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In this short note, we generalized the Tangential Cover used in Digital Geometry in order to use very general geometric predicates. We present the required notions of saturated α-paths of a digital curve as well as conservative predicates which indeed cover nearly all geometric digital primitives published so far. The goal of this note is to prove that under a very general situation, the size of the Tangential Cover is linear with the number of points of the input curve. The computation complexity of the Tangential Cover depends on the complexity of incremental recognition of geometric predicates. Moreover, in the discussion, we show that our approach does not rely on connectivity of points as it might be though first.

Introduction

The Tangential Cover was first introduced as an algorithm in [START_REF] Feschet | Optimal Time Computation of the Tangent of a Discrete Curve: Application to the Curvature[END_REF] and fully recognized as a fundamental structure in subsequent publications [START_REF] Feschet | Canonical representations of discrete curves[END_REF][START_REF] Lachaud | Analysis and Comparative Evaluation of Discrete Tangent Estimators[END_REF]. Basically the Tangential Cover was the set of maximal Digital Straight Segments (DSS) which can be built on an input digital curve. Since its complexity is linear, computing the Tangential Cover is practically feasible and permits to tackle various problems on digital curves such as tangent computations or polygonalizations. The tangents obtained using the Tangential Cover does indeed converge towards their real counterpart for convex function. If the Tangential Cover was introduced using only DSS, it has also been used on extensions of DSS, such as thick segments [START_REF] Debled-Rennesson | Optimal blurred segments decomposition of noisy shapes in linear time[END_REF]. Moreover, thanks to the local notion of meaningful thickness [START_REF] Kerautret | Meaningful Thickness Detection on Polygonal Curve[END_REF], the Tangential Cover has been made adaptive allowing to perform analysis of noisy digital curves using automatic multi-scale selection [START_REF] Ngo | Analysis of Noisy Digital Contours with Adaptive Tangential Cover[END_REF]. It has been also included in the DGtal library [START_REF]DGtal: Digital Geometry tools and algorithms library[END_REF]. As it can be seen in the comments of the description of the source code of the DGtal library, extensions of the Tangential Cover is not straightforward in any case. In this paper, we explain what is a good notion of geometric predicates and proves that the Tangential Cover can be built with general predicates called conservative predicates still resulting in a linear output size complexity. We moreover make a careful clarification of the input of the Tangential Cover recalling that the Tangential Cover works for non simple curves as well as non connected sets of points. We hope that this short note will clarify the usage of the Tangential Cover.

Background notations

We consider, in this paper, points in the digital plane Z 2 and some adjacency α on those points. The usual adjacencies are the classical 4-and 8-adjacencies [START_REF] Klette | Digital Geometry -Geometric Methods for Picture Analysis[END_REF]. Let us recall that if we denote by N () a norm in R 2 , they are defined by the fact that two points p and q are adjacent if and only if N (q -p) ≤ 1. The norm N () is the l 1 norm -corresponding to the sum of the absolute differences of the coordinates of the points -for the 4-adjacency and it is the infinite norm l ∞corresponding to the max of the absolute differences of the coordinates of the points -for the 8-adjacency. In the sequel, the adjacency is fixed. Of course, our work readily extends to the case of other cellular decompositions of the real plane R 2 such as the triangular or the hexagonal decomposition but we restrict our presentation to the classical rectangular grid.

A digital α-path, shortly a digital path, in the plane is a list of points (p 0 , . . . , p n ) of Z 2 such that p i and p i+1 are α-adjacent and p i = p i+1 . It must be noted that a path is indeed an ordered set of points of Z 2 such that two consecutive points are α-adjacent. Hence, for a given set of points, they may be several paths describing it depending on the chosen ordering. A path is closed if and only if p 0 and p n are α-adjacent. When a path is closed, indices of the points in the path are intended modulo n + 1, the length of the path. For a path P , a subpath is a sublist (p i , . . . , p j ) of points of P which is an α-path. Care must be taken that α-connected subsets of P might not be subpaths (see Fig. 1) since we impose on each subpath to keep all points between p i and p j with respect to the ordering of the initial list describing the reference path.

For an α-path P , either closed or not, we denote by SP(P ) the set of all subpaths of P . This set contains O(n 2 ) elements by construction which is far less than the number (O(2 n )) of subsets of P .

A closed digital curve is a digital path where each point p i has exactly two α-adjacent points in the path. An open digital curve is a digital path with the same property except for the points p 0 and p n who have only one α-adjacent point in the path. These notions avoid the possibility of self-intersections and are, thus, too restrictive in practice. Hence, otherwise precisely mentioned, all digital sets manipulated in the paper will be digital paths.

Our main goal is to represent digital path as a graph structure. Since we only consider subpaths, they are always connected subsets by definition. So, we have a natural mapping ϕ between any α-path and a circular arc graph as follows. To do this, we fix an α-path P given by its list of points (p 0 , . . . , p n ). Every point in the path is sent via the mapping ϕ to a point on the unit circle Figure 1: An α-path with the order given by the arrows. The α-connected subpart depicted in bold line is not a subpath since the dotted part (in bold) is missing in the set. via the formula: ϕ(p k ) = exp(2iπk/(n + 1)) where i 2 = -1. This mapping can then be extended to map paths onto arcs of the circle. Indeed, any subpath of P is given by a list of consecutive points (p i , . . . , p j ) as shown on Fig. 2. The ϕ-image of the list is an arc given by (ϕ(p i ), ϕ(p j )). The ϕ mapping permits us to map any α-path onto a circular arc graph. This graph is an interval graph only when the path is open. It should be noted that ϕ is an inclusion preserving mapping that is, if S is a subpath of P then ϕ(S) is included in ϕ(P ).

As it can be seen in the definition of an α-path, the first problem to solve in our approach is to build an α-path from an image. Then, the ϕ mapping can be used to construct a graph from the path. Hence, in the next section, we explain in detail how to build our reference α-path from an image.

From images to path

The notion of α-path is intrinsically related to the notion of ordering of points. Indeed, we can define the canonical extension of an α-path P corresponding to the list of points (p 0 , . . . , p n ) by the piecewise linear function P can corresponding to the real polygon passing through the points from p 0 to p n and parametrized on [0, 1]. As each consecutive points are different, this clearly defines a function for which P can (0) = p 0 and P can (1) = p n . Hence, this function is continuous, pointwise and preserves the order between the real segment [0, 1] and the path P . As such, this function is a Jordan line [START_REF] Frechet | Les Espaces Abstraits[END_REF] (pp. 149-150) and [START_REF] Alexandrov | General theory of irregular curve[END_REF] (chapter 1). So, when starting from an image, the only problem to solve is to build an ordering of the points in the image as this completely defines a Jordan line. W.l.o.g., we can suppose that there is only one connected component with respect to the α-adjacency in the image because if it is not, all connected components can be treated separately.

We base our approach on the curve tracing algorithm with self-intersections considered by Hajdu and Pitas [START_REF] Hajdu | Piecewise Linear Digital Curve Representation and Compression Using Graph Theory and a Line Segment Alphabet[END_REF]. The key point of their approach is the notion of junction [START_REF] Klette | Digital Geometry -Geometric Methods for Picture Analysis[END_REF][START_REF] Klette | Branch Voxels and Junctions in 3D skeletons[END_REF]. We now briefly present their approach as well as its straightforward rewriting for our goal of constructing α-paths. It should be noted that as is, the method proposed by Hajdu and Pitas [START_REF] Hajdu | Piecewise Linear Digital Curve Representation and Compression Using Graph Theory and a Line Segment Alphabet[END_REF] is in fact somewhat imprecise as we will see later in this paper. This is mainly due to the fact that they do not consider complex junctions. We have corrected this little drawback in our version of their method and consequently still refer to it as Hajdu and Pitas' method.

The classification of simple curve is based on the notion of branching index. For a point p ∈ Z 2 , we consider V (p) as the set of points q ∈ Z 2 such that p and q are α-adjacent. V (p) is the α-neighbourhood of p. The branching index of p is then the number of points of q which also are image point. The classification of points in an image depending on their branching index [START_REF] Klette | Digital Geometry -Geometric Methods for Picture Analysis[END_REF] is the following:

• p is an end point if its branching index is 1, • p is a regular point if its branching index is 2,
• p is a branching point if its branching index is ≥ 3.

An α-junction is an α-connected subset of the image such that each point in the junction is a branching point and such that it is maximal for the inclusion order 1 . Hence, if a junction J 1 contains a junction J 2 then J 1 = J 2 . By extension, the branching index of a junction is the number of regular points which are α-adjacent to a point in the junction. If we consider a binary image I containing only one α-connected components and if we suppress all junctions in I, we get a simplified image Ĩ. This image might have several α-connected components but each connected component is a simple open curve. This process gives a decomposition of the image I into simple open curves and junctions. This naturally leads to a graph G = (V, E) as a representation of I as follows:

• V is composed of all end points and all junctions,

• E is the set of undirected edges {u, v} with u and v two vertices such that u and v are α-adjacent in I.

The key point in Hajdu and Pitas' algorithm is to remark that an α-path in the image I is thus a path in the graph G where each edge is used only once. Of course, this path might cross a junction more than once. So, the construction of an α-path is just the decomposition of the graph G into Eulerian subgraphs for which it has been proved long time ago that they always have an Eulerian tour, that is a path taking every edge exactly once. They also proposed a way of creating only one α-path for the whole connected component in I if repetition is allowed, that is some parts are used back and forth resulting in the multiple use of non branching points in the image (see part VI in [START_REF] Hajdu | Piecewise Linear Digital Curve Representation and Compression Using Graph Theory and a Line Segment Alphabet[END_REF]). This last problem was shown to be the Chinese Postman Problem, a well known problem in graph theory [START_REF] Schrijver | Combinatorial Optimization, Polyhedra and Efficiency[END_REF] (chap. 29 vol A). Originally Hajdu and Pitas' method is based on straight line segments and minimal length paths between two open curves sharing a junction. This is natural since their goals is also to apply a polygonal approximation algorithm on the image to efficiently compress it. However, two points are missing in their algorithm. First, they do not fully explain how they consider self-loop in the graph G. Indeed, self-loops cannot be distinguish in the graph G, hence they do not have any guarantee that their algorithm for constructing Eulerian tours will be able to take them in the right geometric order. This problem can have practical drawbacks but it is not a fundamental problem, to our point of view. The second problem with their method is that it is incorrect in full generality. Indeed, when the Eulerian tour as been constructed, they built an 8-connected path between pairs of open curves. However, the junction is not the union of the paths traversing it. Hence, only a subpart of the junction is coded by shortest paths between in and out points of a junction. It should be noticed that the JBEAM algorithm [START_REF] Huo | JBEAM: multiscale curve coding via beamlets[END_REF], cited in [START_REF] Hajdu | Piecewise Linear Digital Curve Representation and Compression Using Graph Theory and a Line Segment Alphabet[END_REF], does not have this problem. However, it is not suitable for our purpose since it does not consider paths but sets of points.

α-paths decomposition

The first step in our method consists in a decomposition of an α-path P into meaningful subparts, such as geometric primitives but not only. We must represent them in the most possible generic manner. For instance, several geometric primitives have been studied in the literature such as Digital Straight Segments (DSS), arcs of circles, arcs of parabolas and so on. More primitives can also be constructed and we shall derive a representation sufficiently generic for all such different basic elements. It appears that the most generic model is the model of predicates. A predicate, denoted by P, is a Boolean value function defined on SP(P ). We write P(X) if the predicate P has value true for the path X.

In the case of DSS, it has been proved that maximality is a basic property of digital segments on shapes [START_REF] Feschet | Canonical representations of discrete curves[END_REF][START_REF] Lachaud | Analysis and Comparative Evaluation of Discrete Tangent Estimators[END_REF]. We believe that if a subpath is meaningful, but is contained into another subpath also meaningful, we should retain only the largest one. Hence, we keep this principle of maximality in our construction. In the context of predicates, this notion was introduced by Mazurkiewicz [START_REF] Mazurkiewicz | Sur les lignes de Jordan[END_REF]. Definition 1. A set X is saturated with respect to a predicate P if 1. P(X) (X has the property corresponding to the predicate P),

2. every set Y ⊇ X with P(Y ) is such that Y = X.
In other word, a saturated set is a maximal set with respect to the inclusion order and for which the predicate is true. Clearly, when we consider saturated path, we also take into account the connectivity of the points since any path is connected. As a consequence, we can bound the number of saturated subpath for any predicate.

Lemma 1. Let P be a path with n points. Then, for any predicate P, there are at most O(n) saturated subpath in SP(P ).

Proof. We consider P as oriented positively with respect to the increasing order of the indices of its points. Let us consider a subpath X of P being composed of the sublist (p i , . . . , p i+k ) of points. We define its middle point as p m = p i+ k/2 . Then X is reconstructed by adding points around p m starting from the positive orientation. That is: p m , p m+1 , p m-1 , ... So to any subpath X, we can associate its middle point p m . This define a function m(X) = p m from SP(P ) to P . This function is obviously onto but not injective as symmetric subpath around p m all have the same middle point. But, given p m the subpaths of P having p m as middle points are totally ordered by inclusion. This is due to the fact that a subpath has no hole in the indices of its points. Hence, if we restrict the domain of m() onto the set of saturated subpaths then it becomes injective but loose its surjectivity. Indeed, for an arbitrary predicate it is possible that no sets M containing p m might be such that P(M ). For instance the predicate "to be a set containing p 0 " clearly has only one saturated subpath which contains p 0 . So since m() is injective, a point in P can not be used twice as a middle of a saturated subpath and since the function is not onto, not all points might be used. Hence, the number of points covered by the m() function restricted on saturated subpath is clearly bounded by n, hence the number of saturated subpaths is also bounded by n.

This property is false when applied to sets. For instance, the predicate "to have 3 points" has O(n 3 ) saturated sets but only O(n) saturated subpaths on P . It is important to notice that even if there are O(n 2 ) subpaths in P , only O(n) at most can be saturated. This implies that using saturated sets, algorithms with small, indeed linear if possible, time complexity are more easily reachable.

It is straightforward to see that for saturated subpaths, the inclusion is forbidden such that the corresponding graph is necessarily proper.

Property 1. The circular-arc graph constructed via the ϕ mapping of the saturated subpaths of any predicate P, is a proper circular-arc graph.

Let us now describe a simple algorithm which has been introduced in the context of maximal DSS [START_REF] Feschet | Optimal Time Computation of the Tangent of a Discrete Curve: Application to the Curvature[END_REF]. Our goal is to describe how to generalize this algorithm in the case of predicates. W.l.o.g., we suppose the path P to be closed. We start with an arbitrary point, for instance p 0 . Let us denote by S, the current tested set. The algorithm can be summarized by the following steps. 2. Check: if S is not a DSS then remove the last added point to S, else go back to the Increase step.

3. Maximality: Once S is symmetric and maximal then go back to the Increase step but only for one orientation. In case of ambiguity, the positive orientation must be chosen. When the Increase step stops again, move to the Restart step.

4.

Restart: S is a maximal DSS. Suppose that p m+r is its last point. Then let S + = S ∪ {p m+r+1 }. Remove points at the negative side of S + until it becomes a DSS. Then go to the Increase step to compute another maximal DSS.

This algorithm is proven to build the set of all maximal DSS of the path P in linear time [START_REF] Feschet | Optimal Time Computation of the Tangent of a Discrete Curve: Application to the Curvature[END_REF]. It is important to notice why the preceding algorithm is correct. Two facts are implicitly used, 1. If S is not a DSS then any set T containing S is not a DSS ; 2. Two consecutive maximal DSS shares at least one point.

The first property is used at the step Check of the algorithm to break the symmetry of S knowing that S cannot be extended any more on both sides and it is used at the step Maximality because when the one side extension of S has been built, it is declared to be a maximal DSS. The second property is used in the step Restart to ensure the fact that the decreasing of S always lead to a DSS and so the algorithm can start again.

Careful must be taken in the extension of this algorithm to predicates. Indeed, if we consider any predicate, the question of finding a subpath X such that P(X) probably could necessitate to test all subpaths leading to a quadratic complexity. Of course, this is practical for small n but our goal is to preserve the linear complexity of the algorithm during its extension, while keeping a sufficiently rich class of predicates containing at least classical geometric primitives.

We will restrict our attention to a special class of predicates in order to have interesting theoretical properties on the saturated subpaths. To do so, we only consider the notion of conservative predicate. Definition 2. A predicate P is conservative if and only if P(X) for a path X then for all Y ∈ SP(X), P(Y ).

In other words, when an conservative predicate is true on a path, it is true on all its subpaths. Of course, this also implies ab absurdo that if X is such that ¬P(X) then for any set Y containing X, we have ¬P(Y ). One important consequence is that if we know a set X for which the predicate is true or false then we can decide if there is a saturated set containing X. Hence, the simplest sets to test are the singletons. Indeed for any point p in P , if P({p}) then there exists a saturated set containing p ; else, it is clear that no saturated set contains the point p. This simple property is sufficient to modify the classical algorithm to obtain an algorithm valid for any conservative predicates.

It seems important to insist on the fact that the conservative property is a very natural property for geometric predicates. Indeed, if a path is a DSS, or an arc of a circle, or arc of a parabola then, it is natural to have that all subpaths are all DSS, arcs of circles or arcs of parabolas. The same is true for the negative case: if a set is not a DSS then clearly no superset can be a DSS ! The steps of the new algorithm are as follows.

1. Init: Let p be the current point. While ¬P({p}), go to the next point.

Stop either when all points in P have been tested or if a point p such that P({p}) has been found. In this case go to the Increase step.

2. Increase: this step is unmodified.

3. Check: this step is unmodified (simply use predicate P and not a DSS test).

4.

Maximality: This step is unmodified.

5.

Restart: S is a maximal subpath verifying P. Suppose that p m+r is its last point. Then let S + = S ∪ {p m+r+1 }. If ¬P({p m+r }) then set p = p m+r+1 and go to the Init step. Else remove points at the negative side of S + until it verifies P. Then go to the Increase step to compute another saturated subpath.

It is clear that this algorithm, referred as SSD (Saturated Subpaths Decomposition), can be improved by a test on all singletons. Indeed, each time a point p is used, if ¬P({p}) then no saturated set containing p can exist such that we can directly move to the next point in P . This optimization does not change however the complexity of the algorithm. For the same reason than in [START_REF] Feschet | Optimal Time Computation of the Tangent of a Discrete Curve: Application to the Curvature[END_REF], this new version of the classical algorithm still has a linear time complexity in terms of the number of time the predicate is checked. Hence, for constant time predicate, this extension still runs in linear time.

Theorem 1. The algorithm SSD is correct, that is, it computes all saturated subpaths of a conservative predicate P.

Proof. Let us suppose w.l.o.g. that P({p 0 }). There are two cases: either there exists a saturated subpath S 0 such that m(S 0 ) = p 0 , or there is a saturated subpath S 0 which contains p 0 but not as a middle. In the second case, several such subpaths might exist and S 0 is chosen to be the one with the rightmost middle. In the first case, the Increase and Check steps are built to find S 0 so the algorithm is correct if and only if it correctly moves to the next saturated subpath.

In the second case, the Increase-Check steps build a set S whose middle is p 0 such that P(S). Then the Maximality step is used. Suppose that S has the form (p i , . . . , p j ). There are two cases : either P({p i , . . . , p j+1 }) or ¬P({p i , . . . , p j+1 }). In the first case, the Maximality step implies that the Increase step is pursued on the positive side and in the second case, on the negative side. On both sides, a saturated set is built with a rightmost middle, that is S 0 . Hence, once again, the algorithm is correct if and only if it correctly moves to the next saturated subpath.

So the key point is the Restart step. Let S = (p i , . . . , p j ) be the last computed saturated subpath. Either P({p j+1 }) or ¬P({p j+1 }). In the first case, there exists a saturated set containing p j+1 . Since this point was not in S, it is clear that its middle is at the right of m(S). Hence the Restart step stops necessarily at the left of this middle point and then the Increase-Check steps are used to find the correct middle point.

In the second case, no saturated subpaths contain p j+1 thus, the Restart step move to p j+2 and the Init step is used to find a new point belonging to a saturated subpath. So, no saturated subpath can be missed and thus the algorithm is correct provided than it stops when all points have been tested.

Discussion

In the proof of Theorem 1, we mainly used the middle point of a subpath. This is the common way to uniquely identified a saturated subpath. However, it is possible, in practice, to use only forward incremental recognition. Indeed, this leads to the same Tangential Cover with the only careful check of the first computed primitive. Starting at any point of the curve does not imply that this point is a beginning point of a saturated subpath. Hence, to complete the construction of the Tangential Cover, this first computed primitives should be tested for maximality and suppressed if it is not maximal. This means that the algorithm must be pursued until the end of the first recognized primitive is reached. Obviously the complexity remains the same.

We must also remark that our proof does not rely on the adjacency α. Indeed, we only use the indices of the points. Hence, an adjacency can be based solely on a numbering of the points. Hence, the points does not need to be connected in the usual sense, they are connected by indices only. Of course, we should add that a good geometric predicate must be true on any singletons. Giving a numbering is a more profound property than connectivity in fact. The only case to forbid is the repetition of points which consecutive indices. This might be a problem for computing the saturation of subpaths. Indeed, at first saturation of paths might be viewed as a set maximality for inclusion, but it is more general to have a maximality with respect to connected subsets of the set of indices. In that case, maximality does not imply that the points in paths are different between saturated sets but this avoid useless complexity in the decomposition.

So to conclude, the original set of points can described very general curves, allowing non simplicity and non connectivity. This is not a problem since the canonical extension P can is properly defined on both cases.

Conclusion

In this short note, we clarified the generalization of the Tangential Cover to arbitrary geometric predicates using the usual notion of conservatism. This work was done in 2009 but never published. When reading the source code of the DGtal library [START_REF]DGtal: Digital Geometry tools and algorithms library[END_REF], I have discovered that concepts of segments (CForwardSegmentComputer) where supposed to be true in specific subsets of a segment. Hence, I have decided to write this note to prove that the size complexity of this generalized Tangential Cover is still linear.

Figure 2 :

 2 Figure 2: (left) An α-path with the order written inside the pixels (right) The mapping of the points and the overlapping (31,37) and (36,45) subpaths.
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 1 Increase: add points to S one by one, always starting in the positive orientation. Hence, if S is a subpath of the form (p m-k , . . . , p m+k ) then first add p m+k+1 before p m-k-1 . If S is of the form (p m-k+1 , . . . , p m+k ), then add p m-k .

The maximality with respect to inclusion is essential in the definition of a junction but is missing in[START_REF] Hajdu | Piecewise Linear Digital Curve Representation and Compression Using Graph Theory and a Line Segment Alphabet[END_REF] and in[START_REF] Klette | Branch Voxels and Junctions in 3D skeletons[END_REF] even if it is evident from their papers that they both do consider maximal junctions.