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Abstract: 

This paper presents some improvements of a probabilistic quantitative precipitation 

forecasting method based on analogues, formerly developed on small basins located in South-

Eastern France. The scope is extended to large scale basins mainly influenced by frontal 

systems, considering a case study area related to the Saône river, a large basin in eastern 

France. For a given target situation, this method consists in searching for the most similar 

situations observed in a historical meteorological archive. Precipitation amounts observed 

during analogous situations are then collected to derive an empirical predictive distribution 

function, i.e. the probabilistic estimation of the precipitation amount expected for the target 

day. The former version of this forecasting method (Bontron, 2004) has been improved by 

introducing two innovative variables: temperature, that allows taking seasonal effects into 

account and vertical velocity, which enables a better characterization of the vertical 

atmospheric motion. The new algorithm is first applied in a perfect prognosis context (target 

situations come from a meteorological reanalysis) and then in an operational forecasting 

context (target situations come from weather forecasts) for a three years period. Results show 

that this approach yields useful forecasts, with a lower false alarm rate and improved 

performances from the present day D to day D+2. 

Keywords: Probabilistic quantitative precipitation forecasting, Statistical adaptation, 
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1. Introduction 

Many water-related stakeholders need quantitative precipitation forecasts as reliable as possible to 

anticipate discharges in river basins several hours or days ahead. For example, French operational 

flood forecasting services require precipitation forecasts several days ahead to anticipate flood risks 

(Lacaze et al., 2008), and hydroelectricity power producers need accurate and reliable precipitation 

forecasts to anticipate the discharge evolution along the regulated rivers and their tributaries in 

order to perform their activities and to provide safety control (Bompart et al., 2009). 

Nowadays forecast uncertainties related to meteorological predictions and implied by modelling 

processes are more and more taken into account, leading to probabilistic quantitative precipitation 

forecasts (PQPFs) that provide ensemble forecasts. In particular, this kind of forecast enables to 

evaluate the risk of extreme events. At least, two approaches for producing PQPFs are commonly 

used: (i) regional ensemble weather forecasts based on dynamical approaches (e.g. COSMO-LEPS, 

Marsigli et al., 2005; PEARP, Thirel et al., 2008; EFAS, Thielen et al., 2009; ECMWF-ENS, Miller 

et al., 2010), (ii) statistical approaches based on a search for analogues (e.g. Obled et al., 2002; 

Hamill and Whitaker, 2006; Messner and Mayr, 2010; Marty et al., 2012).  

The principle of analogue methods (AMs) is to use deterministic meteorological outputs of a target 

day D as an input for a statistical search of similar past days in terms of general circulation patterns. 

Similarity is measured on a set of relevant predictor variables computed by Numerical Weather 

Prediction (NWP) models. Finally the analogue situations selected are used to produce a sample of 

observed daily precipitations, which provides a probabilistic forecast for the day D.  

The AMs assume a relationship between large-scale variables (predictors) and a local-scale target 

variable (predictand). Different predictors can be found in the literature. Table 1 presents a short 

description of a selection of representative models developed to predict precipitation fields under 

various climates. Note that this table does not include methods using combination of predictors in 

linear regression to estimate predictands. One can note that the number of predictors may differ 

from one region to another. Timbal et al. (2008) suggest defining combinations of predictors 

adapted for each season and each climatic region. 

The predictors can be divided into two categories. Most AM developments deal with one or more 

low flow atmospheric fields, i.e. descriptors of the meteorological state of the atmosphere at 
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synoptic scale and a set of geopotential heights is usually chosen. The number of geopotential 

heights and their corresponding pressure level varies from one study to another: Altava-Ortiz et al. 

(2006) used three geopotential heights at 500, 850 and 1000 hPa to estimate precipitation amounts 

for one major heavy rainfall event in Catalonia (Spain) while Diomede et al. (2008) selected the 

geopotential at 500 hPa to estimate precipitation in Northern Italy. Following Bontron and Obled 

(2005), Horton et al. (2012) and Chardon et al. (2014) selected analogous situations based on 

geopotential heights at 500 and 1000 hPa-level in Switzerland and in France, respectively.  

The second category of predictors is made of moisture related variables with among them, the large-

scale precipitation outputs PRCP from NWP models (e.g. Diomede et al., 2014; Turco et al., 2011). 

Themeβl et al. (2011) found PRCP the most important predictors for local precipitation far beyond 

the other variables related to the state of the atmosphere. However Dayon et al. (2015) have 

compared different versions of AM and pointed out large possible biases in an application to 

France, when PRCP is used. In Catalonia, Barrera et al. (2007) added the humidity at 1000 hPa to 

the set of predictors suggested formerly by Altava-Ortiz et al. (2006). Similarly Bliefernicht and 

Bardossy (2007) selected three predictors (two geopotential heights and the moisture flux at 700 

hPa defined by the product of the specific humidity at 700 hPa and the westerly wind) to predict 

rainfall in the Rhine basin in Germany. Bontron (2004) and later Gibergans-Báguena and Llasat 

(2007) and Diomede et al. (2008) tested different combinations of variables as predictors. Diomede 

et al. (2008) showed that geopotential at 500 hPa and vertical velocity at 700 hPa are the most 

relevant set of predictors to estimate precipitation in Northern Italy while Bontron (2004) 

highlighted that the best moisture related variable to be used in addition to synoptic scale variables 

to estimate precipitation in South-Eastern France is a combination of relative humidity and total 

column precipitable water. More exhaustively, Gibergans-Báguena and Llasat (2007) have 

identified 7 variables among a list of 33 thermodynamic descriptors and the AM combining these 7 

variables to geopotential fields as predictors outperforms the other tested AMs. These works show 

that improved analogues sorting technique can be expected by incorporating new levels of analogy 

(i.e. incorporating new predictors and related similarity criteria). Note that analogy between 

meteorological situations can be also used in a post-processing of precipitation forecasts to improve 

the prediction skill of NWP models (e.g. Wang and Fu, 2009). 

We will focus here on the application of AMs, and more specifically on one of the reference PQPF 

methods already used in France in an operational context and suggested by Bontron and Obled 

(2005) following the work of Bontron (2004). This former method was developed considering small 

basins located in South-Eastern France, subject to flash-flood events. The aim of this paper is to 
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extend the scope of this AM, considering large French river basins under oceanic influences. This 

study presents then two improvements of the reference method and compares the relative 

performances of the latter with two alternatives, on the large French basin of the Saône river. We 

consider two contexts: (i) a “perfect prognosis context” where the meteorological fields of the target 

day D are directly built with observed data or re-analysed by a NWP model; (ii) an “operational 

forecast” context where the meteorological fields are provided by an operational NWP model, 

including forecast errors. 

Section 2 presents the study area and the datasets used, and section 3 introduces the scores selected 

for the evaluation of probabilistic forecasts. Section 4 gives the main principles of the benchmark 

method for searching analogues, based on a two-step procedure, plus two alternatives adding 

supplementary explanatory variables, air temperature and vertical air motion. The main results of 

the comparison of the methods are analysed in the fifth section, considering the “perfect prognosis” 

and the “operational forecast” contexts. The last section draws general conclusions. 

2. Study area and data 

2.1 Study area 

This application of the AM focuses on the Saône River basin located in eastern France. With a 

response time of 12 to 24 h, the Saône River is one of the most important tributaries of the Rhône 

River. This basin is under oceanic influences and westerly fluxes generating rainfall when large 

fronts pass but it can be also affected by heavy rainfall events extending from the Mediterranean 

region. For this application, the total drainage area (∼ 30000 km²) is divided into three sub-

catchments defined by three gauging stations (Figure 1). This partition is considered in the 

operational forecasting system developed by the French electricity producer CNR (Compagnie 

Nationale du Rhône). 

2.2 Meteorological archive 

Three well-known re-analysis archives have originally been identified for this study: (i) the first 

National Centers for Environmental Prediction/National Center for Atmospheric Research re-

analysis (NNR) (Kalnay et al., 1996); (ii) the 45-Year European Centre for Medium-Range Weather 

Forecasts Re-Analysis (ERA), available from 1957 to 2002 (Uppala et al., 2005); (iii) the new 

generation of European reanalyses now available, called ERA-Interim (Dee et al., 2011). Finally, 

based on the results of previous works (Ben Daoud et al., 2008), ERA was chosen. 

. 

Author-produced version of the article published in Atmospheric Research, 169, Part A, 1, 147–159, 
The original publication is available at http://www.sciencedirect.com/ doi:10.1016/j.atmosres.2015.09.015



5 

2.3 Precipitation 

A 39-year precipitation data set over the 1970-2008 period was extracted from the 8-km-resolution 

atmospheric re-analysis over France performed with the Safran gauge-based system (Quintana-

Seguí et al. 2008, Vidal et al., 2010). However the years 1970 and 1971 were only available after 

the optimisation phase in perfect prognosis context (section 4). These additional data were then 

used for the analysis of AMs performances in both real-time and perfect prognosis contexts (section 

5). Basin scale precipitation data at daily time step (from 6 UTC the current day to 6 UTC the day 

after) were obtained by superimposing the delineation of the three sub-basins taken from Sauquet 

(2006) on the Safran grid. Table 2 shows the main characteristics of the Saône sub-catchments: 

proportion of dry days F0, daily rainfall amounts with return periods of 5 and 10 years PJXA5 and 

PJXA10 given by the Gumbel distribution fitted to the annual maximum series, and maximum 

values Pmax observed over the period. 

These statistics show that only 20% of the days are dry, a rather low value given the climatological 

regime of the region (semi-continental climate). That may be explained by the size of the catchment 

leading to the assimilation of several rain gauges among which at least one of them reported one 

non-zero value. This effect of spatialisation should be emphasised by the aggregation over the sub 

basins. Regarding heavy events, the influence of the orography is illustrated by the high values for 

the Doubs basin, which is characterised by the Jura mountain. However, the downstream section of 

the Saône basin is also characterised by high values, even higher than for the Doubs basin (Pmax). 

This fact is closely related to southerly heavy rainfall events extending from the Mediterranean 

region, especially in autumn. 

Besides, since i) climatological regimes and precipitation distributions of the sub-catchments are 

different and ii) precipitation amount is an asymmetric variable, a set of transformed precipitation 

data was built for the development step of the AM. The data were transformed following this 

equation: 

10PJXA

P
P raw=  (1) 

Where P is the transformed value,rawP  is the raw precipitation value and PJXA10 the value with 

return period 10 years. 

3. Numerical scores for performance evaluation 

Performance evaluation of any forecasting system relies on numerical scores to assess the accuracy 

of the forecasts (see Jolliffe and Stephenson (2003) for an extended list of scores). In this study, 
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several scores are used: 

i) A global performance criterion on the overall forecasts (i.e. considering no rain situations as 

well as precipitation event). The Continuous Ranked Probability Skill Score was chosen to 

perform the optimisation process; 

ii)  End-user oriented criteria based on contingency tables (i.e considering the ability of the 

system to detect specific event), used to evaluate specifically the optimised AMs. Several 

scores from contingency tables with prescribed threshold have been used. 

3.1 Continuous Ranked Probability Skill Score (CRPSS) 

The CRPSS score is based on the Continuous Ranked Probability Score (CRPS; Brown, 1974; 

Matheson and Winkler, 1976; Hersbach, 2000) which is a continuous version of the widely used 

Ranked Probability Score. CRPS is equivalent to the mean absolute error of a deterministic forecast. 

It is especially recommended for the verification of continuous variables probabilistic forecasts 

when performances are evaluated for all the range of possible values (no threshold is considered). 

The CRPS is defined as: 

∑ ∫
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where N  is the number of forecasts, 0x is the observed value, F  is the distribution function of the 

forecasted variablex , and 
0xH  is the Heaviside function (set to 0 for values below 0x and 1 for 

values above0x ). The minimum value of CRPS is 0, when the forecast system is perfect and there is 

no theoretical upper bound for CRPS. Thus, the lower the CRPS the more useful the forecast. 

Furthermore, the CRPS takes into account i) the forecast resolution part, which represents the 

uncertainty of the probabilistic forecast, and ii) the forecast reliability part, that could be interpreted 

as the error between the observed value and the median value of the )(xF  distribution (Hersbach, 

2000; Candille and Talagrand, 2005). In this work, we followed Bontron (2004) who defined the 

CRPS as a score of utility, which is easily decomposed into a resolution part (Reso) and a reliability 

part (Reli): 

[ ] [ ] dxxFReli   dxxHxFReso

Reli ResoCRPS
Q

x

Q ∫∫ −=−=

+=
∞+

∞−

%50

0

%50
)(21and)()( where 2  (3)  

and %50Q  is the 50% quantile of the distribution function F . 

 

For the interpretation of the results in terms of gain, it is widespread to use a reference forecast. 
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Thus, the relative CRPS skill score (CRPSS) could be used instead: 

)/(1 refM CRPSCRPSCRPSS −=   (4)  
 
where MCRPS and refCRPS  are the scores of method M and of a reference method, respectively. In 

this paper the reference method will be given by the climatological distribution of the predictand x. 

Other references such as persistence or random forecast may be used (Wetterhall et al., 2005; 

Diomede et al., 2008). If CRPSS is 0, there is no improvement from method M with regard to the 

reference. If CRPSS is higher than 0, M performs better than the reference method. If CRPSS is 1, 

forecasts obtained with M are perfect (i.e. CRPSM = 0). Note that this skill score may be applied to 

the resolution and reliability parts of the CRPS (Eq. 3). 

Several methods are compared in the following section and it is more appropriate to evaluate the 

gain G of performance of any improvement in AMs. When one method B is compared to one 

method A, G is defined by the relative skill score of the CRPS of the method B where the method A 

is considered as the reference method: 

)/(1)/( AB CRPSCRPSABG −=  (5)  
 
The perfect score G is 1, whereas a null value of G means no improvement in forecast skill 

provided by the method B. 

3.2 Scores from contingency tables 

An operational stakeholder is mainly interested in a forecasting system which performances are 

satisfactory with regard to his expectations. For instance, irrigation decision management needs 

information on the probability of additional rainfall provided by short-term weather forecasts, while 

flood warning services need to estimate if heavy rainfall (over a specific threshold) is expected 

before providing flood warning alerts. In this context, additional scores are computed from 

contingency tables. 

To build a contingency table, each forecast is considered as a forecast of the occurrence or non-

occurrence of an event, that will or will not effectively occur. In the precipitation context, an event 

is defined by a precipitation threshold T. Exceedance over specific thresholds T is examined using 

various quantiles fP  taken from the empirical distribution of precipitation amounts derived from 

analogous days. Thus, within a period of evaluation of n days, given a precipitation threshold T, the 

contingency table (see table 3) is fulfilled as followed, considering for each day the observed and 

forecasted precipitation values oP  and fP : 
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− NCA = number of correct alarms ( TPf >  and TPo > ); 

− NFA = number of false alarms ( TPf >  and TPo ≤ );  

−  NMA = number of missed alarms ( TPf ≤  and TPo > );  

− NCR = number of correct rejections ( TPf ≤  and TPo ≤ ). 

According to the methodology, the sum (NCA + NFA + NMA + NCR) is the total number n of days 

considered in the evaluation period. If the forecast system is perfect, then it would produce only 

correct alarms and correct rejections, no false alarm and no missed alarm. Once the contingency 

table is completed, it is possible to compute a panel of scores (Stephenson, 2000). In this study, 

three scores were calculated: 

)/()/(

)/(;)/(

CRFAFAMACACA

FACAFAMACACA

NNNNNNTSS

NNNFARNNNPOD

+−+=
+=+=

 (6)  

 

The Probability Of Detection (POD) measures the probability that an observed event is well 

forecasted by the system. POD is between 0 and 1 (1 for a perfect forecast). The False Alarm Rate 

(FAR) gives the probability that an expected event did not occur. FAR is between 0 and 1 (0 for a 

perfect forecast) but could not be calculated if no event is forecasted, what might occur for a high 

threshold T. Since no system is perfect, the better way is to strike a balance between a POD high 

enough and a FAR low enough. The True Skill Statistic (TSS), also known as Hanssen-Kuipers 

score, takes into account both correct alarms and false alarms. It corresponds to the difference 

between POD and the Probability Of False Detection, as defined by Wilks (2006). It gives an 

overview of forecast system skill, since it is based on all indices of the contingency table. TSS has 

the disadvantage to be not so useful for extreme events since it could converge to POD (NCR 

becoming very large). This score has a range of -1 to +1 (1 for a perfect forecast, 0 indicating no 

skill). 

4. Development of the analogue method 

Duband (1970) initiated the development of the AM in France, which was followed by several 

academic works by Guilbaud (1997), Bontron (2004) and Ben Daoud (2010). This paper relates to 

the latter work, focussed on the case of large basin under oceanic influences, such as the Saône river 

basin. We will show how the introduction of additional variables enables to provide a better forecast 

skill. 
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Each time a new variable is introduced, a new step of analogues selection is created in the 

algorithm. According to this methodology, it is necessary to define several parameters and 

variables: predictors, spatial domain on which the analogy is searched for, number of analogues for 

each successive step, and also a criterion to measure the quality of the analogy. These parameters 

are obtained by optimisation. 

During this optimisation phase, the whole period where predictors from the meteorological archive 

and predictand from the hydrological archive are available (1972-2002) was divided into two 

independent sub-periods: the calibration period over which the method was optimised (~25 years), 

and the validation period over which the results were then validated (~5 years). Splitting into 

calibration-validation periods was not undertaken by considering two successive sub-periods, as it 

could introduce a climatological bias (succession of alternating wet and dry periods, heterogeneity 

in the meteorological archive, stationarity issues related to climate change), but rather by removing 

five evenly spaced years from the whole period (1978, 1983, 1988, 1993 and 1998). 

In this study, the choice of the variables was mainly guided by their meteorological meaning related 

to the mechanism responsible of a precipitation event. Several variables expected to be useful for 

precipitation forecasting were tested in the analogues selection algorithm (equivalent potential 

temperature as an indicator of air masses transition, potential vorticity as a predictor for lifting 

processes at synoptic scale, etc.).  

Finally, two additional variables were introduced: temperature and vertical velocity. The main 

results obtained from the optimisation phase are presented in the following sub-sections after a brief 

description of the starting AM. 

4.1 Method A: The benchmark method for searching analogues 

Bontron (2004) developed a version of the analogue method (called hereafter method A) adapted for 

small to medium-sized sub-catchments. The selection of analogous days is divided into two 

successive steps: the first step relies on an analogy on the general synoptic circulation based on 

geopotential heights fields (Guilbaud and Obled, 1998), whereas the second one involves humidity 

predictors at local scale. 

Let’s consider a target day D for which meteorological forecasts are generated. Before applying the 

algorithm of analogues selection, the past candidate situations are pre-selected by taking seasonal 

effects into account. Indeed, according to Lorenz (1969), factors such as vegetation, sea temperature 

or snowpack, depending on the period of the year (i.e. the season), should have impacts on 

precipitation formation processes. Consequently, the dates of candidate situations should be 

Author-produced version of the article published in Atmospheric Research, 169, Part A, 1, 147–159, 
The original publication is available at http://www.sciencedirect.com/ doi:10.1016/j.atmosres.2015.09.015



10 

restricted to a temporal window around the target date, which period was optimised and fixed to 4 

months by Bontron (2004).  

Method A is divided in two steps (Figure 2): 

- A first step of selection (L1-A) is applied in order to search for N1 situations that are 

analogous to the target one, based on geopotential heights at 1000 and 500 hPa-levels 

(Z1000 & Z500) considered at 12 UTC the day D and 00 UTC the day D+1 respectively. 

The analogy criterion is the S1 score (Teweles and Wobus, 1954), which emphasises analogy 

in fields shape (already used by Guilbaud and Obled, 1998). The optimised spatial domain 

of analogy is large enough to catch the main features that are responsible for precipitation; 

- A second step (L2-A) is applied in order to search, among the N1 dates, for N2 situations 

that are analogous to the target one, based on a humidity variable defined by the product of 

relative humidity at 850 hPa-level (RH850) and the total column of water (TCW), 

considered both at 12 UTC the day D and 00 UTC the day D+1. The analogy criterion is the 

root mean square error (RMSE). The spatial domain of analogy is small, reduced to a 2x2 

grid points centred on the target catchment, meaning that humidity should be considered at a 

local scale. 

Considering the study area and the archives containing predictors and precipitation, the parameters 

of the two steps of analogue selection (numbers N1 and N2 and the two spatial domains) were 

optimised over the whole period. N1 and N2 were fitted by testing different couples (N1, N2), where 

N1 is a multiple of 10 set between 10 and 200 and N2 a multiple of 5 set between 5 and N1. The 

spatial domains were optimised by increasing them successively in each direction and by retaining 

at each step the best domain among the four expanded domains. One can note that an extended 

version of this procedure was proposed by Radanovics et al (2013). In this study, the optimised 

numbers N1 and N2 are 70 and 25 respectively, and the optimised spatial domains are [-5°E to 

15°E; 40°N to 50°N] and [5°E to 7.5°E; 45°N to 47.5°N] for geopotential analogy (step L1-A) and 

moisture related analogy (step L2-A), respectively. 

Method A has been implemented at the Laboratoire des Transferts en Hydrologie et Environnement 

in Grenoble since 2004. It was used in real-time by the Observatoire Hydro-météorologique 

Méditerranéen Cévennes Vivarais (http://www.ohmcv.fr/) to anticipate extreme rainfall events in 

south-eastern France until January 2015. 

4.2 Method B: Temperature as a seasonal indicator 
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In method A, a large sample of past situations contained in a moving temporal window of 4 months 

is considered as candidate situations for the preliminary step of the selection. For instance, to 

forecast precipitation expected for the 1st of January, candidate situations for analogy are 

considered between the 1st of November and the 1st of March of every year of the period covered 

by the reanalyses archive. This constraint on seasonality is also applied by other authors (see for 

example Gibergans-Baguena and Llasat, 2007; Diomede et al., 2008). One main drawback is that 

selecting candidate situations in a limited temporal window may be too restricting, removing 

sometimes very informative analogues. The suggested solution to overcome this limitation is to 

make a pre-selection in method B based on a variable with a pronounced seasonal pattern more 

appropriate that the date itself. The search for such a variable leads naturally to the air temperature 

(Tair). Values of Tair between 925 hPa and 500 hPa were tested by creating a preliminary step (L0-

B) before (L1-A). Several times within the target day D were also considered: from -12h to +42h by 

step of 6h (-12h is corresponding to 12 UTC the previous day of the day D). 

The optimal predictor was determined through an optimisation procedure. To limit calculation time, 

before starting the optimisation procedure several parameters of this new analogy step were 

carefully fixed a priori: 

− the spatial domain considered for this preliminary step L0-B is reduced to the grid point 

nearest to the target catchment gravity centre, here the Saône River basin (5°E; 47,5°N) 

since the seasonal effect should be monitored at the most local scale; 

− the numerical criterion that measures analogy is RMSE (another measure of distance could 

be used, however the S1 score that accounts for the shape of the temperature field should not 

be relevant a priori); 

− the number of preselected situations is assumed to be roughly equivalent to the number of 

situations automatically chosen by method A (i.e. about 3000 for a historical period of 30 

years); 

− the subsequent steps of method A are applied without any change (L1-B=L1-A and L2-

B=L2-A). 

A first testing was carried out by analysing Tair at only one pressure level and one time. Figure 3 

shows that Tair should be analysed in very low troposphere (925 hPa) at +36h, leading to a gain of 

+2.7% towards method A. The fact that temperature should be taken beyond the standard period of 

total rainfall, which is from +6h to +30h, was rather unexpected.  

We assume that this time lag is related to the propagation of the frontal rainfall systems. Let us 
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consider a front that defines the boundary between two air masses with contrasting thermal states. It 

is well-known that precipitations usually occur along the front. Searching analogy after 30h allows 

detecting changes in the air mass since temperature is an indirect way to follow the movement of 

the fronts. The link to the passage of frontal systems is partly confirmed by a further analysis 

discriminating wet days from dry days. For each of the two samples, the range for pressure level 

and time defined below is screened and distinct combinations are finally obtained for dry days and 

for wet days (i.e.700 hPa at +12h and 925 hPa at +36h, respectively). 

A further step in the optimisation consisted in measuring the benefit of introducing several 

predictors related to Tair with distinct pressure levels and times. All possible combinations with 

different numbers of pressure levels and times (1 level and 1 time, 1 level and 2 times, 2 levels and 

1 time for each level) were investigated, leading to the following: Tair should be taken at 925 hPa at 

+36h and at 600 hPa at +12h. Finally, the other parameters formerly chosen based on expert 

knowledge were revised considering this optimal set of Tair predictors: 

− the optimal number of preselected candidates (2900) is finally close to the initial number 

obtained through the temporal window (i.e. 3000); 

− performances decrease when the size of the domain increases. The elementary grid domain 

(only one grid point) initially considered is found optimal; 

− different numerical criteria for analogy were tested (mean absolute error, correlation 

coefficient, S1 score) and the best performance in terms of CRPSS is obtained with RMSE. 

The gain of method B towards method A over the calibration period and over the validation period 

arises to +4.0% and +4.5%, respectively, showing that the introduction of temperature in a 

preliminary analogue selection step (L0-B) leads to better performance than with a moving 

temporal window. 

. 

4.3 Method C: Accounting for the vertical motion 

This section aims at introducing a new predictor which accounts for vertical motions, especially 

frontal lifting, that may be responsible of well spatially-organised rainfall fields over large areas. 

4.3.1 Choice of the predictor 

Here several predictors extracted from ERA were tested, among them: 

− Equivalent potential temperature (EPT; Rossby, 1932), frequently analysed in weather 
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forecasting, which allows to characterise humidity and temperature gradients of the air mass. 

An important gradient of EPT in low layers of the troposphere (usually at 850 hPa pressure 

level) is observed when a frontal zone crosses one region; 

− Horizontal divergence (DIV), which fields enable the forecaster to detect convergence zones 

and thereafter the presence of a front when DIV is analysed in low troposphere; 

− Vertical velocity (VV), which represents the vertical motion that occurs in low troposphere 

when two different air masses are confronted. 

A correlation analysis was performed between the predictors already used in method B and the set 

of variables (EPT, VV and DIV), for the nearest grid point to the Saône River basin (5°E; 47,5°N). 

Results showed a significant relationship between EPT at 850 hPa and geopotential height at 500 

hPa, with a correlation coefficient of 0.72, which is partly explained by thermodynamic laws. 

Conversely there is no obvious link between variables used in method B and DIV or VV (the 

coefficients of correlation range from 0 to 0.25). Based on this analysis, the two variables DIV and 

VV were tested in the AM. 

Since the geopotential fields mostly control vertical motions, the selection of analogues with DIV or 

VV was introduced after L1-B but with two options (before or after considering the moisture 

information, i.e. between L1-B and L2-B, or after L2-B) using prescribed parameters for this 

additional step. The first option provides the better result and scores obtained with VV were better 

than with DIV (G value maxima of +1.75% for DIV at 925 hPa against +2.24% for VV at 850 hPa, 

towards method A). This leads to the choice of VV to account for vertical motion processes through 

a selection step between L1-B and L2-B. This version of the AM is called hereafter method C, 

where L1-C=L1-B, L2-C is additional selection step, and L3-C=L2-B. 

One should note that VV is usually considered as a good predictor for small scale convective 

systems such as thunderstorms. Indeed, this kind of convection, which is frequently due to 

topography (mountains), is associated with strong vertical velocities. However, given the rough 

spatial resolution of the reanalysis, and due to the poor representation of the topography, proposed 

VV values cannot be strictly interpreted in terms of low level orographic lifting but variability in VV 

results rather from the frontal lifting due to contrasting air masses. 

 

4.3.2 Optimisation 

As for the pre-selection with temperature, it is necessary to determine beforehand some parameters 
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to limit calculation time during the optimisation process. Then the methodology followed for the 

optimisation of this new selection step is based on assumptions. The parameters that may be easily 

fixed, for which the impact on performances is assumed to be low, are (i) the number of analogues 

(set at 50) and (ii) the times of the predictor observation (set at +12h and +24h). 

The analogy criterion used for the preliminary testing with VV was the RMSE score. Mean absolute 

error, correlation coefficient, Teweles-Wobus score were also considered and the associated analogy 

domain optimised for each criterion. Results showed that gains of about +2% towards method B are 

obtained with MAE and RMSE. 

Secondly, the optimisation of the numbers of analogues retained at L1-C (predictor is geopotential 

height) and L2-C (predictor is VV) was carried out. At the preliminary step L0-C (predictor is 

temperature), there is no reason for re-optimising the number of analogues, whereas at the last step 

the number of 25 analogues was kept to allow comparison with the scores obtained through the 

method B. Finally, the optimum numbers are 170 for L1-C and 70 for L2-C, based on the additional 

predictor VV. The related gain G towards method B arises +4.52%, against only +2.24% before re-

optimisation of these numbers. This improvement highlights the importance of the re-optimisation 

when new predictors are introduced. 

Lastly, the predictor itself was optimised, that is the choice of the pressure level and times at which 

VV should be considered. We followed the same methodology applied for temperature. A first 

testing was performed by screening all combinations of only one level pressure and one time 

(Figure 4), and for each combination, the spatial domain was optimised. Positive values of the gain 

G towards method B are obtained within the standard period of total rainfall, and G is maximal 

when VV is taken in low troposphere (850 to 700 hPa) at +18h. Thus, the pressure level was fixed to 

850 hPa, and all combinations of 1 to 5 observation times among the 10 possible times were 

successively considered. Again, the analogy domain was optimised consistently. Figure 5a displays 

optimal combinations of times and Figure 5b gives the related value of gain G towards method B. 

Figure 5a shows a symmetry in the repartition of the times. This result highlights that the search for 

analogy on vertical motions does not give priority to any particular time. Further, the gain towards 

method B increases with the number of times involved, arising more than +6% when VV is analysed 

at all times of the rainfall period: VV should be used at every time of the rainfall period. Although 

the result is not shown here, the optimal analogy domain is identical for all combinations but one. 

This domain, formed by 3 × 2 grid points, is centred on the Saône catchment. Besides, it is 

interesting to note that this domain sets between the domains applied for L1-C and L3-C, indicating 

that the way this intermediate selection is introduced is consistent with a regular decrease of domain 
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size with the step of analogy (Figure 6). 

However, a further testing for the choice of the predictor was carried out by discriminating wet days 

from dry days. Results showed that for wet days, the highest gain (+4% towards method B) is 

obtained for four times instead of five to put emphasise on wet days forecast. The following 

parameters of the newly introduced selection step L2-C are therefore: 

− RMSE is the analogy criterion; 

− the predictors are VV values at 850 hPa and at +6h, +12h, +18h, and +24h; 

− the size of domain stands between previous step and next step (for the Saône catchment, 

2.5°E to 7.5°E and 45°N to 47.5°N); 

− N2 = 70 analogue days are chosen among the N1 =170 ones selected according to the 

geopotential heights. 

Considering these evolutions, the performances were then computed by applying the updated 

method over the calibration and validation periods. The corresponding gains towards method B over 

the two periods reach +5.94% and +5.91%, respectively. 

Lastly, a slight improvement of the AM was obtained through the re-optimisation of the predictor of 

the last selection step (L3-C). Indeed, new pressure levels are available in the ERA-40 reanalyses: 

henceforward, two variables describing the relative humidity are taken both at 925 and 700 hPa-

levels instead of a single one at 850 hPa-level, and again at the times +12h and +24h. The related 

gain reaches +2.2% over both the calibration and the validation periods. 

The new method C is organised in four steps (Figure 7): a preliminary selection step L0-C (identical 

to L0-B) through temperature; a second one L1-C (identical to L1-B and L1-A) through 

geopotential heights, a third one L2-C searching for the analogy on vertical motions, and the last 

one through humidity L3-C (similar to L2-B and L2-A). 

 

5. Accuracy of perfect prognosis and real time forecasts 

5.1 Perfect prognosis forecasts 

During the development phase of the algorithm, parameters were optimised in a perfect prognosis 

mode over the calibration period, and improvements were confirmed over the validation period. In 

this section, the total length of available record was considered for searching analogues dates, i.e. 
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from 01/08/1970 to 30/08/2002. That means an extension of 7 years, compared to the previous 

section (5 years of the validation period defined for section 4, plus the 2 years 1970 and 1971 that 

were then available in the SAFRAN archive, see section 2.3). Since the numbers of dates selected at 

each step strongly depend on the length of the available learning period, all numbers were re-

optimised leading to N0=3900 instead of 2900; N1=330 instead of 170; N2=90 instead of 70; 

whereas N3=25 remains identical. 

For each of the three methods, PQPFs were provided over the whole period of 32 years. The CRPSS 

was computed on the three sub-catchments, in addition to the gain G towards method A, and 

averaged. The score CRPS was also decomposed into a resolution part and a reliability part (see 

section 3.1). Following the same methodology, the gains G towards method A were obtained in 

terms of resolution and reliability (Table 4). The decomposition of the CRPS score shows that most 

improvements are related to a gain in resolution. Nevertheless, PQPFs provided by methods B and 

C are also more reliable than those from method A, with positive values of G. It is interesting to 

note that the gain of skill with method C is rather similar to the one obtained by Bontron (2004) 

when humidity variables (TCW and RH850) were introduced in the AM. 

The TSS score was computed with each method for different probability thresholds derived from the 

predictive cumulative distribution. These values are defined by quantiles used to characterise the 

distribution: a central value (60% quantile) bounded by two values that form an asymmetric 

confidence interval (20% and 90% quantiles). Different events defined by precipitation thresholds T 

were examined: 0 mm (threshold of rain/no rain), and others corresponding to quantiles from the 

marginal probability distribution of non-zero rainfall amounts. 

Figure 8 shows that performances depend on both the intensity of the event (precipitation threshold) 

and on the predictive quantile: when the forecast value is defined by the 20% quantile of the 

predictive cumulative distribution, the highest skill is obtained for dry days, whereas the highest 

score is obtained for high precipitation thresholds (here the 80% quantile of distribution of non-zero 

values) when the forecast is defined by the 90% quantile. This latter result highlights the under-

estimation often observed with an AM; i.e. heavy rain events are anticipated using a high predictive 

quantile. The shapes of the curves look very similar demonstrating no major discrepancy between 

method performances. However the method C seems to outperform the two other methods when the 

forecast is defined by a small to medium predictive quantile. For the highest precipitation 

thresholds, performances obtained with methods B and C are equivalent. Furthermore, by 

comparing the score differences between methods, the source of improvement is obviously the 

introduction of VV, especially for medium to high predictive quantiles. 
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The previous results naturally lead to the following question: are the gains due to a better ability to 

detect events? Are they due to a decrease of false alarms? Figure 9 shows POD and FAR scores 

obtained considering the 60% predictive quantile, function of the precipitation threshold. Values for 

POD are roughly similar between the three methods, with a slight advantage for method B. By 

contrast, the graph of FAR scores reveals noticeable differences. A reduction of the FAR score of 5 

to 10% for medium to high precipitation thresholds is obtained when vertical velocity is used as 

predictor, whereas the use of temperature to select candidate situations does not improve the false 

alarm rate (method B equivalent to method A). In conclusion, in a perfect prognosis mode, the 

improved skill of the method C is mainly due to a reduced false alarm risk. Given the intermediate 

performances of method B and the small differences in terms of FAR score, only results of methods 

A and C are presented thereafter. 

5.2 Real time forecasts 

In the previous sections, the AMs were optimised and evaluated in a perfect prognosis context 

(predictors are extracted from a reanalysis). During this calibration phase, predictand was defined 

by the transformed value of precipitation (see section 2.3) and predictors came from re-analysis . In 

this section, we suggest assessing the performance of the AMs in near real time conditions, i.e. the 

prediction scheme is kept unchanged, but predictors are now provided by a NWP model embracing 

meteorological uncertainties due to modelling errors and biases while the predictand is now defined 

by the raw value of precipitation. 

Predictors extracted from forecasts available in the Meteorological Archive Retrieval System of the 

European Centre for Medium-Range Weather Forecasts (ECMWF) are the inputs to the AMs. 

Performances are compared over the 01/10/2001-01/10/2004 period. The choice of the period was 

partly conditioned by the frequent changes in operational forecasting system (modifications were 

made in 2001 and later in 2006). A period of three years was considered long enough to reasonably 

allow an objective evaluation of PQPFs. The initialisation of each forecast run is at 00h UTC, and 

the maximum lead-time for PQPFs is eight days. An adjustment was made since temperature is not 

available at 600 hPa-level over the selected period. Different pressure levels close to 600 hPa-level 

were tested for method C in a perfect prognosis context before retaining the temperature at 700 hPa. 

Since raw values of precipitation are used as predictand here, and given the differences between the 

climatological regimes of the three sub-catchments of the Saône basin, in this section CRPSS scores 

were computed for each sub-catchment separately. The CRPSS score was evaluated at each lead-

time (from the current day D to the day D+7) over the 3-year period with CRPSref given by forecasts 
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based on climatology. The evolution of the CRPSS scores with the lead-time, obtained for the 

Doubs sub-catchment with methods A and C, is shown in Figure 10. Note that results are quite 

similar for the two other sub-catchments. Method C outperforms method A up to the lead-time D+2 

and  the skill of both methods decreases gradually with the lead-time, becoming close from t=D+3 

up to t=D+7.  

As noted in the previous section, introducing the air temperature in the preliminary selection step 

does not lead to substantial improvement for this basin (comparison between results from methods 

A and B). The higher efficiency obtained for method C for the three first lead-times (from days D to 

D+2) results mainly from the use of vertical velocity as additional predictor. We may suspect that 

starting from day D+3 the better efficiency initially shown by method C is neutralised by the 

inability of the ECMWF model to forecast VV for longer lead-times. The poor performances of AM 

predictions beyond 6 days may similarly be related to the poor reliability of the geopotential 

forecasts. Thus, the first step of analogue selection may not be pertinent enough, leading to 

irrelevant predictions at following steps. Otherwise, whatever the method the CRPSS becomes 

negative by day D+6, meaning that beyond, the forecast based on climatology brings more 

information about rainfall than the AMs. Then, with the current NWP models, forecasting 

precipitation by using the AM beyond six or seven days ahead may not be of interest. 

5.3 Real time mode versus perfect prog mode 

The drop of forecast efficiency with the lead-time is probably due to the increasing inability of the 

NWP model to forecast the predictors. In order to check if this assumption is correct, forecasts were 

run over the same period in a context of perfect prognosis, i.e. predictors come from the ECMWF 

analyses. Figure 11 displays scores obtained with methods A and C, both in a perfect prognosis 

context (PERF) and in real conditions (OPER), for the Doubs sub-catchment, function of the lead-

time, with: a) the CRPSS scores, b) the resolution and c) the reliability parts of the CRPS score. 

The accuracy of the weather forecasts is quite high for the first lead-time D since for each version of 

the AM the curves OPER and PERF merge. Starting from the day ahead (D+1), according to the 

graphs a) (CRPSS) and c) (skill of reliability) the accuracy of operational forecasts decreases for 

each AM version, while the graph b) (skill of resolution) shows no strong tendency with the lead-

time. Resolution of the PQPFs provided by the two versions of the AM is not affected by the 

accuracy of the NWP forecasts (Figure 11 b). Consequently, this result indicates that the resolution 

of the PQPFs does depend mainly on the algorithm of selection of analogues. The comparison of 

the curves of methods A and C shows that PQPFs from the method C have a much better resolution 

than those from the method A. Then the predictor VV tends to reduce forecast uncertainties. One 
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should note another important result from Figure 11c: even though for the first lead-time the skill of 

reliability is higher for method C than for method A, method C becomes less reliable than method A 

from day D+2. Variables VV are thus less robust predictors compared to the others (geopotential 

heights and humidity): VV forecasts quality is sharply downgraded with the lead-time. However, the 

discrepancy between the two curves is tiny from day D+4, showing that the errors in other predictor 

forecasts become predominant. 

6. Conclusions 

The aim of this work was the adaptation of an analogue method, initially developed in the 2000s for 

small to medium-sized mountain catchments, to large river basins mainly influenced by frontal 

systems at large scale. In this study, we focused on the Saône basin located in eastern France. 

Hence several tests were performed in order to improve the selection of analogues over large river 

basins, by proposing new predictors that are useful for a weather forecaster. Especially, different 

predictors that are representative of the large-scale lifting process were tested. As outcomes of this 

exploration, two main successive evolutions of the method were found. In the previous version of 

the AM (Bontron, 2004), seasonal effects were taken into account by considering only past dates 

included in the same 4-month temporal windows. This fixed criterion of pre-selection has been 

replaced by a preliminary selection based on temperature. Yet one should note that this novel 

evolution is not specific to large river basins. In contrast, the second evolution of the AM enables to 

characterise and localize large-scale fronts that are the main generator of rainfall over the large river 

basins in France. Among the predictors tested, the vertical velocity proved the most pertinent. It 

should be noted that given the climatology of rainfall events and the topography of the zone of 

interest in this study, local lifting due to orography is negligible and then not taken into account. 

Here vertical velocity is only considered as a characteristic of large scale air vertical lifting. This 

new step of analogue selection was inserted between the two steps of the previous version of the 

AM. 

All parameters of these new analogue selection steps (number of analogues, times and pressure 

levels of the predictor, spatial domain of analogy, optimization criterion) were optimised over a 

calibration (learning) period in a perfect prognosis context. Results of the optimisation show a 

substantial increase of PQPF skill, which was preserved over an independent validation period. 

Thus the gain of skill is of the same order of magnitude as the one obtained by Bontron (2004) 

when humidity variables were introduced as predictors in the AM. This upgraded analogues sorting 

technique was recently applied to the whole of France (Radanovics et al., 2013) through SANDHY 
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“Stepwise ANalogue Downscaling for HYdrology”. 

An analysis was performed to deal with the study of the AM performances in depth, both in perfect 

conditions, where predictors are observations, and in real conditions, where predictors come from 

weather forecasts provided by the ECMWF model. Results show that: 

- The main improvement of the overall skill is due to a lower false alarm rate, as the detection 

of precipitation events is not very different between the updated AM and the previous one.  

- In real conditions, the overall increase in skill obtained with the new AM is perceptible only 

until the lead-time D+2. As a consequence, by D+3 the better efficiency due to the analogy 

on vertical motions is neutralised by the inability of the ECMWF model to forecast correctly 

the vertical velocity. Vertical velocity even downgrades PQPFs skill at longer lead-times. 

- On the one hand, from a certain lead-time PQPF reliability does not depend only on the 

quality of VV forecasts, but also on the quality of the predictors used to select the first 

sample of analogues (geopotential heights). On the other hand, PQPF resolution does not 

depend on NWP forecasts but only on the algorithm of selection of analogues itself. 

The three versions of the AM presented here are associated with different levels of complexity. 

Comparing methods allow assessing the relative interest of replacing the calendar criterion with an 

analogy on temperature (method A versus method B) and of the introduction of a new analogy step 

based on vertical velocity (method C versus method B). The gain obtained with the introduction of 

the air temperature is less than the gain obtained with a new step. Finally, method B leads to 

intermediate prediction skills, between methods A and C. One should note that air temperature is 

certainly a more universal predictor than vertical velocity (adapted to localize large frontal systems 

in France) and thus that method B may perform better than method C under other climates. One 

should also note that method B requires less computational resources than method C, which could 

be an advantage for an application in an operational context. 

In conclusion, there are still several ways to improve the AM: in the context of precipitation 

forecasting particularly, the AM needs to be adapted to the zone of interest by selecting other 

predictors closely linked to physical processes that are responsible of precipitation events. This can 

be done especially as new generations of reanalyses are still emerging, containing new predictors at 

higher and higher spatial resolution. In the case of French large river basins, large scale vertical 

motions may be exploited in the AM to improve PQPF skill. However, when a new predictor is 

introduced in the algorithm, one must pay attention to the capacity and reliability of the NWP 

models in providing forecasts for this predictor, especially at long lead-time. As verified in the past, 

Author-produced version of the article published in Atmospheric Research, 169, Part A, 1, 147–159, 
The original publication is available at http://www.sciencedirect.com/ doi:10.1016/j.atmosres.2015.09.015



21 

AM performances for precipitation forecasts will probably increase in parallel with the 

improvement of NWP models to more distant lead-times. 
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Table 1. Predicators and study areas for a selection of AM applications (TCW: total column of water; RH: relative 
humidity, SLP: Sea Level Pressure; Z: geopotential height; T: temperature, SH: specific humidity; PRCP: Total 
precipitation; VV: vertical velocity; additional numbers indicate the related atmospheric level in hPa) 

Reference Study area Predictors 

Altava-Ortiz et al. (2006) Catalonia (Spain) Z850, Z1000 
Barrera et al. (2007) Catalonia (Spain) Z500, Z850, Z1000, humidity at 1000 hPa 
Bliefernicht and Bardossy (2007) Western Germany Z700, Z1000, SH700, westerly wind at 700 hPa 
Bontron and Obled (2005) South-Eastern France Z500, Z10000, TCW, RH850 

Cannon (2007) 
British Columbia 
(Canada) 

SLP, RH700, horizontal wind components at 700 hPa, Z500  

Chardon et al. (2014) France Z500, Z1000 

Dayon et al. (2015) France 
SLP, 2 m air temperature TAS, lifted condensation level, moisture 
flux at 850 hPa, totals total index, SH850 

Diomede et al. (2008) 
Reno river basin 
(northern Italy) 

Z500, VV700 

Diomede et al. (2014) 
Northern Italy, Germany, 
Switzerland 

PRCP 

Gibergans-Báguena and Llasat (2007) Catalonia (Spain) 

Z700, Z1000, precipitable water mass in 700–500 hPa stratum, 
relative temperature at 850 hPa, instability indices (lifted index 
and K index), level at which the temperature is 0 °C, Convective 
Available Potential Energy, potential temperature gradient in 850-
700 hPa stratum, equivalent potential temperature gradient of the 
surface - 950 hPa stratum. 

Horton et al. (2012) Swiss Alps (Switzerland) Z500, Z1000 
Marty et al. (2012)  Southern France Z500, Z1000, TCW, RH850 
Mehrotra et al.(2014) Sydney region (Australia) T700, T850, meridional gradient of Z850, VV500, VV850, Z850 
Osca et al. (2013) Spain SLP, T850 

Palatella et al. (2010) 

Apulia region and Po 
Valley (Italy), Ebro river 
basin (Spain), Antalya 
province (Turkey) 

SLP, T500 

Ribalaygua et al. (2013) Aragon (Spain) 
Speed and direction of the geostrophic wind at 500hPa and at 
1000 hPa 

Salathé (2003) 
Washington and Oregon 
states (USA) 

Z1000 

Schenk and Zorita (2012) 
Northern Europe and the 
Baltic Sea region 

SLP 

Schmidli et al. (2007) 
Alps (France, Germany, 
Swiss, Italy, Austria) 

Geostrophic wind (direction and velocity) at 1000 and 500 hPa 

Teng et al. (2012) South-Eastern Australia 
SLP, PRCP, SH850, Surface max temperature Tmax, T850, zonal 
and meridional wind components at 850 hPa 

Themeβl et al. (2011) Austria 27 variables 
Timbal et al. (2003) Western France SLP, Z1000, Z500, T850, Z1000-Z500, TCW 

Timbal et al. (2008) Australia 
SLP, PRCP, SH850, RH850, RH700, Surface max temperature 
Tmax, T850, zonal wind components at 850 hPa, meridional wind 
components at 700 hPa and 850 hPa 

Turco et al. (2011) Spain PRCP 
Wetterhall et al. (2005) South-central Sweden SLP 

Wu et al. (2012) 
Southeastern 
Mediterranean 

SLP;H700; T700;U850; V850 

Zorita and von Storch (1999) 

Spain, Portugal, Southern 
France, Northern 
Morocco, Northern 
Algeria 

SLP 
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Table 2. Characteristics of the Saône basin pluviometric regime (frequency F0 of 0 mm days (%), daily rainfall 
amounts (mm) with a return period of 5 (PJXA5) and 10 years (PJXA10), maximum amount (mm) (Pmax) observed 
during the 39 year period (Aug. 1970 -July 2008). 

Catchment F0 PJXA5 PJXA10 Pmax 

Doubs 20,5 46,3 51,5 58,1 

Saône (Up) 20 35,9 39,7 58,5 

Saône (Down) 23 45,5 51,8 71,1 
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Table 3. Contingency table for a precipitation threshold T (NCA = number of correct alarms; NFA = number of false 

alarms; NMA = number of missed alarms; and NCR = number of correct rejections). 

  Observation ( oP ) 

  TPo >  TPo ≤  

Forecast ( fP ) 
TPf >  NCA NFA 

TPf ≤  NMA NCR 
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Table 4. Gains G (%) of performance towards method A obtained by applying method B and method C (total gain and 
gain decomposed into resolution and reliability). 
 

 Total Reliability Resolution 

Method B +3.7% +2.7% +4.7% 

Method C +12.3% +7.8% +17.0% 
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Figure 1. Location of the Saône river basin divided into three sub-catchments. 
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Figure 2. Schema of the analogues searching method (method A) developed by Bontron (2004). 
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Figure 3. Gain of performance (G in %) expressed towards method A, function of the time and the pressure level of the 
temperature analysis. Vertical dashed lines represent the standard period of the total rainfall. 
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Figure 4. Gain of performance (G in %) expressed towards method B, function of the time and the pressure level of the 
vertical velocity analysis. Vertical dashed lines represent the standard period of the total rainfall. 
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Figure 5. a) Combination of times and the number of times and b) gain of performance G (in %) function of the number 
of times. 
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Figure 6. Schema showing the fitting of the analogy domains successively applied at step 1 (L1-C – identical to L1-B), 
new step 2 (L2-C - step with VV), and step 3 (L3-C – identical to L2-B). Crosses represent the mesh centres (grid 
points). 
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Figure 7. Schema of the methods of analogues searching. 
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Figure 8. TSS evolution, according to precipitation thresholds defined by percentiles of the climatological distribution 
of non-zero, obtained in perfect prognosis with methods A, B and C. Forecast value is represented by a) the 20% 
quantile, b) the 60% quantile and c) the 90% quantile of the predictive distribution. 
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Figure 9. POD (left) and FAR (right) scores evolution,according to different precipitation thresholds defined by 
percentiles of the climatological distribution of non-zero, obtained in perfect prognosis with methods A, B and C. 
Forecast value is represented by the 60% quantile of the predictive distribution. 
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Figure 10. CRPSS score as function of the lead-time, obtained in real conditions (operational forecasts) with methods A 
and C for the Doubs sub-catchment. The reference forecast is the climatological areal rainfall distribution 
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Figure 11. Scores as function of the lead-time, obtained in both perfect prognosis context (dash-dot lines) and real 
conditions (solid lines), with methods A and, for the Doubs sub-catchment. a) CRPSS, b) Skill of Resolution part of the 
CRPS score, and c) Skill of Reliability part of the CRPS score. The reference forecast is the climatological areal rainfall 
distribution. 
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