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Traffic-Aware Scheduling and Feedback Allocation
in Multichannel Wireless Networks

Matha Deghel, Student, IEEE, Mohamad Assaad, Senior, IEEE,
Mérouane Debbah, Fellow, IEEE, and Anthony Ephremides, Life Fellow, IEEE

Abstract—This work studies the problem of feedback allocation
and scheduling for a multichannel downlink cellular network
under limited and delayed feedback. We propose two efficient
algorithms that select the link states that should be reported
to the base-station (BS). A novelty here is that these feedback
allocation algorithms are performed at the users’ side to take
advantage of their local CSI (channel state information) knowl-
edge in order to achieve higher gains. The first algorithm is
suitable for a continuous-time contention scheme and requires
only one feedback per channel, whereas the second one is
adapted for a discrete-time contention scheme and adopts a
threshold-based concept. For this second algorithm, we study
some implementation aspects related to the feedback period and
investigate the trade-off between knowing at the BS a small
number of accurate link states and a larger but outdated number
of link states. We show that these algorithms, combined with
the Max-Weight scheduling, achieve good stability performance
compared with the ideal system.

I. INTRODUCTION

In this work, we address the problem of joint feedback
reporting and scheduling for multiuser downlink wireless
networks employing multiple parallel channels, i.e. multi-
carrier technique, to serve the users. Such a setting corresponds
for example to a single cell orthogonal frequency-division
multiplexing access (OFDMA) scheme, which is implemented
in the long term evolution (LTE) standards [2] and was shown
to deliver a substantial increase in the system’s performance;
OFDMA is also the multiple access technique adopted for
5G systems. To exploit multiuser diversity in multichannel
downlink networks, the base station (BS) needs to acquire
channel state information (CSI) from users. These CSIs are
usually unknown at the BS, especially in frequency-division
duplex (FDD) systems which lack of channel reciprocity. A
common method to acquire the downlink CSI is to allocate a
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part of the uplink resources to the users to report their CSIs.
However, the more CSIs are decided to be reported, the more
resources are needed, thus resulting in a bigger overhead in
the system. In this regard, in [3]–[8] different approaches are
proposed to reduce the feedback load while still achieving the
benefits of multiuser diversity. However, these works do not
take into account the incoming traffic processes of the users. In
this work, an important factor that is considered is the traffic
pattern for each user, which is stored in a respective queue at
the BS. Hence, the system stability (i.e. all the queue lengths
are finite) is an important property the scheduling mechanism
should take into account [9], [10].

The feedback allocation algorithm directly impacts the
scheduling mechanism and thus the system stability since a
user cannot be scheduled unless its CSI is reported to the
scheduler. In realistic scenarios, complete feedback knowledge
is not readily available at the scheduler. Different limitations
result in such incomplete information, such as estimation
error, delay and limited feedback resources, so it is important
to analyze the impact of such imperfections on the system
stability. For a single channel system, mainly time-division
duplex (TDD), the authors in [11], [12] have proposed a
feedback allocation scheme. Specifically, this scheme sets as
threshold the rate of the user with the maximum queue length
and requires no knowledge of channel and traffic statistic. In
addition, distributed scheduling approach is considered in [13]
where the authors propose a Greedy Maximal Scheduling,
for which the achievable stability performance depends on
the network topology. Some other distributed schemes that
approach the system stability region are provided in [14], [15],
but are hard to implement. Moreover, the work in [16] derives
the optimal feedback scheme for a single-channel downlink
system under partial channel state information. In [17], the
authors study centralized scheduling with rate adaptation under
imperfect channel-estimator joint statistics. Under a multichan-
nel downlink system where an FDD mode is adopted, ob-
taining complete feedback would require a prohibitive portion
of the overall uplink capacity, especially for large number of
users. Under such a system, the authors in [18] study the im-
pact of limited feedback resources on the achievable stability
region. However, in this latter work the delay in the feedback
process is not accounted for. Also in the context of multi-
channel wireless networks, the authors in [19] propose a set
of low computational complexity scheduling algorithms with
a large number of users and proportionally large bandwidth.
Furthermore, in [20] the problem of routing/scheduling in a
wireless network with delayed network (channel and queue)
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state information (NSI) is studied. Specifically, two cases are
considered: the centralized routing/scheduling, where a central
controller obtains heterogeneously delayed information from
each of the nodes, and the decentralized routing/scheduling,
where each node makes a decision based on its current channel
and queue states along with homogeneous delayed NSI from
other nodes. On the other hand, the authors in [21] analyze
the effect that delayed CSI has on the throughput performance
of scheduling for a single channel wireless network.

In this paper, we consider a multichannel multiuser wireless
downlink network where both limited feedback resources and
delayed feedback information are accounted for. To the best
of our knowledge, this is the first work to account for these
two imperfections at the same time for a multichannel system
where the incoming traffic processes of the users are taken
into consideration. The incoming data for each user is stored
in a respective buffer at the BS. Let L be the total number of
channels in the system. Note that the term ”channel” denotes
a certain frequency band, whereas the term ”link” refers to the
wireless connection between a user and the BS over a specific
frequency band. Regarding the feedback resources, we adopt
a setting where the feedback capacity per slot is limited; in
practice (e.g. LTE systems), at a given slot it is not possible
to feed back the CSI for all the users on all the channels.
Specifically, only F̄ link states (i.e. CSI) can be reported to
the BS per slot and the link states used in the scheduling
are delayed. Since the feedback process directly impacts the
scheduling mechanism, we design efficient joint feedback
reporting and scheduling algorithms. Note that such algorithms
can be designed using Partially Observable Markov Decision
Process (POMDP) formulation, in which the feedback decision
at each time depends on the previous feedback decisions.
Solutions for MDP or POMDP problems are known to be
complex and most-likely not suitable for implementation in
practice. In order to avoid such complexity, we have designed
simple memoryless algorithms (i.e. the decision at time t does
not take into account the previous feedback decisions) based
on Max-Weight policy. Note that the performance of these
algorithms are measured w.r.t. the performance of the ideal
system (where all the link states are fully and perfectly known
at the BS at no cost).

The main contributions of the paper are summarized as
follows:

• We first propose an algorithm that uses exactly L
feedback resources, where the feedback and scheduling
decisions are done at the users’ side; such an approach
is considered to take advantage of the local CSI knowl-
edge of these users in order to achieve better gains.
This algorithm has the advantage to require only one
feedback per channel (limited feedback), but it works
under the assumption of continuous time for contention.
We investigate analytically the stability performance of
this algorithm and show that it can guarantee a certain
fraction from the stability region of the ideal system.
• Under a discrete-time contention scheme, we propose
a second (heuristic) algorithm that imitates the first algo-
rithm as much as possible. The proposed algorithm here
uses a threshold-based concept and consists in having F

(> L) feedback resources and in letting the users decide
whether they should send their CSIs or not, and then the
BS performs scheduling over each channel. An efficient
approach to update the threshold value is also provided.
For this algorithm, the decision is memoryless and the
system can decide to report an amount of feedback
F > F̄ , thus the feedback process will require more than
one slot in order to be accomplished. Hence, the amount
of feedback resources and the delay in the feedback
process are coupled. We investigate numerically under
various system setups the period duration of the feedback
decision in order to find a trade-off between having more
F , which leads to a greater number of reported link states
but which are more outdated, and having a lower number
of reported link states but which are less outdated.

It is important to highlight that our work differs from
existing works (some of which were cited earlier) that propose
feedback and scheduling algorithms in the sense that (i) we
account for the traffic patterns, meaning that our proposed
feedback and scheduling algorithms account for the queue
length of each user and do not consider a full buffer scenario,
and (ii) limited and delayed feedback is considered. It is also
important to note that the use of an OFDMA-like access
technique is motivated by the fact that such a technique is
used in LTE systems and will be also used in 5G systems.
However, the scheduling algorithms adopted in LTE, such as
PF (Proportional Fair), are not optimal in terms of accounting
for the traffic patterns and for the limitation and imperfection
in the CSI information. The same remark can be made for the
feedback approaches and for the amount of feedback resources
that are considered under such systems. Furthermore, since the
feedback impacts the scheduling mechanism, it is essential to
jointly design the feedback and scheduling algorithms in such
a way as to achieve the best possible stability performance.

The rest of this paper is organized as follows. In Section II
we present the system model, the feedback scheme, and the
queueing model. In Section III we present a stability analysis
for the adopted system. Specifically, we propose two joint
feedback and scheduling algorithms, and we analyze their
queueing stability performance. Numerical results and relevant
discussions are carried out in Section IV. We finally conclude
the paper in Section V.

II. SYSTEM MODEL

Channel j-1Flow i-1 

Flow i

Flow i+1 

Channel j

Channel j+1

Link (ij)

Figure 1: Multi-channel multi-user queueing system.
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We consider an FDD cellular wireless network, with one
single-antenna BS, N single-antenna mobile users and L chan-
nels; e.g. LTE-OFDMA system. Data packets to be transmitted
to the users are stored in N separate queues at the BS. Time
is slotted, with the slots of all users synchronized. Let qi(t)
denote the length of queue i at the beginning of time-slot t,
and let q(t) = (q1(t), . . . , qN (t)). This system can be seen
as a multi-queue, multi-server, discrete-time queueing system.
It can be noticed that since we work under an OFDMA-like
system, at a given slot a channel can be allocated to one and
at most one user.

We denote by hij(t) the fading of the link connecting the
BS and user i using channel j. The received signal for the ith
user if it gets scheduled on the jth channel at time-slot t is
given as

√
Phij(t)xij(t) + zij(t), (1)

where xij(t) is the corresponding complex-valued data stream,
with E{|xij |2} = 1, P is the transmission power on each
channel, and zij(t) is the additive white Gaussian noise with
zero mean and variance σ2

z,ij , i.e. zij(t) ∼ CN (0, σ2
z,ij). We

assume that at slot t user i has perfect knowledge of hij(t), ∀j;
the BS sends training sequences in the downlink so that each
user can estimate its hij(t). The corresponding signal-to-noise
ratio (SNR) is denoted and given as

γij(t) = ρij |hij(t)|2, with ρij =
P

σ2
z,ij

. (2)

In any time-slot, the link state of a user on a channel
represents the number of packets that can be successfully
transmitted without outage to that user, on that channel. Trans-
mission at a rate above the link state always fails, whereas
transmission at a rate below or equal to the link state always
succeeds. We use Cij(t) to represent the state of link (ij)
at time-slot t. We assume that each link state can take K
possible values {R1, R2, . . . , RK}, where rate Rk represents
state k and corresponds to the case where τk ≤ γij(t) < τk+1,
for some non-negative thresholds τk; it can be easily noticed
that Rk > Rm for k > m. This setting is very used in practice
where usually K modulation and coding schemes are used (i.e.
the instantaneous transmitted rate can take only K possible
values).

Finally, the fading process, which is represented by the
coefficients hij(t), is assumed to be channel convergent [22].
For channel convergent processes, it is known that the time
average fraction of time in each state converges to the steady
state distribution, and the expected time average is arbitrarily
close to this distribution if sampled over a suitably large
interval (of time); in the special case of i.i.d. (independently
and identically distributed) fading process, the steady state
averages are achieved every time-slot. Note that this general
model is widely used to model the fact that each fading
coefficient is Markovian and that it is not necessarily i.i.d.
over slots.

A. Limited and Delayed CSI Knowledge Scheme
Before presenting the limited and delayed CSI scheme, we

first provide the conditions under which the system is called
ideal (in terms of CSI knowledge):

Ideal system: The system is called ideal when at each time-
slot the BS has perfect and full knowledge of all the link
states at no cost. In other words, at time-slot t the BS knows
(perfectly) Cij(t), ∀i, j. Note that the term ’perfect’ means that
each Cij(t) is known perfectly, whereas the term ’full’ refers
to the fact that all these link states are known. We recall that
at time-slot t user i knows perfectly hij(t), ∀j, which implies
that this user has perfect knowledge of Cij(t), ∀j. Hence, for
the system to be called ideal we should assume that: (a) all
the users send their perfect knowledge of their link states to
the BS, (b) if the users send these states at time-slot t, they
arrive to the BS also at time-slot t, and (c) there is no cost for
this CSI acquisition process.

We now present the limited and delayed CSI scheme. We
consider a realistic context where the feedback capacity per
slot is limited. Specifically, we assume that at most F̄ link
rates can be reported per slot. Let d denote the delay due to the
feedback process. The users estimate the CSIs at time t−d and
reports a limited number of CSIs to the BS, which uses these
reported CSIs to schedule the users and to transmit packets to
the scheduled users at time t. We therefore consider a given
delay d between the CSI estimation and feedback decision time
and the scheduling and transmission time. This assumption
allows us to provide a theoretical performance analysis of the
proposed schemes in the rest of this paper. In general, there is
also a coupling between d and the amount of feedback. This
issue will be discussed in Subsection III.B. We use ĥij(t) to
denote hij(t − d), which is the fading of link (ij) at time-
slot t− d. We recall that in each slot each user has a perfect
estimation of the hij , ∀j, of this slot. For example, at time-
slot t − d user i knows perfectly ĥij(t) (i.e. hij(t − d)), ∀j.
The SNR corresponding to ĥij(t) is denoted and given by
γ̂ij(t) = ρij |ĥij(t)|2.
We use Ĉij(t) to denote the state of link (ij) at time-slot t−d,
i.e. Ĉij(t) = Cij(t− d). Hence, Ĉij(t) depends on the value
of γ̂ij(t), e.g. Ĉij(t) = Rk if τk ≤ γ̂ij(t) < τk+1.

B. Queueing Model

We here present the queueing model (i.e. queue dynamics)
for the ideal system as well as for the system with limited
and delayed feedback. To this end, we consider that each of
the N users has an incoming traffic process Ai(t), which is
an integer-valued process, measured in bits, i.i.d. in time and
independent across users, with Ai(t) < Amax, for some finite
constant Amax. The mean rate of this process is ai = E{Ai(t)}.
We assume that packets arrive at the BS at the beginning of
the time-slot and are served at the end of the time-slot.
We also assume that a transmission over link (ij) can only be
fulfilled if the corresponding link state (i.e. Cij(t) in the ideal
case for example) is reported to the BS.

1) Queue Dynamics under the Ideal System: To begin with,
we define Sij(t) to be the scheduling decision associated with
link (ij) at time-slot t. So, we have

Sij(t) =

{
1, if user i gets scheduled on channel j
0, otherwise.

(3)
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As mentioned earlier, in one time-slot and on a given channel
one and at most one user can be scheduled. As a result, for all t
and all j, any valid service policy must obey

∑N
i=1 Sij(t) ≤ 1.

It should be pointed out that under the ideal system there is
no need to define a feedback decision since all the link states
are reported (without delay and at no cost).
Based on the above, the queues in the system evolve according
to the following equation

qi(t+ 1) =

max{qi(t) +Ai(t)−
L∑
j=1

Cij(t)Sij(t), 0}, for 1 ≤ i ≤ N,

(4)

where
∑L
j=1 Cij(t)Sij(t) represents the service rate allocated

for user i at time-slot t.
2) Queue Dynamics under the System with Delayed and

Limited CSI: Let us define Sij(t) to be the scheduling decision
associated with link (ij) at time-slot t. In addition, we define
Yij(t) as the feedback decision associated with link (ij) at
time-slot t. Let Ŷij(t) = Yij(t − d) denote the feedback
decision associated with link (ij) at time-slot t − d. So, we
can write

Ŷij(t) =

{
1, if Ĉij(t) gets reported to the scheduler
0, otherwise,

(5)

where we recall that Ĉij(t) = Cij(t−d). On the other side, for
Sij(t), which represents the scheduling decision at time-slot
t, we have

Sij(t) =

{
1, if user i gets scheduled on channel j
0, otherwise.

(6)

The queueing dynamics are then given as follows

qi(t+ 1) =

max{qi(t)+Ai(t)−
L∑
j=1

Ĉij(t)Ŷij(t)Sij(t)1(Cij(t)≥Ĉij(t)), 0},

for 1 ≤ i ≤ N, (7)

where 1(·) is the indicator function and the expression

L∑
j=1

Ĉij(t)Ŷij(t)Sij(t)1(Cij(t)≥Ĉij(t)) (8)

is the service rate allocated for user i at time-slot t. The
use of indicator function 1(Cij(t)≥Ĉij(t)) is due to a possible
mismatch between the reported rate, Ĉij(t), and the actual link
state, Cij(t), i.e. it is possible that the reported rate is greater
than the actual link rate, thus leading to outage.

Finally, since we are interested in evaluating the stability
performance of the system, we next recall the definitions of
"strong stability" of a queueing system, "stability region" of a
scheduling rule, and "Max-Weight" scheduling policy.

Definition 1 (Strong Stability). The condition for strong
stability can be expressed as

lim sup
T→∞

1

T

T−1∑
t=0

E {qi(t)} <∞,∀i ∈ {1, ..., N}. (9)

In the remainder of the paper ”stable” will imply ”strongly
stable” unless stated otherwise.

Definition 2 (Stability Region). The stability region achieved
by a scheduling policy is defined as the set of vectors of
mean arrival rates for which the system stays stable under
this policy.

Definition 3 (Max-Weight Policy). In every time-slot, the
Max-Weight rule schedules the user that yields the largest
product of queue length and link rate.

III. PROPOSED ALGORITHMS AND STABILITY ANALYSIS

In this section, we provide a stability analysis for the
system under consideration. Specifically, we propose a joint
feedback allocation and scheduling algorithm, named FSA,
under which the allocations are done at the users’ side. We
derive the fraction that this algorithm reaches of the stability
region of the ideal system (with perfect and full feedback
knowledge). Although it provides good stability performance,
this algorithm is suitable for systems where continuous-time
contention is used. For systems where discrete-time contention
is only feasible, we propose a second algorithm, termed as
FMA, that adopts a different approach and that tries to imitate
FSA as much as possible. For FMA, an amount of F feedback
resources is available, i.e. at most F links can report their
CSI to the BS. We discuss the implementation of this second
algorithm and investigate its best feedback time period.

In order for the BS to perform scheduling, it needs to receive
the rates of the links that were selected for the feedback.
The feedback allocation process is thus of great importance
since it directly impacts the scheduling mechanism. Hence, a
necessary step to conduct the stability analysis is to specify/de-
velop a joint feedback allocation and scheduling algorithm and
to characterize its performance w.r.t. the ideal system where
full and perfect CSI is available at no cost. Obviously, under
the ideal system there is no need for a feedback allocation
algorithm since it is supposed that all the link states are
instantaneously reported to the BS (at not cost).

We next provide the motivation behind the reasoning regard-
ing the feedback decision used in algorithms FSA and FMA
(which will be presented afterwards).

Motivation: We first note that a Max-Weight-like rule
is adopted for the scheduling mechanism, under which the
decisions are affected by the reported CSIs as well as the queue
lengths; i.e. the feedback allocation algorithm directly impacts
the scheduling mechanism. One could consider that the BS
must decide of the feedback allocation. However, letting the
users make this decision provides a gain due the following:
if the BS decides which user should feed back its CSI, this
decision will be based on the channel statistics. In other words,
the BS can ask a user with bad CSI to report its feedback, since
the BS cannot know beforehand if the current CSI is good or
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bad. However, the users estimate their CSI at each time-slot
and therefore have perfect knowledge of their current CSIs,
so including them in the feedback process would enhance
the system performance. On the other hand, the users lack
the queue lengths information, which should be taken into
consideration by the feedback allocation since the scheduling
mechanism is directly impacted by the feedback decisions. In
general, the stability of the system is more sensitive to the
channels variation than to the queues variation [23], so we
can provide the users with the queue lengths knowledge every
period of time and not every slot. This is done by the BS
which broadcasts the queue lengths information every Tb slots,
where Tb is typically high so that the (signaling) cost of such
a broadcast stays negligible.

A. Algorithm FSA and its Stability Performance

Let ’mdl’ represent the system where for each channel only
one user reports its feedback and where this user is selected
using algorithm FSA. For this system, we assume that the
contention can be done in continuous time. We use ’pf’ to
denote the ideal system, where Max-Weight policy is used
to schedule users for transmission. Let Mpf(t) and Mmdl(t)
be the subsets of scheduled links at time-slot t under ’pf’ and
’mdl’, respectively. Note that here we consider that L link rates
can be reported to the BS with a delay d. Before presenting
algorithm FSA, and to better understand the reasoning that
is used in this algorithm, we next provide the Max-Weight
scheduling used under the ideal system. First, recall that under
this system the BS has full and perfect knowledge (at no
cost) of all the link states. That is to say, at time-slot t the
BS knows Cij(t), ∀i, j. Thus, at time-slot t the Max-Weight
policy schedules over channel j the user that results from the
following operation

arg max
i
{qi(t)Cij(t)}. (10)

For this ideal system, we define gpf to be the expected weighted
throughput, given as follows

gpf(q(t)) = E

{
L∑
j=1

N∑
i=1

qi(t)Cij(t)Sij(t) | q(t)

}
, (11)

where here Sij(t) represents the scheduling decision of link
(ij) at time-slot t under the ideal system, which must obey∑N
i=1 Sij(t) ≤ 1. An alternative way to write gpf is

gpf(q(t)) = E

{ ∑
(ij)∈Mpf(t)

qi(t)Cij(t) | q(t)

}
. (12)

Algorithm FSA: For system ’mdl’, the feedback and schedul-
ing decisions are based on the following procedure.

1) Queue lengths broadcast every Tb slots:
Every Tb time-slots, that is to say, at time
0, Tb, 2Tb, . . . , nTb, . . . , the BS broadcasts the queue
lengths of all users, where Tb is typically high. So each
user has outdated knowledge of the state of its queue
(and all other queues). Let q̃i(t) be the (outdated) queue
length the users know at time t, i.e. q̃i(t) = qi(nTb) for
t ∈ [nTb, (n+ 1)Tb[.

2) Feedback and scheduling decisions at time-slot t− d:
To simplify the notation, we denote q̃i(t− d) as ˆ̃qi(t).
For each channel j ∈ {1, . . . , L}, only one user sends its
CSI to the BS.
To detect this user, we use an approach that consists
in letting the users contend among each other for a
certain period of time. Let Tc be the contention period
for each channel. Assuming that contention can be done
in continuous time [24], for each channel j ∈ {1, . . . , L}
the contention is performed as the following:
User i, ∀i ∈ {1, . . . , N}, waits until time

Tc

(
ˆ̃qi(t)Ĉij(t)P

{
Cij(t) ≥ Ĉij(t) | ĥij(t)

})−1

, (13)

then broadcasts a signal (of negligible duration). After the
broadcast of the first signal, the contention procedure (of
channel j) terminates and the corresponding user reports
its CSI.
Once this procedure finishes, the contention of another
channel gets started; clearly, two channels cannot have
their contentions over the same period of time.

3) Transmission at time-slot t:
After getting the CSI (of time-slot t−d) of each channel,
the BS uses these CSIs for transmission at time-slot t.
It is obvious that the user that is selected to report its
feedback (at time-slot t−d) of channel j will also be the
user transmitting over this channel (at time-slot t).

The main idea behind algorithm FSA is to approach the
scheduling in the ideal system, while noting that the feedback
decision is done by the users; the motivation behind letting
the users be implicated in the decision was provided earlier.
For each channel, this algorithm lets the users contend among
each other in order to determine the user that will report its
state, and this user will also be scheduled for transmission on
the corresponding channel. As can be deduced from equation
(13), for channel j the user that is selected for feedback (and
consequently for transmission on channel j), which results
from the contention procedure, is the one that maximizes the
following expression

ˆ̃qi(t)Ĉij(t)P
{
Cij(t) ≥ Ĉij(t) | ĥij(t)

}
, (14)

since, during the contention period, this user waits the smallest
amount of time. The choice to maximize the above quantity
can be explained as follows. First, recall that under the ideal
system on channel j the user that is scheduled for transmission
is the one that maximizes qi(t)Cij(t) (using the Max-Weight
concept). Under system ’mdl’, and accounting for delay d, the
feedback decisions corresponding to the transmission of time-
slot t are made at time-slot t − d. The available information
at user i at time-slot t− d includes all the queue lengths and
in particular ˆ̃qi(t), where we recall that ˆ̃qi(t) = q̃(t − d),
and Ĉij(t) (which results from ĥij(t)), ∀j, with Ĉij(t) =
Cij(t − d). Based on the above and taking into account the
outage possibility, which occurs when Ĉij(t) > Cij(t), it
can be noticed that the best way to approximate the ideal
scheduling on channel j is by selecting the user that maximizes
the quantity given in (14).
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1) Stability Performance Analysis for FSA: As mentioned
earlier, the L link rates are reported with a delay d. As a result
of algorithm FSA, the expected weighted throughput, termed
as gmdl, at time-slot t is defined as follows

gmdl(ˆ̃q(t)) =

E

{
L∑
j=1

N∑
i=1

ˆ̃qi(t)Ĉij(t)Ŷij(t)Sij(t)1(Cij(t)≥Ĉij(t)) | ˆ̃q(t)

}
,

(15)

in which Sij(t) represents the scheduling decision of link (ij)
at time-slot t. Thus, here Sij(t) = Ŷij(t) and is equal to 1 if
user i is selected (at time t − d) by algorithm FSA to report
its CSI (and consequently to transmit at time-slot t) and 0
otherwise. Recall that over each channel one and at most one
channel is scheduled for transmission, i.e.

∑N
i=1 Sij(t) ≤ 1.

We stress out that the indicator function 1(Cij(t)≥Ĉij(t)) is used
because of a possible mismatch between the reported link state
Ĉij(t) and the actual link state Cij(t).
An alternative way to express gmdl is by using the definition
of Mmdl(t) as

gmdl(ˆ̃q(t)) =

E

{ ∑
(ij)∈Mmdl(t)

ˆ̃qi(t)Ĉij(t)1(Cij(t)≥Ĉij(t)) | ˆ̃q(t)

}
. (16)

We now investigate the stability performance of system ’mdl’
by characterizing the minimum fraction that the stability
region of algorithm FSA can achieve w.r.t. the stability region
of the ideal system (i.e. ’pf’); clearly, this fraction is lower
than 1. To this end, we define η as

η = max
t,(ij)

{
Cij(t)

Ĉij(t)

}
. (17)

We here assume that all the possible values of Cij(t) (and thus
of Ĉij(t)), given by R1, . . . , RK , are different than zero. In
practice, it is very rare not to be able to transmit at a non-zero
rate. Moreover, we define pmin

c as

pmin
c = min

(ij)
pmin

cij , (18)

with pmin
cij given by

pmin
cij = min

t,ĥij(t)

{
P{Cij(t) ≥ Ĉij(t) | ĥij(t)}

}
, (19)

where obviously the value of Ĉij(t) depends on ĥij(t). It
is worth recalling that under system ’mdl’ the scheduling
decision at time-slot t is based on the feedback decision made
at time t − d. Also, recall that the BS broadcasts the queue
lengths to the users each Tb slots. In addition, denote Λpf
and Λmdl as the stability regions of systems ’pf’ and ’mdl’,
respectively.
Based on the above, we now provide the stability region that
system ’mdl’ can achieve compared with the stability region
of the ideal system.

Theorem 1. Algorithm FSA can achieve at least a fraction
β of the stability region achieved by the ideal system (with

perfect and full feedback), i.e. the region Λmdl can be bounded
as

βΛpf ⊆ Λmdl ⊆ Λpf, (20)

where β = (1− 1
Tb

)
pmin

c
η .

Proof. We first provide an important result that will be useful
for the rest of the proof. For this purpose, we define ’pf1’ to be
the system where the BS has perfect and full knowledge of the
link states and then applies the Max-Weight rule for scheduling
at time-slot t using ˆ̃q(t). Recall that ˆ̃qi(t) = q̃i(t− d), where
q̃i(t) = qi(nTb) for t ∈ [nTb, (n+1)Tb[. We stress out that the
only difference between ’pf1’ and ’pf’ (i.e. ideal system) is the
fact that at time-slot t the scheduling process (at the BS) under
’pf1’ will be done based on the queue lengths information ˆ̃q(t),
whereas under ’pf’ the scheduling is based on q(t). Let Λpf
and Λpf1 be the stability regions achieved under systems ’pf’
and ’pf1’, respectively.
Based on the above, the following result can be stated.

Lemma 1. As long as Tb is finite, system ’pf1’ is strongly
stable if and only if system ’pf’ is strongly stable. That is to
say, the following stability region result holds

Λpf1 = Λpf. (21)

Proof. The proof is similar to the proof in [24] and is thus
omitted for sake of brevity.

From the above statement, it can be deduced that even if the
scheduling is done based on an infrequent (i.e. outdated) queue
lengths information, the stability of the system can still be
achieved as long as the difference between the estimate (i.e.
outdated value) and the exact value is bounded by a constant.
It can be seen that this latter condition is satisfied for system
’pf1’ since Tb is finite and the maximum per-time-slot length
change in any queue is bounded (because the maximum arrival
and service rates are bounded).

The rest of the proof consists of two main steps. We first
show that gmdl(ˆ̃q(t)) ≥ pmin

c
η gpf1(ˆ̃q(t)), where gpf1 represents

the expected weighted throughput under system ’pf1’ and its
expression can be found in Appendix A. We then demonstrate
that the stability region achieved under ’mdl’ reaches at least
a fraction β of the stability region achieved under ’pf1’. Based
on these two steps and using the result in Lemma 1, we deduce
the statement given in the theorem.

Please refer to Appendix A for the complete proof of the
theorem.

It is important to highlight the fact that fraction β just
represents a lower bound on the performance guarantee of
FSA, meaning that this algorithm may deliver better stability
performance than that guaranteed by the lower bound. Based
on the above observation and depending on the setting under
consideration, we can state that FSA generally provides good
stability performance.
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B. Algorithm FMA and its Stability Performance

In this section, we describe algorithm FMA and its imple-
mentation. Let ’dl’ represent the system with delayed and
limited feedback, and where the feedback and scheduling
decisions are determined by algorithm FMA. For this system,
we assume that the contention is done in discrete time. Under
FMA, the feedback allocation is done at the users’ side, and
an amount of F feedback resources is available. Specifically,
under this algorithm, at time-slot t−d the users decide to report
at most F link states; typically, F should be greater than L.
We assume that F̄ link rates can be reported per time-slot. By
neglecting the processing time at the user and the BS (in order
to simplify the presentation), one can see that the time needed
to report F link rates is dF × F̄−1e. We consider this time as
the delay d throughout this section; here d is different from
the delay in the previous section (in which d is the fixed delay
to report L link states). In fact, one can see that the reported
link states do not arrive at the BS at the same time. In order to
simplify the presentation and the analysis/implementation, we
consider in the feedback decision that the maximum value d
is the delay to report the link states to the BS. In addition, we
consider that the feedback decision is done once each d slots
(the feedback decision is done per frame of d slots) since the
selected F link states will take d slots to be all reported. The
scheduling will then use these reported F link states during
the next d slots (d could be 1 according to the value of F ).
One can see clearly that by reporting more link states, the
scheduling (in FMA) will have more states to be used in the
Max-Weight scheduling but these reported states will be more
outdated. There is hence a trade-off between reporting more
link states and increasing the delay and reporting less link
states that are less outdated. This trade-off will be explored
numerically in Section IV. Recall that here we are considering
memoryless scheduling and feedback decision in which the
channel feedback and allocation do not consider the previous
feedback decisions.

Let us denote the set of reported links by F̂(t), where the
cardinality |F̂(t)| ≤ F . Then, due to the delay of d slots, the
BS receives the totality of this feedback at time-slot t. Let us
define Fi(t−d) to be the number of link states user i decides at
time t−d to report under FMA, so we have

∑N
i=1 Fi(t−d) ≤

F . Also, we define α(t) to be some threshold that the system
updates with the time; the update process will be provided
later. To simplify the notation, we let F̂i(t) and α̂(t) represent
Fi(t−d) and α(t−d), respectively. Algorithm FMA is based
on the idea of combining the Max-Weight and threshold-based
concepts [20], [25]. It is worth mentioning that the steps in
FMA are different from what is proposed in these latter works.

Remark 1. We want to draw attention to the fact that one can
consider a model different from the one described here and
therefore develop other feedback strategies. For instance, one
can consider that the feedback is decided in each slot (and
not each d slots as in FMA) and that the decision in each
slot takes into account the reported links in the previous time-
slots. This usually can be modeled as a Partially Observable
Markov Decision Process (POMDP). However, the solutions
of POMDP (or MDP) problems are known to be complex

and may not be suitable for implementation in practice.
This explains why we adopt in FMA a simple memoryless
implementation in which the decision does not consider the
past decisions but it takes into account the delay d.

Algorithm FMA: For system ’dl’, the feedback and schedul-
ing decisions are based on the following procedure.

1) Queue lengths broadcast every Tb slots:
Every Tb time-slots, that is to say, at time
0, Tb, 2Tb, . . . , nTb, . . . , the BS broadcasts the queue
lengths of all users, where Tb is typically high. So each
user has outdated knowledge of the state of its queue
(and all other queues). Let q̃i(t) be the (outdated) queue
length the users know at time t, i.e. q̃i(t) = qi(nTb) for
t ∈ [nTb, (n+ 1)Tb[.

2) Queue lengths sorting at each user:
Each user knows then the queues of all other users and
sorts all the queue lengths (including its queue) in a
descending order. Let im be the index of the user at
the mth position; e.g. i1 is the index of the user with
the largest queue length. A tie is broken by picking
the user with the smallest index. We define k(imj) as
the state of link (imj), so Ĉimj(t) = Rk(imj), where
k(imj) ∈ {1, . . . ,K}.

3) Feedback decisions at time-slot t− d:
To simplify the notation, we denote q̃i(t−d) as ˆ̃qi(t). Set
F̂im(t) = 0, ∀im ∈ {1, . . . , N}.
For m = 1, which yields index i1 and thus corresponds
to the user with the largest queue length, the allocation
process starts as the following:

a) For all j ∈ {1, . . . , L}:
• If there are enough feedback resources, i.e. if∑N

im=1 F̂im(t) < F :
∗ If channel j satisfies the following inequality

ˆ̃qim(t)Ĉimj(t)P
{
Cimj(t)≥ Ĉimj(t) | ĥimj(t)

}
≥ α̂(t), (22)

then Ĉimj(t) will be reported to the BS and
F̂im(t) = F̂im(t) + 1.

∗ Else, Ĉimj(t) will not be reported.
• Otherwise, the allocation process stops since no

feedback resources are available.
b) At this step user im has just finished its part of the

algorithm, so he broadcasts a special symbol to inform
the BS that he finished the feedback allocation. Now,
if the condition

∑N
im=1 F̂im(t) < F is still satisfied

and m < N , increment m by 1, and go to Step (a).
Otherwise, the allocation process stops.

4) Scheduling decisions and transmission at time-slot t:
At time-slot t, the BS receives the link states that were
selected at time-slot t−d. Then, for each channel, the BS
applies the Max-Weight rule for scheduling. Specifically,
over channel j the BS schedules the user that results from
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the following

arg max
i:(ij)∈F̂(t)

{qi(t)Ĉij(t)}, (23)

where we recall that F̂(t) is the set of reported link states
and that if for some channel no feedback is reported, then
no transmission can take place over this channel.

Roughly speaking, the idea behind the feedback decision
approach in the proposed algorithm here is to allocate the
feedback resources to the links which are more likely to be
scheduled under the Max-Weight policy if all the link states are
available at the BS. This is accomplished since the algorithm
first allocates feedback resources to the user with the highest
queue length if its Max-Weight product (see (22)) is high
enough (i.e. above a threshold), then it moves to the next (in
terms of largest queue length) user and so on. Hence, when the
BS applies the Max-Weight rule for a given channel based on
the subset of reported links states (resulting from the feedback
decision under FMA), it will be very unlikely not to schedule
the right user (which is the result of scheduling under a full
CSI knowledge scenario).

It should be noted that even though we work under the
assumption that the users estimate perfectly their fading co-
efficients, algorithms FSA and FMA can be adapted to the
case where this estimation is not perfect. In this case, for both
algorithms, ĥij(t) and Ĉij(t) should be replaced by ˆ̃

hij(t) and
ˆ̃Cij(t), respectively, where ˆ̃

hij(t) = h̃ij(t− d) represents the
(imperfectly) estimated fading coefficient at time-slot t−d and
ˆ̃Cij(t) is the link rate calculated based on ˆ̃

hij(t). Analyzing
this case is interesting but is out of the scope of this work.

1) Stability Performance Analysis for FMA: We now in-
vestigate the stability performance of algorithm FMA. As
mentioned earlier, this algorithm is proposed to imitate FSA
which in its turn approaches the decisions of the ideal system.
To analytically illustrate the good stability performance that
FMA yields, we show that this algorithm imitates FSA to a
great extent. For this purpose, we first discuss the conditions
that an algorithm should guarantee in order to provide a good
imitation of FSA.
In order to design an algorithm that greatly imitates FSA, two
essential points should be accounted for. The first point is to
ensure that over channel j the user that will be scheduled is
the result of

arg max
i

{
ˆ̃qi(t)Ĉij(t)P

{
Cij(t) ≥ Ĉij(t) | ĥij(t)

}}
. (24)

The second point is to make sure that a transmission occurs
over each channel, which can be ensured by having at least one
reported link state for each channel. This is necessary since
FSA guarantees a reported link state for each channel, leading
to a transmission over all the channels. Based on these two
conditions, the following remark can be made.

Remark 2. Algorithm FMA is designed in such a way as
to imitate/approximate algorithm FSA as much as possible.
Actually, how good this imitation/approximation is depends
on several factors such as the amount of feedback resources

F used by FMA, and the feedback limitation and imperfection,
which is related to F and to the velocity of each user.
Expressed differently, FMA and FSA are not equivalent in
terms of theoretical results, and FMA can be seen more as
a heuristic algorithm without exact proofs of its capacity of
approximating FSA.

The motivation behind the statement in Remark 2 is provided
as follows.
By allocating a sufficient amount of feedback resources, F ,
with F sufficiently large, and using condition (22) which
ensures the selection (for the feedback) of links with large
value of

ˆ̃qi(t)Ĉij(t)P
{
Cij(t) ≥ Ĉij(t) | ĥij(t)

}
, (25)

we can claim that algorithm FMA guarantees the first point
(to ensure a good imitation of FSA) with high probability.
On the other side, by a judicious choice of threshold α̂(t) (or
α(t)), the second point (for a good imitation of FSA) can be
guaranteed, that is to say, this threshold can be updated (with
time) in such a way as to ensure that the probability of any
one of the channels to have zero feedback is very low. We
next explain how the threshold should be updated in order to
guarantee the second point.

2) Threshold Update: We consider an approach under
which the BS updates the threshold each Tu slots (e.g. at slots
Tu, 2Tu, 3Tu, . . .) and then broadcasts it to the users, where
the choice of Tu depends on the system under consideration.
For notational convenience, suppose that tu − d is the time-
slot at which the BS has to calculate the threshold, i.e.
tu − d = nTu for some non-negative integer n. Hence, at
time-slot tu − d the BS calculates threshold α̂(tu), where
we recall that α̂(tu) = α(tu − d). Note that at this slot the
BS has complete knowledge of the queue lengths of this
slot but knows nothing about the link states of this slot;
recall that these lengths and states are denoted by q̂ij(tu)
and Ĉij(tu), respectively. Further, a reasonable assumption
that can be made here is that the BS knows the probabilities
P{Cij(tu) ≥ Ĉij(tu) | Ĉij(tu) = Rk}. As indicated earlier,
the threshold should ensure that it is very likely that every
channel gets at least one feedback, or equivalently, that it is
very unlikely that a channel gets zero feedback.
Under algorithm FMA, a necessary condition for link (ij) to
get selected for the feedback at time-slot tu−d is to have (see
equation (22))

ˆ̃qi(tu)Ĉij(tu)P
{
Cij(tu) ≥ Ĉij(tu) | ĥij(tu)

}
≥ α̂(tu). (26)

Based on this observation and the available information at the
BS, the necessary condition for channel j to get at least one
feedback can be approximated by the BS as∑

i

∑
k: q̂i(tu)RkP{Cij(tu)≥Ĉij(tu)|Ĉij(tu)=Rk}≥α̂(tu)

pijk ≥ 1,

(27)

where pijk is the probability that link (ij) is at state k, which
is supposed to be known by the BS. Define Ωijk and ωj as

Ωijk = q̂i(tu)RkP{Cij(tu) ≥ Ĉij(tu) | Ĉij(tu) = Rk}, (28)
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ωj =
∑
i

∑
k: Ωijk≥α̂(tu)

pijk. (29)

Hence, a necessary condition for every channel to get at least
one feedback can be stated as

ωj ≥ 1,∀j. (30)

The following constraint should be added when calculating
α̂(tu) ∑

j

ωj ≤ F and as close as possible to F. (31)

The conditions in (31) ensure that the average number of
links that are eligible to report their states (see (26)), which
is given by

∑
j ωj , is pushed as close as possible to F .

This is important due to the following reasons: (a) at most
F (with F > L) link states can be reported, due to an
amount of feedback resources equal to F , (b) the more the
number of links that are eligible for the feedback is greater
than F , the more likely it is that algorithm FMA does not
report the best links in terms of maximizing the product
ˆ̃qi(tu)Ĉij(tu)P{Cij(tu) ≥ Ĉij(tu) | ĥij(tu)}, and (c) the
more the number of links that are eligible for the feedback
is lower than F , the less the feedback resources are exploited
efficiently, which may lead to one or multiple channels with
zero feedback. Note that the lower the threshold is, the greater
wj and

∑
j wj will be.

Based on all the above, the following procedure can be adopted
to compute α̂(tu):

1. The BS chooses any threshold value such that, using this
threshold, the condition ωj ≥ 1 is not satisfied for all j.
Denote this value by α̂0(tu).

2. Then, starting from α̂0(tu), it decreases the threshold
value until the condition ωj ≥ 1 is satisfied for all j.
Denote the threshold at this stage by α̂1(tu).

3. If using α̂1(tu) we have
∑
j ωj < F , then the BS

decreases the threshold value (starting from α̂1(tu)) until
having

∑
j ωj as close as possible to F and such that∑

j ωj ≤ F .
Finally, we point out that if the BS knows

Eĥij(tu)

{
P{Cij(tu) ≥ Ĉij(tu) | Ĉij(tu) = Rk, ĥij(tu)}

}
,

(32)

where we recall that ĥij(tu) = hij(tu − d), then, clearly, it is
better to define Ωijk as

Ωijk = q̂i(tu)Rk×

Eĥij(tu)

{
P{Cij(tu)≥ Ĉij(tu) | Ĉij(tu)=Rk, ĥij(tu)}

}
. (33)

Taking this new definition into account, the same procedure
as before can be used to find α̂(tu).

IV. NUMERICAL RESULTS

We set N = L = 30 (unless stated otherwise), P =
10 log10(10 ) = 10 dB. We consider an LTE-like system with
a bandwidth of 180 KHz per channel and a carrier frequency
fc = 2.1 GHz. Let Ts represent the slot period, which is set to

Table I: List of the main parameters and their descriptions

Parameter Description
N Number of users
L Number of channels

γij(t) SNR of link (ij)
Cij(t) State of link (ij)
Ai(t) Arrival rate of user i
ai Mean arrival rate of user i

Parameter Description
qi(t) Queue length of user i
d Delay in the feedback process
F̄ Amount of feedback that can be reported per slot
F Maximum amount of feedback under FMA

Ŷij(t) Feedback decision for link (ij) at time-slot t− d
Sij(t) Scheduling decision for link (ij) at time-slot t

Table II: Possible rates used for the simulations

Rate (bits/slot) 505.32 570.58 622.69 666.08 703.24
Rate (bits/slot) 735.74 764.62 790.61 891.75 964.36

1 msec. Assume that the σz,ij are all equal to 1, i.e. σz,ij = 1,
∀i, j. To model the impact of delay, we consider the Gauss-
Markov block fading process [26]. Based on this model, we
can write

hij(t) = σĥij(t) + eij(t), (34)

where hij(t) is a complex normal random variable with zero
mean and unit variance, i.e. hij(t) ∼ CN (0, 1), and where
eij(t) ∼ CN (0, σ2

e ) is the error due to delay. Notice that
ĥij(t) ∼ CN (0, 1) and σ2

e = 1−σ2. The correlation coefficient
is given by σ = J0(2πfdsTsd), with Doppler spread fds, where
Ts is the slot duration, d is the delay in number of time-slots,
and J0(·) is the zero-th order Bessel function of the first kind.
The Doppler spread can be given by fds = fcv

c , where v is
the user velocity and c = 3× 108 m/sec is the speed of light;
we assume that all the users have the same velocity v. Hence,
the correlation coefficient σ = J0(2πfdsTsd) = J0(2π fcv

c Tsd).
The fading coefficients are assumed to be i.i.d. across users
and frequencies. The set of possible rates {R1, . . . , RK} is
given in Table II. We suppose that all the users have Poisson
incoming traffic with the same mean arrival rate a, i.e. ai = a,
∀ i ∈ {1, . . . , N}.

To show the stability performance of the system, we plot the
total average queue length, defined as 1

Ms

∑Ms−1
t=0

∑N
k=1 qk(t),

for different values of mean arrival rate a, where Ms represents
the number of time-slots each simulation lasts (per mean
arrival rate). We set Ms = 104. Note that the point where
the total average queue length begins to increase very steeply
is the point where the system becomes unstable. It is worth
mentioning that the best representation of the stability perfor-
mance of an algorithm is the stability region this algorithm can
achieve. However, in our case, this region is an N -dimensional
polytope, and since we are interested in a system where there is
a large number of users, characterizing and plotting this region
is not possible. This explains our choice of the total average
queue length as an alternative performance metric. As alluded
earlier, for a fixed mean arrival rate vector, which represents
a direction from the origin, this metric allows us to detect the
boundary of the stability region in this direction.



10

200 400 600 800 1,000
0

0.5

1

1.5

2

·106

v = 1 km/hr

Mean Arrival Rate a (bits/slot)

To
ta

l
A

ve
ra

ge
Q

ue
ue

L
en

gt
h

(b
its

)
Ideal system
FSA
FSA, imperf
F = 50

F = 50, imperf
F = 100

F = 150

Figure 2: Total average queue length vs. mean arrival rate a. Here, the velocity
v = 1 km/hr.
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Figure 3: Total average queue length vs. mean arrival rate a. Here, the velocity
v = 50 km/hr.

We first provide two figures where in each one we consider
a different value of the velocity, v. Specifically, in Figures 2
and 3 we set v = 1 and 50 km/hr, respectively. Each figure
depicts the variation of the total average queue length for
different values of the mean arrival rate under various system
settings. The first setting is ideal system ’pf’, i.e. system
with perfect and full feedback. The second setting is system
’mdl’, i.e. system with delayed and limited feedback where
algorithm FSA is used for feedback and scheduling decisions.
The three remaining settings consider system ’dl’, i.e. system
with delayed and limited feedback where algorithm FMA is
used for feedback and scheduling decisions, for three different
amounts of feedback resources F = 50, 100, and 150. Recall
that delay d depends on the value of F . Here, we assume
that F = 50, 100, and 150 result in d = 1, 2, and 3 slots,
respectively.

Starting by the performance of FMA, the simulations show
that for relatively small values of the velocity (see Figure
2), increasing the feedback resources F to some limit can
provide better stability performance. This is due to the fact
that for small values of v, the variance of the error given by
σ2

e = 1 − σ2 is sufficiently small, so the gain coming from
having more feedback information overcomes the loss due to
delay. Evidently, the limit until which if we increase F we

get better performance depends on σe and consequently on v.
Recall that FMA and the scheduling are memoryless and do
not consider the previous feedback decisions, which explains
in part this behavior. For instance, for v = 1 km/hr the best
F we can choose is 150. If we keep increasing v, there will
be no gain from taking F > 50. This can be clearly seen
in Figure 3. Specifically, for v = 50 km/hr, F = 50 yields
better performance than both of F = 100 and F = 150 cases.
This is due to the fact that for relatively high velocities the
variance of the delay error, i.e. σ2

e , is sufficiently high, so the
loss due to delay is bigger than the gain coming from having
more feedback information.
As for the performance of FSA, it can be easily noticed that
the lesser the delay error is (i.e. lower v), the closer the
performance of algorithm FSA is w.r.t. the ideal system.
In Figure 2, for each of FSA and (FMA) F = 50, in
addition to the delayed- and limited-feedback case, we also
simulate the case where there is an imperfection in the channel
estimation. As explained in Section III, FSA and FMA can be
easily adapted to this case. We adopt a classical imperfection
model under which the relation between the effective fading
coefficient, hij , and the estimated one, h̃ij , is as follows:
hij = h̃ij + e1,ij , where e1,ij represents the estimation error.
For the simulations, the standard deviation of this error is set
to 0.2. Note that the delay model is still given by (34) but
the channel at time t − d will be replaced by the estimated
channel (instead of the effective one).
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Figure 4: Total average queue length vs. mean arrival rate a. Here, N = 20
users and v = 50 km/hr.

Figure 4 considers settings similar to those used in Figure
3 except that the number of users, N is reduced (from 30) to
20. It can be seen that, in this case, the stability performance
improves for each of systems ’dl’, ’mdl’ and ’pf’ compared
with the case where N = 30. This is expected since, for a fixed
number of channels, a smaller number of users in the system
leads to more scheduling/serving opportunities for these users.

In Figure 5, we compare our proposed schemes with a
baseline scheme, termed BLA, for the case where v = 5 km/hr
and N = 30. For the scheduling mechanism under BLA, we
adopt the same approach as under FMA (and FSA), i.e. the
Max-Weight rule. By considering this rule, we are sure that the
baseline scheme has the best possible scheduling approach [9].
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Figure 5: Total average queue length vs. mean arrival rate a. Here, v = 5
km/hr.

For this scheme, we consider periodic CSI feedback, which is
the concept used in LTE [2]. The periodicity here is translated
by adopting a round-robin approach over all the users and
channels, where the amount of feedback resources per period
is denoted F . From Figure 5, it is clear that our proposed
approaches yield better stability performance than the baseline
scheme.

V. CONCLUSION

In this paper, we addressed the problems of feedback allo-
cation and scheduling for a multiuser multichannel downlink
cellular network under limited and delayed feedback. We first
proposed an efficient joint feedback allocation and scheduling
algorithm, in which the decisions are made at the users’ side.
This algorithm is shown to achieve good stability performance
w.r.t. the ideal system, however it is suitable for a continuous-
time contention scheme. In case the contention is only possible
in discrete time, we proposed a second algorithm, which uses a
threshold-based concept, that imitates the first one as much as
possible and thus guarantees good stability performance. For
this algorithm, the feedback decision is also done at the users’
side, and then the BS uses this feedback to perform users
scheduling. Regarding the choice of the amount of feedback
resources for this algorithm, we provided numerical results
that find the best feedback period; these results are given for
various system setups, i.e. different values of users velocity.
Finally, using simulations, we validated that the proposed
algorithms provide good stability performance.

APPENDIX A
PROOF OF THEOREM 1

The proof consists of two main steps. We first show that
gmdl(ˆ̃q(t)) ≥ pmin

c
η gpf1(ˆ̃q(t)), where gpf1 is defined later in the

proof. After that, using this inequality, we demonstrate that
the stability region achieved under ’mdl’ (using FSA) reaches
at least a fraction β of the stability region achieved under
’pf1’. Finally, based on these two steps and using the result in
Lemma 1, we deduce the statement given in the theorem.

• Step 1: Here, we prove that gmdl(ˆ̃q(t)) ≥ pmin
c
η gpf1(ˆ̃q(t)).

To this end, we define ’mpf1’ to be the system with full but

delayed CSI (i.e. delay of d slots) at the BS, and where at time-
slot t the Max-Weigh policy is used for scheduling based on
ˆ̃q(t). Under this system, the expected weighted throughput,
termed gmpf1 , can be expressed as

gmpf1(ˆ̃q(t)) =

E

{
L∑
j=1

N∑
i=1

ˆ̃qi(t)Ĉij(t)Sij(t)1(Cij(t)≥Ĉij(t)) | ˆ̃q(t)

}
. (35)

We first show that gmpf1(ˆ̃q(t)) ≥ pmin
c
η gpf1(ˆ̃q(t)). It can be

easily seen that under ’pf1’ the expected weighted throughput,
termed as gpf1 , can be given by

gpf1(ˆ̃q(t)) = E

{
L∑
j=1

N∑
i=1

ˆ̃qi(t)Cij(t)Sij(t) | ˆ̃q(t)

}
. (36)

Expected weighted throughputs gpf1(ˆ̃q(t)) and gmpf1(ˆ̃q(t)) can
be re-expressed as the following

gpf1(ˆ̃q(t)) = E

{ ∑
(ij)∈Mpf1 (t)

ˆ̃qi(t)Cij(t) | ˆ̃q(t)

}
, (37)

gmpf1(ˆ̃q(t)) =

E

{ ∑
(ij)∈Mmpf1 (t)

ˆ̃qi(t)Ĉij(t)1(Cij(t)≥Ĉij(t)) | ˆ̃q(t)

}
, (38)

where Mpf1(t) and Mmpf1(t) stand for the subsets of sched-
uled users under ’pf1’ and ’mpf1’, respectively, at time-slot t.
Let h be a vector that represents the fading of all the links at
time-slot t. We also define ĥ to be the fading of these links
at time-slot t− d. Then, we can write

gmpf1(ˆ̃q(t))

= Eĥ

{
Eh|ĥ

{ ∑
(ij)∈Mmpf1 (t)

ˆ̃qi(t)Ĉij(t)1(Cij(t)≥Ĉij(t)) | ˆ̃q(t)

}}

=Eĥ

{ ∑
(ij)∈Mmpf1 (t)

ˆ̃qi(t)Ĉij(t)P{Cij(t)≥ Ĉij(t) | ĥij(t)}| ˆ̃q(t)

}
.

(39)

Let us define pmin
c as pmin

c = min(ij) p
min
cij , with pmin

cij =

mint,ĥij(t)

{
P{Cij(t) ≥ Ĉij(t) | ĥij(t)}

}
, where we recall

that the value of Ĉij(t) depends on ĥij(t). Based on the
expression of gmpf1(ˆ̃q(t)) and the definition of pmin

c , we get

E

{ ∑
(ij)∈Mmpf1 (t)

ˆ̃qi(t)Ĉij(t) | ˆ̃q(t)

}
≤
gmpf1(ˆ̃q(t))

pmin
c

. (40)

By defining η as η = maxt,(ij)

{
Cij(t)

Ĉij(t)

}
, we obtain the

following inequality

E

{ ∑
(ij)∈Mpf1 (t)

ˆ̃qi(t)Cij(t) | ˆ̃q(t)

}
≤

η E

{ ∑
(ij)∈Mmpf1 (t)

ˆ̃qi(t)Ĉij(t) | ˆ̃q(t)

}
. (41)
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This inequality can be proved as follows. Let i1 and i2 be
the scheduled users over channel j under systems ’pf1’ and
’mpf1’, respectively. These users are selected according to the
following

i1 =arg max
i
{ˆ̃qi(t)Cij(t)}, i2 =arg max

i
{ˆ̃qi(t)Ĉij(t)}. (42)

Based on the above and the definition of η, we get

ˆ̃qi1(t)Ci1j(t) ≤ ˆ̃qi1(t)Ĉi1j(t)η ≤ ˆ̃qi2(t)Ĉi2j(t)η. (43)

Hence, the inequality in (41) follows by summing over all
the channels j ∈ {1, . . . , L}. Combining (40) and (41) yields
gmpf1(ˆ̃q(t)) ≥ pmin

c
η gpf1(ˆ̃q(t)). Now, we show that gmdl(ˆ̃q(t)) ≥

gmpf1(ˆ̃q(t)). By denoting Mmdl(t) as the subset of users
scheduled for transmission under ’mdl’ at time-slot t, we can
rewrite gmdl(ˆ̃q(t)) as

gmdl(ˆ̃q(t)) =

E

{ ∑
(ij)∈Mmdl(t)

ˆ̃qi(t)Ĉij(t)1(Cij(t)≥Ĉij(t)) | ˆ̃q(t)

}
. (44)

We define gmdl,j(ˆ̃q(t)) and gmpf1,j(
ˆ̃q(t)) as the following

gmdl,j(q(t))=E
{

ˆ̃qil(t)Ĉilj(t)1(Cilj(t)≥Ĉilj(t)) | ˆ̃q(t)
}
, (45)

gmpf1,j(
ˆ̃q(t))=E

{
ˆ̃qif(t)Ĉifj(t)1(Cifj(t)≥Ĉifj(t)) | ˆ̃q(t)

}
, (46)

where il and if denote the scheduled users over channel j under
’mdl’ and ’mpf1’, respectively. These users can be determined
according to the following

il =arg max
i

{
ˆ̃qi(t)Ĉij(t)P{Cij(t) ≥ Ĉij(t) | ĥij(t)}

}
, (47)

if = arg max
i

{
ˆ̃qi(t)Ĉij(t)

}
. (48)

Based on the above, it can be seen that

ˆ̃qil(t)Ĉilj(t)P{Cilj(t) ≥ Ĉilj(t) | ĥilj(t)} ≥
ˆ̃qif(t)Ĉifj(t)P{Cifj(t) ≥ Ĉifj(t) | ĥifj(t)}. (49)

Hence, we get

gmpf1,j(
ˆ̃q(t))

= Eĥ

{
Eh|ĥ

{
max
i

{
ˆ̃qi(t)Ĉij(t)

}
1(Cij(t)≥Ĉij(t)) | ˆ̃q(t)

}}
= Eĥ

{
Eh|ĥ

{
ˆ̃qif(t)Ĉifj(t)1(Cifj(t)≥Ĉifj(t)) | ˆ̃q(t)

}}
= Eĥ

{
ˆ̃qif(t)Ĉifj(t)P{Cifj(t)≥ Ĉifj(t)|ĥifj(t)} | ˆ̃q(t)

}
(a)

≤ Eĥ

{
ˆ̃qil(t)Ĉilj(t)P{Cilj(t) ≥ Ĉilj(t) | ĥilj(t)} | ˆ̃q(t)

}
= Eĥ

{
Eh|ĥ

{
ˆ̃qil(t)Ĉilj(t)1(Cilj(t)≥Ĉilj(t)) | ˆ̃q(t)

}}
= gmdl,j(ˆ̃q(t)), (50)

where inequality (a) results from the relation in (49). By taking
the sum over all the channels, we can deduce that gmdl(ˆ̃q(t)) ≥
gmpf1(ˆ̃q(t)).
• Step 2: We now want to show that system ’mdl’ achieves
a fraction (1− 1

Tb
)
pmin

c
η of the stability region of system ’pf1’.

Let us first define Di(t) as the service rate allocated for user
i at time-slot t. In addition, we define the quadratic Lyapunov
function as the following

Ly(x) ,
1

2
(x · x) =

1

2

N∑
i=1

x2
i . (51)

Considering Tb slots into the future, the evolution equation for
queue qi, for all i ∈ {1, . . . , N}, can be given as the following

qi((n+ 1)Tb + d) = max

{
qi(nTb + d)+

Tb−1∑
t1=0

Ai(nTb + d+ t1)−
Tb−1∑
t1=1

Di(nTb + d+ t1), 0

}
, (52)

where the sum over the Di starts from 1 because every Tb
slots the BS uses the first slot, i.e. slot nTb, to broadcast
the queue lengths, i.e. no transmission occurs during this
slot. For notational convenience we sometimes will replace
nTb + d by t2, i.e. t2 = nTb + d. It is noteworthy to mention
that considering Tb slots into the future is just for sake of
simplifying the analysis, and that any sufficiently large positive
integer can be considered to be the number of steps (i.e. slots)
into the future. From (52) we have

q2
i (t2 + Tb)

≤ q2
i (t2) +

[
Tb−1∑
t1=0

Ai(t2 + t1)

]2

+

[
Tb−1∑
t1=1

Di(t2 + t1)

]2

+ 2qi(t2)

[
Tb−1∑
t1=0

Ai(t2 + t1)−
Tb−1∑
t1=1

Di(t2 + t1)

]
≤ q2

i (t2) + T 2
b A

2
max + (Tb − 1)2R2

K+

2qi(t2)

[
Tb−1∑
t1=0

Ai(t2 + t1)−
Tb−1∑
t1=1

Di(t2 + t1)

]
, (53)

where the first inequality results from the following fact: for
any q ≥ 0, A ≥ 0, D ≥ 0, we have

(max {q +A−D, 0})2 ≤ q2 +A2 +D2 + 2q(A−D).

The second inequality holds since Ai(t) ≤ Amax and Di(t) ≤
RK , ∀t; recall that RK stands for the highest rate. From the
above, setting E = 1

2NT
2
b A

2
max + 1

2N(Tb− 1)2R2
K , it follows

that

Ly(q((n+ 1)Tb + d))− Ly(q(nTb + d))

=
1

2

N∑
i=1

[
q2
i (t2 + Tb)− q2

i (t2)
]

≤ E + qi(t2)

[
Tb−1∑
t1=0

Ai(t2 + t1)−
Tb−1∑
t1=1

Di(t2 + t1)

]
. (54)

Let us define Dr(q(nTb)) as the conditional Lyapunov drift
for time instance nTb:

Dr(q(nTb)) , E {Ly(q(t2 + Tb))− Ly(q(t2)) | q(nTb)}.
(55)
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Using (54), we have that Dr(q(nTb)) for a general scheduling
policy satisfies

Dr(q(nTb))

≤ E +

N∑
i=1

qi(t2)

Tb−1∑
t1=0

E {Ai(t2 + t1) | q(nTb)}

−
N∑
i=1

qi(t2)

Tb−1∑
t1=1

E {Di(t2 + t1) | q(nTb)}

= E + Tb

N∑
i=1

qi(t2)ai

−
N∑
i=1

qi(t2)

Tb−1∑
t1=1

E {Di(t2 + t1) | q(nTb)} , (56)

where we have used the fact that arrivals are i.i.d. over
time-slots and thus independent of current queue lengths, i.e.
E {Ai(t2 + t1) | q(nTb)} = E {Ai(t2 + t1)} = ai. Note that
the conditional expectation at the right-hand-side of (56) is
w.r.t. the randomly observed channel states. Let ∆mdl denote
the scheduling policy under system ’mdl’. Also, we use ∆pf
and ∆pf1 to denote the scheduling policies under ’pf’ and ’pf1’,
respectively. For the drift under ∆mdl we have

Dr(∆mdl)(q(nTb)) ≤ E + Tb

N∑
i=1

qi(t2)ai−

N∑
i=1

qi(t2)

Tb−1∑
t1=1

E
{
D

(∆mdl)
i (t2 + t1) | q(nTb)

}
, (57)

where D(∆mdl)
i (t) is the service rate allocated for user i at time-

slot t under system ’mdl’ and its expression can be given as

D
(∆mdl)
i (t) =

L∑
j=1

Ĉij(t)Sij(t)Ŷij(t)1(Cij(t)≥Ĉij(t)). (58)

Based on the evolution equation of the queue lengths and the
facts that Ai(t) ≤ Amax and Di(t) ≤ RK , it can be seen that

−(s2 − s1)RK ≤ qi(s2)− qi(s1) ≤ (s2 − s1)Amax. (59)

Thus, the following holds −dRK ≤ qi(t2)−qi(nTb) ≤ dAmax,
or equivalently

qi(nTb)− dRK ≤ qi(t2) ≤ qi(nTb) + dAmax, (60)

where we recall that t2 = nTb + d. Plugging the above into
(57), we get

Dr(∆mdl)(q(nTb))

≤ E + Tb

N∑
i=1

(qi(nTb) + dAmax)ai−

N∑
i=1

(qi(nTb)− dRK)

Tb−1∑
t1=1

E
{
D

(∆mdl)
i (t2 + t1) | q(nTb)

}
≤ E + TbNdA

2
max + (Tb − 1)NdR2

K + Tb

N∑
i=1

qi(nTb)ai−

N∑
i=1

qi(nTb)

Tb−1∑
t1=1

E
{
D

(∆mdl)
i (t2 + t1) | q(nTb)

}
. (61)

Recall that gmdl(ˆ̃q(t)) =
∑N
i=1

ˆ̃qi(t)E
{
D

(∆mdl)
i (t) | ˆ̃q(t)

}
.

By setting t = t2 + t1, we have ˆ̃q(t) = q(nTb), ∀ t1 such that
1 ≤ t1 ≤ Tb − 1. This can be explained as follows. For time-
slot t, under ’mdl’ (using FSA) the feedback decision at time-
slot t−d is done based on ˆ̃q(t); we recall that ˆ̃q(t) = q̃(t−d),
where q̃(t−d) = q(nTb), for t−d ∈ [nTb, (n+1)Tb[. For each
channel, only one link will report its feedback to the BS at
time-slot t−d, so evidently this link will be transmitting over
this channel at time-slot t. Here t = t2+t1 = nTb+d+t1, thus
at time-slot t−d = nTb +t1 the feedback decision is based on
ˆ̃q(t) = q̃(t−d) = q̃(nTb+t1). But q̃(nTb+t1) = q(nTb), ∀ t1
such that 1 ≤ t1 ≤ Tb − 1, since the BS broadcasts the queue
lengths at time-slots 0, Tb, . . . , nTb, . . .. Hence, the following
holds

gmdl(ˆ̃q(t)) = gmdl(q(nTb))

=

N∑
i=1

qi(nTb)E
{
D

(∆mdl)
i (t) | q(nTb)

}
. (62)

On the other hand, we have

gpf1(ˆ̃q(t)) =

N∑
i=1

ˆ̃qi(t)E
{
D

(∆pf1 )

i (t) | ˆ̃q(t)
}
, (63)

where D
(∆pf1 )

i (t) =
∑L
j=1 Cij(t)Sij(t).

In a similar manner to ’mdl’, it can be shown that

gpf1(ˆ̃q(t)) = gpf1(q(nTb))

=

N∑
i=1

qi(nTb)E
{
D

(∆pf1 )

i (t) | q(nTb)
}
. (64)

Using the relation gmdl(ˆ̃q(t)) ≥ pmin
c
η gpf1(ˆ̃q(t)), which was

shown earlier, we get

N∑
i=1

qi(nTb)

Tb−1∑
t1=1

E
{
D

(∆mdl)
i (t2 + t1) | q(nTb)

}
≥

pmin
c

η

N∑
i=1

qi(nTb)

Tb−1∑
t1=1

E
{
D

(∆pf1 )

i (t2 + t1) | q(nTb)
}
. (65)

Plugging the above directly into (61) yields

Dr(∆mdl)(q(nTb)) ≤ E1 + Tb

N∑
i=1

qi(nTb)ai−

pmin
c

η

N∑
i=1

qi(nTb)

Tb−1∑
t1=1

E
{
D

(∆pf1 )

i (t2 + t1) | q(nTb)
}
, (66)

in which E1 = E + TbNdA
2
max + (Tb − 1)NdR2

K . Since,
by definition, policy ∆pf1 maximizes the weighted sum∑N
i=1 qi(nTb)Di(t2 + t1) over all alternative decisions, we

can write
N∑
i=1

qi(nTb)D
(∆pf1 )

i (t2 + t1) ≥
N∑
i=1

qi(nTb)D
(∆)
i (t2 + t1),

(67)

in which ∆ represents any alternative (possibly randomized)
scheduling decision that can stabilize system ’pf1’. Taking a
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conditional expectation of the above inequality (given q(nTb))
yields

N∑
i=1

qi(nTb)E
{
D

(∆pf1 )

i (t2 + t1) | q(nTb)
}
≥

N∑
i=1

qi(nTb)E
{
D

(∆)
i (t2 + t1) | q(nTb)

}
, (68)

where we recall that t2 = nTb + d. Plugging the above into
(66) yields

Dr(∆mdl)(q(nTb))

≤ E1 + Tb

N∑
i=1

qi(nTb)ai−

pmin
c

η

N∑
i=1

qi(nTb)

Tb−1∑
t1=1

E
{
D

(∆)
i (t2 + t1) | q(nTb)

}
= E1 + Tb

N∑
i=1

qi(nTb)ai−

pmin
c

η

N∑
i=1

qi(nTb)E

{
Tb−1∑
t1=1

D
(∆)
i (t2 + t1) | q(nTb)

}
. (69)

We now consider a particular policy ∆ that depends only on
the channels states. It is worth recalling that each channel pro-
cess is not i.i.d. in time. We point out that the process D(∆)

i (t),
defined over the channel convergent (fading) process, is rate
convergent [22]. Using the definition of rate convergence for
D

(∆)
i (t) with rate r(∆)

i , we have (refer to [22] for more details)

1

Trc

Trc−1∑
t=0

D
(∆)
i (t)→ r

(∆)
i , with probability 1 as Trc →∞,

(70)

and for any εi > 0 there exists an interval Trc such that, for all
initial times t0, and regardless of past history, the following
holds ∣∣∣∣∣r(∆)

i − E
{

1

Trc

t0+Trc−1∑
t=t0

D
(∆)
i (t)

}∣∣∣∣∣ ≤ εi. (71)

By choosing Trc = Tb − 1 and t0 = 1, we can deduce that

E
{

1

Tb − 1

Tb−1∑
t1=1

D
(∆)
i (t1 + t2) | q(nTb)

}
≥ r(∆)

i − εi. (72)

Note that Tb needs to be sufficiently large in order to get the
εi sufficiently small. Plugging the above into (69) yields

Dr(∆mdl)(q(nTb))

≤ E1 + Tb

N∑
i=1

qi(nTb)ai−

pmin
c

η
(Tb − 1)

N∑
i=1

qi(nTb)
[
r

(∆)
i − εi

]
≤ E1 − (Tb − 1)

pmin
c

η

N∑
i=1

qi(nTb)
[
r

(∆)
i − β−1ai − ε

]
,

(73)

where β =
(
1− 1

Tb

)pmin
c
η and ε = maxi εi.

Recall that Λpf1 represents the stability region achieved under
system ’pf1’. Let us suppose that the mean arrival rate vector
a is interior to fraction β of region Λpf1 , meaning that there
exists an εmax, which clearly depends on a, such that

(a1 + εmax, . . . , aN + εmax) ∈ βΛpf1 , (74)

or equivalently

(β−1a1 + β−1εmax, . . . , β
−1aN + β−1εmax) ∈ Λpf1 . (75)

Thus, the following holds

r
(∆)
i ≥ β−1ai + β−1εmax, ∀i ∈ {1, . . . , N} . (76)

Plugging the above inequality into (73) yields

Dr(∆mdl)(q(nTb)) ≤ E1 − Tb(εmax − βε)
N∑
i=1

qi(nTb). (77)

Let ε̆max = Tb(εmax − βε). Taking an expectation of Dr(∆mdl)

over the randomness of the queue lengths and summing over
n ∈ {0, 1, . . . , T − 1} for some integer T > 0, we get

E {Ly(q(TTb + d))} − E {Ly(q(d))} ≤

E1T − ε̆max

T−1∑
n=0

N∑
i=1

E {qi(nTb)} . (78)

Rearranging terms, dividing by ε̆maxT , and using the fact that
Ly(q(TTb + d)) ≥ 0 yields

1

T

T−1∑
n=0

N∑
i=1

E {qi(nTb)} ≤ E1

ε̆max
+

E {Ly(q(d))}
ε̆maxT

. (79)

Assuming that E {Ly(q(d))} < ∞ and taking a lim sup, we
eventually obtain

lim sup
T→∞

1

T

T−1∑
n=0

N∑
i=1

E {qi(nTb)} ≤ E1

ε̆max
. (80)

Based on the above inequality and the definition of strong
stability, we can claim that ∆mdl stabilizes any mean arrival
rate vector interior to fraction β of the stability region achieved
under policy ∆pf1 , meaning that ∆mdl stabilizes the system for
any arrivals such that a ∈ βΛpf1 .

Based on Lemma 1, we know that ’pf1’ and ’pf’ have
the same stability region. Hence, we can deduce that ∆mdl
stabilizes any arrival rate vector interior to fraction β of the
stability region achieved under ∆pf. This completes the proof.
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