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Spaces with No Infinite Discrete Subspace

, according to which a preordered set has no infinite antichain-the finite antichain, or FAC, property-if and only if all its downwards-closed subsets are finite unions of ideals. All Noetherian spaces are FAC spaces, and we show that sober FAC spaces have a simple order-theoretic description.

Introduction

A preorder is FAC (for: has the finite antichain property) if and only if all its antichains are finite. An antichain is a subset of pairwise incomparable elements. A well-known result in the theory of preorders states that a preorder is FAC if and only if all its downwards-closed subsets are finite unions of ideals-an ideal is a downwards-closed, directed subset. This was discovered many times [START_REF] Bonnet | On the cardinality of the set of initial intervals of a partially ordered set[END_REF][START_REF] Pouzet | Relations non reconstructibles par leurs restrictions[END_REF][START_REF] Pouzet | Dimension de Krull des ensembles ordonnés[END_REF][START_REF] Fraïssé | Theory of relations[END_REF][START_REF] Lawson | Ordered sets with no infinite antichains[END_REF], and is credited to Erdős and Tarski [START_REF] Erdős | On families of mutually exclusive sets[END_REF].

The purpose of this paper is to generalize that result to the case of topological spaces. An antichain will simply be a discrete subspace, namely a subspace whose topology is discrete. Downwards-closed subsets will be replaced by closed subsets, and ideals by irreducible closed subsets. We shall retrieve the above preorder-theoretic result by looking at spaces with the Alexandroff topology of the preorder. This is in line with related results, such as the fact that Noetherian spaces are a topological generalization of well-quasi-orders [START_REF] Goubault-Larrecq | On Noetherian spaces[END_REF].

Main Results

The main result of this paper is the following, and will be proved in Section 3.

Theorem 2.1 For a topological space X, the following are equivalent:

1. X has no infinite discrete subspace; 2. every closed subset of X is a finite union of irreducible closed subsets.
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We recall that a closed subset C of X is irreducible if and only if it is non-empty, and for all closed subsets

C 1 , C 2 of X, if C is included in C 1 ∪ C 2 then C is included in C 1 or in C 2 .
Equivalently, C is irreducible (closed) if and only if it is non-empty and, for any two open subsets U and V of X, if C intersects both U and V then it intersects U ∩ V .

Perhaps the closest result in the literature, except for the preorder-theoretic results mentioned in the introduction, is due to A. H. Stone [11, Theorem 2]: a space X has no infinite discrete subspace if and only if every open cover of every subspace A of X has a finite subfamily whose union is dense in A, if and only if every continuous real-valued function on every subspace of X is bounded. Another one is due to Milner and Pouzet [START_REF] Milner | A decomposition theorem for closure systems having no infinite independent set[END_REF], and we shall return to it in Remark 3.4. Definition 2.2 A space satisfying any of the equivalent properties of Theorem 2.1 is called a FAC space.

The closures of points are always irreducible. A space is sober if and only if every irreducible closed subset is the closure of a unique point. The sobrification S(X) of X can be defined as the set of all irreducible closed subsets of X, with the topology whose open subsets are U = {C ∈ S(X) | C ∩ U = ∅}, where U ranges over the open subsets of X (see [START_REF] Goubault-Larrecq | Non-Hausdorff Topology and Domain Theory, Selected Topics in Point-Set Topology, volume 22 of New Mathematical Monographs[END_REF]Section 8.2.3] for example).

The map U → U defines an isomorphism between the lattice of open subsets of X and of S(X). It follows that X and S(X) have isomorphic lattices of closed subsets. Since Item 2 of Theorem 2.1 only depends on the lattice of closed subsets, we immediately obtain:

Fact 2.3 A space X is FAC if and only if its sobrification S(X) is.
Hence it is legitimate to study sober FAC spaces. This is best done by comparing the situation with Noetherian spaces (see Section 9.7 of [START_REF] Goubault-Larrecq | Non-Hausdorff Topology and Domain Theory, Selected Topics in Point-Set Topology, volume 22 of New Mathematical Monographs[END_REF] for an introduction to Noetherian spaces).

A Noetherian space is a space where every open subset is compact. (A subset is compact if and only if all its open covers have a finite subcover; we do not require Hausdorffness.) Equivalently, a space is Noetherian if and only if every monotone chain of open subsets stabilizes, if and only if the inclusion ordering on the lattice of closed subsets is well-founded. It is well-known that, in a Noetherian space, all closed subsets are finite unions of irreducibles. A simple proof goes as follows. Imagine there were a closed subset C that one cannot write as a finite union of irreducibles. Since inclusion is well-founded on closed sets, we can require C to be minimal. C is not a finite union of irreducibles, hence is not empty and not irreducible itself. Hence there are two closed sets That can also be obtained by using Theorem 1 of [START_REF] Harold | Hereditarily compact spaces[END_REF], which says that a space is Noetherian if and only if it has no weakly discrete infinite subspace, and using Item 1 of Theorem 2.1. (A space is weakly discrete if and only if every point has a finite neighborhood. Clearly, every discrete space is weakly discrete.)

C 1 and C 2 such that C ⊆ C 1 ∪ C 2 but C is included neither in C 1 nor in C 2 . Then C ∩ C 1 and C ∩ C 2 ,
The converse of Fact 2.4 fails. For example, consider the real line R, with the Scott topology, whose non-trivial opens are the half-open intervals ]r, +∞[, r ∈ R. That is FAC, because all non-empty closed sets are of the form ] -∞, r] with r ∈ R, or the whole of R, and all of them are irreducible. However, R with the Scott topology is not Noetherian, since no open set ]r, +∞[ is compact.

Another example comes from the theory of preorders. Every topological space X comes with a so-called specialization preorder ≤, defined by x ≤ y if and only if every open neighborhood of x contains y, if and only if x is in the closure of y. X is Alexandroff if and only if the open subsets of X are the upwards-closed subsets with respect to some preordering (which must be ≤). The full subcategory of the category of topological spaces consisting of Alexandroff spaces is equivalent to the category of preorders. Hence, equating the two categories, a Noetherian Alexandroff space is the same thing as a wellquasi-order [5, Proposition 9.7.17]. The discrete subspaces of an Alexandroff space are exactly its antichains, hence: Fact 2.5 The FAC Alexandroff spaces are exactly the preorders with no infinite antichain.

Fact 2.4, once specialized to Alexandroff spaces, yields the following trivial fact: in a well-quasi-ordered set, every antichain is finite. The converse fails, take Z with its usual ordering for example.

In an Alexandroff space, a closed subspace is the same as a downwardsclosed subset, and an irreducible closed subset is the same thing as an ideal, namely a downwards-closed directed subset (see Fact 8.2.49 in [START_REF] Goubault-Larrecq | Non-Hausdorff Topology and Domain Theory, Selected Topics in Point-Set Topology, volume 22 of New Mathematical Monographs[END_REF], or [START_REF] Hoffmann | Sobrification of partially ordered sets[END_REF].) Hence, specialized to Alexandroff spaces, Theorem 2.1 is a restatement of the Erdős-Tarski result mentioned in the introduction.

There is a purely order-theoretic characterization of sober Noetherian spaces (see Theorem 9.7.12 of [START_REF] Goubault-Larrecq | Non-Hausdorff Topology and Domain Theory, Selected Topics in Point-Set Topology, volume 22 of New Mathematical Monographs[END_REF]): they are exactly the posets X whose ordering ≤ is well-founded and satisfies properties T and W, in the upper topology. Property T states that X is finitary, where a finitary subset is defined as the downwards-closure ↓ E of a finite set E. Property W states that, for any two points x and y, ↓ x ∩ ↓ y is finitary. (We write ↓ x for ↓{x}. This coincides with the closure of x.) The upper topology is the coarsest topology that has ≤ as specialization ordering. Alternatively, this is the topology whose closed sets are the intersections of finitary subsets.

Theorem 2.6 The sober FAC spaces are exactly the posets X in which every intersection of finitary subsets is finitary, in the upper topology. Every closed set is finitary.

Properties T and W are equivalent to the statement that finite intersections of finitary subsets are finitary. Together with well-foundedness, they imply Noetherianness, hence FACness, but as we have seen, the fact that intersections of finitary subsets are finitary is strictly weaker than requiring that ≤ is wellfounded.

Proof. Let X be a sober FAC space. Since X is sober, its only irreducible closed subsets are the closures of points, and those are exactly the sets of the form ↓ x, x ∈ X, where downward closure is taken with respect to the specialization ordering ≤ of X. Item 2 of Theorem 2.1 then implies that every closed set is finitary. Since intersections of closed sets are closed, we conclude.

Conversely, let X be a set with an ordering ≤ in which intersections of finitary subsets are finitary. Since finite unions of finitary subsets are finitary, the finitary subsets form the closed sets of a topology, and that must be the upper topology. By Item 2 of Theorem 2.1, and since every set ↓ x is irreducible closed, X is FAC in that topology.

Finally, we show that X is sober. Let C = ↓ E be closed, where E is finite. We may assume that E is an antichain, by removing elements below another one, one by one. If C is irreducible, then it is non-empty, so E contains some element x. Then C is included in the union of the closed sets ↓ x and ↓(E \ {x}), hence must be contained in one of them. It cannot be contained in the second one, since x ∈ C and E is an antichain. It follows that C is included in ↓ x, hence is equal to it. Recall that ↓ x is the closure of x. We have shown that every irreducible closed set is the closure of some point. This point must be unique because ≤ is an ordering, not just a preordering.

We finish with the following observation. That generalizes the fact that the Hausdorff Noetherian spaces are the finite discrete spaces. Proposition 2.7 Given a FAC space X, the following are equivalent:

1. X is sober and T 1 ; 2. X is Hausdorff; 3. X is a KC-space, namely one where each compact subset is closed; 4. X is finite and discrete.

Proof. (1) ⇒ (4). In a sober space, every irreducible closed set is the closure of a point, and in a T 1 space, all points are closed. Hence the finite unions of irreducible closed subsets are the finite subsets. That applies to every closed subset, in particular to X itself. Finally, every finite T 1 space is discrete.

(4) ⇒ (2) ⇒ (1), ( 4) ⇒ (3): obvious.

(3) ⇒ (4). Every KC-space is T 1 , since one-element sets are compact, hence closed. Then (3) ⇒ (4) follows from the well-known fact that every infinite KC-space contains an infinite discrete subspace. We give a proof below, for completeness. Hence, assuming that X is a FAC KC-space, X must be finite, and since every KC-space is T 1 , its topology is discrete.

As promised, let us show that every infinite KC-space X contains an infinite discrete subspace. We first observe that X cannot be Noetherian. Otherwise all its subsets would be compact [5, Proposition 9.7.7], hence closed since X is KC. Then the topology of X would be discrete. The finite subsets of X would then form an open cover of X. Since X is Noetherian, hence compact, that would have a finite subcover, contradicting the fact that X is infinite.

Since X is not Noetherian, the inclusion ordering is not well-founded on the lattice of closed subsets of X. We can therefore find a strictly decreasing sequence

C 0 ⊃ C 1 ⊃ • • • ⊃ C n ⊃ • • • of closed subsets of X. For each n ∈ N, pick a point x n in C n \ C n+1 , and let A = {x n | n ∈ N}. Clearly, A is infinite. Since C n+1 is closed in X, and X is T 1 , C n = {x 1 , • • • , x n-1 } ∪ C n+1 is closed,
and its complement U n is open. However, U n ∩ A contains just x n . This shows that the subspace topology on A is discrete.

Proof of the Main Theorem

The proof of Theorem 2.1 is inspired from Lawson, Mislove and Priestley's proof of the Erdős-Tarski theorem [7, Proposition 4]. In fact, this is their proof, with all preorder-theoretic notions replaced by suitable topological notions.

We first need the following lemma. We write cl(A) for the closure of A in X.

Lemma 3.1 Let A be a subset of a topological space X. The subspace topology on A is discrete if and only if for every x ∈ A, x is not in the closure cl(A\{x}).

Proof. If A is discrete, then for every x ∈ A, {x} is open in A, so A \ {x} is closed in A. That means that A \ {x} occurs as the intersection of some closed subset of X with A, and the smallest one is cl(A \ {x}). That cannot contain x since its intersection with A is A \ {x}.

Conversely, for every x ∈ A, if x is not in the closure cl(A \ {x}), then it lies in some open subset U of X that does not intersect A \ {x}. Then U ∩ A is open in A, but only contains the point x from A. It follows that every one-element subset of A is open in A, whence A is discrete.

Given a closure operator ϕ on a set X (namely, ϕ is monotonic, A ⊆ ϕ(A) and ϕ(ϕ(A)) ⊆ ϕ(A) for every A ⊆ X), a subset A is called ϕ-independent by Milner and Pouzet [START_REF] Milner | A decomposition theorem for closure systems having no infinite independent set[END_REF] if and only if, for every x ∈ A, x is not in ϕ(A \ {x}). One may therefore restate Lemma 3.1 by saying that A is discrete if and only if it is cl-independent. Note that cl is not just a closure operator, but a topological closure operator, namely one which commutes with finite unions. This will be important in two places in the proof below.

Next, we prove a useful lemma, generalizing Lemma 3 of [START_REF] Lawson | Ordered sets with no infinite antichains[END_REF] to the topological case. For a family of sets M , we write M for the union of all elements of M . Lemma 3.2 Let X be a topological space, and M be an infinite family of irreducible closed subsets of X, with the property that for every infinite subfamily N of M , cl( N ) = cl( M ). Then cl( M ) is irreducible closed.

Proof. We shall repeatedly use the fact that if an open set intersects the closure of a set E, then it intersects E. Let U and V be two open subsets of X that intersect cl( M ). It suffices to show that cl( M ) intersects U ∩ V . Let M be the subfamily of those I ∈ M such that U intersects I. M is non-empty: since U intersects cl( M ), it intersects M , hence some I ∈ M .

If M were finite, then M \ M would be infinite, so by assumption cl( (M \ M )) would be equal to cl( M ). However, U intersects the latter, so it would intersect the former, hence also (M \ M ), hence also some I ∈ M \ M . That would contradict the definition of M . Therefore M is infinite.

Since M is infinite, we use the assumption again, and so cl( M ) = cl( M ). We now use the fact that V , not just U , intersects cl( M ). Then V must also intersect cl( M ), hence M , and therefore it must intersect some I ∈ M . By definition of M , U also intersects I. Since I is irreducible closed, it must therefore intersect U ∩ V . Since I is included in cl( M ), the latter must also intersect U ∩ V .

Proving the hard implication (2) ⇒ (1)

We prove the contrapositive, namely: we assume that there is a closed subset C of X that cannot be written as a finite union of irreducible closed subsets, and we shall build an infinite discrete subspace of X.

Lemma 3.3 (Assuming that C is closed in X.) Every irreducible closed subset of X included in C is contained in some maximal irreducible closed subset of X included in C.
Proof. Recall that S(X) is sober, and that every sober space is a dcpo in its specialization ordering [START_REF] Goubault-Larrecq | Non-Hausdorff Topology and Domain Theory, Selected Topics in Point-Set Topology, volume 22 of New Mathematical Monographs[END_REF]Proposition 8.2.34]. A dcpo is a poset in which every directed subset has a supremum. The supremum of a directed family (I k ) k∈K of irreducible closed subsets is the closure of their union. To show that, it suffices to show that cl( k∈K I k ) is irreducible: if it intersects two open subsets U and V , then U intersects some I k , V intersects some I k , and by directedness we may assume k = k ; then I k intersects both U and V , hence U ∩ V since I k is irreducible; this implies that the larger set cl( k∈K I k ) also intersects U ∩ V .

In particular, the supremum of a directed family of irreducible closed subsets included in C is again included in C. It follows that the poset of all irreducible closed subsets of X included in C is a dcpo, in particular an inductive poset. We apply Zorn's Lemma and conclude.

Alternatively, one may show that the irreducible closed subsets of X included in C are exactly the irreducible closed subsets of the subspace C. (For that, the fact that C is closed is important.) We obtain a slightly different proof by reasoning in S(C), also a dcpo, hence also an inductive poset, instead of S(X).

We now have everything to produce the argument, imitating the proof of [7, Proposition 4].

Let M 0 be the collection of all maximal irreducible closed subsets of X included in C. By Lemma 3.3, since ↓ x is irreducible closed in X for every

x ∈ C, and also included in C, we obtain that x is a member of some maximal irreducible closed subset of X included in C. Therefore C = M 0 , in particular, C = cl( M 0 ).

Since C is not a finite union of irreducible closed subsets, it is in particular not irreducible. The contrapositive of Lemma 3.2 then implies the existence of an infinite subset M 1 of M 0 such that cl( M 1 ) is strictly included in cl( M 0 ).

If cl( M 1 ) were an irreducible closed subset, and recalling that it is included in C, it would be included in some maximal irreducible closed subset of X included in C by Lemma 3.3, namely in some member of M 0 . In particular, M 1 would be included in some member of M 0 . Since all elements of M 0 are maximal, hence pairwise incomparable, that would imply that M 1 contains only one element. That is impossible, since M 1 is infinite.

Hence we can reapply Lemma 3.2: there is an infinite subset M 2 of M 1 such that cl( M 2 ) is strictly included in cl( M 1 ).

Again cl( M 2 ) cannot be irreducible, hence we can find an infinite subset M 3 of M 2 such that cl( M 3 ) is strictly included in cl( M 2 ). Let us proceed infinitely that way. To make that clear, we have an infinite, antitone sequence of infinite subsets

M 0 ⊇ M 1 ⊇ M 2 ⊇ • • • ⊇ M n ⊇ • • • such that cl( M 0 ) ⊃ cl( M 1 ) ⊃ cl( M 2 ) ⊃ • • • ⊃ cl( M n ) ⊃ • • • (all
inclusions here are strict; from which we can conclude that the inclusions

M 0 ⊇ M 1 ⊇ M 2 ⊇ • • • ⊇ M n ⊇ • • • are strict as well).
We can therefore pick an irreducible closed subset I n in M n that is not contained in cl( M n+1 ), for each natural number n. Indeed, if every element I of M n were in cl( M n+1 ), then M n would be included in cl( M n+1 ), so cl( M n ) would be included in cl( M n+1 ) as well, contradicting cl( M n ) ⊃ cl( M n+1 ).

We now claim that I n cannot be included in cl( {I m | m = n}). Assume the contrary. Since for every m > n, I m is in M m ⊆ M n+1 , I n would be included in cl(I 0 ∪ I 1 ∪ I 2 ∪ • • • ∪ I n-1 ∪ ( M n+1 )). However, closure commutes with finite unions-this is where we require a topological closure operator, and where a mere closure operator ϕ as in [START_REF] Milner | A decomposition theorem for closure systems having no infinite independent set[END_REF] will not suffice. Therefore I n would be included in cl

(I 0 ) ∪ cl(I 1 ) ∪ cl(I 2 ) ∪ • • • ∪ cl(I n-1 ) ∪ cl( M n+1 ), that is, in I 0 ∪ I 1 ∪ I 2 ∪ • • • ∪ I n-1 ∪ cl( M n+1
). Since I n is irreducible, it must be included in one term of the union. It cannot be included in cl( M n+1 ), by definition. And it cannot be included in any I k with k < n, since all those irreducible closed subsets, being maximal, are pairwise incomparable.

Finally, since

I n is not included in cl( {I m | m = n}), we can pick a point x n of I n that is not in cl( {I m | m = n}), for each n ∈ N. Since x m is in I m , for every m ∈ N, cl( {I m | m = n}) contains cl{x m | m = n}. It follows that x n is not in cl{x m | m = n}. Lemma 3.1 states that the family {x n | n ∈ N} is a (necessarily infinite) discrete subspace.
Remark 3.4 The implication (2) ⇒ (1) can also be proved by using a result of Milner and Pouzet [START_REF] Milner | A decomposition theorem for closure systems having no infinite independent set[END_REF]. Stating it bluntly would not be helpful. Instead, we draw a few consequences of (2), walking quietly towards their result. Let C be a closed subset of X. By (2), C is a union of finitely many irreducible closed subsets I 1 , . . . , I n , and choosing them maximal in C, one may assume that they are pairwise incomparable. Let A i = I i \ j =i I j (a non-empty set), and N i be the family of all subsets E of A i whose closure is different from I i . N i contains the empty set, hence is non-empty, and is clearly downwards-closed. For every pair

E, E ∈ N i , E ∪ E is also in N i : cl(E ∪ E ) = cl(E) ∪ cl(E ) cannot be equal to I i , since I i is irreducible. Finally, N i is proper, meaning that A i ∈ N i .
Hence N i is a proper ideal of P(A i ).

For every subset E of C, one can see that cl(E) = C if and only if no

E ∩ A i belongs to N i . In one direction, if no E ∩ A i is in N i , then cl(E) = cl( n i=1 E ∩A i ) = n i=1 cl(E ∩A i ) = n i=1 I i = C. In the other direction, assume cl(E) = C and E ∩ A i ∈ N i for some i. Then cl(E ∩ A i ) = I i , hence cl(E ∩ A i ) is a proper subset of I i . Since I i ⊆ C = cl(E) = cl(E ∩ A i ) ∪ cl(E ∩ j =i A j ) ⊆ cl(E ∩A i )∪ j =i I j
, by irreducibility we would obtain that either I i ⊆ cl(E ∩A i ), or I i ⊆ j =i I j . Both cases are impossible.

Hence, for ϕ equal to the closure operator cl, we have obtained that (2) implies: for each closed subset C of X, ( * ) there are finitely many, pairwise disjoint subsets A 1 , . . . , A n and proper ideals N i of P(A i ), 1 ≤ i ≤ n, such that for every subset E of n i=1 A i , ϕ(E) = C if and only if no E ∩ A i belongs to N i . Theorem 1.2 of [START_REF] Milner | A decomposition theorem for closure systems having no infinite independent set[END_REF] states that, for a closure operator ϕ (not necessarily topological), ( * ) is equivalent to the fact that C contains no infinite ϕ-independent set.

Proving the easier implication (1) ⇒ (2)

We assume an infinite discrete subspace A of X. We shall simply show that cl(A) cannot be written as a finite union of irreducible closed subsets of X. Assume one could write cl(A) as the finite union I 0 ∪ I 1 ∪ I 2 ∪ • • • ∪ I n-1 , where each I k is irreducible closed in X.

For each k, if I k contains some point x of A, then, writing cl(A) as cl({x} ∪ (A \ {x})) = ↓ x ∪ cl(A \ {x}) (recall-for the second and final time-that closures commute with finite unions), and remembering that I k is irreducible and included in cl(A), we obtain that I k is included in ↓ x or in cl(A \ {x}). The latter is impossible if I k contains x, since A is discrete: indeed, Lemma 3.1 states that x is not in cl(A \ {x}). Therefore I k = ↓ x.

That implies that each I k can contain at most one point x from A. Explicitly, if it contained two distinct points x and y of A, then I k would be equal to ↓ x, and also to ↓ y. If we had assumed X to be T 0 , we could conclude x = y, but we haven't made that assumption, and we must therefore work slightly harder. Since A is discrete, x is not in cl(A \ {x}), hence neither in the smaller subset cl({y}) = ↓ y. That shows that x is not less than or equal to y. That contradicts ↓ x = ↓ y.

We now have infinitely many points in A, hence in cl(A) = I 0 ∪ I 1 ∪ I 2 ∪ • • • ∪ I n-1 , but each I k can contain at most one point from A. That is impossible, by the pigeonhole principle.

Fact 2 . 4

 24 being strictly smaller than C, are finite unions of irreducibles. It follows that C = (C ∩ C 1 ) ∪ (C ∩ C 2 ) is also a finite union of irreducibles-contradiction. That means that Item 2 of Theorem 2.1 is true of all Noetherian spaces, whence: Every Noetherian space is FAC.
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