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Abstract

Radiative transfer models have long been used to characterize the foliar

content at the leaf and canopy levels. However, they still do not apply well

to close-range imaging spectroscopy, especially because directional effects are

usually not taken into account. For this purpose, we introduce a physical ap-

proach to describe and simulate the variation in leaf reflectance observed at

this scale. Two parameters are thus introduced to represent (1) specular

reflection at the leaf surface and (2) local leaf orientation. The model, called

COSINE (ClOse-range Spectral ImagiNg of lEaves), can be coupled with a

directional-hemispherical reflectance model of leaf optical properties to relate
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the measured reflectance to the foliar content. In this study, we show that,

when combining COSINE with the PROSPECT model, the overall PRO-

COSINE model allows for a robust sub-millimeter retrieval of foliar content

based on numerical inversion and pseudo bidirectional reflectance factor hy-

perspectral measurements.

The relevance of the added parameters is first shown through a sensitivity

analysis performed in the visible and near-infrared (VNIR) and shortwave

infrared (SWIR) ranges. PROCOSINE is then validated based on VNIR and

SWIR hyperspectral images of various leaf species exhibiting different sur-

face properties. Introducing these two parameters within the inversion allows

us to obtain accurate maps of PROSPECT parameters, e.g., the chlorophyll

content in the VNIR range, and the equivalent water thickness and leaf mass

per area in the SWIR range. Through the estimation of light incident an-

gle, the PROCOSINE inversion also provides information on leaf orientation,

which is a critical parameter in vegetation remote sensing.

Keywords: close-range, COSINE, hyperspectral, imaging spectroscopy, leaf

optical properties, pigment retrieval, PROCOSINE, PROSPECT, radiative

transfer, vegetation

1. Introduction1

Due to the strong interactions occurring between vegetation and the in-2

coming optical radiation through absorption and scattering processes, hyper-3

spectral remote sensing from satellites and aircrafts provides critical infor-4

mation to assess the spatial and temporal variabilities of vegetation status5

from local to global scales. This has led to a number of agricultural, envi-6
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ronmental and ecological applications such as the retrieval of leaf pigments7

(Zarco-Tejada et al., 2004; Ustin et al., 2009), the early detection of leaf8

diseases (Mahlein et al., 2013) or the mapping of forest biodiversity (Féret9

& Asner, 2014). As hyperspectral cameras are now becoming more afford-10

able, close-range remote sensing data are also increasingly available to the11

scientific community. Compared with air- and satellite-borne data, they gen-12

erally offer a sub-milliter or millimeter spatial resolution, and they can be13

acquired at a higher temporal frequency, which is particularly interesting for14

precision agriculture. For example, these data can be used to identify plant15

pigments (Blackburn, 2007), freezing stress (Nicotra et al., 2003) or leaf dis-16

eases (Mahlein et al., 2013), each of which is of tremendous importance to17

follow up the plant physiological status. These images are generally processed18

by applying statistically-based methods to estimate various leaf biochemical19

properties (Nicotra et al., 2003; Vigneau et al., 2011; Ji-Yong et al., 2012; Jay20

et al., 2014). However, at this scale, a proper physical interpretation based21

on radiative transfer modeling is needed to describe the interactions between22

light and vegetation, especially for a spatially- and temporally-resolved quan-23

tification of pigments (Blackburn, 2007).24

25

Vegetation radiative transfer models are physically-based and simulate26

light propagation within leaves and/or canopies, e.g., as a function of leaf27

biochemical constituents, leaf anatomy or canopy structure. Whenever pos-28

sible, model inversion allows for the retrieval of the variables of interest,29

generally using iterative optimization, look-up tables, statistical methods or30

machine learning algorithms.31

3
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At the leaf level, these models range from simple plate models, to ray-tracing,32

radiosity and stochastic models that are computationally more difficult to in-33

vert (Dorigo et al., 2007). For instance, PROSPECT (Jacquemoud & Baret,34

1990) is based on the generalized plate model, and is particularly well suited35

to estimate leaf biochemical constituents (e.g., chlorophyll content, water36

content and leaf mass per area) based on spectral measurements in the op-37

tical domain. The main reasons for the popularity of PROSPECT are its38

accuracy, its computational efficiency (resulting in fast iterative model inver-39

sion) and free distribution.40

At the canopy level, various approaches of different complexities have been41

developed for radiative transfer modeling, e.g., turbid medium approaches42

(Verhoef, 1984), geometrical approaches (Chen & Leblanc, 1997) or the com-43

bination of both (Gastellu-Etchegorry et al., 1996). Most of these models al-44

low the canopy reflectance to be modeled as a function of parameters related45

to canopy structure (such as leaf area index or leaf inclination distribution46

function), leaf optical properties and sun-sensor geometry.47

48

However, leaf and canopy radiative transfer models do not apply well49

to close-range imaging spectroscopy. For example, at the leaf level, the50

directional-hemispherical reflectance and transmittance simulated by PROSPECT51

(Jacquemoud & Baret, 1990) are usually measured with an integrating sphere,52

whose implementation is difficult (if not impossible) for every single pixel of53

hyperspectral images. As a result, PROSPECT cannot be inverted based on54

directional reflectance data as retrieved by a close-range hyperspectral cam-55

era, unless it is assumed that leaves are Lambertian (Buddenbaum & Hill,56

4
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2015) and in fully horizontal position, which is an unrealistic hypothesis.57

Indeed, in most cases, leaf reflectance exhibits some anisotropy (Bousquet58

et al., 2005; Comar et al., 2012) and thus varies with respect to illumination59

and viewing angles. Furthermore, variation in leaf orientation prevent from60

achieving a proper reflectance correction for every pixel, because the refer-61

ence surface used for reflectance correction is generally not submitted to the62

same local illumination conditions than leaf material.63

At the canopy level, most radiative transfer models have to be applied to64

mixed pixels (containing both soil and leaf materials), for which effects of65

leaf composition, canopy structure, soil properties and viewing/illumination66

angles are integrated into a single spectrum. Canopy models are thus well67

suited for ground-based spectroradiometric measurements, as well as for air-68

and satellite-borne hyperspectral measurements, all of them being usually69

characterized by a spatial resolution coarser than one meter (Zarco-Tejada70

et al., 2003; Colombo et al., 2008; Schlemmer et al., 2013). However, most71

canopy models are not suitable for simulating hyperspectral data character-72

ized by a higher spatial resolution (up to sub-millimeter level) for which the73

assumption of mixed pixel does not hold.74

75

In this study, we propose a physically-based model, called COSINE (ClOse-76

range Spectral ImagiNg of lEaves), that describes the additional spectral77

variability induced by directional effects and variation in leaf orientation.78

Combining COSINE with a leaf directional-hemispherical reflectance model79

such as PROSPECT allows the simulation of leaf reflectance according to80

our experimental conditions: submillimetric spatial resolution and a single81

5
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light source assumed to be directional. When applied in inverse mode to82

close-range hyperspectral images, the overall PROCOSINE model enables83

the simultaneous retrieval of PROSPECT parameters (e.g., chlorophyll and84

water contents), bidirectional effects and leaf angle with respect to the light85

source.86

87

The COSINE theory is described in Section 2. After recalling the nec-88

essary radiometric definitions, we develop a physically-based analytic ex-89

pression of the reflectance quantity retrieved using close-range imaging spec-90

troscopy. This expression is then related to PROSPECT to explain variations91

in leaf biochemistry and leaf anatomy. In Section 3, we present the data sets92

used in this article as well as details about model validation and sensitivity93

analysis. Results are presented and discussed in Section 4, and we finally94

draw some conclusions and perspectives in Section 5.95

2. Theory96

2.1. Radiometric considerations97

2.1.1. Definitions98

The definitions and notations of the main physical quantities used in this99

article and summarized in Table 1, are based on the initial terminology of100

Nicodemus et al. (1977), which has later been reviewed by Schaepman-Strub101

et al. (2006).102

The spectral radiance L is the radiant flux in a beam per unit wavelength,103

per unit area and per unit solid angle, and is expressed in the SI unit104

[W.sr−1.m−2.nm−1]. This is the physical quantity measured by a hyper-105

6
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Table 1: Main parameters and acronyms.

Parameter Definition [unit]

bspec Specular term [unitless]

Cab Chlorophyll a+b content [µg.cm−2]

Cbp Brown pigment content [unitless]

Ccx Carotenoid content [µg.cm−2]

Cm Leaf mass per area [g.cm−2]

Cw Equivalent water thickness [cm]

E Spectral irradiance [W.m−2.nm−1]

fr Bidirectional reflectance distribution function (BRDF) [sr−1]

L Spectral radiance [W.sr−1.m−2.nm−1]

λ Wavelength [nm]

N Leaf structure parameter [unitless]

ϕl Difference between illumination and leaf normal azimuth angles [o]

ϕv Difference between illumination and viewing azimuth angles [o]

R Bidirectional reflectance factor (BRF) [unitless]

Rhsi Pseudo bidirectional reflectance factor [unitless]

ρ Directional-hemispherical reflectance (DHR) [unitless]

θi Light incident angle (angle between the light source and the normal

to the leaf) [o]

θl, θv, θs Leaf normal, viewing and illumination zenith angles [o]

ϑ PROCOSINE parameters

ϑdhr Parameters of the leaf DHR model

7
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spectral imaging sensor after spectral calibration. The spectral irradiance E106

is the radiant flux in a beam per unit wavelength and per unit area and is107

expressed in [W.m−2.nm−1].108

One of the main physical quantities used to describe angular patterns of109

reflected light is the bidirectional reflectance distribution function (BRDF)110

expressed in [sr−1]. It describes how a parallel beam of incident light from111

one direction in the hemisphere is reflected into another direction in the112

hemisphere:113

fr(θs; θv, ϕv;λ) =
dLr(θs; θv, ϕv;λ)

dEi(θs;λ)
(1)

where subscripts i and r refer to incoming and reflected lights respectively,114

θs and θv are respectively the illumination and viewing zenith angles, and115

ϕv is the viewing azimuth angle relatively to the illumination azimuth an-116

gle (see Fig. 1 for angle representation). The BRDF being the ratio of two117

infinitesimal quantities, it cannot theoretically be measured. However, its118

integration over the corresponding solid angles allows the derivation of many119

other measurable physical quantities.120

Usually, the reflectance correction process does not consist in retrieving di-121

rectly the reflectance (defined as the ratio of the leaving radiant exitance122

to the incident irradiance), but rather follows the definition of a reflectance123

factor. In the specific case of single illumination and viewing directions, the124

bidirectional reflectance factor (BRF, denoted by R) is given by the ratio of125

the radiant flux dLr reflected from the area element dA to the radiant flux126

dLid
r reflected from an ideal and diffuse surface of the same area dA under127

identical illumination and viewing geometries. It is unitless and, as developed128

8
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Figure 1: Angle representation.

by Schaepman-Strub et al. (2006), it can be expressed as follows:129

R(θs; θv, ϕv;λ) =
dLr(θs; θv, ϕv;λ)

dLid
r (θs;λ)

(2)

where dLid
r does not depend on viewing angles because of the Lambertian130

nature of the reference surface.131

The BRDF of an ideal and diffuse surface being (1/π), the BRF of any surface132

is therefore related to its BRDF by:133

R(θs; θv, ϕv;λ) = πfr(θs; θv, ϕv;λ). (3)

Let us finally define the directional-hemispherical reflectance (DHR) as the134

integration of BRDF over the whole viewing hemisphere. The DHR is unitless135

and is given by:136

ρ(θs; 2π;λ) =

∫ 2π

0

∫ π/2

0

fr(θs; θv, ϕv;λ) cos θv sin θvdθvdϕv. (4)

9
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In the following, the spectral dependence will be omitted for more clarity in137

notation. Similarly, spectral radiance and spectral irradiance will be simply138

referred to as radiance and irradiance.139

2.1.2. Radiometric expression of close-range hyperspectral measurement140

The solid angles corresponding to incident and reflected light beams are141

never purely directional, so rigorously, sensor measurements only allow the142

retrieval of a biconical reflectance factor (Schaepman-Strub et al., 2006).143

However, a close approximation of bidirectional reflectance can be obtained144

under specific experimental and instrumental conditions, e.g., using a col-145

limated light beam and a small sensor field of view (FOV) provided by a146

push-broom hyperspectral camera. In this case, the leaf BRF R is approxi-147

mated as follows:148

R(θs; θv, ϕv) ≈
Lr(θs; θv, ϕv)

Lid
r (θs)

(5)

where Lr and Lid
r are the radiances respectively measured on the leaf and on149

the reference surface with a hyperspectral camera.150

Importantly, Eq. 5 requires the leaf and reference surface to be under identi-151

cal illumination geometry (i.e., same θs values). However, at the pixel level,152

the leaf position and leaf local orientation can make the irradiances received153

by the leaf and reference surface strongly different. Indeed, considering a154

directional light source, the irradiance received by an area element is propor-155

tional to the cosine of the incident angle θi, i.e., the angle between the light156

source and the normal to this element:157

Ei(θi) = E0 cos θi (6)

10
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where E0 is the irradiance received by an area element perpendicular to the158

light source direction, and cos θi = cos θs cos θl + sin θs sin θl cosϕl where θl159

and ϕl characterize the normal to this area element (Bousquet et al., 2005;160

Comar et al., 2014).161

Therefore, we define two illumination geometries corresponding to either the162

leaf or the reference surface. The irradiance received by the leaf is:163

El
i(θ

l
i) = E0 cos θ

l
i (7)

whereas the one received by the ideal and diffuse reference surface is:164

Eid
i (θidi ) = E0 cos θ

id
i . (8)

The reference surface is usually positioned horizontally so, in the following,165

we note θidi = θs and θli = θi.166

Similarly to Eq. 5, at each pixel, the physical quantity Rhsi retrieved using167

a hyperspectral camera is given by:168

Rhsi(θs, θi; θv, ϕv) ≈
Lr(θi; θv, ϕv)

Lid
r (θs)

. (9)

Assuming the light source is directional and the pixel FOV is small, combin-169

ing Eq. 1 and Eq. 9 leads to the following equation:170

Rhsi(θs, θi; θv, ϕv) ≈
fr(θi; θv, ϕv)E

l
i(θi)

(1/π)Eid
i (θs)

. (10)

Using Eq. 3, Eq. 7 and Eq. 8, Rhsi can finally be expressed as follows:171

Rhsi(θs, θi; θv, ϕv) ≈ R(θi; θv, ϕv)
cos θi
cos θs

. (11)

Eq. 11 reveals that the physical reflectance quantity retrieved from a small172

FOV sensor in presence of a directional light source does not correspond173

11
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to the leaf BRF if the leaf and reference surface are differently tilted with174

respect to the light source. In the following, we call ”leaf pseudo BRF” the175

leaf BRF weighted by the ratio of the cosine of the angle between the light176

source and the normal to the leaf, to the cosine of illumination zenith angle.177

Therefore, Eq. 11 relates the measured leaf pseudo BRF to the illumination178

zenith angle, the incident angle (related to local leaf angles and illumination179

zenith angle) and the leaf BRF. To relate the latter to the foliar content, it180

is then necessary to take into account leaf surface properties as described in181

the next section.182

2.2. COSINE: a model for ClOse-range Spectral ImagiNg of lEaves183

In this study, we propose to adapt a leaf DHRmodel (such as PROSPECT184

(Jacquemoud & Baret, 1990) or LIBERTY (Dawson et al., 1998)) to the close-185

range case. Indeed, with the perspective of comparing leaf optical measure-186

ments to DHR simulations, proper experimental acquisitions require using an187

integrating sphere in order to match with the hemispherical simulations. As188

a result, leaf DHR models cannot directly be applied to hyperspectral remote189

sensing observations of vegetation that are affected by variable bidirectional190

effects (or BRDF effects) depending on illumination and viewing geometries.191

An important prerequisite before using these models for close-range imaging192

spectroscopy, is therefore to relate the leaf DHR to the leaf BRDF.193

2.2.1. Relationship between leaf BRDF and DHR194

It is generally admitted that the leaf BRDF is the sum of a diffuse compo-195

nent fr,diff and a directional component fr,spec (Bousquet et al., 2005; Comar196

12
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et al., 2014):197

fr(θi; θv, ϕv) = fr,spec(θi; θv, ϕv) + fr,diff (θi; θv, ϕv). (12)

The diffuse component fr,diff characterizes absorption and scattering pro-198

cesses within the leaf volume and thus depends on optically-active biochemi-199

cal and biophysical parameters. The directional component fr,spec character-200

izes leaf surface properties and describes how light is reflected at the surface.201

While fr,diff is strongly wavelength-dependent, fr,spec is assumed to be nearly202

wavelength-independent in the visible and near-infrared (VNIR) range (be-203

tween 400 and 1000 nm) (Bousquet et al., 2005; Comar et al., 2014). In204

the shortwave infrared (SWIR) range (between 1000 and 2500 nm), this as-205

sumption does not hold because the leaf refractive index actually depends on206

wavelength (Féret et al., 2008; Vanderbilt & Grant, 1985), especially due to207

the non-negligible influence of water absorption.208

209

As a first approximation, fr,diff can be expressed as the ratio of leaf210

mesophyll Lambert coefficient kl to π (Bousquet et al., 2005). To take into211

account the two-layer leaf structure (i.e. composed of an upper wax layer and212

a bottom leaf mesophyll layer), one should also consider the fraction of light213

that is reflected by the first wax layer and that does not reach the bottom214

layer (Stuckens et al., 2009; Ashikmin et al., 2000). The diffuse component215

is then expressed as a function of leaf mesophyll Lambert coefficient kl and216

wax DHR ρspec (Stuckens et al., 2009):217

fr,diff (θi) =
kl
π
(1− ρspec(θi; 2π)) (13)

where fr,diff does not depend on viewing angles and kl only depends on

13
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wavelength.

As defined by Eq. 4, the total DHR can then be obtained combining Eq. 12

and Eq. 13:

ρ(θi; 2π) =

∫ 2π

0

∫ π/2

0

fr,spec(θi; θv, ϕv) cos θv sin θvdθvdϕv

+
kl
π
(1− ρspec(θi; 2π))

∫ 2π

0

∫ π/2

0

cos θv sin θvdθvdϕv (14)

which can be rewritten as follows:218

ρ(θi; 2π) = ρspec(θi; 2π) + kl(1− ρspec(θi; 2π)). (15)

This equation provides the necessary basis to relate a leaf DHR model to the219

leaf BRDF (through the Lambert coefficient).220

2.2.2. The COSINE model221

Assuming nadir illumination, a leaf DHRmodel expresses the DHR ρ(0; 2π)222

as a function of leaf biochemical and biophysical contents characterized by223

the vector of input parameters ϑdhr. Following Eq. 15, the modeled Lam-224

bert coefficient can be expressed as a function of ρspec(0; 2π) and DHR model225

ρ̃(ϑdhr) as:226

k̃l(ϑdhr) =
ρ̃(ϑdhr)− ρspec(0; 2π)

1− ρspec(0; 2π)
(16)

where ˜ refers to modeled quantities.

The leaf BRDF can then be modeled as a function of leaf parameters ϑdhr

by combining Eq. 12, Eq. 13 and Eq. 16:

f̃r(θi; θv, ϕv;ϑdhr) = fr,spec(θi; θv, ϕv)

+
1

π

(
1− ρspec(θi; 2π)

1 − ρspec(0; 2π)

)
(ρ̃(ϑdhr)− ρspec(0; 2π)). (17)

14
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In order to estimate ϑdhr from the pseudo BRF Rhsi retrieved using a hy-

perspectral camera, Eq. 3, Eq. 11 and Eq. 17 are combined to obtain the

pseudo-BRF based COSINE model:

R̃hsi(θs, θi; θv, ϕv;ϑdhr) =

(
cos θi
cos θs

)[(
1− ρspec(θi; 2π)

1− ρspec(0; 2π)

)
ρ̃(ϑdhr)

+πfr,spec(θi; θv, ϕv)− ρspec(0; 2π)

(
1− ρspec(θi; 2π)

1− ρspec(0; 2π)

)]
(18)

where only the first term of the sum is related to the leaf DHR model.227

Note that fr,spec and ρspec could potentially be modeled using the leaf BRDF228

model developed by Bousquet et al. (2005) that expresses the directional229

component as a function of illumination and viewing geometries as well as on230

the wax refractive index and a surface roughness parameter. Unfortunately,231

the resulting model becomes over-parameterized so its inversion is an ill-posed232

problem and leads to poor estimation results (not shown).233

2.2.3. A simplified COSINE model for the VNIR range234

In the VNIR range, the second term in Eq. 18 is assumed to be wavelength-235

independent. Omitting its dependence in viewing angles, Eq. 18 can then be236

simplified as:237

R̃hsi(θs, θi;ϑdhr, bspec) =

(
cos θi
cos θs

)[(
1− ρspec(θi; 2π)

1− ρspec(0; 2π)

)
ρ̃(ϑdhr) + bspec

]

(19)

where bspec = bspec(θi; θv, ϕv) = πfr,spec(θi; θv, ϕv)−ρspec(0; 2π)
(

1−ρspec(θi;2π)
1−ρspec(0;2π)

)
.238

Assuming that the fraction 1−ρspec(θi;2π)
1−ρspec(0;2π)

is nearly one (especially true for low239

incident angles), Eq. 19 can be approximated by:240

R̃hsi(θs, θi;ϑdhr, bspec) =

(
cos θi
cos θs

)[
ρ̃(ϑdhr) + bspec

]
. (20)

15
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COSINE therefore simulates the pseudo-BRF as a function of incident an-241

gle θi, illumination zenith angle θs, foliar content through the DHR model242

parameters ϑdhr and BRDF effect bspec. Importantly, this model is presum-243

ably only well suited for low incident angles. In high incidence, the fraction244

1−ρspec(θi;2π)

1−ρspec(0;2π)
may differ from one, which could lead to an incorrect estimation245

of θi when inverting the model.246

Finally, in order to model directly radiance measurements, a radiance-based247

COSINE model can be derived from Eq. 9 as:248

L̃r(θs, θi;ϑdhr, bspec) =

(
cos θi
cos θs

)[
ρ̃(ϑdhr) + bspec

]
Lid
r (θs) (21)

where Lid
r (θs) is the radiance measured on the reference surface.249

3. Material and methods250

3.1. Data acquisition251

3.1.1. Spectral measurements252

The COSINE model was tested using close-range hyperspectral images253

acquired under laboratory conditions. Two push-broom hyperspectral cam-254

eras were used, i.e., a HySpex VNIR-1600 camera (Norsk Elektro Optikk,255

Norway) and a HySpex SWIR-320m-e camera (Norsk Elektro Optikk, Nor-256

way). The HySpex VNIR-1600 camera acquired successive lines of 1600 pixels257

and 160 spectral bands ranging from 415 to 994 nm with a 3.7 nm spectral258

sampling interval. The pixel FOV was 0.18 and 0.36 mrad across- and along-259

track respectively.260

Even if COSINE is theoretically only well suited for the VNIR range for which261

the directional BRDF component is assumed to be wavelength-independent,262

16

Author-produced version of the article published in Remote Sensing of Environment, 2016, N°177, p. 220-236. 
The original publication is available at http://www.sciencedirect.com 
Doi: 10.1016/j.rse.2016.02.029



Figure 2: Experimental setup for the horizontal (a) and tilted (b-c) configurations. For

the VNIR camera, the corresponding average incident angles θ̄i are 20o (a), 40o (b) and

0o (c). For the SWIR camera, the corresponding average incident angles θ̄i are 30o (a),

10o (b) and 50o (c).

we also tested this model on SWIR images in order to see how this assump-263

tion was affecting the estimation results. The HySpex SWIR-320m-e camera264

acquired successive lines of 320 pixels and 256 spectral bands ranging from265

960 to 2490 nm with a 6 nm spectral sampling interval. The pixel FOV was266

0.75 mrad across- and along-track.267

As shown in Fig. 2, in both cases, the camera was facing towards nadir at268

thirty centimeters above the imaged leaf, thus leading to across-track pixel269

FOV of 0.23 mm for the SWIR camera, and 0.11 mm for the VNIR camera270

(after an appropriate subsampling in the across-track direction so as to ob-271

tain square pixels). Both cameras were positioned thirty centimeters apart.272

The lighting was provided by two halogen sources (one for each camera)273

positioned close to the cameras. These light sources were collimated and274
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positioned so that each source was illuminating the same line than the line275

imaged by the corresponding camera. The illumination zenith angles were276

set to θs = 20o and θs = 30o for the VNIR camera and the SWIR camera277

respectively. The incoming halogen irradiance was estimated on a line-by-278

line basis by using a reference surface (SpectralonR©, Labsphere) horizontally279

placed next to the imaged leaf. In order to limit saturation on the reference280

surface while obtaining a low noise level in the strong absorption regions,281

we chose a SpectralonR© whose diffuse reflectance was approximately 40%282

between 400 and 2500 nm. After acquisition, VNIR and SWIR images were283

finally calibrated to spectral radiance.284

285

The main data set contains leaves from five species commonly found in286

the French Mediterranean region, namely bamboo (Phyllostachys aurea), ivy287

(Hedera helix ), laurestine (Viburnum tinus), bay laurel (Laurus nobilis) and288

holly (Ilex aquifolium). Some of these leaves exhibited strong (resp. weak)289

non-Lambertian behavior, e.g., bay laurel and holly (resp. bamboo). Also,290

some of them had regular (resp. non-regular) surfaces, e.g., bay laurel (resp.291

ivy and holly). All of these leaves were harvested in March, 2015 and selected292

on a color basis, ranging from dark green for leaves with a high chlorophyll293

content, to yellow for senescent leaves. As illustrated in Fig. 2, each leaf was294

placed on a translation stage and was imaged in three positions using a 20o295

tilted stand. As a result, the average incident angles θ̄i were 0o, 20o and296

40o for VNIR camera, and 10o, 30o and 50o for SWIR camera. Note that297

the translation stage had low reflectivity so we assumed that, after being298

transmitted through the leaf, the light reflected from the translation stage299
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and re-transmitted through the leaf was negligible.300

In addition, a SWIR image of a sugar beet leaf (Beta vulgaris) was ac-301

quired, especially because this species shows interesting features in this spec-302

tral range, i.e., very high equivalent water thickness (Cw > 0.02 cm) and low303

leaf mass per area (Cm < 0.005 g.cm−2), as well as a strongly non-Lambertian304

and non-regular surface, thereby illustrating well the relevance of our model.305

This leaf was only imaged in horizontal position, its surface being already306

highly non-regular.307

3.1.2. Reference measurements308

For each leaf, after spectral measurements, several leaf disks (from two to309

seven disks depending on leaf size) of known area were sampled using a cork310

borer. Each disk position was then recorded for further reference. A Dualex311

scientific+TM (Force-A, Orsay, France), hereafter called Dualex, was used to312

measure the chlorophyll a+b content Cab in every disk. This leafclip allows313

non-destructive transmittance-based Cab measurements characterized by an314

accuracy of around 5 µg.cm−2 (Cerovic et al., 2012). Compared with the well315

known SPAD-502TM(Minolta, Japan), the Dualex uses a higher Cab-sensitive316

wavelength (710 nm) that allows it to have a nearly linear response to vari-317

ation in Cab for Cab < 40 µg.cm−2. However, for dicotyledons, saturation318

occurring beyond 40 µg.cm−2 leads the Dualex to underestimate such Cab319

values (Cerovic et al., 2012). The higher Cab, the greater the underestima-320

tion.321

Leaf disks were then weighted and placed in a drying oven at 75oC for 48 h.322

Subsequently, their dry mass was measured to obtain the equivalent water323
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Table 2: Characteristics of reference measurements for the main data set.

Parameter Number of samples Mean Min/Max Standard deviation

Cab [µg.cm−2] 93 29.4 5.2/54.6 11.1

Cw [cm] 22 0.0104 0.0049/0.0164 0.0040

Cm [g.cm−2] 22 0.0091 0.0052/0.0129 0.0023

thickness Cw (in [cm]) and leaf mass per area Cm (in [g.cm−2]) as follows:324

Cw =
FW −DW

A
× dw (22)

Cm =
DW

A
(23)

where FW and DW are the fresh and dry weights of leaf disks respectively,325

A is the total disk area, and dw = 1 g.cm−3 is the water density.326

Therefore, for each leaf, several measurements of Cab and one measurement of327

Cw and Cm were available. The ranges of Cab, Cw and Cm for the main data328

set are reported in Table 2 and were similar to those found in the literature329

(Féret et al., 2008; Danson & Bowyer, 2004).330

3.2. Retrieval of leaf parameters from model inversion331

In this study, we used the PROSPECT (Leaf Optical Properties Spectra)332

model to simulate the leaf DHR from 400 to 2500 nm as a function of the leaf333

biochemistry and structure. The original version developed by Jacquemoud334

& Baret (1990) has been successively improved over the years to take into335

account other biochemical components and a broader spectral range (Jacque-336

moud et al., 1996; Baret & Fourty, 1997a; Jacquemoud et al., 2000; Féret337

et al., 2008; Gerber et al., 2011). The considered PROSPECT 5b version was338

developed by Féret et al. (2008) (available at http://teledetection.ipgp.339
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jussieu.fr/prosail/) and simulates the leaf DHR as a function of the leaf340

structure parameter N , chlorophyll a+b content Cab, carotenoid content Ccx,341

brown pigment content Cbp, equivalent water thickness Cw and leaf mass per342

area Cm.343

In the following, leaf parameters were retrieved based on model inversion.344

The parameters that were only affecting the reflected radiation in the VNIR345

range (resp. the SWIR range), were kept constant when considering the346

SWIR range (resp. the VNIR range) so as to reduce the estimation un-347

certainty. Therefore, because water absorption is weak in the VNIR range348

and only occurs around 970 nm (Curran, 1989), the VNIR range was re-349

duced to 410-900 nm (i.e., 135 bands) and Cw was fixed to the default value350

0.01 cm. The vector of input PROSPECT parameters was thus ϑdhr =351

[N,Cab, Ccx, Cbp, Cm]
t. Similarly, foliar pigments do not affect the SWIR re-352

flectance so Cab, Ccx and Cbp were fixed to the default values 30 µg.cm−2,353

10 µg.cm−2 and 0 respectively. In the SWIR range, the vector of input354

PROSPECT parameters was ϑdhr = [N,Cw, Cm]
t.355

For each pixel, the combined pseudo-BRF based PROSPECT+COSINE model356

(named PROCOSINE hereafter) was numerically inverted by optimizing the357

following least square merit function:358

ϑ̂pseudo−brf = argmin
ϑ

∑

λi

[
Rhsi(λi)− R̃hsi(λi;ϑ)

]2
(24)

where ϑ = [ϑdhr, θi, bspec]
t, Rhsi is the measured pseudo-BRF retrieved using359

Eq. 9 and R̃hsi is the pseudo-BRF based PROCOSINE model given by Eq. 20.360

Similarly, the radiance-based PROCOSINE model was inverted by solving361
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Table 3: Lower bounds, upper bounds and initial values of the optimization problem.

Parameter Lower bound Upper bound Initial value

N 1 3.5 1.5

Cab [µg.cm−2] 0 100 50

Ccx [µg.cm−2] 0 30 10

Cbp 0 5 0

Cw [cm] 0.00005 0.1 0.01

Cm [g.cm−2] 0.001 0.03 0.01

θi [
o] 0 90 20

bspec -0.2 0.6 0

the following optimization problem:362

ϑ̂radiance = argmin
ϑ

∑

λi

[
Lr(λi)− L̃r(λi;ϑ)

]2
(25)

where Lr is the measured spectral radiance and L̃r is the radiance-based363

PROCOSINE model given by Eq. 21.364

365

To reduce the number of solutions to the inverse problem, the estimation366

range was restricted using lower and upper bounds. These bounds as well as367

initial values are provided in Table 3. Note that Cbp and Cw upper bounds368

are higher than those found in the literature because, at the sub-millimeter369

level, Cbp and Cw can be very high in necrotic regions and veins respectively.370

Optimization of Eq. 24 and Eq. 25 was performed using the trust-region371

reflective algorithm implemented in MATLABR© (version 8.0.0, The Math-372

Works Inc., Natick, MA, 2012) within the ”lsqcurvefit” function.373
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3.3. PROCOSINE sensitivity analysis374

Before assessing PROCOSINE in terms of estimation results, we per-375

formed a global sensitivity analysis in order to study the relative contribution376

of each parameter to the modeled pseudo-BRF as a function of wavelength.377

Global sensitivity analysis informs us on which variation in the model output378

is produced by variation in the model input parameters, both individually379

and collectively through their interactions with each other. When studied as380

a function of wavelength, it provides interesting insights regarding the opti-381

mal spectral bands that can be used to retrieve model parameters.382

383

In this paper, we implemented the EFAST (Extended Fourier Amplitude384

Sensitivity Transform) method (Saltelli et al., 1999) that was already ap-385

plied to PROSAIL and PROGEOSAIL models by Bowyer & Danson (2004).386

EFAST is a quantitative variance-based method, i.e., it allows the deriva-387

tion of sensitivity indices from the decomposition of the total variance of the388

model output into variance terms induced by every input parameter. In this389

paper, we only used the first-order index Si that represents the percentage390

of output variance explained by the ith parameter alone. The remaining per-391

centage of variance is explained by interactions between parameters and is392

given by Sint = 1 −
∑
i

Si. Si (and Sint) ranges from 0 to 1, and the higher393

Si, the more sensitive the model output is to the ith parameter.394

395

In this study, 5000 combinations of model parameters were randomly gen-396

erated using appropriate probability distributions because the latter strongly397

affects the results of sensitivity analysis (Bowyer & Danson, 2004; Wallach398
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Table 4: Estimated parameter distributions (µ: mean; σ: standard deviation; α: shape

parameter; β: scale parameter).

Parameter Distribution µ σ α β

N Gamma 1.52 0.23 47.50 0.032

Cab [µg.cm−2] Gamma 32.8 18.87 1.99 16.45

Ccx [µg.cm−2] Gamma 8.51 3.92 3.83 2.22

Cw [cm] Gamma 0.0122 0.0061 6.45 0.0019

Cm [g.cm−2] Gamma 0.0078 0.0036 4.20 0.0018

θi [
o] Gamma 25 10 6.25 4

bspec (VNIR) Normal -0.009 0.0375 - -

bspec (SWIR) Normal 0.0346 0.0403 - -

et al., 2014). The distributions of PROSPECT parameters were estimated399

from seventeen independent data sets made available by Féret et al. (2011);400

Féret, personal communication. They include a wide range of leaf spec-401

tral, chemical, and structural properties, i.e., 1417 leaves corresponding to402

about 120 different species from various growing conditions and develop-403

mental stages. Note that Cab, Ccx, Cw and Cm data were obtained in a404

destructive way, whereas N data were obtained from PROSPECT inversion405

on DHR data. It can be shown that these data are well described by Gamma406

distributions (p < 0.001). Using such distributions (instead of normal ones)407

prevented us from generating samples with negative content values. Regard-408

ing brown pigments, we assumed that leaves under study were green so Cbp409

was set to zero. Finally, θi and bspec distributions were retrieved from the410

estimation results presented in Section 4 using a Gamma distribution for θi411

and a normal distribution for bspec (not shown). The characteristics of all of412

these distributions are presented in Table 4, where the shape parameter α413
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and the scale parameter β of the Gamma distribution were given by their414

maximum likelihood estimates. Note that two bspec distributions were used415

for the two spectral domains. Importantly, the covariance between param-416

eters could not be considered when generating the samples. Consequently,417

the actual influences of Cab and Ccx are likely to be slightly different, both418

parameters being highly correlated (Féret et al., 2008).419

For each EFAST run, 5000 leaf reflectance spectra were therefore simulated420

using PROSPECT and PROCOSINE (Eq. 20) so as to compute first-order421

indices and interactions. Average indices were finally computed over 15 runs.422

4. Results and discussion423

4.1. Sensitivity analysis424

In Figure 3, we compare the first-order indices and interactions obtained425

with PROSPECT and PROCOSINE over the VNIR and SWIR ranges. Fig. 3.a426

and Fig. 3.b reveal the same features already observed in previous studies427

using other methods and/or models (Jacquemoud & Baret, 1990; Jacque-428

moud et al., 2009; Bacour et al., 2001, 2002; Bowyer & Danson, 2004). In429

the visible range (400-730 nm), photosynthetic pigments (i.e., chlorophyll430

and carotenoids) drive most of the reflectance variability. Between 400 and431

525 nm where the carotenoid absorption is the strongest (Féret et al., 2008),432

the contributions of Cab and Ccx are similar in magnitude and range from433

20 to 40%. Between 525 and 730 nm, reflectance mainly depends on Cab, its434

contribution ranging from 40 to 90%. The influence of interactions is higher435

in strong absorption regions, which means that the effects of other param-436

eters depend on Cab and Ccx values. For example, the relative increase in437
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Figure 3: First-order sensitivity indices and interactions for (a) PROSPECT in the VNIR

range, (b) PROSPECT in the SWIR range, (c) PROCOSINE in the VNIR range, and (d)

PROCOSINE in the SWIR range (θs = 26o).

26

Author-produced version of the article published in Remote Sensing of Environment, 2016, N°177, p. 220-236. 
The original publication is available at http://www.sciencedirect.com 
Doi: 10.1016/j.rse.2016.02.029



reflectance due an increase in N (reflecting higher scattering within the leaf438

internal structure) will be high in case of low absorption and low in case of439

strong absorption.440

In the NIR plateau, variation in reflectance is mainly produced by variation441

in leaf structure (80%) and leaf mass per area (14%) through scattering pro-442

cesses (Knyazikhin et al., 2013). In the SWIR range, only leaf structure,443

equivalent water thickness and leaf mass per area have significant contribu-444

tions. In particular, Cw strongly influences reflectance in the water absorp-445

tion peaks located around 1450 and 1950 nm (about 75%), whereas variation446

in Cm has a significant contribution around 1720 and 2250 nm (resp. 24%447

and 30%).448

449

Taking into account BRDF effects and leaf orientation through the bspec450

and θi parameters within the PROCOSINE model modifies the reflectance451

sensitivity as shown in Figure 3.c and Figure 3.d. Compared with PROSPECT452

sensitivity analysis, the overall contributions of PROSPECT parameters are453

mostly similar in shape but still, they decrease to account for variance in454

bspec and θi. For example, the Cab contribution at around 550 nm decreases455

from 90 to 70%.456

The contributions of bspec and θi are quite different. Overall, variance in457

bspec highly influences reflectance in strong absorption regions (both due to458

Cab and Cw), accounting for up to 90% near 400 nm and 75% near 1930459

and 2500 nm. In these regions, the diffuse part of reflectance is very low460

so the influence of the surface-reflected flux (that does not interact with the461

leaf volume) dominates. Interestingly, an analogy can be made with high-462
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resolution water remote sensing, in that the sun glint (i.e., the amount of463

flux directly reflected at the water surface) is usually estimated in the NIR464

region, where the water-leaving signal is negligible because of strong water465

absorption (Hochberg et al., 2003). Overall, the bspec contribution is always466

greater than 15% between 400 and 2500 nm, thereby indicating that this pa-467

rameter should not be neglected when dealing with close-range hyperspectral468

images.469

470

The contribution of the incident angle θi significantly varies over the whole471

spectral domain. It mostly affects reflectance in the NIR plateau, accounting472

for about 30% of the variance of the PROCOSINE output. Conversely, its473

influence is much weaker in the visible range, where its contribution does474

not exceed 5%, as well as in water absorption regions. Generally, because475

it affects the model through a multiplicative term (see Eq. 20 and Eq. 21),476

the spectral profile of its contribution is similar to a common leaf spectral477

signature: the higher the reflectance, the higher its contribution. Interest-478

ingly, this profile is also similar to the contribution of the average leaf angle479

(ALA) to the PROSAIL model (Jacquemoud et al., 2009). In the latter case,480

ALA has more influence at weakly absorbing wavelengths because the effect481

of multiple scattering within the canopy is stronger (Knyazikhin et al., 2013).482

483

To summarize, this sensitivity analysis shows that both bspec and θi sig-484

nificantly affect the measured signal and definitively have to be taken into485

account in the case of close-range imaging spectroscopy.486
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4.2. Quantitative assessment of model inversion487

The performances of model inversion were quantitatively assessed both488

in terms of spectral fitting and parameter retrieval. Note that we had only489

reference measurements integrated over one (for Cab) or several (for Cw and490

Cm) leaf disk(s) of a few square centimeters. As a result, in this section,491

the means and standard deviations of Cab, Cw and Cm estimated values were492

computed from the values estimated within the corresponding leaf disk(s).493

4.2.1. PROCOSINE spectral accuracy494

We first quantified how accurate was PROCOSINE in fitting the pseudo-495

BRF and radiance measurements retrieved at the pixel level. In Fig. 4, we496

show some fitting results obtained with an ivy leaf both for the VNIR and497

SWIR ranges, this leaf surface being non-Lambertian and non-regular.498

Overall, strong agreements were obtained between measured and simulated499

spectra in the two ranges (RMSE < 4%). As expected, high bspec values were500

retrieved in areas affected by specular reflection, and high θi values were501

retrieved where the light incident angle was high. Compared with the VNIR502

range, the obtained RMSE were about twice higher for the SWIR range.503

This is in agreement with the mismodeling of specular reflection in the SWIR504

range mentioned in Section 2.2.1 and discussed further in Section 4.2.4. These505

results thus demonstrate the accuracy of PROCOSINE in accounting for the506

spectral variability induced by BRDF effects and leaf orientation, especially507

in the VNIR range.508
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Figure 4: Fitting results obtained for the VNIR range (a-c) and the SWIR range (d-f)

using the pseudo-BRF model (b,e) and the radiance model (c,f). Solid (resp. dashed)

lines correspond to measurements (resp. simulations). Blue curves correspond to areas

strongly affected by specular reflection, while red curves correspond to areas characterized

by a high incident angle.
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Figure 5: Cab estimation results (mean +/- standard deviation) obtained with

PROSPECT (blue), the pseudo-BRF based PROCOSINE model (orange), and the

radiance-based PROCOSINE model (green) and with θ̄i = 20o (a-c), θ̄i = 0o (d-f) and

θ̄i = 40o (g-i). The R2 and RMSE values are computed for actual Cab values lower than

40 µg.cm−2 and are given in parentheses.
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4.2.2. Results of parameter retrievals in the VNIR range509

As recalled by the sensitivity analysis, the VNIR reflectance is mainly510

driven by the chlorophyll a+b content. In Fig. 5, we show the means and511

standard deviations of Cab estimation obtained for each leaf disk with leaves512

in horizontal position (Figure 5.a-c) and tilted position (Figure 5.d-i). We513

compare the results obtained with PROSPECT (in blue), the pseudo-BRF514

based PROCOSINE model (in orange) and the radiance-based PROCOSINE515

model (in green). Because of the saturation in the reference measurement516

(see Section 3.1.2), the RMSE and R2 values were computed from samples517

for which the measured Cab values were lower than 40 µg.cm−2.518

519

On average, when tested with horizontal leaves, the radiance-based PRO-520

COSINE model led to a higher accuracy (R2 = 0.92; RMSE = 3.23 µg.cm−2)521

than the pseudo-BRF PROCOSINE model (R2 = 0.89; RMSE = 3.73 µg.cm−2)522

and PROSPECT (R2 = 0.81; RMSE = 4.88 µg.cm−2). Applying the same523

models to leaves in tilted position decreased the estimation accuracy, how-524

ever to a variable extent. For θ̄i = 0o, the radiance-based PROCOSINE525

model (R2 = 0.93; RMSE = 4.44 µg.cm−2) still performed better than the526

pseudo-BRF based PROCOSINE model (R2 = 0.92; RMSE = 4.71 µg.cm−2)527

and PROSPECT (R2 = 0.81; RMSE = 6.45 µg.cm−2). The same trend was528

also observed for θ̄i = 40o, the radiance-based PROCOSINE model leading529

to a better accuracy (R2 = 0.91; RMSE = 3.65 µg.cm−2) than the pseudo-530

BRF based PROCOSINE model (R2 = 0.86; RMSE = 4.63 µg.cm−2) and531

PROSPECT (R2 = 0.87; RMSE = 5.87 µg.cm−2).532

Overall, both PROCOSINE implementations obtained significantly lower533
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Figure 6: Histograms of estimated θi values for every pixel for the VNIR range and the

three acquisition configurations (θ̄i = 0o, θ̄i = 20o, and θ̄i = 40o): (a) pseudo-BRF based

PROCOSINE model, and (b) radiance-based PROCOSINE model.

standard deviations of Cab estimation than PROSPECT.534

Lastly, for Cab > 40 µg.cm−2, model inversion always provided higher Cab535

values than those measured with the Dualex.536

537

The incident angle estimation within the whole leaves is evaluated in538

Fig. 6. The results are presented using histograms to account for within-leaf539

variability of leaf orientation. For both model implementations, we represent540

the distributions of θi values estimated for every pixel for the three acquisition541

configurations (i.e., average incident angles θ̄i of 0
o, 20o, and 40o).542

Surprisingly, strong differences were observed between both model inversions.543

On the one hand, the pseudo-BRF based model gave poor estimation results544

with estimated θ̄i of 3.3
o, 5.1o and 11.7o (and the same estimated distribution545

mode, i.e., 2.4o) for θ̄i = 0o, θ̄i = 20o, and θ̄i = 40o respectively. On the other546

hand, the radiance-based model gave better estimation results with estimated547

θ̄i of 9.7
o, 16.9o and 19.6o (and estimated distribution modes of 6.3o, 14.8o548
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and 14.8o) for θ̄i = 0o, θ̄i = 20o, and θ̄i = 40o respectively.549

It is worth noting that poorer angle estimation results were generally obtained550

for bamboo leaves (results not shown) with estimated distribution modes of551

15.4o, 28.6o and 28.6o) for θ̄i = 0o, θ̄i = 20o, and θ̄i = 40o respectively.552

4.2.3. Results of parameter retrievals in the SWIR range553

Regarding PROSPECT original parameters, variation in SWIR reflectance554

is mainly produced by variation in equivalent water thickness, leaf mass per555

area and leaf structure.556

In Fig. 7, we show the means and standard deviations of Cw estimation557

obtained with leaves in horizontal position (Fig. 7.a-c) and in tilted posi-558

tion (Fig. 7.d-i). For horizontal leaves, PROCOSINE performed better than559

PROSPECT in terms of R2 (R2 = 0.91 for PROSPECT, R2 = 0.93 for560

the pseudo-BRF based PROCOSINE model and R2 = 0.94 for the radiance-561

based PROCOSINE model), but worse in terms of RMSE (RMSE = 0.0016 cm,562

RMSE = 0.0083 cm and RMSE = 0.0025 cm resp.). However, the PRO-563

COSINE performances remained mostly unchanged when applied to tilted564

leaves, while PROSPECT obtained poorer performances, either for θ̄i = 10o565

(a 125% increase in RMSE) or θ̄i = 50o (a 15% decrease in R2).566

The RMSE values obtained with PROCOSINE were primarily due to a sys-567

tematic bias, the R2 values being higher than 0.91 for the three acquisition568

configurations. This bias was more pronounced for the pseudo-BRF based569

model, and led to a systematic overestimation of Cw.570

Lastly, similarly to Cab estimation, PROCOSINE obtained lower standard571

deviations of Cw estimation than PROSPECT, especially for tilted leaves.572

573
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Figure 7: Cw estimation results (mean +/- standard deviation) obtained with PROSPECT

(blue), the pseudo-BRF based PROCOSINEmodel (orange), and the radiance-based PRO-

COSINE model (green) and with θ̄i = 30o (a-c), θ̄i = 10o (d-f) and θ̄i = 50o (g-i). R2 and

RMSE values are given in parentheses.
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Figure 8: Cm estimation results (mean +/- standard deviation) obtained with PROSPECT

(blue), the pseudo-BRF based PROCOSINEmodel (orange), and the radiance-based PRO-

COSINE model (green) and with θ̄i = 30o (a-c), θ̄i = 10o (d-f) and θ̄i = 50o (g-i). R2 and

RMSE values are given in parentheses.
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Figure 9: Histograms of estimated θi values in every pixel for the SWIR range and the

three acquisition configurations (θ̄i = 10o, θ̄i = 30o, and θ̄i = 50o): (a) pseudo-BRF based

PROCOSINE model, and (b) radiance-based PROCOSINE model.

The Cm retrieval results are presented in Fig. 8 in a similar fashion to Cw.574

The radiance-based PROCOSINE model gave significantly lower RMSE than575

the pseudo-BRF based PROCOSINE model and PROSPECT, i.e., RMSE =576

0.0013 g.cm−2, RMSE = 0.0032 g.cm−2, and RMSE = 0.0024 g.cm−2 respec-577

tively on average for the three acquisition configurations. The PROCOSINE578

performances weakly depended on leaf position, whereas the R2 dropped579

from 0.89 for θ̄i = 10o and θ̄i = 30o, to 0.30 for θ̄i = 50o when inverting only580

PROSPECT. For such high incident angles, the uncertainty of Cm estimation581

was much higher with PROSPECT than with PROCOSINE.582

Lastly, Cm was generally underestimated by PROSPECT and overestimated583

by the pseudo-BRF based PROCOSINE model.584

585

The two PROCOSINE inversions were also compared based on θi esti-586

mation results in Fig. 9, in which we represent the histograms of estimated587

θi distributions. As expected, in both cases, the highest (resp. the lowest)588
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angles were mostly retrieved from the θ̄i = 50o (resp. θ̄i = 10o) configuration,589

the dispersions around the mean values being due to the variation in leaf ori-590

entation. θi was more accurately predicted using the radiance-based model591

since the estimated θ̄i were 19.7o, 27.7o and 36.4o for θ̄i = 10o, θ̄i = 30o, and592

θ̄i = 50o respectively. The pseudo-BRF based model globally overestimated593

θi since the estimated θ̄i were 38.0o, 47.2o and 53.0o for θ̄i = 10o, θ̄i = 30o,594

and θ̄i = 50o respectively.595

Similarly to the VNIR range, poorer estimation results were generally ob-596

tained for bamboo leaves (results not shown). For example, the radiance-597

based model led to estimated θ̄i of 38.0
o, 43.4o and 47.0o for θ̄i = 10o, θ̄i = 30o,598

and θ̄i = 50o respectively.599

4.2.4. Discussion about parameter retrievals600

Estimation of chlorophyll content. In the VNIR range, both PROCOSINE601

implementations performed better than PROSPECT in retrieving Cab. For602

leaves in horizontal position, the 34% improvement in RMSE when using the603

radiance-based PROCOSINE model instead of PROSPECT is likely to be604

due mainly to the modeling of BRDF effects. Not taking them into account605

leads to a greater uncertainty as shown through the estimation standard devi-606

ations computed within each leaf disk. For example, as illustrated in Fig. 5.a607

with the sample corresponding to an actual mean value of 53 µg.cm−2, a608

local BRDF effect induces an overall increase in reflectance, which is misin-609

terpreted by PROSPECT as a decrease in Cab. This result confirms one of the610

conclusions drawn from the sensitivity analysis, which has already showed611

that bspec significantly affects leaf close-range hyperspectral measurements.612

The difference between PROCOSINE and PROSPECT was even greater613
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when considering leaves in tilted position, for which the modeling of leaf614

inclination was more important. In particular, for the highest incident angle615

(θ̄i = 40o), both the modeling of BRDF effects and leaf orientation within616

the radiance-based PROCOSINE model led to an actual 38% improvement617

over PROSPECT. It is worth noting that taking θi into account improves618

the Cab estimation results even if Cab is mainly retrieved between 400 and619

750 nm, in which the effect of θi is lower (see Fig. 3.c). In fact, the difference620

in retrieval performance in VNIR between PROSPECT and PROCOSINE is621

even greater for N leaf structure parameter that mainly affects reflectance622

in the NIR plateau, where both θi and bspec have a strong influence on re-623

flectance (N maps are only shown for the SWIR range, see Fig. 12).624

The PROCOSINE inversion performed well compared with the accuracy pro-625

vided by the Dualex manufacturer, i.e., RMSE = 5 µg.cm−2 (Cerovic et al.,626

2012), especially considering that spectral measurements are affected by ex-627

tra variability and that the method is based on reflectance, which is known to628

be less sensitive to Cab than transmittance (Baret & Fourty, 1997b). Impor-629

tantly, the apparent Cab overestimation for Cab > 40 µg.cm−2 was rather due630

to the saturation in the reference measurement (see Section 3.1.2), as also631

suggested by the similar trend observed for both PROSPECT and PRO-632

COSINE. Further experiments conducted on hyperspectral data associated633

with laboratory extraction based measurements of pigment contents (includ-634

ing Ccx) would, however, be interesting to fully characterize the pigment635

retrieval.636

The main difference between both PROCOSINE inversions arose for high637

incident angles, since the RMSE decreased by 21% when using the radiance-638
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based model. This result confirms that this implementation better handles639

variation in leaf orientation as displayed in Fig. 6.640

Estimation of equivalent water thickness and leaf mass per area. Somewhat641

different observations could be made from the SWIR range. In most cases,642

the retrievals of Cw and Cm resulted in lower RMSE when using the radiance-643

based PROCOSINE model. In particular, the Cm estimation was very accu-644

rate even if Cm is not the most influential parameter in this spectral domain645

(see Fig. 3.d). The poor R2 value and very high standard deviations obtained646

with PROSPECT and θ̄i = 50o again demonstrate the need for accounting647

for BRDF effects and leaf orientation, especially when the targeted parame-648

ter does not have a strong influence on reflectance.649

650

However, as recalled in Section 2.2.1, BRDF effects are not properly taken651

into account for the SWIR range because, unlike the VNIR range, bspec de-652

pends on wavelength. Indeed, the BRDF directional component depends on653

the leaf refractive index (Bousquet et al., 2005), whose imaginary part is654

proportional to absorption (Born & Wolf, 1980). Especially at the far end655

of the SWIR range, water absorption is so strong (Hale & Querry, 1973)656

that the imaginary part of the leaf refractive index is no longer negligible657

compared with the real part (Gerber et al., 2011). This may explain why658

PROSPECT is more accurate than PROCOSINE in retrieving Cw on leaves659

in horizontal position. Presumably, PROCOSINE systematically overesti-660

mates Cw to mimic the decrease of the leaf refractive index (Féret et al.,661

2008). The compensation between Cw and bspec allows the proposed models662

to be adjusted to the SWIR range and to obtain better estimation results663
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for other PROSPECT parameters such as Cm. For leaves in tilted position,664

the influence of leaf orientation, whose modeling does not depend on wave-665

length, again makes the radiance-based PROCOSINE model more accurate666

than PROSPECT.667

668

Importantly, the high R2 values obtained with PROCOSINE for Cw and669

Cm retrievals make it possible to calibrate strong linear relationships between670

the actual values and the estimated values. Indeed, in every case, the ob-671

tained RMSE is driven more by the estimation bias than by the variance. As672

carried out by Cheng et al. (2011), applying such an indirect retrieval could673

correct this bias and significantly enhance the estimation results obtained674

with a given experimental setup.675

Angle estimation. Both in the VNIR and SWIR ranges, the performances of676

PROCOSINE weakly depended on leaf position. This tends to prove that677

non-regular surfaces can be handled properly by introducing the θi parame-678

ter. However, some clear differences arose between pseudo-BRF and radiance679

inversions. Overall, inverting the radiance-based model provided the best re-680

sults, the strongest difference between both ranges lying in θi estimation,681

especially in the VNIR range. θi was indeed better retrieved using radiance-682

based inversion, the θi underestimation for high incident angles and both683

ranges being presumably due to the assumption 1−ρspec(θi;2π)
1−ρspec(0;2π)

≈ 1 in Eq. 20.684

It could be shown that confounding effects between θi and N (as well as Cm685

in the VNIR range) were responsible for poor θi estimation results obtained686

through pseudo-BRF inversion. For example, as observed in Fig. 3, both θi687

and N have similar contributions to the model output. However, they also688
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have opposite effects, which may lead the inversion process to misinterpret689

an increase in θi as a decrease in leaf structure N . Therefore, in the VNIR690

(resp. SWIR) range, this model compensates θi underestimation (overesti-691

mation) by N underestimation (overestimation).692

On the other hand, several assumptions can be made regarding the good693

performances obtained by radiance-based inversion. First, this may be due694

to the noise level in the spectral measurements: as the ratio of two radi-695

ance spectra is noisier than both radiance spectra independently, retrieved696

pseudo-BRF spectra thus have a lower signal-to-noise ratio than originally697

measured radiance spectra. This problem is critical near 400 nm and in the698

NIR plateau where the sensitivity of the VNIR camera is lower compared699

with most of the visible range (see Fig. 4). This emphasizes the necessity700

of acquiring spectral measurements as clean as possible. Alternatively, such701

differences in the inversion performances may be due to the numerical imple-702

mentation of the inversion process (e.g., through the considered cost function,703

optimization algorithm or initialization). Further investigation is therefore704

needed to fully optimize the PROCOSINE inversion.705

706

Finally, the poorer angle estimation results obtained with bamboo leaves707

were likely to be due to the azimuthally anisotropic roughness properties of708

monocotyledon leaves, that mainly originate from the longitudinal orienta-709

tion of veins (Comar et al., 2012, 2014). Unlike regular surfaces for which710

the BRF is azimuthally symmetric, such an organized arrangement of the711

leaf surface leads the specular lobe not to be in the principal plane (Miesch712

et al., 2002). In this case, it may seem inappropriate to represent the local713
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leaf inclination at the pixel level using only a single mean angle, especially714

because the image spatial resolution is comparable to the inter-vein distance715

for monocotyledons, i.e., a few hundred micrometers (Comar et al., 2014).716

However, other estimation results presented in this paper strongly suggest717

that this does not affect the retrievals of leaf biochemical properties.718

4.3. Leaf parameter mapping719

Hyperspectral imaging allowed us to obtain high-resolution maps of model720

parameters by inverting the model for each pixel. Compared with the results721

obtained from estimated values averaged within one or several leaf disk(s)722

(each of which contains several hundreds of pixels), such maps provide a723

deeper insight in how these effects actually affect the estimation process.724

In Fig. 10 and Fig. 11, we show some estimated maps obtained using PROSPECT725

and the radiance-based PROCOSINE model respectively, the radiance-based726

inversion performing better than the pseudo-BRF inversion as seen in Sec-727

tion 4.2. The considered bay laurel leaf was chosen due to its strong non728

Lambertian behavior and to the presence of a large range of Cab and Cbp729

values. The actual chlorophyll content in the greenest area was close to730

40 µg.cm−2, while the equivalent water thickness and leaf mass per area were731

0.0088 cm and 0.0099 g.cm−2 respectively.732

On the one hand, as observed in Fig. 10, PROSPECT estimation was strongly733

affected by BRDF effects both in the VNIR and SWIR ranges. This increase734

in reflectance is not taken into account by PROSPECT, which resulted in735

some compensations during the inversion, here corresponding to an increase736

in Cbp and decreases in Cab (as already mentioned in Section 4.2.2), Cw and737

Cm. On the other hand, in Fig. 11, we show that these BRDF effects were738
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Figure 10: Estimated maps obtained using PROSPECT in the VNIR (a-c) and SWIR

(d-f) ranges: (a) true color composite image, (b) Cab, (c) Cbp, (d) false color composite

image (using bands 1458 nm, 2202 nm and 1662 nm), (e) Cw, (f) Cm.

correctly interpreted as local increases in bspec within the PROCOSINE in-739

version. Accurate descriptions of the actual regular leaf orientation were also740

obtained through homogeneous θi maps and average θi of 15
o and 30o for the741

VNIR and SWIR ranges respectively.742

Modeling such extra variability therefore allowed us to obtain consistent maps743

of foliar content. In the VNIR range, the highest Cab values were obtained744

in the greenest parts with values close to 40 µg.cm−2, while very low chloro-745

phyll contents were retrieved in senescent parts, especially in the necrotic746

area on the top (Fig. 11.b). This latter area was also exhibiting a high con-747

tent in brown pigments as shown in Fig. 11.c, thereby proving the reliability748
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Figure 11: Estimated maps obtained using the radiance-based PROCOSINE model in the

VNIR (a-e) and SWIR (f-j) ranges: (a) true color composite image, (b) Cab, (c) Cbp, (d)

bspec, (e) θi, (f) false color composite image (using bands 1458 nm, 2202 nm and 1662 nm),

(g) Cw, (h) Cm, (i) bspec, (j) θi.
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of PROSPECT for retrieving pigments.749

Consistent maps were obtained in the SWIR range as well. As expected,750

veins were found to contain a lot of water, unlike the upper part where751

necrosis was causing a strong water loss (Fig. 11.g). Although being a bit752

more affected than Cw by mismodeled BRDF effects, Cm was estimated more753

accurately than Cw since both Cw and Cm average estimated values were close754

to 0.011 g.cm−2.755

In particular, these maps are very appealing for identifying plant diseases at756

leaf scale. As described by Mahlein et al. (2013), different diseases may lead757

to different symptoms that can be characterized by local changes in optical758

properties, e.g., a higher chlorophyll/carotenoid ratio for sugar beet rust, or759

necrosis for Cercospora leaf spot. Therefore, inverting PROCOSINE based760

on VNIR and SWIR hyperspectral images of the same leaf offers very inter-761

esting perspectives for early detection of many plant diseases.762

763

Finally, in Fig. 12, we provide a last example that again demonstrates the764

potential of PROCOSINE in the SWIR range when tested with a sugar beet765

leaf characterized by high Cw (Cw = 0.0355 cm) and low Cm (Cm = 0.0040 g.cm−2)766

values, and by a strongly non-regular and non-Lambertian leaf surface. Even767

if PROSPECT obtained better results when considering estimated values av-768

eraged over the five sampled leaf disks (Ĉw = 0.0370 cm; Ĉm = 0.0032 g.cm−2),769

it also led to highly heterogeneous and inconsistent maps, whose variances770

obviously did not reflect the actual ones but rather expressed unmodelled771

variability. Conversely, the PROCOSINE inversion led to homogeneous and772

consistent maps, either for leaf structure (N̂ = 1.30; to compare with773
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Figure 12: Estimated maps obtained in the SWIR range using the radiance-based PRO-

COSINE model (b-f) and PROSPECT (g-i): (a) false color composite image (using bands

1458 nm, 2202 nm and 1662 nm), (b) bspec, (c) θi, (d) N , (e) Cw, (f) Cm, (g) N , (h) Cw,

(i) Cm.

47

Author-produced version of the article published in Remote Sensing of Environment, 2016, N°177, p. 220-236. 
The original publication is available at http://www.sciencedirect.com 
Doi: 10.1016/j.rse.2016.02.029



the mean value of 1.225 provided by Jacquemoud et al. (1996) for the same774

species), equivalent water thickness (Ĉw = 0.042 cm) and leaf mass per area775

(Ĉm = 0.0052 g.cm−2). In particular, the strongly non regular leaf orienta-776

tion was greatly retrieved through the estimated θi map (Fig. 12.c): regions777

with low estimated θi were indeed facing the light source while regions with778

high estimated θi were facing the opposite side (note that shadows were inter-779

preted as high θi values). Interestingly, most imaging techniques allowing the780

retrieval of leaf (or even plant) orientation are either based on depth imaging781

systems (Chéné et al., 2012) or on 3D models built from multi-angular obser-782

vations using stereovision (Lati et al., 2013) or photogrammetry (Jay et al.,783

2015). In comparison, it is worth noting that in this study, the retrieval of784

leaf orientation only necessitates a single-angular observation and is based785

on spectral information only.786

5. Conclusions and perspectives787

In this study, we propose a physically-based model that allows for ap-788

plying rigorously a DHR model of leaf optical properties to pseudo-BRF789

hyperspectral (or multispectral) images acquired with close-range imaging790

spectroscopy. The proposed COSINE model describes the spectral variabil-791

ity caused by variable BRDF effects and leaf orientation, that, depending792

on leaf surface, can make the acquired pseudo-BRF measurements very dif-793

ferent from DHR measurements. In this paper, COSINE is coupled with794

PROSPECT and the numerical inversion of the resulting PROCOSINE model795

led to accurate leaf-level mappings of foliar content and above leaf surface796

properties, both in the VNIR and SWIR ranges.797
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Figure 13: Use of the PROCOSINE model for image pretreatment in the VNIR (a-c)

range: (a) DHR image reconstructed with PROSPECT and estimated parameters, (b)

SBRI map (Mahlein et al., 2013) obtained with the original image, and (c) SBRI map

(Mahlein et al., 2013) obtained with the reconstructed image.

Besides avoiding the need for hemispherical measurements, the proposed ap-798

proach allows the non-destructive biochemical characterization of small leaves799

thanks to the sub-millimeter resolution of hyperspectral images. Potentially,800

it could represent a practical solution for optical characterization of needles,801

whose optical properties were found to be well described by PROSPECT802

(Moorthy et al., 2008) (usual needle optical measurements involving using803

complex experimental setups to handle irregularities in size, shape and cur-804

vature). As previously mentioned, it can also be combined with other leaf805

DHR models such as LIBERTY (Dawson et al., 1998).806

The accurate retrieval of Cm makes it possible to derive mass-based quantities807

from surface-based quantities. In particular, strong correlations (R2 > 0.85)808

were obtained for the estimation of Gravimetric Water Content (being ex-809

pressed as Cw/Cm), which is an important indicator for fire risk modeling810

(Chuvieco et al., 2004).811

Potential applications also include the use of PROCOSINE as a pretreat-812

ment for further processing. To illustrate, in Fig. 13.a, we show a DHR813

image reconstructed by running PROSPECT in a forward mode with pa-814

rameters previously estimated with the radiance-based PROCOSINE model815
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(the original image is presented in Fig. 10). For example, computing spectral816

indices designed for plant disease identification based on this cleaned image817

is much more reliable to detect these diseases at early infection stages, es-818

pecially when these indices are based on wavelengths strongly affected by819

BRDF effects, e.g., the SBRI (Mahlein et al., 2013). Alternatively, PRO-820

COSINE could allow the design of spectral indices adapted to close-range821

imaging spectroscopy, similarly to Féret et al. (2011).822

Further investigation is however needed to properly model the specular com-823

ponent in the SWIR range. In this case, the effect of water absorption on824

leaf refractive index should be considered to reliably model the wavelength-825

dependency of bspec parameter. Also, confounding effects between PROCO-826

SINE parameters (e.g., N , θi and Cm in the VNIR range) should be studied827

more deeply by optimizing the numerical implementation of the iterative op-828

timization or by considering regularization strategies as reviewed by Baret829

& Buis (2008) and Verrelst et al. (2015), e.g., by using prior knowledge to830

constrain some model variables, or by generating a look-up table and aver-831

aging the N best solutions. As noted in the discussion, a more exhaustive832

assessment of PROCOSINE should also be performed over a larger data set833

encompassing a wider range of pigment, water and dry matter contents prop-834

erly measured using laboratory extraction methods. This would allow us to835

fully validate the proposed model. Lastly, it is worth mentioning that the836

use of COSINE based on images acquired under outdoor conditions requires837

assuming that diffuse illumination (coming from either the sky and/or the838

surrounding terrain) is negligible compared with direct sunlight. We are839

currently working towards an improvement of COSINE to account for these840
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influences within the modeling, thus transforming the BRF-based model into841

a hemispherical-directional reflectance factor based model. This would allow842

processing spatially-resolved data acquired from near-ground remote sensing,843

e.g., from a tower or low flying unmanned aerial vehicle.844
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Riva, J., & Pérez, F. (2004). Combining NDVI and surface temperature903

for the estimation of live fuel moisture content in forest fire danger rating.904

Remote Sensing of Environment , 92 , 322–331.905

Colombo, R., Meroni, M., Marchesi, A., Busetto, L., Rossini, M., Giardino,906

C., & Panigada, C. (2008). Estimation of leaf and canopy water content in907

53

Author-produced version of the article published in Remote Sensing of Environment, 2016, N°177, p. 220-236. 
The original publication is available at http://www.sciencedirect.com 
Doi: 10.1016/j.rse.2016.02.029



poplar plantations by means of hyperspectral indices and inverse modeling.908

Remote Sensing of Environment , 112 , 1820 – 1834.909

Comar, A., Baret, F., Obein, G., Simonot, L., Meneveaux, D., Vinot, F., &910

de Solan, B. (2014). ACT: A leaf BRDF model taking into account the911

azimuthal anisotropy of monocotyledonous leaf surface. Remote Sensing912

of Environment , 143 , 112 – 121.913

Comar, A., Baret, F., Vinot, F., Yan, L., & de Solan, B. (2012). Wheat leaf914

bidirectional reflectance measurements: Description and quantification of915

the volume, specular and hot-spot scattering features. Remote Sensing of916

Environment , 121 , 26 – 35.917

Curran, P. J. (1989). Remote sensing of foliar chemistry. Remote Sensing of918

Environment , 30 , 271 – 278.919

Danson, F., & Bowyer, P. (2004). Estimating live fuel moisture content from920

remotely sensed reflectance. Remote Sensing of Environment , 92 , 309–321.921

Dawson, T. P., Curran, P. J., & Plummer, S. E. (1998). LIBERTY - modeling922

the effects of leaf biochemical concentration on reflectance spectra. Remote923

Sensing of Environment , 65 , 50–60.924

Dorigo, W., Zurita-Milla, R., de Wit, A., Brazile, J., Singh, R., & Schaep-925

man, M. (2007). A review on reflective remote sensing and data assim-926

ilation techniques for enhanced agroecosystem modeling. International927

Journal of Applied Earth Observation and Geoinformation, 9 , 165 – 193.928

54

Author-produced version of the article published in Remote Sensing of Environment, 2016, N°177, p. 220-236. 
The original publication is available at http://www.sciencedirect.com 
Doi: 10.1016/j.rse.2016.02.029
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Yang, Y., Marshak, A., Latorre Carmona, P., Kaufmann, R. K., Lewis,978

P., Disney, M. I., Vanderbilt, V., Davis, A. B., Baret, F., Jacquemoud, S.,979

Lyapustin, A., & Myneni, R. B. (2013). Hyperspectral remote sensing of980

foliar nitrogen content. Proceedings of the National Academy of Sciences ,981

110 , E185–E192.982

Lati, R. N., Filin, S., & Eizenberg, H. (2013). Estimating plant growth983

parameters using an energy minimization-based stereovision model. Com-984

puters and Electronics in Agriculture, 98 , 260–271.985

Mahlein, A.-K., Rumpf, T., Welke, P., Dehne, H.-W., Plümer, L., Steiner, U.,986
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