 1. In particular, we might as well assume that maxy;(¢x)+ — +oo as
k — 400 and let oy, be such that ¢y (1) = ||k Loo (ar) = maxas(¢r)+ — +00 ask — +oo.
We let pp = qﬁk(azk)*% and, for any x € Bo(ig(M)/puy), we let g = exp; g(pux-) and

n—2

() = > up(expy, (uet))-

With ([4.1)), @y, satisfies, for any y € Bo(ig(M)/p):
Pgyiin(y) + 12 (enSy + b+ €H ) ()i (y) = (in(w))3 ™

nt2
1 >Ntk Gt ks S (Ag +cnSg +h+ sH) Zij(Yk),

.3

where we have let yp = exp,, (uxy). By (4.7), by the definition of x;, and since ¢ is fixed
throughout this proof there holds:

n—2 n—2

—Cepy® < uk(y) <1+ Copy®

for some positive constant Cy and for any y € Bo(ig(M)/pi). By (4.3) and standard
elliptic theory, ) converges therefore in C’lloc(]R{”) to ug, with 0 < 4g < 1, solution of

Y L |
Aty = g

By the definition of z; we also have 4y(0) = 1, so that the classification result in [3]
n—2

implies that |[do| 2% (gn) = K, ? , where K, is given by (4.6). For a given R > 0 there
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holds thus:

J

n—2

g2 du > / g2 vy + O, ” )
(Rp) Bay, (Ruu)

Tk

n—2
:/ ‘ak|2 dug, —G-O(,qu )
Bo(R)
:/ |€L0\2*da:+o(1) =(1+erp)K," +o0(1),
Bo(R)

as k — 400, where limg_, 1o g = 0. This is a contradiction with (4.5) for R and k
large enough and concludes the proof of the Claim. U

The second Lemma establishes a rough version of (4.4)):

Lemma 4.3. Let g1 be as in Lemma and let (t1c,81.6,t2,6,82,)0<c<e, be a family of
points of A. Define, for any 0 < e < eq:

¢5(t1,57 61,57 t2,aa 52,6)
W1767t1,57£1,6 + W2,57t1,5,t2,5)§2,s

ve = ‘ |
(M)

Then v — 0 ase — 0.

Proof. We prove Lemma by contradiction, and therefore assume the existence of a
sequence (gx)k, 0 < g < €1, with e, — 0 as kK — 400, such that

= 1o (4.8)
Co(M)

Pk
Wi+ Ws
for some n9 > 0, for all £ > 1. In (4.8), for the sake of simplicity and using the
previous notations, we simply wrote t1., = t1, {1, = &1, legkvtl,akvfl,sk = Wi,
Gey, (t1es E1 ks L2k, E2.6) = @1 and so on. We will keep these notations throughout the

proof of the Lemma and it will be implicit that we will be working with the quantities
given by (3.2), associated to the sequences (eg)r and (t1¢,,&1 6,5 t2,65 62,61 )

The proof of Lemma consists in an asymptotic a priori analysis of the sequence
(¢r)r and is divided into several steps.

Step 1: local convergence. We first show that, for 1 < ¢ < 2, there holds, up to a
subsequence:

M:TQuk(exp&. (,uz)) —Up in Clloc(R”), (4.9)
as k — 400, where u, = ue, is as in , where p1, o are given by and
a2 ' "
Up(z) = <1 + n(n—2)> for x € R"™. (4.10)

The arguments involved in the proof of (4.9)) are slightly more complicated than in the
usual cases since uy can change sign. For 1 < i < 2 and for € By(ig(M)/pi), let
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n—2
vik(z) = p, 2 uk(exp& (,uzx)) Letting g; 1 = expgi g(ps-), with (4.1) v; 5, satisfies, for
any x € Bo(ig(M)/p;) and for xy = expy, (pix):
Ao wVige(T) + 112 (enSg + h+ e H ) (zr)vie = (vig)}

+Z)\UHZ (A +cnSy +h+€kH)Zi7j(ﬂ?k). (4.11)

We show that v; , is umformly bounded in C? (R™) by investigating its positive and
negative part separately. First, a straightforward adaptation of the arguments in [18]
shows, with (4.11)), that (v; )+ = max(v;,0) satisfies the following equation in a weak
sense:

Agir i)+ + 13 (cnSy + h+ e, H ) (expe, (i) (vige)+ < (vig)3 "

+ Z NEp® (A +enSy + h+ ng) Zi jexpe, (157)) Lo, >0-

By (4.3) and ( we have:

Z )\”,ul 3 (A +c, Sy +h+ skH) Zij(zr) =0 in CP.(R™) as k — +oc.
5]

(4.12)

Also, u? (cnSg + h+ EkH) (exp& (uz)) — 0 in Clooc(]R“), and by the definition of v; , by
(3.8) and (4.2]) there holds that:

lim lim sup/ v2.(y)dy =0 Ve R™
r=0 100 o (7) ’

Hence, an adaptation of Trudinger’s argument [30] to (4.12]) shows that for any R > 0

there exists Cr > 0 such that

| (Vi) +llcoo(r)) < Cr (4.13)
for k large enough.

Independently, let G}, denote the Green’s function of Ay + (¢, Sy +h+¢e,pH) in M and let

(zx)x be a sequence of points in M. By ({3.2)), (4.1) and (4.3) a representation formula
for ug gives:

(k) 2 —epity ? (Wl(xk) + Wa(xy)).
We used here that by and ( . ) there exists a positive constant C' depending only
on n such that |Z; ;| < CW; for i =1,2 and j =0, ...,n. Since by and there
holds liminfy_, 4 o dg(&1,&2) > 0, the latter inequality shows in particular that for any
€ Bo(ig(M)/ pi):

n—2
Vi 2 —€k — ERMY Ty
This shows that:
(’Ui’k)_ —0 inC2 . (R") as k — +o0. (4.14)
Standard elliptic theory, with (| and ( -, shows With - ) that v; , converges in

CL.(R™), up to a Subsequence as k — +o0. And (3.1)), (3.2] , and . ) show that
the limit is Uy given in , which concludes the proof Of
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Step 2: uniform lower bound on ¢;. We now show that there exists a positive
sequence 7, — 0 as k — 400 such that, up to a subsequence,
or(x) Z —ne(Wh + Wa)(z) for any z € M. (4.15)

Let (zx)x a sequence of points such that

Ok ()= inf — Pk

Wi + Wy zeM W1 4+ Wy
Remember that Wi 4+ Wy is positive in M. We write again a representation formula for

ur with (4.1)) and (4.3)), which gives:
(Wl + Wy + ¢k) (zk)

(4.16)

2*—1 n—2

2 / Gr(Tk,y) (Wl + Wa + <75k) dvg — eppy ® <W1 + W2>

M +

n=2 2%—1
2 —Ekity® (Wl + Wz) + / Ge(xg,y) <W1 + Wy + <Z>k) dvg
Be, (Rip1) +
2% 1

+ / Gr(rk,y) <W1 + Wa + ¢k) dvg,

Be, (Rip2) + ( )

4.17

where R > 0 is chosen so that Riyu; — 0 as k — 400 for ¢ = 1,2 and such that

Be, (Rip) and Bg, (Rypu2) are disjoint for all k. The integrals in (4.17) are estimated
with Fatou’s lemma and (4.9) which in turn, with (4.16)), yields (4.15)).

Step 3: Blow-up analysis. Step 2 shows in particular that, for k large enough,
1
up = Wy + Wo + ¢ > §(W1+W2) in M.
So uy, actually solves, in M

1,3

(Ag +¢nSy + h + EkH>uk =ul 4 Z MGk (Ag + ¢nSy + h + ekH) Zi .
i)j

Using (4.3)), an adaptation of the blow-up analysis performed in [22] (Proposition 4.1,
Steps 4, 5,6), see also [2§], shows that there holds, for any sequence (zy); of points of
M:

|pn(xr)| = 0<W1(95k) + Wz(%))-
Pk

Applying the latter to the sequence (z1); that achieves the maximum point of W
in M then yields a contradiction with (4.8]), and concludes the proof of Lemma O

We now conclude the proof of Proposition Let €1 be as in Lemma Then, again
by Lemma for any 0 < ¢ < g1 there exists (16,16, t2¢,82,) € A such that:

’ Pe(t1e,81,6t2,6,E0,e) Pe(t1, 81,12, &2)
Wl,E,tl,mﬁl,e + W2757t1,57t2,5:£2,5 W1757t17£1 + W2,€7t1,t2,£2

= sup
co(M)  (t1,€1,t2,62)€A

ooy
(4.18)
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where A is as in (3.3]). Let, for any 0 < ¢ < &1, v be given by Lemma for this
maximal family (¢1¢,&1¢,%26,62,¢)0<e<e,- Then, for any € M, for any 0 < e <& and

for any (t1,&1,t2,&2) € A, there holds by (4.18) that:
‘¢E(tla€17t27€2)($)| <y
W17€»t1’§1 (x) + W27€7t1»t2’£2 (x) -
Since lim._,o vz = 0, this proves (4.4)) and concludes the proof of Proposition . O

The estimates on |p.(t1,&1,t2,£2))| given by Proposition are, for a given e, uniform
in the choice of (¢1,&1,t2,&2). This is an important property of our analysis that will be
crucial in the final argument of the proof of Theorems and

A consequence of Proposition is that for any 0 < £ < €7 and for any (¢1,&1,t2,&2) € A,
we now have

1
Wi+ Wa + ¢ (t1,61,t2, &) > 3 (W1 + Wa).

In particular, with (4.1]), we now see that for any 0 < ¢ < ;7 and for any (¢1,&1,te2, &2),
ue given by (4.2)) actually satisfies in M:

(Ag + cnSg+ h+ 5H> ue =uZ DX (Ag + cnSy+ h+ €H> Zij.  (4.19)
ihj
5. SECOND-ORDER POINTWISE ESTIMATES

In this section we refine the pointwise estimate on ¢. given by Proposition in balls
of fixed radius centered at &. These improved pointwise estimates will compensate for
the insufficient precision of (3.8)) and will be the crucial ingredient of the asymptotic
expansion of the A7 ; in Section @ Let:
- —or
A1 = AO X BQEl,O (5170,7'0) X A() X Bg(fg,(), 5), (51)

where Ay is the compact set in (0, 4+00) appearing in (3.3). The second-order estimates
that we obtain are as follows:

Proposition 5.1. There exists ea > 0 and C > 0 such that, for any 0 < ¢ < &9 and for
any family (t1e,&16,t2,6,62,¢)0<e<e, € A1, where Ay is defined in (5.1)), we have:

o Ifn=4, and for any x € By(§2.,5):
92(90)) ’ iz
ln( Hh2 92(53)2)’ (52)

3 3 3 1 T 3 3 1% %
0000 < €+ 1) + a4 i malif (225) ) 59

|9 ()] < C(%(m + p2) + pi2 [In 0o ()] 4 papo

o Ifn=2>5, and for any x € By(§2¢,5):

Here, as before, we have let ¢. = ¢o(tic,&1e,t26,62), 1 and po are given by (3.1)), 62
is as in (3.4) and v. is given by Proposition .

As for the proof of Proposition we start by proving a weaker version of the result.
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Lemma 5.2. Let ey and (ve)o<e<e, be given by Propositz’on and let (t1 2,816, t2.6, 82,6 )0<e<e,
be a family in A, where A is in (3.3)). There exists 0 < g9 < &1 and C > 0 such that:

o Ifn =4, and for any x € By(&2¢,210):
92(3?)) ’ 2
ln< p2 92(90)2)’ (54)

|¢e(x)] < C (Vs (11 + p2) + p2 [ Oz ()| + papee

e Ifn=2>5, and for any x € By(&2¢,210):

3 3 3 _1 7 3 3 %) %
60 = ©veluf + )+ dbae) 4 lmlis (225)" ) 69)

where we used the same notations as in the statement of Proposition|5.1].

Proof. Let (t1 6,816, t26,82,6)0<e<e, € A. Throughout the rest of this proof C' will denote
a positive constant independent of €, which might change from one line to another. We
will adopt the same notations as before.

We first assume that n = 4. By (4.19) and since the supports of H and Wy are
disjoint, ¢ = @c(t1,6,&1 6, t2c, {2,0) satisties in M:

(25+ ésg thtel) | 6: = 3N 7 | = (Wi +Wat @)3 ~ (Wit W2)3
2

1
. [(Ag + Sy tht &:H)W1 - Wf‘] + 3WEW, + 3W, W2

= [(Ag + ésg +h)Wa — WQ?’} .
(5.6)
For any 0 < ¢ < €1, let G. be the Green’s function of A, + %Sg + h with Dirichlet
boundary condition on Bg(&2,270) (remember that & = &a.). Let (2.)c<c, be a family
of points in By(&2,2rg). For any 0 < € < e, if x. € By(&2,210)\By(&2,70), there holds
trivially:

|9 ()| < (1Bl o 20\ ro) s (5.7)

where we have let ||dc|/co(2r\ry) = ”¢6||CO(BQ(§2,27~O)\BQ(52,r0))- Otherwise we write a
representation formula on By (&2, 2rg) for ¢. with . This is possible since by definition
Wy is smooth in By(&2,2r9) and therefore so is ¢.. Since the Z; ; and H are supported
outside of Bg,(2rg) we get that:

4 4
(fe(2) =Y X5 1 Z2,(x2)| < O | N bellco@rovr) + Msoltz + Y Nojlis + i+ o+ I+ L |
=0 =1
(5.8)
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where

B[ el (W o) ) - (e w)

dvg(y)a

1
= [ Gulan)| (804 gy 1YW = W doo)
By (£2,2r0)
I3 = / Ge (e, y) (WEW2 + WiW3) dug(y),
Bg(&2,2r0)
1 3
L= Ge(ze,y) (Ag + 25+ h) Wa — W3| dug(y).
By (&2,2r0)

First, by (3.12)) and standard properties of Green functions (see [24]) there holds:
I4 S C,ug ]11192(305)] s (59)

where 65 is as in (3.4]). Then, by (3.2) and since by (2.6 there holds dge, (&1,y) > 1o for
any y € Bg,(2r9), it is easily seen that there holds:

I, < Cus. (5.10)
Straightforward computations using (3.2)) show that there holds:

1n<92$€)> 12 > (5.11)

92($6)2
‘<W1 + Wy + ¢s)3 - (Wl + W2>3' < C(W1 + W2>2’¢e’7

I;<C (M2 I 02 ()| + 1 pe2

Finally, Proposition [4.1] shows that

so that straightforward computations lead to:
2
) Boclosany, (5.12)

. (922?)> (2.

where we have let [[¢c[lco(ary) = [[¢llco(se, (2r0))- Combining (5.9)—(5.12)) in (5.8) gives,
with (5.7) and (3.1), that there holds, for any (z:)o<c<e,, 2= € By(&2,210):

I1§C(M%+N2

4 4
|Ge(we)— D X5 ;70 4(xe)| < C <||¢s|\00(2r0\r0) + A5 0lm2 + D XS 53 + pg |In fa(ac )|
j=1

7=0
02 (ze) 2 02(ze) fho
1n< 142 >‘ ‘92(555)2) ”d’aHCO(Zro) + pipe ln( 12 >‘ 02($5)2>'
(5.13)

By evaluating (5.13)) at suitable points satisfying dq(x.,&2) < p2 one gets with (3.1) the

following estimate on the Aj ;, 0 < j < 4:

+ <M% + p2

4

S 1551 < Crz (6ellengargy + 1) (5.14)
§=0
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so that, using Proposition (5.13) improves into:

|pe(2e)| < C(Vg(ul + p2) + p2 [In s ()|

62 (xe) 2
] .
n < 2 TNERE P=llco(ar) + M2

(42)

Claim 5.3. There exists 0 < g9 < &1 and C' > 0 such that, for any 0 < ¢ < &9, there
holds:

2 M2
+ (,Ltl + po 92(1:5)2) .
(5.15)
We now claim that the following result holds true:

el co@ry) < Cha. (5.16)

Proof. Remember that p11 = p1.(t1,¢) is given by (3.1). We proceed by contradiction
and assume that for some sequence (gi ) of positive numbers, e, — 0 as k — 400, there
holds

||¢]€HCO(2T0) > pp as k — +o00. (5.17)
As before, until the end of this Claim it will be implicit that all the quantities u1, &1, ...
depend on this subsequence (gx)x according to (3.1]) and (3.2). We will let in particular

bk = ¢e;, (t1,61,12,62). Let (yx)r be a sequence of points such that [k (yx)| = [|@kl|co(2ry)-
By (3.1) and (5.17) there holds

p2 B2 (yr )| < p2|In pa| = o([|érllco(ary))

as k — —+o0, and by Proposition limy_y o0 ¢, = 0 so that (5.15) and (5.17]) show
that

02(yk) < Cpa, (5.18)
where 0y is defined in (3.4)). For any y € Bo(%) we then let:
~ 1
DY) = bk (expg, (12y)).- (5.19)
Pkl co(2r0) (expe, )
On one hand, (5.15)) and (5.17) show that:
z In(1 + y[) ro
or(y)| < C————=5 4+ 0(1) on By(—). 5.20
% (y)] a5 )2 (1) (uz) (5.20)
On the other hand, (3.2)), (3.11)), (3.12)) and (5.17) show that:
15 1
— 2| [(Ag + =S, + h)W1 — W{”] + 3WEW, + 3W W3
[Pkl co(2ro) 6

- {(Ag + 25y h) W wg] ) ((expe, (1))

converges to 0 in CP (R?) as k goes to +o0o. Using Proposition (5.6) and standard
elliptic theory, we then get that ¢, converges in C}

L (RY), up to a subsequence, towards
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¢~)0 as k — +oo, where QEO solves in R%:
4
Acuado = 3Ugdo + > A3,V (5.21)
§=0
Here eucl denotes the Euclidean metric, Uy is as in (4.10]) and for any 0 < j < 4 we have
let: E
k
50 2,j
= lim —————
2 koo p2l| okl co(2rg)
That this limit exists, up to a subsequence, is a consequence of ([5.14]) and (5.17). Also,
in (5.21)), V; is defined in R™ for any n > 3 by:

= (s 1) (1 )
Vily) = y; <1+n(n_2)

Passing (5.20) to the limit shows that ¢g € L*(R?*) so that integrating (5.21)) against Vj
shows that )\87]- =0 for any 0 < j < 4. Now the result of [I] implies that:

i (5.22)
2
) , forany 1 <j<n.

o € Vect{V;,0 < j < 4}.

To conclude the proof of Claim [5.3{ we now prove that ¢o € Vect{V;,0 < j < 4}+, where

the orthogonal is taken for the usual scalar product in H 1(R*). This will imply that

gbo =0, Wthh is a contradiction since |¢0(y0)| =1 by (5.18§] -, where 7 is the limit of
expy, Y(yp) as k — 4o0.

To prove that ¢o € Vect{V;,0 < j < 4}+, we write that by Proposition there holds,
for any 0 < j < 4:

<¢k7 Zj> = 07
where (-, ) is the scalar product given by (3.6). Let now R > 0 be fixed. The latter
equality implies, since Z5 ;, 0 < j < n, is supported in By(&2,2rp), that:

1
/ (Vor, Vs ;) + (659 + h) ¢ Za,j | dvg = / Oy Za jordoy
Bg(§2,Ru2) 0Bg(&2,Ru2)

1 (5.23)
Dy+ =S4+ h) Zs vy,

/39(52727"0)\39(52»1%#2) (
Straightforward computations using (2.10) show that there holds, for y € By(&2,2r0):

| Ay Zao(y) = 3Wa(y)* Z20(y)| < Crzba(y) 2,
\A sz )—3W2( )2sz( )] < Cudby(y) =3, for 1 < j <4,

where 65 is as in . Now, and (| show that:

In(l1+ R
/ O 0oy < (c() +o<1>> w2l ellcogons.
0Bgy(&2,Rpu2)

(5.24)

1+R
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that
/ pab() ey = olpa|onl o)
Bg(§2,270)\Bg(§2,Ru2)
and that
/ W3 22 yondey| < (g + o)) ealonl oo
By (£2,2r0)\ By (£2,Rp2) (1+R)
so that (5.23)) becomes:

1 R
< (on(“) n o<1>) |9l co(ane

1
Vi, VZa,) + (=S, + h)dpZo | dv
/Bg@g,m) << b Vaag) + (5o ) 23) ! 1+ R

Dividing both sides by ual|¢k|/co(2r,), using the definition of b in (5.19), letting first k
go to 400 and then R — +o0o we obtain that:

/ (Vo, VV;)dx = 0.
Rél

This proves that <;~30 € Vect{V;,0 < j < 4}L and, as explained above, gives a contradiction,
thus concluding the proof of Claim O

Plugging (5.16)) into (5.15)) and using (3.1)) concludes the proof of Lemma for n = 4.

Assume now that n = 5. The proof is similar to the four-dimensional case. By (4.19)
¢. satisfies in M:

7

(29 + %Sg thteH) (0.0 2 | = (Wi+ Wato.) = (W1 + W)
,J

w1

z 7 7 3 7
(W we)” W -y - [(Ag + S+ ht eH) Wi - Wf]
3 i
- [(Ag + =50+ PYWs - W;] .
(5.25)
For any 0 < ¢ < g1, let G¢ be the Green’s function of A, + 1%59 + h with Dirichlet

boundary condition on Bg(&2,2r). Let (2:)o<c<e, be any family of points in By(&2, 2r9).
For any 0 < € < ey, if 2. € By(&2,2r0)\By(&2,70), there holds trivially:

|¢€(1‘€)| < H¢€ ||CO(2T0\7‘0)'

Otherwise we write a representation formula for ¢. with (5.25)). Since the Z;; are
supported outside of By (&2, 2rp) mimicking the computations that led to (5.13)) and
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using (4.3)), we get that there holds, for any (z:)o<e<e,, 2 € By(&2,210):

- N PR N AU T
’¢s(x€) - Z)‘Q,jzlj(‘ré‘” <C H¢€HCO(2T0\7"0) R a5 02(376) + pq 92(.% )
j=0 €

2
(s (al) ) edenem)
(5.26)

Evaluating again the latter estimate at suitable points satisfying dg(x.,&2¢) < p2 one
gets, with (3.1]), the following estimate:

5 3 3
S, < Oud (nqbancomm) i uf) , (5.27)
=0

so that, using (3.1) and Proposition (5.26)) improves into:

3 3 73 2 e \?
6e(we)| < O ve(ud +13) + iF + 13 ala) +uf( )

92(.%5)
2
T (ﬁ n (92‘(‘;)) ) ||<z>5||co<2m>>.

As before, we prove the following claim:

(5.28)

Claim 5.4. There exists 0 < g9 < &1 and C' > 0 such that, for any 0 < ¢ < g9, there
holds:

3
< 2
0 <
[¢ellco@rg) < Chit - (5.29)

Proof. Here again we proceed by contradiction and assume that for some sequence (e)x
of positive numbers, ¢, — 0 as k — +o00, there holds

3
18kllco@2rg) > 1i as k — +oo, (5.30)

using the same notations as in the proof of Claim Let (yx)r be a sequence of points

3

such that |¢x(yx)| = [|¢kllcory)- By (3.1)), (3.4) and (5.30)) there holds ud O (y) 1 =
o(|[@kllcoarg)) so that (5.28) and (5.30)) show that

Hg(yk) § Cug. (531)
For any y € Bo(%) we let again:
~ 1
or(y) = Toelco@m )¢k(eng2 (12y)).- (5.32)
7o
Then (5.28) and (5.30) show that there holds:
~ 1 To
<C—+——5 +0(1) f € By(—). 5.33
|¢k’(y)| = (1 + |y’)2 O( ) or any y O(MQ) ( )



24 BRUNO PREMOSELLI AND PIERRE-DAMIEN THIZY

As before, (3.11)), (3.12]), Proposition (5.25), (5.30) and standard elliptic theory

show that ¢, converges, up to a subsequence, in C}_(R%) towards ¢ as k — +00, where
¢o solves in R5:

AeulegO =

w3

5
4 . ~
Ugdo+ Y M,V (5.34)
=0

where eucl is the Euclidean metric, Up is as in (4.10), the V; are as in (5.22) and for any

0 < j <5 we have let:
€k

N . 2
) lim o]

k——+o0 ’

g 3
145 |kl co (2rg)

which exists, up to a subsequence, by (5.27) and (5.30). Passing (5.33) to the limit
shows that ¢y € L%‘O(R5) so that integrating ([5.34) against V; shows first that 5\(2) ;=0
for any 0 < 7 <5 and then, by the result of [1], that:

do € Vect{V;,0 < j < 5}. (5.35)

As before, we now prove that ¢g € Vect{V;,0 < j < 5}+. By Proposition 3.1/ there holds
again

{0k, Z5) =0
for any 0 < 7 <5, where (-, -) is given by (3.6)), so that for any R > 0 this implies that:

3
/ (Vor,VZs ) + (1—65g + h)qSngJ- dvy = / 0y 2 j0rdog
By(é2yR/‘2) 839(52’]3%“2) (536)

3
—/ (29 + =Se+ B) Zs jonclv,.
Bg(§2,210)\Bg(§2,Rp2)

Straightforward computations using (2.10) show that there holds, for y € Bg,(2r9):

7 4 3 _
8y Za0lt) = GWa(0)} Zaal)| < Cibbato) .
(5.37)

3
where 65 is as in (3.4). Now, (3.2)), (5.28) and (5.30) show that:

/ 8,,Z2,j¢>kdag
OBg(&2,Rp2)

7 4 3 _ .
NgZs 5(y) — W2(y)§Z2,j(y)‘ < Cuiba(y)™, for 1 <j <5,

C 3
< (og+ o) oo

that

3 3
13 02() " drdvg| = o(13 || dkllcoary))

/Bg (§2,2r0)\Bg(§2,Ru2)
and that

s C g
W3 Zs jordug| < ((1‘1'}3)4 + 0(1)> 145 |0kl o (2ro)

/Bg (§2,2r0)\Bg(§2,Rpu2)
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so that ([5.36)) becomes:

3 C 3
Z2j — Sy +h)opZo i |dvg| < | —— 1 2 .
/Bg(&ﬂw) <<V¢k,V 2,5) + (16 o+ h)odn 2,1) Vg| < <1+R + o )) 113 1611l co (20

3
Dividing both sides by 3 HgkaCD(er), letting first the £ — +o00 and then R — +o0o gives
as before that (50 € Vect{V;,0 < j < 5}+ and hence QEO = 0. But this is a contradiction

with (5.35), since |¢o(70)| = 1 by (5.31)), where g is the limit of iexpg(yk), and
concludes the proof of Claim O

Now, plugging ([5.29)) into (5.28) yields:

3 3 73 2 e \?
0e(a)| < O ve(ud + d) + uf + o) +uf( ) '
92(.%5)

Writing down again a representation formula for (5.25)) and using the latter to estimate
the term involving ¢. then concludes the proof of Lemma for n = 5. O

Note that the precision that we reach in Lemma [5.2]is related to the nature of ¢., in
particular to the property of ¢. to be orthogonal to the kernel elements.

End of the proof of Proposition[5.. Of course the constants eo and C given by Lemma
do depend on the choice of the family (¢1¢,&1,¢,t2,6,62,c)e<e,- To conclude the proof
of Proposition 5.1 we establish as before their uniformity. We only write the argument
for n = 4 since the n = 5 case works identically. First, the right-hand side of
(seen as a continuous function in M) is obviously continuous in (1, &1, t2,£2). Therefore,
by Lemma there exists a family (¢1¢,&1,6,t2,6,62,c)0<e<e; € A such that for any
0 < ¢ < ¢; there holds:

¢5(t1,5, 51,57 t2,67 52,5)
Ve(t1,e + p2e) + p2e I 02()| + pi1,epi2e

7
=0 oo @, @prm)

% ,5(‘)
ln< 2#2 )
_ sup Ge(t1, &1, 12, &2)

(t1.€1.t2,62)€A || Ve (1 + p2) + po [Inba(¢)| + papo ‘ln (ei—g)) 02‘2?)2

C%(Bg(£2,0,70))
(5.38)

where &30 and 79 are as in (2.6]), v, is given by Proposition and A is given by (3.3)).
Note in particular that & € By(£2,0,70). Let €2 and C be the constants associated to
this family (tl,g’51767t275’€275)0<5§51 by Lemma Let now & € Bg(fZ,Oa %’) Then:
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Therefore, for any 0 < € < &9,

¢6(t17 517 ta, 52)
sup

(tr€1.t2,€2)€A1 || e (g + po) + po [InOa(+)| + w1 pe ‘]n (92 )) B2

02(-)? 00(33(52,%0))

)

where in the last inequality we used that Ay C A and By(&2,0,70) C Bg(&2,,2r0) in order
to apply (5.38) and Lemma This concludes the proof of ([5.2)). O

(.
2

< P (t1, &1, t2,&2)
< sup
(t1€1,t2,€2) €A1 || e (o1 + p2) + pa [InO2(-)| + w1 pe ‘ln (

<G,

0a(:
w2

)

1
8200% 100 (B, (E2,0,m0))

6. ASYMPTOTIC EXPANSION ALONG THE KERNEL

For any 0 <e<egrand (tl,fl,t2,§2) S A1 we let ¢€ = ¢5(t1,§1,t2,§2) be given by
Proposition , where A; is as in and g2 is given by Proposition In this
Section we obtain an asymptotic expansion of the functions )\f’ o 1<i<2,0<5<n
defined in . Throughout this section, all the asymptotic expansions that we will
write hold in C%(Ay).

6.1. Expansion of the A{;, 0 < j < n. We first obtain an asymptotic expansion of

the )\‘ij, 0<j<n:
Lemma 6.1. The following expansions hold in C°(Ay) as e — 0, where Ay is as in
1)
If n =4:
IV Vol 72wy AT 0t €1, 2, 2) =
C3(4) _2t _ 2ty
2(CL®H (€ — Co(AAG) + 5= Fa(€1))e™ = +o(e™ ), 6
IV V113 A5 5 (11, €1 2, £2) = ’
3t 3t
OOV H(E) — CAVAG) + C3(4) (B (€) )e™ = +ole™ =),
Ifn=>5:
IV Vol 2 sy X o (t1: €1, 22, €2) =
4
(5C16)H(E)E —205(5)6 A1) +203(6) Fr(€1) ) + o(%), o)

Hv‘/] |’%2(R5) ij(th &17 ta, 62) =
5(C1(5)VH(€)E — Co(5)VAG)H + C5(5) (T3 F) (€0t )= + o(e).

In (6.1) and (6.2) the V; are defined in (5.22)), A(§1) denotes the mass of the Green’s
function of the operator G¢, at & defined in (2.4)), Fy, is defined in By, 0(51,0, 2rg) and
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given by
PO = [ Gul&h(1)Gy (1) (o). (63
C1(n),Ca(n) are positive constants given by (6.13)), and Cs(n) is a positive constant

defined by (6.10]) below.
The explicit values of the constants C;(n) do not come into play in our final argument.
It is important to notice that the term A(&;) — Fj,(&1) is just, in view of (2.12)), the

mass of the Green’s function Gp(&1,-) at & by analogy with (2.4). Note that the mass
of Gp(&1,°) at & exists because h is supported in M\ By, (£1,0,2r0). If h were just a

smooth function in M the next order term in expansion (2.4]) would likely be singular
too, as explained in [24].

Proof. These expansions only require the H'! estimate on ¢. given by (3.8). By (3.2),
the Z1, 0 < j < n are supported in Bg§10(§1,0,2r0). Since Wa, the Z5; and h are

supported in M\Bgé1 . (&1,0,21) it is easily seen that (4.19)) rewrites in By, | (&1,0,2r0)
as:

Z AL (1, 61,12, 62) (Ag +cnSy + €H> Z1j=¢eHT)
=0
4 A 2*—1 6.4
+ (gt enSy +eH) (W1 + 62) — (W1 +92) (64
- |:(W1 + Tl + ¢a)2*_1 - (Wl + (1)5)2*_1},

where T} is given by (2.8) with u1 given by (3.1). To estimate the A ; we integrate (6.4)
against 7y ;. First, by (2.11)), (3.1) and (3.2) there holds, for 0 < j < n:

_2t i 4
o(e{ =) ifn= =0,
o(e%) if n =25,
6/ HT1Z17jd’Ug: 3¢ (65)
M ole"=) ifn=4 )
if1<j<n
o(e?) if n=>5,
Then, we write that
’(W1+T1 o) T o (W +e) T = (20— 1)W12*_2T1‘
S Wi+ ) T2 4 1>~ 4 | (W + ¢0)2 2 = W2 2|1y (6.6)

S (Il 2+ WE 310 | Tu] + (WP 2 + | * %) | Tu ) + | Ty > L

Straightforward computations with (2.11)), (3.1) and (3.2]) give that:
2t
e if n =4
ole" =) ifn =0,
%) if n =5,

(
(

{o(e_s) ifn=4
(

e*) if n =5,

/ (Wf**?’\Tll2 + |T1|2*_1) | Z1,4]dvg =
M
f1<j<n,
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while (2.11)), (3.1)), (3.2) and (3.8) give, with Holder’s inequality:

[ (10 20+ W2 0ulT3 ]+ 0PI 1211y =
M

e T
ole” =) ifn =0,
o(e%) if n=>5,
_3t ¢
ole”=) ifn= if1<j<n
o(eh) it n=>5,
Combining the latter computations in then gives:
s 2% -1 P 251
— [ 0+ T+ 6)" T = (W14 0.) 7 21 v, =
M
2tq
ole =) ifn=4 =0,
. < ov o o(e®) if n=>5,
— (2" - 1)/ Wi iz jdvg + 3ty
M ole"=) ifn=4 . .
if1<j<n.
o(eh) if n =25,

With (2.11) and (3.2) it is now easily seen that there holds:

— (2" — 1)/ WP 2Ty Zy gdvg = Cs(n)pf "> Fy(&1) + o(p} )
M
and

— (2" - 1)/ WP Ty 2y jdvg = nCy(n)ui = (V1 Fn) (61) + o(pi ™),
M

(6.8)

(6.9)

where 1 is given by ([3.1) and where C3(n) > 0 is given by the following expansion as

e —0:

- [ WE T Bidu, = Catmu P F (&) + O
M

(6.10)

for Fj, defined in (6.3)). Finally, by (2.7), (3.1), (3.8) and since by construction ¢. is

orthogonal to the Z; ;, 0 < j < n, an adaptation of the computations in [§] (Section 6)

shows that there holds:

/ [(Ag +enSy+eH) (Wi + ¢e) — (Wi + ¢5)2*‘1} Zy odvg =
M
2t 2t

2(CLH (€t — CoAE) e +ole™ ) ifn=4,

(GOGIHER ~ 200034 ) +o(*)  ifn=5,

(6.11)
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and
/M (g + caSy +2H) (W +62) — (W1 +6.)7 ] 21 oy =
3t

11V H (€ - Co(4) VA6 ))e*”% Yol ) ifn=4,

5(C1(5)VH(E)E — Co(5)V,AE)H )t + o) ifn =5,
(6.12)
where C1(n) and Cy(n) are two positive constants defined by the following expansion as
e — 0

/ ‘VWlfg (cnS +¢eH) Wl dvg — / Wl*dvg
- -2y 6.13
| (Ci@HE ~ BWAE))e ol ) in=4 (613)
n (01(5)H<51)t§ - 02(5)A<51)t§’)a3 +o(e%) if n =5
It remains to notice that by (3.2)) there holds:
(Z15, Z1k) = 0k V V1172 gny + 0(1)

for 0 < j, k <n, and even:

ole™) ifn=4

o(e) if n=>5,

(Z1,0,21,5) = {

for 1 <j <mn,in C°A;) as € — 0, where (-, ) is given by (3.6) and Vj is as in (5.22).

With (3.1, . (6.5), (6.7), . (6.9), (6.11)) and (6.12) thls concludes the proof of

the Lemma. 0

6.2. Expansion of the )5 ., 0 < j < n. In this subsection we obtain an asymptotic
expansion of the ASj Unhke the case of the Aj,j» the expansion of the A\§ j how crucially
relies on the premse pointwise asymptotics on d)s obtained in Sections [4 and [5}

Lemma 6.2. The following expansions hold in C°(A1) as ¢ — 0, where Ay is as in

E1):
If n=4:

IV Vol 72 ey A5.0(t1: €, b2, E2) =
(201 (h(E2) 1183 — Da()t2Gil61, &) )ee™ = +o(ze™ =),
IV Vil 22y 25,5 (t1, 1, b2, E2) =
4(Di@V,h(E)0E — Da()BV,Ci(61,&) e = +o(e <),

(6.14)
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If n=">5:

IV Vol 72 ms)A5,0(t1s €1, b2, E2) =
4
(5016)(&) — Da(3)(t1t2) 3G (€1, 62) )" + 0("),
”V‘/}H%Z(RE'))AS,]'(tl?éla t27 52) -

5(Du(5)Vih(€) — DaB) 1 V;Gn(61, )" + o).

(6.15)

In (6.14) and (6.15) the V; are as in (5.22), G}, denotes the Green’s function of Ay +
cnSq+h in M and its derivative is taken with respect to {&2. Also, Di(n) and Da(n) are

positive constants given by (6.20) and (6.23) below.

Proof. As before, all the asymptotic expansions that we will write here take place in

C°(A1). By - . and (4.19) and since the Z; ; and H vanish on Bg(&2, 2rp),
for any 0 < ¢ < &9 and for any (tl,&,tg,fg) € A; there holds:

Z)\%j(tl, fl, ta, fg) (Ag + CnSg + h) ZQJ‘ = <Ag + CnSg> Wl - Wl 1
j=0
W - (i +T) !
Dy + cnSy+h)Wo — WE'!
- Wy W

(

— (27 (6.16)
= [ )t - IVT_l—Wg“4—(Tﬂ—UMG&”MG]

- |

(

(W1 + W + ¢s) — (Wh 4+ Wo)> 7! = (2* = 1)(W1 + W2)2*_2¢s}
(B +enSy+ ) — (2 = HWF 20,

— @ =1 [+ we)” - g

We integrate (6.16]) against Z, ; for 0 < j < n. First, using (2.7)), (2.11)), (3.2) and (3.11])

we get that, for any 0 < j < n:

/M (8 e0) W = W21 W2 = (W 4+ 1) ] Zagy

2t1
{oae ) ifn=4

it j =0,
%) ifn =5, (6.17)

(
_ ) Lol
(2
(

olefe” =) ifn=4 ) ,
ifl1<j<n.
o(£%) if n =5,
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Mimicking the computations that led to and we get that:

/ (839 + caSy +h)Wa = WE | Zypd, =
M
2D1(4)h(§2)5t1t§ef%1 + 0(6672%) ifn=14 (6.18)
4 ;
§D1(5)h(§2)56t% + o(e%) ifn=>5
and
/ (Ag + ¢nSy + h) Wo — W3 Y Zy jdv, =
M
(6.19)
4D (A)V, (&)t t3e™ = +o(e2e ) ifn=4
5D1(5)V;h(€2)%8 + o(e?) ifn=>5

where the positive constants D;(4) and D1(5) are defined by:

/|VW2|9 (cnSy + h)Widv, — /W2*dvg

! {D1<4> <52>at1t26—%+0<56—%) fn_q (620

=2 T D)2 4 oS if 1 =
1(5)h(&2)e"t; 4 o(e”) if n =75,

n
where K, is defined in (4.6)). Similarly, direct computations using (2.13), (3.1]) and ([3.2)
show that

_2 2 .
- D2(4)5t26 € Gh(€17§2) + 0(56 € ) ifn = 47

— Dy(5)e5(t1t2) 2 G (&1, &) + 0(°) if n =5,
(6.21)

— (2* — 1) /M WQQ*_QW1Z270dUg =

and, for 0 < j < n, that

— 4Dy (4)H2e = V,G 207°8) ifn=4
_(2*_1)/ W22*_2W1227jdvg _ 2( ) 23 . J h(£17§2) +O(5 € ) )
M — 5D2(5)€9t1§t2§Vth(fl, fg) + 0(69) if n =25,
(6.22)
where VG (€1, £2) stands for the derivative of G (&1,-) at 2. Also, in and (6.22)),
the positive constants Dy(n) are given by the following expansion as ¢ — 0:

2ty 2ty
. Do(4)etoe™ = G ,€) +o(ee” = ifn=4
/ W2 ='Wy dv, — 2(4)ets 3 n(€1:62) + of ) (6.23)
M D2(5)€6(t1t2)5Gh(§1, 52) + 0(56) ifn=>5.
Finally, writing that

((Wl F W)Y oW w2 (2 — Wy | S W2 SR w2 )
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and using (2.13)) and (3.2)) yields:
/ [(W1 W) T W W - (2F = )W TPWA | Zasdu,
M

olce ) ifn=4 Fi_0
my =9y
%) if n =5, (6.24)
0526_3%) ifn=14 ) ]

if1<j<n.

o(e?) it n=>5,

We now estimate the components in (6.16)) where ¢. appears:

Claim 6.3. There holds, as € — 0, in C°(A;) :

/M [(W1 FWa+0)" T = (W + W) T — (2F = )Wy + W) 20, | Zo v,
0(66_2%) ifn=4 o
=0,
{ o(e°%) if n=7>5, 7
(
(

e2em ) ifn=4

o(c%e . .
if1<j<n.
o(e”) if n =05,
(6.25)
Proof. Let 0 < & < 9. By Proposition f.1] we can write that there holds, in M:
=1 2*—1 * 25 —2
(W24 Wa )" 7= (W 4 W) 0 = (27 = 1) (W3 + W) 6 6.26)

S (W + Wa)? 3o,

On one hand, using (3.1)), (3.2)), (4.4) and (6.26]) we get that:

/ [(Wl FWa+¢)7 T = (W + Wo)2 1 — (2% = 1)(W) + W) 26| Za dv,
By(£2,2r0)\ By (€2,°2)
2t
=) ifn=4
o(ee ) ifn if =0,
£%) if n =5,
efemF) ifn=4

o(e“e .
if1<j<n.
o(e?) if n =5,



33

On the other hand, using (5.2) and (5.3) to estimate |¢.|? pointwise gives, with (3.1)),
(B2) and (5:26), that:

/ o (W14 W 6077 = (W4 W) 0 — (2 = )W+ W) 26| 2 s
Bg(&2,5

2t
olee” =) ifn=4 =0,
(%) if n=>5,

- 9 _3t1 . .
o(ee ) ifn=4 if1<j<n.
o(e?) if n =5,

Since by construction Zj ; is supported in Bg(&2,2r9), combining the latter estimates

gives (6:25). -

It is important to remark that the high precision of (5.2)) and (5.3) is really needed to
estimate the integral in (6.25)). The energy estimate (3.8) alone would fail: in dimension

4, for instance, it would just yield:

2t

/ Walo[2| Zo jldvy < e%e= 2,
M

which is not precise enough. Similarly, (4.4 alone would not be enough. Moving on, we
have:

Claim 6.4. There holds, as € — 0, in C°(Ay):

/ (B + caSy +h)ge — (27 = YWE' 26| 23 5
M

0(66_2%) ifn=4 if =0
B 0(£%) if n=>5, ’ ’ (6.27)
{0(5265) ifn=4 if1<j<n
o(e?) if n =75,

Proof. Integrating by parts yields:

/M (B9 + eaSy + B) e — (24 = 1)WE 720, ] 25, v,

— / [(Ag + Sy +h) Zo; — (2% — 1)W§*—2227j} p=dvy.
By (&2,2r0)
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As in the proof of (|6 - the latter integral is split into two pieces. First, the contribution
on By(&2,2r0)\By(&2, ) is computed using (3.1)), (3.2) and (4.4) and yields:

/ [(Ag + CnSg + h) Zgyj — (2* — ].)W22*72227]’:| ¢5dvg
39(5272T0)\BQ(§2’T70)

o(se ) ifn=4 =0,
0(£%) ifn=>5,
o(e%e” 3% ifn=4 : .

if 1 <j<n.
() if n =75,

The contribution on By (&2, ) is estimated using (3.1), (3.2), (5.2), (5.3), (5.24) and
(5.37)) and yields again:

/ [(Bg + eaSy + ) Zoy = (24 = 1)WE 72255 ] 6w
By(&2,%2)

2t1
olee” =) ifn=4 e
if j =0,
0(£%) it n=2>5,
- 9 3t .
e fn=4
o(e®e” =) ifn f1<j<n.
o(e?) if n =5,
which concludes the proof of (6.27]). O

The last term appearing in the expansion of the A7 ; 1s estimated in the same way:

Claim 6.5. There holds, as ¢ — 0, in C°(A;):

_}[;(2*-‘1)[(Vvi‘%‘43)2*_2-—VV§*_2 P Za jduvg

o(ee” ) ifn=4 o
ifj =0,
{ o(£°%) if n=7>5, (6.28)
- o(e%e™ 371) ifn=4
a if1<j<n.
o(e%) if n=>5,
Proof. We write that:
‘(W1 F W) TR o W2 S WE R + W2, (6.29)

The claim follows then from the same computations that led to and (6.27). The
contribution of the integral on Bg(&2,27r0)\By(&2, 5) is estimated Wlth (3.1), . (4.4)
and (6.29)), while the Contrlbutlon on By(&2, %) is estimated with (3.1] (-1, 3:2), (5-2), (5-3)
and . O
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To conclude the proof of the Lemma it remains to notice that by (3.2) there holds, as
before:

(22,5, Za k) = Okl V V|72 (mny + 0(1)

for 0 < j,k < n, and even:
0(56_?1) ifn=4
o(e%) if n=>5,

(Z2,0, Za,5) = {

for 1 < j < n, in C%Ay) as e — 0, where (-,-) is as in (3.6) and V; is as in (5.22).
Comblnlng the latter with (6.17), (6.18), (6.19), (6:21)), (G 22 (|6 o), (6:25), (6.27) and
concludes the proof of the Lemma.

The expansions obtained in Lemmas |6 - 6.2 hold in C%(A;), and this is a consequence
of the uniformity of the estimates (4.4)), 1 i and ( .

7. CONCLUDING ARGUMENT

We assume now that the assumptions of Theorems and are satisfied: we let
&1,0 # &2,0 be distinct points in M and assume that h = hs is given by , where ¥
is as described in the discussion before (L.4)). If (M, g) is conformally diffeomorphic to
the standard sphere we assume in addition that [, ¥(y)dy < 0. Our choice of H will
be detailed below. We conclude in this section the proof of Theorems and by
showing the existence, for any € > 0 small enough, of an element (¢; ., &1 ¢, t2¢,&2,) that
annihilates the A ; in . The family (uc). we are looking for will then be given by

us = Wi+ Wa + ¢, (tLEagl,Eth,EagQ,E)a

using the notations of (4.2). Its positivity and its smoothness follow from standard
arguments.

For any 0 < 6 < 1, we let Us(y) = Gr,(&1,0,y) — Gg(&1,0,y), where G, and G, are
respectively the Green functions of Ay + ¢,Sy + hs and A, + ¢, 5,. It satisfies
(89 + caSy + hs ) Us = ~hsGy(€1,0, ).

Since for § small enough the support of hs does not meet &1 o, standard elliptic regularity
theory shows that Us € C?(M) and that:

1
1Usllcrany S 6, Uslle2ny S 5
dUs

for all 0 < § < 1. Standard elliptic theory again shows that, for any 0 < < 1, T
exists, is in C1(M) and satisfies:

(7.1)

HdUg

=0 (7.2)

as § — 0. We will only prove Theorems and [[.2]in case n = 4. The proof for the
n = 5 case follows from minor modifications and we omit it here. We will show that the
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following mapping;:
Cs(4)
2

(4)H (&)t — C2(4) Aps (&) —
(4)VH (&)t — C2(4)V Ap,(&1)
2D1(4)h(&2)t1t5 — Da(4)t2Ghy (&1, &2)
D1 (4)Vh(&)t1ts — Da(4)t5V Gy (&1, &2)

possesses a non-degenerate zero for any § small enough, where

A6 = A6 - 20 R, () (7.4

Ca(4)
is the non-local mass induced by hs, A is the Riemannian mass introduced in ([2.4)) and
Fj, is defined in (6.3)). In view of Lemmas and and with a standard degree
argument, this will yield the existence, for any small €, of (t1¢,&1¢, 2, &2,-) annihilating

all the A7 ; in (4.19).
We start by defining the following mapping;:
[0,1) x Bp(1) = R"
@ voly) V(G (6r0.expe,,(09) ) )

5 -
(6,y) — T(y) 2 Ghy (51,0,€XP§2,0(5Q))

It is easily seen with (7.1])) and (7.2]) that ¢ is of class C''. By the choice of ¥ there holds
©(0,0) =0 and

&) Fha(gl)
FY(t1,&1,t2,69) = @

1
U(0)
which is non-degenerate. The implicit function theorem applies then and yields a
continuous path ys € By(1), defined for any 0 < 6 < dg, such that ¢(d,y5) = 0 and
ys — 0 as 0 — 0. Letting &5 = expg, (6ys) and noting that, by (L.4), there holds

h(;(exp&yo (6y)) = ¥(y), it is easily seen that for any § > 0 small enough & 5 satisfies

Vhs(&25) . VGhs(€1,0,7)(E2,s)
hs(&2,5) =2 Ghs(€1,0,625) (7:5)

Dg(0,0) = V2w (0),

In addition we have
dg(f2,07 52,5) = 0(6) as 5 — 05
so that by (1.4)) there holds:

hs(82,6) = W(0) +o(1), [Vhs(§2,8)lg = o(1) and

7.6
V2hs(£as) = %VQ\I/(O) + 0(%) as & — 0. (7.6)

We now choose H such that
H(E10) = A1, (610) + o F610), VH(E10) = V60 (0)

where Ay, is defined in (7.4)), and such that
the matrix V(tl,gl)(Ff)lgjg (t1,0,&1,0) is non-degenerate for all 0 < § < &y,  (7.8)
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where F} is defined in (7-3)). In the latter condition one could assume that § = 0 — at
least when A > 0 — since Ap, converges to A in C?(M) as § — 0. With this choice of
H there always holds that H({; ) > 0. This is clear for small § when (M, g) is not
conformally diffeomorphic to (S™, gstg) since in this case A > 0. In the case where (M, g)
is the standard sphere (S™, gs;q) there holds, with and (7.1), that:

Aps(&10) + 205’2(&))%5 (§10) = —2%)’2((42) Fys(&1,0)
C3(4)

_ 2 Y 5
~ e G0 &0l [ W)dy-5'+0(5)

which is positive for small § by the assumption on W. It remains to define:

_ G(4) _ Dy(4) Grs(&1,0,62,6)
M Oa) and tas = 2D1(4) tiohs(§25)

With (7.1]) and (7.6)), it is easily seen that t5 5 converges towards a positive limit as

d — 0. Using (7.5), (7.7) and (7.9) it is easily seen that (t1,0,&1,0,%2,6,&2,5) is a zero of
F? defined in (7.3)) for 0 < § < dg .

It remains to show that this zero is non-degenerate. With (7.9) there holds:
Oy (F)6 (11,0, 1,05 12,6, E2.6) = Da(4) Gy (€10, €2,5) > 0,
while ((7.5)) and (7.6 show that

Dy (F)7<j<10 (t1,0,€1,0, 2,5, €2,5) = o(1) as § — 0,

(7.9)

and that
Ve, (F9)6(t1,0, €10, 12,6, &2,5) = o(1) as § — 0.
Finally, (7.1) and (7.6 show that

1 1
V& (Ff)7§j§10 (t170, 6170, t2,5, 5275) = D1(4)t170t3’oﬁv2\11(0) + O(g) as (5 — O.

Together with (7.8)) this shows that (t1,0,&1,0,%2,,&2,) is a non-degenerate zero of Ff
for all 6 small enough and concludes the proof of Theorems [I.1] and

Remark 7.1. The choice of h as in only comes into play in Section The statement
of Theorems and obviously remains true for other choices of h than , provided
one can find a zero of F in (7.3)) of nontrivial degree. We mention another situation
where this is true: assume that h is not too large and has a critical point with small
hessian at 3 9. Then, simple considerations show that a non-degenerate zero of F 9 exists
provided &3 o is a non-degenerate critical point of the function

§2 > Gy(&1,0,62)-

A minimum for the latter function always exists, and its non-degeneracy is generic in
the choice of g in a given conformal class. This yields another situation where the family
(ue)e in the statement of Theorems and generically exists.
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APPENDIX A. A PRIORI BLOW-UP ANALYSIS

In this Appendix we show how the bubbling configuration of Theorems and —and
in particular relation (1.9 — is predicted by an a priori blow-up analysis for equation
. For this, we assume that h and H are functions as in Section [2{ and we let (ug)g
be a sequence of positive solutions of:

Agup, + (cnSy +h + ep H)uy, = ul (A.1)

in M, where ()1 is a sequence of positive numbers such that limg_, 1o e = 0. We
assume that (uy);, blows-up with two bubbles, that is limy_, o [[u | co(ar) = +00 and
_n=2
limysyoo Ukl 2 (i) = 2Kn * , where Ky, is defined in (4.6). The H'-theory of [26]
asserts the existence of sequences (1 ) and (ug i), of positive numbers converging to
0 and of sequences (&1 x)r and (&2,)x of points of M converging towards &; and & such
that:
u, = Biy + Bay +o(1) in H' (M),
where we have let, for ¢ = 1,2 and for any z € M:
n—2
ik
2 d (f’b, 1I)2
Hik T gn(niQ)
Note that we do not assume a priori that the concentration points are isolated, that is
that & # &». This will be obtained as a consequence of the assumption h(&2) > 0. By
convention, we assume that B; ; denotes the lowest bubble, that is p1 , > ps . Let Gy,
denote the Green’s function of A, 4 ¢, Sy + h in M. Define, for any =,y € M:

(I)k(xv y) = (TL - 2)wn—1d9(‘r7 y)nith(‘fm y)

It is a positive continuous function in M. The C°-theory of [7] (see also [9], Proposition
7.2) improves Struwe’s H' decomposition into a global CY one and shows that there
exists a sequence (1) of positive numbers with limy_,; , 7x = 0 such that:

up — @ )B1x— @ )B
k h(gl}gi kf& kh(&, )Bak <. (A.2)
: : CO(M)
First, as a consequence of and of the analysis of [5] (see also the proof of Theorem
8.1 in [9]), it turns out that h(&;) = 0. That is: the lowest bubble concentrates at a
point where the limiting potential ¢, S; 4+ h touches the geometric thresholds ¢, S,. If

we now assume that h(&) > 0 we get that dg(&1,&2) > 0. We now investigate necessary
conditions on the highest bubble By ;. Let

: d ; 21
T ) = min <\/ij 97(5(17;]6_622’5) ) ng(M)> (A.3)

be the radius of influence of the bubble Bs j, as introduced in [5]. We recall that by the
analysis in [26] there holds:

Bi(z) =

d , 2
Pk P2k g(&1ks &2 k) N
M2k M1k M1,k 42,k

+o00
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as k — 4o0. In what follows we let Qi = By(&2,72%) and write down a Pohozaev
identity in j for ui. We will only sketch the arguments since most of the material is
taken from [9]. Let Xj be the following field of 1-forms in €:

Xip(a) = (1~ @Ricﬁ(x)(de(:c), Vi (2)) ) Vdy(z),

where dj(x) = dg(&2,5, ). Multiplying (A.1) by X} (ux) leads to the following Pohozaev
identity in Qj (see [9], Proposition 6.2):

-2
/ (cnSg + h)ukXISVpukdvg + nT / ANy (dingk)uidvg
Qe n Qp

-2
z / divy Xy, (cn Sy + h)uldu,
2n Qp
1
= /Q (VXk — ndngXk9> (Vug, Vuyg)dvg (A.4)
k
22 L w2 de,— "2 [ 0 (divyXe)uld
k 0 — ——— ) (div X o
m a0, k g in o g k“Yg
-2 1
— / (_n divy X0y upuy, + X (v) | Vg | — X,fvpuk&,uk> dog.
A0, 2n 2

In (A.4) we used that H vanishes on Q. Now, and adaptation of the arguments in [9]
(Lemma 6.4) using (A.2)) shows that:

Oty itn=1

A5
O(M%,k) ifn =5 49

1 n-2 d—n
/Q (vxk - nlengg> (Vug, Vug)dvg = O(ub *ry )+{
k
and that

-2 -2
/ (cnSg + h)ur XYV purdug + n-< Dy (dingk)uzdvg + n/ divy Xy (cn Sy + h)uidvg

M%,k’ In puo 1| + O(Mg,k) ifn=4
=—-D (n)h(glk) ’ 9 2 .
pa g + 0(Ka 1) ifn=>5
(A.6)
for some positive constant Dj(n). Finally, there holds by (A.2) that
n—2 * n—2 . N —n n—9 d—n
Xp(wyup dog ———— | 0,(divgXp)updo, = O(usryp) + O ry ")
2n 0 4n 0, ) ’ s

(A.7)
and, using the definition of X}, that

-2 1
— / (_n divy X0y upuy + X ()| V| — X,fvpuk&,uk> dog
0, 2n 2

n—2 1 _9 4-n
=— /ag (— 5 Oyuguy + §Xk(1/)|Vuk]2 - X,fvpuk&,uk> dog + O(u;k%g’k )
k
(A.8)
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With (A.2)), it is easily seen that there holds:

n—2

-z n(n-2)) *
MszTszUk(eXP&JKTZkJ)‘ﬁ ( Lﬂng + @5 (81,62)
in C2_(By(1)\{0}). The latter convergence, with ([A.8), now shows that:

-2 1
— / <_n divy X0, upuy + —X1.(v)|Vug|* - X,]:Vpukayuk> doy
0, 2n 2

(n —2)2 n—2 pog\" (4.9)
= - T(n(n —2)) % wp1®u(&1, &) +o(1) <m> :
Combining (A.5)), (A.6), (A.7) and in and using then gives:
(n(€2) + o) )3 ul1n gl = (A()GH(E1,€2) + 0(1) ) prprizge 0 =14, o
10

(n(&) +0(1) )i = (a(5)Gn(61,€2) + 0(1)) (11 41124)? ifn =5

for some positive constant a(n), which is (1.9). One can also prove that (1.10]) is a
necessary condition to be satisfied by the lowest bubble of the decomposition. This
follows again from a Pohozaev identity using the analysis of [5].
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