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Abstract

We show that the spaces with no infinite discrete subspace are ex-
actly those in which every closed set is a finite union of irreducibles. Call
them FAC spaces: this generalizes a theorem by Erdős and Tarski (1943),
according to which a preordered set has no infinite antichain—the finite
antichain, or FAC, property—if and only if all its downwards-closed sub-
sets are finite unions of ideals. All Noetherian spaces are FAC spaces, and
we show that sober FAC spaces have a simple order-theoretic description.

1 Introduction

A preorder is FAC (for: has the finite antichain property) if and only if all its
antichains are finite. An antichain is a subset of pairwise incomparable elements.
A well-known result in the theory of preorders states that a preorder is FAC
if and only if all its downwards-closed subsets are finite unions of ideals—an
ideal is a downwards-closed, directed subset. This was discovered many times
[1, 9, 10, 3, 7], and is credited to Erdős and Tarski [2].

The purpose of this paper is to generalize that result to the case of topological
spaces. An antichain will simply be a discrete subspace, namely a subspace
whose topology is discrete. Downwards-closed subsets will be replaced by closed
subsets, and ideals by irreducible closed subsets. We shall retrieve the above
preorder-theoretic result by looking at spaces with the Alexandroff topology of
the preorder. This is in line with related results, such as the fact that Noetherian
spaces are a topological generalization of well-quasi-orders [4].

2 Main Results

The main result of this paper is the following, and will be proved in Section 3.

Theorem 2.1 For a topological space X, the following are equivalent:

1. X has no infinite discrete subspace;

2. every closed subset of X is a finite union of irreducible closed subsets.
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We recall that a closed subset C of X is irreducible if and only if it is non-empty,
and for all closed subsets C1, C2 of X, if C is included in C1 ∪ C2 then C is
included in C1 or in C2. Equivalently, C is irreducible (closed) if and only if it
is non-empty and, for any two open subsets U and V of X, if C intersects both
U and V then it intersects U ∩ V .

Perhaps the closest result in the literature, except for the preorder-theoretic
results mentioned in the introduction, is due to A. H. Stone [11, Theorem 2]:
a space X has no infinite discrete subspace if and only if every open cover of
every subspace A of X has a finite subfamily whose union is dense in A, if
and only if every continuous real-valued function on every subspace of X is
bounded. Another one is due to Milner and Pouzet [8], and we shall return to
it in Remark 3.4.

Definition 2.2 A space satisfying any of the equivalent properties of Theo-
rem 2.1 is called a FAC space.

The closures of points are always irreducible. A space is sober if and only if
every irreducible closed subset is the closure of a unique point. The sobrification
S(X) of X can be defined as the set of all irreducible closed subsets of X, with
the topology whose open subsets are �U = {C ∈ S(X) | C ∩ U 6= ∅}, where U
ranges over the open subsets of X (see [5, Section 8.2.3] for example).

The map U 7→ �U defines an isomorphism between the lattice of open subsets
of X and of S(X). It follows that X and S(X) have isomorphic lattices of closed
subsets. Since Item 2 of Theorem 2.1 only depends on the lattice of closed
subsets, we immediately obtain:

Fact 2.3 A space X is FAC if and only if its sobrification S(X) is.

Hence it is legitimate to study sober FAC spaces. This is best done by comparing
the situation with Noetherian spaces (see Section 9.7 of [5] for an introduction
to Noetherian spaces).

A Noetherian space is a space where every open subset is compact. (A
subset is compact if and only if all its open covers have a finite subcover; we
do not require Hausdorffness.) Equivalently, a space is Noetherian if and only
if every monotone chain of open subsets stabilizes, if and only if the inclusion
ordering on the lattice of closed subsets is well-founded. It is well-known that, in
a Noetherian space, all closed subsets are finite unions of irreducibles. A simple
proof goes as follows. Imagine there were a closed subset C that one cannot
write as a finite union of irreducibles. Since inclusion is well-founded on closed
sets, we can require C to be minimal. C is not a finite union of irreducibles,
hence is not empty and not irreducible itself. Hence there are two closed sets
C1 and C2 such that C ⊆ C1 ∪ C2 but C is included neither in C1 nor in C2.
Then C ∩ C1 and C ∩ C2, being strictly smaller than C, are finite unions of
irreducibles. It follows that C = (C ∩ C1) ∪ (C ∩ C2) is also a finite union of
irreducibles—contradiction. That means that Item 2 of Theorem 2.1 is true of
all Noetherian spaces, whence:

Fact 2.4 Every Noetherian space is FAC.
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That can also be obtained by using Theorem 1 of [11], which says that a space
is Noetherian if and only if it has no weakly discrete infinite subspace, and using
Item 1 of Theorem 2.1. (A space is weakly discrete if and only if every point
has a finite neighborhood. Clearly, every discrete space is weakly discrete.)

The converse of Fact 2.4 fails. For example, consider the real line R, with
the Scott topology, whose non-trivial opens are the half-open intervals ]r,+∞[,
r ∈ R. That is FAC, because all non-empty closed sets are of the form ]−∞, r]
with r ∈ R, or the whole of R, and all of them are irreducible. However, R with
the Scott topology is not Noetherian, since no open set ]r,+∞[ is compact.

Another example comes from the theory of preorders. Every topological
space X comes with a so-called specialization preorder ≤, defined by x ≤ y
if and only if every open neighborhood of x contains y, if and only if x is in
the closure of y. X is Alexandroff if and only if the open subsets of X are
the upwards-closed subsets with respect to some preordering (which must be
≤). The full subcategory of the category of topological spaces consisting of
Alexandroff spaces is equivalent to the category of preorders. Hence, equating
the two categories, a Noetherian Alexandroff space is the same thing as a well-
quasi-order [5, Proposition 9.7.17]. The discrete subspaces of an Alexandroff
space are exactly its antichains, hence:

Fact 2.5 The FAC Alexandroff spaces are exactly the preorders with no infinite
antichain.

Fact 2.4, once specialized to Alexandroff spaces, yields the following trivial fact:
in a well-quasi-ordered set, every antichain is finite. The converse fails, take Z
with its usual ordering for example.

In an Alexandroff space, a closed subspace is the same as a downwards-
closed subset, and an irreducible closed subset is the same thing as an ideal,
namely a downwards-closed directed subset (see Fact 8.2.49 in [5], or [6].) Hence,
specialized to Alexandroff spaces, Theorem 2.1 is a restatement of the Erdős-
Tarski result mentioned in the introduction.

There is a purely order-theoretic characterization of sober Noetherian spaces
(see Theorem 9.7.12 of [5]): they are exactly the posets X whose ordering
≤ is well-founded and satisfies properties T and W, in the upper topology.
Property T states that X is finitary, where a finitary subset is defined as the
downwards-closure ↓E of a finite set E. Property W states that, for any two
points x and y, ↓x∩ ↓ y is finitary. (We write ↓x for ↓{x}. This coincides with
the closure of x.) The upper topology is the coarsest topology that has ≤ as
specialization ordering. Alternatively, this is the topology whose closed sets are
the intersections of finitary subsets.

Theorem 2.6 The sober FAC spaces are exactly the posets X in which every
intersection of finitary subsets is finitary, in the upper topology. Every closed
set is finitary.

Properties T and W are equivalent to the statement that finite intersections
of finitary subsets are finitary. Together with well-foundedness, they imply
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Noetherianness, hence FACness, but as we have seen, the fact that intersections
of finitary subsets are finitary is strictly weaker than requiring that ≤ is well-
founded.

Proof. Let X be a sober FAC space. Since X is sober, its only irreducible
closed subsets are the closures of points, and those are exactly the sets of the
form ↓x, x ∈ X, where downward closure is taken with respect to the special-
ization ordering ≤ of X. Item 2 of Theorem 2.1 then implies that every closed
set is finitary. Since intersections of closed sets are closed, we conclude.

Conversely, let X be a set with an ordering ≤ in which intersections of
finitary subsets are finitary. Since finite unions of finitary subsets are finitary,
the finitary subsets form the closed sets of a topology, and that must be the
upper topology. By Item 2 of Theorem 2.1, and since every set ↓x is irreducible
closed, X is FAC in that topology.

Finally, we show that X is sober. Let C = ↓E be closed, where E is finite.
We may assume that E is an antichain, by removing elements below another
one, one by one. If C is irreducible, then it is non-empty, so E contains some
element x. Then C is included in the union of the closed sets ↓x and ↓(E \{x}),
hence must be contained in one of them. It cannot be contained in the second
one, since x ∈ C and E is an antichain. It follows that C is included in ↓x,
hence is equal to it. Recall that ↓x is the closure of x. We have shown that
every irreducible closed set is the closure of some point. This point must be
unique because ≤ is an ordering, not just a preordering. ut

We finish with the following observation. That generalizes the fact that the
Hausdorff Noetherian spaces are the finite discrete spaces.

Proposition 2.7 Given a FAC space X, the following are equivalent:

1. X is sober and T1;

2. X is Hausdorff;

3. X is a KC-space, namely one where each compact subset is closed;

4. X is finite and discrete.

Proof. (1) ⇒ (4). In a sober space, every irreducible closed set is the closure
of a point, and in a T1 space, all points are closed. Hence the finite unions of
irreducible closed subsets are the finite subsets. That applies to every closed
subset, in particular to X itself. Finally, every finite T1 space is discrete.

(4) ⇒ (2) ⇒ (1), (4) ⇒ (3): obvious.
(3) ⇒ (4). Every KC-space is T1, since one-element sets are compact, hence

closed. Then (3) ⇒ (4) follows from the well-known fact that every infinite
KC-space contains an infinite discrete subspace. We give a proof below, for
completeness. Hence, assuming that X is a FAC KC-space, X must be finite,
and since every KC-space is T1, its topology is discrete.

As promised, let us show that every infinite KC-space X contains an infinite
discrete subspace. We first observe that X cannot be Noetherian. Otherwise all
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its subsets would be compact [5, Proposition 9.7.7], hence closed since X is KC.
Then the topology of X would be discrete. The finite subsets of X would then
form an open cover of X. Since X is Noetherian, hence compact, that would
have a finite subcover, contradicting the fact that X is infinite.

Since X is not Noetherian, the inclusion ordering is not well-founded on
the lattice of closed subsets of X. We can therefore find a strictly decreasing
sequence C0 ⊃ C1 ⊃ · · · ⊃ Cn ⊃ · · · of closed subsets of X. For each n ∈ N,
pick a point xn in Cn \ Cn+1, and let A = {xn | n ∈ N}. Clearly, A is infinite.
Since Cn+1 is closed in X, and X is T1, C ′n = {x1, · · · , xn−1} ∪ Cn+1 is closed,
and its complement Un is open. However, Un ∩A contains just xn. This shows
that the subspace topology on A is discrete. ut

3 Proof of the Main Theorem

The proof of Theorem 2.1 is inspired from Lawson, Mislove and Priestley’s proof
of the Erdős-Tarski theorem [7, Proposition 4]. In fact, this is their proof, with
all preorder-theoretic notions replaced by suitable topological notions.

We first need the following lemma. We write cl(A) for the closure of A in
X.

Lemma 3.1 Let A be a subset of a topological space X. The subspace topology
on A is discrete if and only if for every x ∈ A, x is not in the closure cl(A\{x}).

Proof. If A is discrete, then for every x ∈ A, {x} is open in A, so A \ {x} is
closed in A. That means that A \ {x} occurs as the intersection of some closed
subset of X with A, and the smallest one is cl(A \ {x}). That cannot contain x
since its intersection with A is A \ {x}.

Conversely, for every x ∈ A, if x is not in the closure cl(A \ {x}), then it lies
in some open subset U of X that does not intersect A\{x}. Then U ∩A is open
in A, but only contains the point x from A. It follows that every one-element
subset of A is open in A, whence A is discrete. ut
Given a closure operator ϕ on a set X (namely, ϕ is monotonic, A ⊆ ϕ(A)
and ϕ(ϕ(A)) ⊆ ϕ(A) for every A ⊆ X), a subset A is called ϕ-independent by
Milner and Pouzet [8] if and only if, for every x ∈ A, x is not in ϕ(A\{x}). One
may therefore restate Lemma 3.1 by saying that A is discrete if and only if it
is cl-independent. Note that cl is not just a closure operator, but a topological
closure operator, namely one which commutes with finite unions. This will be
important in two places in the proof below.

Next, we prove a useful lemma, generalizing Lemma 3 of [7] to the topological
case. For a family of sets M , we write

⋃
M for the union of all elements of M .

Lemma 3.2 Let X be a topological space, and M be an infinite family of irre-
ducible closed subsets of X, with the property that for every infinite subfamily
N of M , cl(

⋃
N) = cl(

⋃
M). Then cl(

⋃
M) is irreducible closed.
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Proof. We shall repeatedly use the fact that if an open set intersects the closure
of a set E, then it intersects E. Let U and V be two open subsets of X that
intersect cl(

⋃
M). It suffices to show that cl(

⋃
M) intersects U ∩V . Let M ′ be

the subfamily of those I ∈M such that U intersects I. M ′ is non-empty: since
U intersects cl(

⋃
M), it intersects

⋃
M , hence some I ∈M .

If M ′ were finite, then M \M ′ would be infinite, so by assumption cl(
⋃

(M \
M ′)) would be equal to cl(

⋃
M). However, U intersects the latter, so it would

intersect the former, hence also
⋃

(M \M ′), hence also some I ∈M \M ′. That
would contradict the definition of M ′. Therefore M ′ is infinite.

Since M ′ is infinite, we use the assumption again, and so cl(
⋃

M ′) =
cl(

⋃
M). We now use the fact that V , not just U , intersects cl(

⋃
M). Then V

must also intersect cl(
⋃
M ′), hence

⋃
M ′, and therefore it must intersect some

I ∈M ′. By definition of M ′, U also intersects I. Since I is irreducible closed, it
must therefore intersect U ∩ V . Since I is included in cl(

⋃
M), the latter must

also intersect U ∩ V . ut

3.1 Proving the hard implication (2)⇒ (1)

We prove the contrapositive, namely: we assume that there is a closed subset C
of X that cannot be written as a finite union of irreducible closed subsets, and
we shall build an infinite discrete subspace of X.

Lemma 3.3 (Assuming that C is closed in X.) Every irreducible closed subset
of X included in C is contained in some maximal irreducible closed subset of X
included in C.

Proof. Recall that S(X) is sober, and that every sober space is a dcpo in its
specialization ordering [5, Proposition 8.2.34]. A dcpo is a poset in which every
directed subset has a supremum. The supremum of a directed family (Ik)k∈K of
irreducible closed subsets is the closure of their union. To show that, it suffices
to show that cl(

⋃
k∈K Ik) is irreducible: if it intersects two open subsets U and

V , then U intersects some Ik, V intersects some Ik′ , and by directedness we
may assume k = k′; then Ik intersects both U and V , hence U ∩ V since Ik is
irreducible; this implies that the larger set cl(

⋃
k∈K Ik) also intersects U ∩ V .

In particular, the supremum of a directed family of irreducible closed subsets
included in C is again included in C. It follows that the poset of all irreducible
closed subsets of X included in C is a dcpo, in particular an inductive poset.
We apply Zorn’s Lemma and conclude. ut
Alternatively, one may show that the irreducible closed subsets of X included
in C are exactly the irreducible closed subsets of the subspace C. (For that,
the fact that C is closed is important.) We obtain a slightly different proof by
reasoning in S(C), also a dcpo, hence also an inductive poset, instead of S(X).

We now have everything to produce the argument, imitating the proof of [7,
Proposition 4].

Let M0 be the collection of all maximal irreducible closed subsets of X
included in C. By Lemma 3.3, since ↓x is irreducible closed in X for every
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x ∈ C, and also included in C, we obtain that x is a member of some maximal
irreducible closed subset of X included in C. Therefore C =

⋃
M0, in particular,

C = cl(
⋃
M0).

Since C is not a finite union of irreducible closed subsets, it is in particular
not irreducible. The contrapositive of Lemma 3.2 then implies the existence of
an infinite subset M1 of M0 such that cl(

⋃
M1) is strictly included in cl(

⋃
M0).

If cl(
⋃
M1) were an irreducible closed subset, and recalling that it is included

in C, it would be included in some maximal irreducible closed subset of X
included in C by Lemma 3.3, namely in some member of M0. In particular,⋃
M1 would be included in some member of M0. Since all elements of M0 are

maximal, hence pairwise incomparable, that would imply that M1 contains only
one element. That is impossible, since M1 is infinite.

Hence we can reapply Lemma 3.2: there is an infinite subset M2 of M1 such
that cl(

⋃
M2) is strictly included in cl(

⋃
M1).

Again cl(
⋃
M2) cannot be irreducible, hence we can find an infinite subset

M3 of M2 such that cl(
⋃
M3) is strictly included in cl(

⋃
M2). Let us proceed

infinitely that way. To make that clear, we have an infinite, antitone sequence
of infinite subsets M0 ⊇ M1 ⊇ M2 ⊇ · · · ⊇ Mn ⊇ · · · such that cl(

⋃
M0) ⊃

cl(
⋃
M1) ⊃ cl(

⋃
M2) ⊃ · · · ⊃ cl(

⋃
Mn) ⊃ · · · (all inclusions here are strict; from

which we can conclude that the inclusions M0 ⊇ M1 ⊇ M2 ⊇ · · · ⊇ Mn ⊇ · · ·
are strict as well).

We can therefore pick an irreducible closed subset In in Mn that is not
contained in cl(

⋃
Mn+1), for each natural number n. Indeed, if every element

I of Mn were in cl(
⋃
Mn+1), then

⋃
Mn would be included in cl(

⋃
Mn+1), so

cl(
⋃
Mn) would be included in cl(

⋃
Mn+1) as well, contradicting cl(

⋃
Mn) ⊃

cl(
⋃
Mn+1).

We now claim that In cannot be included in cl(
⋃
{Im | m 6= n}). Assume

the contrary. Since for every m > n, Im is in Mm ⊆ Mn+1, In would be
included in cl(I0 ∪ I1 ∪ I2 ∪ · · · ∪ In−1 ∪ (

⋃
Mn+1)). However, closure commutes

with finite unions—this is where we require a topological closure operator, and
where a mere closure operator ϕ as in [8] will not suffice. Therefore In would
be included in cl(I0) ∪ cl(I1) ∪ cl(I2) ∪ · · · ∪ cl(In−1) ∪ cl(

⋃
Mn+1), that is, in

I0∪I1∪I2∪· · ·∪In−1∪cl(
⋃
Mn+1). Since In is irreducible, it must be included

in one term of the union. It cannot be included in cl(
⋃

Mn+1), by definition.
And it cannot be included in any Ik with k < n, since all those irreducible closed
subsets, being maximal, are pairwise incomparable.

Finally, since In is not included in cl(
⋃
{Im | m 6= n}), we can pick a point

xn of In that is not in cl(
⋃
{Im | m 6= n}), for each n ∈ N. Since xm is in Im,

for every m ∈ N, cl(
⋃
{Im | m 6= n}) contains cl{xm | m 6= n}. It follows that

xn is not in cl{xm | m 6= n}. Lemma 3.1 states that the family {xn | n ∈ N} is
a (necessarily infinite) discrete subspace.

Remark 3.4 The implication (2) ⇒ (1) can also be proved by using a result
of Milner and Pouzet [8]. Stating it bluntly would not be helpful. Instead, we
draw a few consequences of (2), walking quietly towards their result. Let C be
a closed subset of X. By (2), C is a union of finitely many irreducible closed
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subsets I1, . . . , In, and choosing them maximal in C, one may assume that they
are pairwise incomparable. Let Ai = Ii \

⋃
j 6=i Ij (a non-empty set), and Ni be

the family of all subsets E of Ai whose closure is different from Ii. Ni contains
the empty set, hence is non-empty, and is clearly downwards-closed. For every
pair E,E′ ∈ Ni, E ∪ E′ is also in Ni: cl(E ∪ E′) = cl(E) ∪ cl(E′) cannot be
equal to Ii, since Ii is irreducible. Finally, Ni is proper, meaning that Ai 6∈ Ni.
Hence Ni is a proper ideal of P(Ai).

For every subset E of C, one can see that cl(E) = C if and only if no
E ∩ Ai belongs to Ni. In one direction, if no E ∩ Ai is in Ni, then cl(E) =
cl(

⋃n
i=1 E∩Ai) =

⋃n
i=1 cl(E∩Ai) =

⋃n
i=1 Ii = C. In the other direction, assume

cl(E) = C and E ∩Ai ∈ Ni for some i. Then cl(E ∩Ai) 6= Ii, hence cl(E ∩Ai)
is a proper subset of Ii. Since Ii ⊆ C = cl(E) = cl(E ∩Ai)∪ cl(E ∩

⋃
j 6=i Aj) ⊆

cl(E∩Ai)∪
⋃

j 6=i Ij, by irreducibility we would obtain that either Ii ⊆ cl(E∩Ai),
or Ii ⊆

⋃
j 6=i Ij. Both cases are impossible.

Hence, for ϕ equal to the closure operator cl, we have obtained that (2)
implies: for each closed subset C of X, (∗) there are finitely many, pairwise
disjoint subsets A1, . . . , An and proper ideals Ni of P(Ai), 1 ≤ i ≤ n, such that
for every subset E of

⋃n
i=1 Ai, ϕ(E) = C if and only if no E∩Ai belongs to Ni.

Theorem 1.2 of [8] states that, for a closure operator ϕ (not necessarily topolog-
ical), (∗) is equivalent to the fact that C contains no infinite ϕ-independent set.
ut

3.2 Proving the easier implication (1)⇒ (2)

We assume an infinite discrete subspace A of X. We shall simply show that
cl(A) cannot be written as a finite union of irreducible closed subsets of X.
Assume one could write cl(A) as the finite union I0 ∪ I1 ∪ I2 ∪ · · · ∪ In−1, where
each Ik is irreducible closed in X.

For each k, if Ik contains some point x of A, then, writing cl(A) as cl({x} ∪
(A \ {x})) = ↓x ∪ cl(A \ {x}) (recall—for the second and final time—that
closures commute with finite unions), and remembering that Ik is irreducible
and included in cl(A), we obtain that Ik is included in ↓x or in cl(A \ {x}).
The latter is impossible if Ik contains x, since A is discrete: indeed, Lemma 3.1
states that x is not in cl(A \ {x}). Therefore Ik = ↓x.

That implies that each Ik can contain at most one point x from A. Explicitly,
if it contained two distinct points x and y of A, then Ik would be equal to ↓x,
and also to ↓ y. If we had assumed X to be T0, we could conclude x = y, but
we haven’t made that assumption, and we must therefore work slightly harder.
Since A is discrete, x is not in cl(A \ {x}), hence neither in the smaller subset
cl({y}) = ↓ y. That shows that x is not less than or equal to y. That contradicts
↓x = ↓ y.

We now have infinitely many points in A, hence in cl(A) = I0∪I1∪I2∪· · ·∪
In−1, but each Ik can contain at most one point from A. That is impossible, by
the pigeonhole principle.
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pages 189–198. North-Holland, 1975.
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