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Decidability of the Riemann Hypothesis

Introduction

The unification of number theory with quantum mechanics has been the subject of many research investigations [START_REF] Rosu | Quantum hamiltonians and prime number[END_REF][START_REF] Schumayer | Quantum mechanical potentials related to the prime numbers and Riemann zeros[END_REF][START_REF] Julia | Thermodynamic limit in number theory: Riemann-Beurling gases[END_REF][START_REF] Spector | Duality, partial supersymmetry, and arithmetic number theory[END_REF][START_REF] Schumayer | Colloquium: Physics of the Riemann hypothesis[END_REF]. It has been proven that an infinitude of prime numbers exist [START_REF] Ribenboim | The little Book of Big Primes[END_REF]. In Ref. [START_REF] Bender | Hamiltonian for the zeros of the Riemann zeta function[END_REF][START_REF] Bender | Asymptotic analysis on a pseudo-Hermitian Riemannzeta Hamiltonian[END_REF], it was shown that the eigenvalues of a Bender-Brody-Müller (BBM) Hamiltonian operator correspond to the nontrivial zeros of the Riemann zeta function. If the Riemann Hypothesis is correct [START_REF] Riemann | On the Number of Prime Numbers less than a Given Quantity[END_REF], the zeros of the Riemann zeta function can be considered as the spectrum of an operator R = Î/2 + i Ĥ, where Ĥ is a self-adjoint Hamiltonian operator [START_REF] Schumayer | Colloquium: Physics of the Riemann hypothesis[END_REF][START_REF] Faris | Commutators and self-adjointness of Hamiltonian operators[END_REF], and Î is identity. Hilbert proposed the Riemann Hypothesis as the eighth problem on a list of significant mathematics problems [START_REF] Hilbert | Mathematical problems[END_REF]. Although the BBM Hamiltonian is pseudo-Hermitian [START_REF] Bender | PT -symmetric quantum mechanics[END_REF], it is consistent with the Berry-Keating conjecture [START_REF] Berry | xp and the Riemann Zeros[END_REF][START_REF] Berry | The Riemann zeros and eigenvalue asymptotics[END_REF][START_REF] Connes | Trace formula in noncommutative geometry and the zeros of the Riemann zeta function[END_REF], which states that when x and p commute, the Hamiltonian reduces to the classical H = 2xp. Berry, Keating, and Connes proposed a classical Hamiltonian in order to map the Riemann zeros to a Hamiltonian spectrum. Recently, the classical Berry-Keating Hamiltonians were quantized, and were shown to smoothly approximate the Riemann zeros [START_REF] Sierra | H = xp Model Revisited and the Riemann Zeros[END_REF][START_REF] Berry | A compact hamiltonian with the same asymptotic mean spectral density as the Riemann zeros[END_REF]. This reformulation was found to be physically equivalent to the Dirac equation in Rindler spacetime [START_REF] Sierra | The Riemann zeros as energy levels of a Dirac fermion in a potential built from the prime numbers in Rindler spacetime[END_REF]. Herein, the eigenvalues of the BBM Hamiltonian are taken to be the imaginary parts of the nontrivial zeroes of the analytical continuation of the Riemann zeta function

ζ(s) = 1 1 -2 1-s • ∞ n=1 (-1) n-1 n s , (1) 
where the complex number s = σ + it = |s| exp(iθ), |s| = √ σ 2 + t 2 , θ = arctan(t/σ), and (s) > 0. The idea that the imaginary parts of the nontrivial zeros of Eq. ( 1) are given by a self-adjoint operator was conjectured by Hilbert and Pólya [START_REF] Odlyzko | Discrete logarithms and smooth polynomials[END_REF]. Hilbert and Pólya asserted that the nontrivial zeros of Eq. ( 1) can be considered as the spectrum of a self-adjoint operator in a suitable Hilbert space. The Hilbert-Pólya conjecture has also found applications in quantum field theories [START_REF] Andrade | Hilbert-Pólya Conjecture, Zeta-Functions and Bosonic Quantum Field Theories[END_REF]. The Riemann Hypothesis states that the nontrivial zeros of Eq. (1) on 0 ≤ σ < 1 have real part equal to 1/2 [START_REF] Riemann | On the Number of Prime Numbers less than a Given Quantity[END_REF][START_REF] Titchmarsh | The theory of the Riemann zeta-function[END_REF]. In Ref. [START_REF] Hardy | Sur les zéros de la fonction ζ(s) de Riemann[END_REF], Hardy proved that infinitely many zeros are located at σ = 1/2. According to the Prime Number Theorem [23,24], no zeros of Eq. ( 1) can exist at σ = 1. The paper is organized as follows: In Sec. 2 we present a Schrödinger equation whose eigenvalues are identical to those of the BBM Hamiltonian, i.e. the nontrivial zeros of the Riemann zeta function, and evaluate the convergence of the expression by studying the orthonormalization constraint on the density. A self-adjoint Hamiltonian is derived from the BBM Hamiltonian using a similarity transformation [START_REF] Samsonov | Hermitian Hamiltonian equivalent to a given non-Hermitian one: manifestation of spectral singularity[END_REF][START_REF] Mostafazadeh | Exact PT-symmetry is equivalent to Hermiticity[END_REF], and a second quantization of the resulting Schrödinger equation is then performed to obtain the equations of motion. Moreover, we study the holomorphic eigenvalues of the Riemann zeta function by taking the expectation values of the resulting Schrödinger equation. We show that at σ = 1/2, the real part of every nontrivial zero of the analytic continuation of the Riemann zeta function is not decidable. Finally we obtain a general solution to the Riemann zeta Schrödinger equation by performing a similarity transformation in Sec. 3, and make concluding remarks in Sec. 4.

Preliminaries

Definition [START_REF] Hilbert | Mathematical problems[END_REF] The complex valued function (eigenstate) φ s (x) = φ σ (x) + iφ t (x) : X → C is measurable if E is a measurable subset of the measure space X and for each real number r, the sets {x ∈ E : φ σ (x) > r} and {x ∈ E : φ t (x) > r} are measurable for σ, t ∈ R [START_REF] Tao | An Introduction to Measure Theory[END_REF].

Definition 12 Let φ s be a complex-valued eigenstate on a measure space X, and φ s = φ σ + iφ t , with φ σ and φ t real. Therefore, φ s is measurable iff φ σ and φ t are measurable (Ibid.).

Definition 13 Suppose µ is a measure on the measure space X, and E is a measurable subset of the measure space X, and φ s is a complex-valued eigenstate on X. It follows that φ s ∈ (H = L (µ)) on E, and φ s is complex squareintegrable, if φ s is measurable and (Ibid.)

E | φ s | dµ < +∞.
(2)

Definition 14

The complex valued function (eigenstate) φ s = φ σ +iφ t defined on the measurable subset E is said to be integrable if φ σ and φ t are integrable for σ, t ∈ R, where µ is a measure on the measure space X. The Lebesgue integral of φ s is defined by (Ibid.)

E φ s dµ = E φ σ dµ + i E φ t dµ. (3) 
Definition 15 Let X be a measure space, and E be a measurable subset of X. Given the complex eigenstate φ s , then

φ s ∈ (H = L 2 (µ)) on E if φ s is Lebesgue measurable and if E | φ s | 2 dµ < +∞, (4) 
such that φ s is square-integrable. For φ s ∈ (H = L 2 (µ)) we define the L 2 - norm of φ s as φ s 2 = E | φ s | 2 dµ 1/2 , ( 5 
)
where µ is the measure on the measure space X (Ibid.).

Definition 16 Let X be a measure space, and E be a measurable subset of X. Given the complex eigenstate φ s , then

φ s ∈ (H = L p (µ)) on E if φ s is Lebesgue measurable and if E | φ s | p dµ < +∞, (6) 
such that φ s is p-integrable. For φ s ∈ (H = L p (µ)) we define the L p -norm of φ s as

φ s p = E | φ s | p dµ 1/p , ( 7 
)
where µ is the measure on the measure space X (Ibid.).

Definition 17 A rigged Hilbert space (i.e., a Gelfand triplet [START_REF] De La Madrid | Rigged Hilbert space approach to the Schrödinger equation[END_REF]) is a triplet (Φ, H , Φ * ), where Φ is a dense subspace of H and Φ * is its continuous dual space.

Definition 18

In the theory of computation, an observable is called decidable, or effective, if and only if its behavior is given by a computable function [START_REF] Boolos | Computability and logic[END_REF].

Definition 19

Observables, e.g. x and p of a system, are represented in quantum mechanics by self-adjoint operators (which we will not notationally distinguish from the observables themselves). If there exists an observable C such that C = αx + β p, and if x and p denote the expectation values of x and p respectively, then C = α x + β p is the expectation value of C. According to Heisenberg's uncertainty principle, if the observables corresponding to two quantities x and p do not commute, i.e. [x, p] = 0, both quantities cannot simultaneously be measured to arbitrary accuracy [START_REF] Szangolies | Testing Quantum Contextuality: The Problem of Compatibility[END_REF].

Definition 110 A linear operator Ĥ is Hermitian (self-adjoint) if it is defined on a linear everywhere-dense set D( Ĥ) in a Hilbert space H coinciding with its adjoint operator Ĥ † , that is, such that D( Ĥ) = D( Ĥ † ) and

Ĥx, y = x, Ĥy (8) 
for every x, y ∈ D( Ĥ) [START_REF] Ljusternik | Elements of functional analysis[END_REF][START_REF] Akhiezer | Theory of linear operators in Hilbert space[END_REF][START_REF] Riesz | Functional Analysis[END_REF].

Riemann Zeta Schrödinger Equation

We consider the eigenvalues of the Hamiltonian

Ĥ = 1 1 -e -i p (xp + px)(1 -e -i p), (9) 
where p = -i ∂ x , = 1, and x = x. For the Hamiltonian operator as given by Eq. ( 9), the Hilbert space is H = L p=2 [1, ∞). In Refs. [START_REF] Bender | Hamiltonian for the zeros of the Riemann zeta function[END_REF][START_REF] Bender | Asymptotic analysis on a pseudo-Hermitian Riemannzeta Hamiltonian[END_REF], it is conjectured that if the Riemann Hypothesis is correct, the eigenvalues of Eq. ( 9) are nondegenerate. Next, we let Ψ s (x) be an eigenstate of Eq. ( 9) with an eigenvalue t = i(2s -1), such that

Ĥ |Ψ s (x) = t |Ψ s (x) , (10) 
and x ∈ R + , s ∈ C. The system is described by a Hilbert space

H = n j=1 H j , (11) 
from the tensor product of infinite dimensional Fock spaces H j . These Fock spaces are annihilated, and created, respectively by âj and â † j , where

âj = 1 √ 2 (x j + ∂ xj ) (12a) xj = (â j + â † j ) (12b) pj = (â j -â † j )/i (12c)
for the canonical coordinates xj , pj . As such, the Bose commutation relations are satisfied

[â j , â † k ] = δ jk . (13) 
Letting Φ = (x 1 , p1 , . . . , xn , pn ) denote the vector of canonical coordinates, we then obtain the canonical commutation relations in symplectic form

[ Φj , Φk ] = 2iω jk = 2i n j=1 ω, (14) 
where ω jk is an antisymmetric matrix, i.e., ω = -ω T [START_REF] Dereziński | Introduction to representations of the canonical commutation and anticommutation relations[END_REF]. For non-normalized eigenvectors |Ψ s (x) of the quadrature operators

{x j } xj |Ψ s (x) = x j |Ψ s (x) , (15) 
where x ∈ R n for (j = 1, . . . , n), i.e. |Ψ s (x) is an eigenstate of the operator x = (x 1 , . . . , xn ) and xj is multiplication by x j . Similarly, for non-normalized eigenvectors |Ψ s (x) of the quadrature operators

{p j } pj |Ψ s (x) = -i ∂ xj |Ψ s (x) , (16) 
where |Ψ s (x) is an eigenstate of the operator p = (p 1 , . . . , pn ) and pj is the operation -i ∂ xj . Solutions to Eq. ( 10) are given by the analytic continuation of the Hurwitz zeta function

|Ψ s (x) = -ζ(s, x + 1) = -Γ (1 -s) 1 2πi C z s-1 e (x+1)z 1 -e z dz, (17) 
on the positive half line x ∈ R + with eigenvalues i(2s-1), s ∈ C, (s) ≤ 1, the contour C is a loop around the negative real axis, and Γ is the Euler gamma function for (s) > 0

Γ (s) = ∞ 0 x s-1 e -x dx. (18) 
As -|Ψ s (x = 1) is 1 -ζ(s * ), this implies that s belongs to the discrete set of nontrivial zeros of the Riemann zeta function when s * = σ -it = |s| exp(-iθ). As -|Ψ s (x = -1) is ζ(s), this implies that s belongs to the discrete set of nontrivial zeros of the Riemann zeta function when s = σ + it = |s| exp(iθ) and σ = 1/2. Herein we demonstrate that at the orthonormalization constraint x = ±1, σ must always be equal to 1/2, and t = 2πn such that θ is periodically equal to zero. However, we are interested in the case when x ≥ 1, so we will focus on the positive-valued orthonormalization x = 1. From inserting Eq. ( 10) into Eq. ( 9), we have the relation

1 1 -e -i p (xp + px)(1 -e -i p) |Ψ s (x) = t |Ψ s (x) . (19) 
Given that Eq. ( 9) is not Hermitian, it is useful to symmetrize the system. This can be accomplished by letting

|φ s (x) = [1 -exp(-∂ x )] |Ψ s (x) , = ∆ |Ψ s (x) = |Ψ s (x) -|Ψ s (x -1) , (20) 
and defining a shift operator

∆ ≡ 1 -exp(-∂ x ). ( 21 
)
For s > 0 the only singularity of ζ(s, x) in the range of 0 ≤ x ≤ 1 is located at x = 0, behaving as x -s . More specifically,

ζ(s, x + 1) = ζ(s, x) - 1 x s , (22) 
with ζ(s, x) finite for x ≥ 1 [START_REF] Espinosa | On some integrals involving the Hurwitz zeta function: Part 1[END_REF]. As such, it can be seen from Eq. ( 20) that the Berry-Keating eigenfunction [START_REF] Berry | xp and the Riemann Zeros[END_REF][START_REF] Berry | The Riemann zeros and eigenvalue asymptotics[END_REF] 

|φ s (x) = 1 x s = exp ln(x)(-σ -it) = exp -σ ln(x) -it ln(x)) = exp -σ ln(x) cos(t ln(x)) -i sin(t ln(x)) = x -σ cos(t ln(x)) -i sin(t ln(x)) . (23) 
Furthermore, the distributional orthonormality relation at x = 1 is satisfied such that [START_REF] Endres | The Berry-Keating operator on and on compact quantum graphs with general self-adjoint realizations[END_REF] 

φ s |φ s = δ ss . (24) 
Upon inserting Eq. ( 20) into Eq. ( 19) we obtain

-i[x∂ x + ∂ x x] |φ s (x) = t |φ s (x) . (25) 
Let H be a Hilbert space, and from Eq. ( 25) we have the Hamiltonian operator

Ĥ = -i x∂ x + ∂ x x = -i 2x∂ x + 1 , (26) 
for x ∈ R acting in H , such that Ĥx, y = x, Ĥy ∀ x, y ∈ D( Ĥ). ( 27 
)
For the Hamiltonian operator as given by Eq. ( 26), the Hilbert space is [START_REF] Sierra | H = xp with interaction and the Riemann zeros[END_REF][START_REF] Twamley | The quantum Mellin transform[END_REF][START_REF] Endres | The Berry-Keating operator on and on compact quantum graphs with general self-adjoint realizations[END_REF]. Restricting x ∈ R + , Eq. ( 26) is then written

H = L p=2 [1, ∞)
Ĥ = -2i √ x∂ x √ x, (28) 
where s ∈ C, and x ∈ R + . For the Hamiltonian operator as given by Eq. ( 28), the Hilbert space is

H = L p=2 (-∞, -1]∪[1, ∞).
We then impose on Eq. ( 28) the following minimal requirements, such that its domain is not too artificially restricted.

i Ĥ is a symmetric (Hermitian) linear operator; ii Ĥ can be applied on all functions of the form g(x, s) = P (x, s) exp -

x 2 2 , ( 29 
)
where P is a polynomial of x and s. Here, it should be pointed out that Ĥ = T + V , and from Eq. ( 26), it can be seen that T = -2i x∂ x , V = -i . From (ii), V g(x, s) must belong to the Hilbert space H = L 2 defined over the space x ≥ 1. This is guaranteed as | -i |≤ where is the reduced Planck constant or Dirac constant, (Planck's constant multiplied by an imaginary number is strictly bounded, i.e. strictly less than infinity). The domain D V of the potential energy V consists of all φ ∈ H for which V φ ∈ H . As such, V is self-adjoint. It is not necessary to specify the domain of Eq. ( 28), as it is only necessary to admit that Eq. ( 28) is defined on a certain D Ĥ such that (i) and (ii) are satisfied. If we denote by D 1 the set of all functions in Eq. ( 29), then (ii) implies that D Ĥ ⊇ D 1 . By letting Ĥ1 be the contraction of Ĥ with domain D 1 , i.e., Ĥ is an extension of Ĥ1 , and letting H1 be the closure of Ĥ, it can be seen that H1 is self-adjoint. Since Ĥ is symmetric and Ĥ ⊇ Ĥ1 , i.e., Ĥ is an extension of Ĥ1 , it follows that H = H1 and Ĥ is essentially self-adjoint, where H is the unique self-adjoint extension [START_REF] Kato | Fundamental properties of Hamiltonian operators of Schrödinger type[END_REF]. Other than eigenfunctions φ s (x) in configuration space as seen in Eq. ( 23), it is useful to represent eigenfunctions in momentum space φ s (p). The transformation between configuration space eigenfunctions and momentum space eigenfunctions can be obtained via Plancherel transforms [START_REF] Plancherel | Contribution à l'étude de la représentation d'une fonction arbitraire par des intégrales dfinies[END_REF], where the one-to-one correspondence φ s (x) φ s (p) is linear and isometric.

Green's function

In order to obtain eigenstates that are orthonormal when x = 1, as seen in Eq. ( 24), we begin by writing Eq. ( 28) as the eigenvalue equation

-2i √ x∂ x √ xφ s (x) = tφ s (x). ( 30 
)
Remark 1 Solutions to Eq. ( 30) are symmetric about the origin, i.e., x ∈ (-∞, -1] ∪ [1, ∞), and subject to the singularity at φ s (x = 0) = 0 [START_REF] Espinosa | On some integrals involving the Hurwitz zeta function: Part 1[END_REF].

Dividing by -2i on both sides and rearranging the terms, we obtain

φ s + 1 x t 2i φ s = - 1 2x φ s . (31) 
This can be written as

φ s + k 2 = Q, (32) 
where

k ≡ t 2i x , (33) 
and

Q ≡ - 1 2x φ s . (34) 
Therefore, we can express Eq. ( 30) as

(∂ x + k 2 )φ s = Q. ( 35 
)
In order to solve an inhomogeneous differential equation such as Eq. ( 35), we can find a Green's function that uses a delta function source, viz.,

(∂ x + k 2 )G(x) = δ(x), (36) 
where the delta potential is given by [START_REF] Katz | A Cauchy-Dirac delta function[END_REF] δ

(x) = ∞ x = 0 0 x = 0 with ∞ -∞ δ(x)dx = 1. ( 37 
)
It then follows from Eq. ( 36) that we can express φ s as an integral to obtain Q(x), i.e.,

φ s (x) = R n G(x -x 0 )Q(x 0 )d n x 0 , (38) 
and it must satisfy

(∂ x + k 2 )φ s (x) = R n (∂ x + k 2 )G(x -x 0 ) Q(x 0 )d n x 0 = R n δ(x -x 0 )Q(x 0 )d n x 0 = Q(x). (39) 
In order to obtain the Green's function G(x) such that a solution to Eq. ( 36) can be obtained, we take the Fourier transform which turns the differential equation into an algebraic one, like

G(x) = 1 √ 2π exp(iωx)g(ω)dω, (40) 
where g(ω) is the projection, and exp(iωx) is the complete basis set. Upon inserting Eq. ( 40) into Eq. ( 36), we obtain

(∂ x + k 2 )G(x) = 1 √ 2π g(ω)(∂ x + k 2 ) exp(iωx)dω = δ(x). (41) 
However, since

∂ x exp(iωx) = iω exp(iωx), (42) 
and

δ(x) = 1 √ 2π exp(iωx)dω, (43) 
Eq. ( 36) can be expressed as

1 √ 2π (iω + k 2 ) exp(iωx)g(ω)dω = 1 √ 2π exp(iωx)dω, (44) 
where

g(ω) = 1 √ 2π(iω + k 2 ) . (45) 
Hence we have poles at

k = ± √ iω. (46) 
Now consider the contour integral

1 √ 2π C f (z)dz = 1 √ 2π C exp(izx) (iz + k 2 ) dz. (47) 
Since exp(izx) is an entire function, Eq. ( 47) has singularities only at the poles, as given in Eq. ( 46), i.e., z

= ik 2 . As f (z) is exp(izx) (iz + k 2 ) = exp(izx) i 1 (z -ik 2 ) , ( 48 
) the residue of f (z) at z = ik 2 is Res z=ik 2 f (z) = exp(-k 2 x) i . (49) 
According to the residue theorem, we then obtain

1 √ 2π C f (z)dz = 2πi √ 2π Res z=ik 2 f (z) = √ 2π exp(-k 2 x) = G(x). (50) 
Hence, the most general solution to Eq. ( 36) is

φ s (x) = √ 2π R n exp(-k 2 x 0 ) - 1 2x 0 φ s (x 0 ) d n x 0 . (51) 
From Eq. ( 23) it can be seen that φ s (x 0 ) = x -s 0 . As such,

φ s (x) = - √ 2π R n exp(-k 2 x 0 ) x -s-1 0 2 d n x 0 = - π 2 R n exp(-k 2 x 0 ) x s+1 0 d n x 0 = - π 2 R n exp(-tx0 2i x ) x s+1 0 d n x 0 = - π 2 R n cos tx 0 2 x 1 x s+1 0 d n x 0 -i π 2 R n sin tx 0 2 x 1 x s+1 0 d n x 0 , (52) 
Moreover, by using Eq. ( 23) it can be seen that

R n cos tx 0 2 x 1 x s+1 0 d n x 0 = R n cos tx 0 2 x x -σ 0 x 0 cos t ln(x 0 ) d n x 0 -i R n cos tx 0 2 x x -σ 0 x 0 sin t ln(x 0 ) d n x 0 , (53) 
and

R n sin tx 0 2 x 1 x s+1 0 d n x 0 = R n sin tx 0 2 x x -σ 0 x 0 sin t ln(x 0 ) d n x 0 + i R n sin tx 0 2 x x -σ 0 x 0 cos t ln(x 0 ) d n x 0 . (54) 
Since φ s (x) = φ σ (x) + iφ t (x), it can be seen that

φ σ (x) = - π 2 R n cos tx 0 2 x x -σ 0 x 0 cos t ln(x 0 ) d n x 0 - π 2 R n sin tx 0 2 x x -σ 0 x 0 sin t ln(x 0 ) d n x 0 = - π 2 R n x -σ-1 0 cos ix 0 k 2 -t log(x 0 ) d n x 0 = - π 2 R n x -σ-1 0 cosh k 2 x 0 cos t log(x 0 ) + i sinh k 2 x 0 sin t log(x 0 ) d n x 0 , (55) 
and

φ t (x) = π 2 R n cos tx 0 2 x x -σ 0 x 0 sin t ln(x 0 ) d n x 0 - π 2 R n sin tx 0 2 x x -σ 0 x 0 cos t ln(x 0 ) d n x 0 = - π 2 R n x -σ-1 0 sin ix 0 k 2 -t log(x 0 ) d n x 0 = - π 2 R n x -σ-1 0 -cosh k 2 x 0 sin t log(x 0 ) + i sinh k 2 x 0 cos t log(x 0 ) d n x 0 . (56) 
Here, we can use the identities

cos t log(x 0 ) = 1 2 x -it 0 + 1 2 x it 0 , (57) 
and

sin t log(x 0 ) = i 2 x -it 0 - i 2 x it 0 , (58) 
to rewrite Eqs. ( 55)-(56) as

φ σ (x) = - π 2 ∞ -∞ x -σ-1 0 cos t log(x 0 ) exp(-k 2 x 0 )dx 0 = - 1 2 π 2 ∞ -∞ e -k 2 x0 1 + x 2it 0 x -σ-it-1 0 dx 0 , (59) 
and

φ t (x) = π 2 ∞ -∞ x -σ-1 0 sin t log(x 0 ) exp(-k 2 x 0 )dx 0 = - 1 2 i π 2 ∞ -∞ e -k 2 x0 -1 + x 2it 0 x -σ-it-1 0 dx 0 . ( 60 
)
Taking φ s (x) = φ σ (x) + iφ t (x), we arrive at the expression using Eq. ( 33)

φ s (x) = π 2 ∞ -∞ -e -k 2 x0 x -σ-it-1 0 dx 0 = π 2 (k * -ik) e -1 2 π(t+3iσ) e 2πt -e 2iπσ -k 4 1 2 (σ+it) Γ (-it -σ) 2k * = √ π2 -σ-it-3 2 e -1 2 π(t+3iσ) e 2πt -e 2iπσ t -x t 2 x 2 Γ (-it -σ) t 2 x 2 1 2 (σ+it) t = 0 ∀ x ∈ R + ≥1 . (61) 
Hence, the nontrivial zeros of the Riemann zeta function can be considered as the spectrum of an operator R = Î/2 + i Ĥ, where Ĥ is a self-adjoint Hamiltonian operator [START_REF] Schumayer | Colloquium: Physics of the Riemann hypothesis[END_REF][START_REF] Faris | Commutators and self-adjointness of Hamiltonian operators[END_REF], and Î is identity, such that

R = Î/2 + i Ĥ = Î/2 (62)
and the eigenvalues Ĥ = t are not observable, as seen from Eq. ( 30).

Remark 2 In case the reader considers Eq. (61) a trivial solution, from Eq. ( 31) it can be seen that by taking y = φ s ,

y + 1 x 1 2 + t 2i y = 0, (63) 
such that a nontrivial solution is admitted as

y = c 1 1 x s , (64) 
where

s = 1 2 + t 2i , (65) 
and c 1 is a constant.

Measure

Theorem 1 The eigenstate φ s (x) = x -s : X → C is measurable. That is, φ s (x) = φ σ (x) + iφ t (x) where φ σ , φ t : E → (-∞, -1] ∪ [1, ∞) are measurable for s = σ + it = |s| exp(iθ), and |s| = √ σ 2 + t 2 , θ = arctan(t/σ) and σ, t ∈ R.
Proof Owing to the one-to-one correspondence obtained from Plancherel transforms between configuration space and momentum space eigenstates, it can be seen that

φ s (p) = 1 √ 2π ∞ -∞ φ s (x) exp(-ipx)dx = 1 √ 2π exp - 1 2 iπs (sgn(p) + 1) sin(πs)Γ (1 -s) |p| s-1 = i √ 2π sgn(p) + 1 e 1 2 π(t-iσ) sinh π(t -iσ) Γ (-it -σ + 1) |p| σ+it-1 , 0 < σ < 1. ( 66 
)
and

φ s (x) = 1 √ 2π ∞ -∞ φ s (p) exp(ipx)dp. ( 67 
)
Since

φ s (x) 1 ≡ -1 -∞ |φ s (x)|dx + 1 -1 |φ s (x)|δ(x)dx + ∞ 1 |φ s (x)|dx = -1 -∞ |φ s (p)|dp + 1 -1 |φ s (p)|δ(p)dp + ∞ 1 |φ s (p)|dp ≡ φ s (p) 1 , (68) 
from which

φ s (x) 1 = φ s (p) 1 = - 1 sπ 1/2 exp 1 2 π (s) sin 2 (πs) Γ (1 -s) 2 . ( 69 
)
It then follows that φ s is complex square-integrable, i.e.,

φ s (x) ∈ H ⇐⇒ E |φ s (x)|dµ < +∞. ( 70 
)
Theorem 2 Let the complex valued eigenstate φ s (x) = φ σ (x) + iφ t (x) = x -s where s = σ + it = |s| exp(iθ), and |s| = √ σ 2 + t 2 , θ = arctan(t/σ), and let the measurable subset

E → (-∞, -1] ∪ [1, ∞). The H = L 2 -norm of the complex-valued eigenstate φ s = x -s is ∞, i.e., φ s is not p = 2 integrable at σ = 1/2.
Proof Owing to the one-to-one correspondence obtained from Plancherel transforms between configuration space and momentum space eigenstates, it can be seen that

φ s (p) = 1 √ 2π ∞ -∞ φ s (x) exp(-ipx)dx = 1 √ 2π exp - 1 2 iπs sgn(p) + 1 sin(πs)Γ (1 -s) |p| s-1 = i √ 2π sgn(p) + 1 e 1 2 π(t-iσ) sinh π(t -iσ) Γ (-it -σ + 1) |p| σ+it-1 , 0 < σ < 1. ( 71 
)
and

φ s (x) = 1 √ 2π ∞ -∞ φ s (p) exp(ipx)dp, (72) 
where

φ σ (x) = (x 2 ) -σ/2 exp t • arg(x) cos σ • arg(x) + t 2 log(x 2 ) , (73) 
and

φ t (x) = -(x 2 ) -σ/2 exp t • arg(x) sin σ • arg(x) + t 2 log(x 2 ) (74) for x ∈ R + ≥1 . Since φ s p = ∞ 1 | φ s (x) | p dx 1 p , (75) 
and

1 φ s (p) p = ∞ 1 | φ s (p) | p dp 1 p , ( 76 
) from which φ s (p) p = φ s (x) p = 1 pσ -1 1 p . (77) 
It then follows that as σ → 1/2,

φ s (p) p = φ s (x) p = 1 p 2 -1 1 p , (78) 
such that the L p=2 -norm of φ s is of indeterminant form. Furthermore, it can be seen from

lim p→2 1 p 2 -1 1 p , (79) 
and letting

y = 1 p 2 -1 1 p , ( 80 
)
1 Here, the reader is cautioned not to confuse the L p -norm with the momentum p. It can easily be seen that the L p -norm of φs is also of indeterminant form for x ∈ (-∞, -1]. The L p -norm vanishes for x ∈ [-1, 1] owing to the Dirac delta (singularity) at the origin x = 0 [START_REF] Katz | A Cauchy-Dirac delta function[END_REF].

then ln(y) = 1 p ln 1 p 2 -1 = 1 p ln(1) -ln p 2 -1 = - 1 p ln p 2 -1 , (81) 
and

lim p→2 ln(y) = lim p→2 - 1 p ln p 2 -1 = ∞. ( 82 
)
Exponentiating both sides, we obtain exp lim

p→2 ln(y) = lim p→2 exp ln(y) = lim p→2 y = exp(∞) = ∞, (83) 
such that we obtain the infinite density [START_REF] Samsonov | Hermitian Hamiltonian equivalent to a given non-Hermitian one: manifestation of spectral singularity[END_REF] φ s (p

) p=2 = φ s (x) p=2 = ∞. ( 84 
)
Corollary 1 Let H = L 2 (-∞, -1] ∪ [1, ∞)
and consider the Hamiltonian observable given by

Ĥφ s (x) = -2i √ x∂ x √ xφ s (x). ( 85 
)
Although the action of Ĥ is in principle well-defined for all φ s (x) ∈ L 2 , there are functions which are in L 2 , but for which Ĥφ s (x) is no longer an element of L 2 , e.g., when σ = 1/2,

φ 1 2 +it (x) = e t arg(x) cos arg(x) 2 + 1 2 t log x 2 4 √ x 2 - ie t arg(x) sin arg(x) 2 + 1 2 t log x 2 4 √ x 2 . ( 86 
)
Therefore the domain of Ĥ is given by

D( Ĥ) = φ s (x) ∈ L 2 : -1 -∞ -2i √ x∂ x √ xφ s (x) 2 dx + 1 -1 -2i √ x∂ x √ xφ s (x) 2 δ(x)dx + ∞ 1 -2i √ x∂ x √ xφ s (x) 2 dx < ∞ ⊂ L 2 . ( 87 
)
Similarly, the domain of Ĥ2 is

D( Ĥ2 ) = φ s (x) ∈ L 2 : -1 -∞ -2i √ x∂ x √ x 2 φ s (x) 2 dx + 1 -1 -2i √ x∂ x √ x 2 φ s (x) 2 δ(x)dx + ∞ 1 -2i √ x∂ x √ x 2 φ s (x) 2 dx < ∞ ⊂ D( Ĥ), (88) 
etc. As such, we define the dense subspace of H as

Φ ≡ ∞ n=0 D( Ĥn ), (89) 
such that for every φ s (x) ∈ Φ, the solution is well-defined at σ = 1/2.

Eqs. ( 66) and (67) are two vector representations of the same Hilbert space

H = L p=2 (-∞, -1] ∪ [1, ∞).
From Eq. ( 26), it can be seen that

T = -2i x∂ x , (90) 
such that we define a multiplicative operator T0 in momentum space ( T0 Φ s )(p) = T0 (p)Φ s (p), where

T0 (p) = 2xp. (91) 
Here, it should be pointed out that as x = i d/dp, as such Eq. ( 91) reduces to

T0 (p) = 2i , (92) 
and Eq. ( 26) is then rewritten in momentum space as Ĥ(p) = i . The domain D 0 of T0 is defined as the set of all functions φ s (p) ∈ H such that T0 (p)φ s (p) ∈ H . As such, T0 is definitively self-adjoint. From Eq. ( 29) we have defined the set D 1 of functions in configuration space. From the Plancherel transform [START_REF] Plancherel | Contribution à l'étude de la représentation d'une fonction arbitraire par des intégrales dfinies[END_REF] of Eq. ( 29), we obtain the set D 1 of functions in momentum space having the form

G(p, s) = P (p, s) exp - p 2 2 , ( 93 
)
where P is a polynomial of p and s. Eqs. (66) and (67) are true if

φ s (x) ∈ D 1 or φ s (p) ∈ D 1 and since φ s (p) ∈ D 1 → 0 as p → ∞ then D 1 ⊆ D 0 .
Moreover, for φ s (x) ∈ D 1 , T0 coincides with Eq. (90) [START_REF] Kato | Fundamental properties of Hamiltonian operators of Schrödinger type[END_REF]. Using Eq. (66) and Ĥ(p) = i , the eigenrelation

Ĥ(p) |Φ s (p) = λ |Φ s (p) (94) 
is obtained. In order to find the expectation value for Ĥ we take the complex conjugate of Eq. ( 94), set = 1, multiply by the eigenfunction φ s (p), and then integrate over p to obtain

∞ -∞ i e -1 2 iπs (sgn(p) + 1) sin(πs)Γ (1 -s) |p| s-1 2π 1/2 * e -1 2 iπs (sgn(p) + 1) sin(πs)Γ (1 -s) |p| s-1 2π 1/2 dp = λ * Φ s p , ( 95 
)
where λ is the eigenvalue.

Theorem 3 Let the complex valued eigenstate φ s (x) = φ σ (x) + iφ t (x) = x -s where s = σ + it = |s| exp(iθ), and |s| = √ σ2 + t 2 , θ = arctan(t/σ), and let the measurable subset E → (-∞, -1] ∪ [1, ∞). The following are equivalent for σ, t ∈ R 2 1. For each real number r, the set {x ∈ E : φ σ (x) > r} is measurable. 2. For each real number r, the set {x ∈ E : φ t (x) > r} is measurable. 3. For each real number r, the set {x ∈ E : φ σ (x) ≥ r} is measurable. 4. For each real number r, the set {x ∈ E : φ t (x) ≥ r} is measurable. 5. For each real number r, the set {x ∈ E : φ σ (x) < r} is measurable. 6. For each real number r, the set {x ∈ E : φ t (x) < r} is measurable. 7. For each real number r, the set {x ∈ E : φ σ (x) ≤ r} is measurable. 8. For each real number r, the set {x ∈ E : φ t (x) ≤ r} is measurable.

Proof Note that the intersection of sets,

{x ∈ E : φ σ (x) ≥ r} = ∞ n=1 {x ∈ E : φ σ (x) > r - 1 n }, (96) 
{x ∈ E :

φ t (x) ≥ r} = ∞ n=1 {x ∈ E : φ t (x) > r - 1 n }, (97) 
{x ∈ E :

φ σ (x) > r} = ∞ n=1 {x ∈ E : φ σ (x) ≥ r + 1 n }, (98) 
{x ∈ E :

φ t (x) > r} = ∞ n=1 {x ∈ E : φ t (x) ≥ r + 1 n }, (99) 
where

φ σ (x) = (x 2 ) -σ/2 exp t • arg(x) cos σ • arg(x) + t 2 log(x 2 ) , (100) 
and

φ t (x) = -(x 2 ) -σ/2 exp t • arg(x) sin σ • arg(x) + t 2 log(x 2 ) . (101) Theorem 4 Let E → (-∞, -1]∪[1, ∞
) be a measurable subset of the measure space X. If the complex valued eigenstate φ s (x) = φ σ (x) + iφ t (x) = x -s where s = σ + it = |s| exp(iθ), |s| = √ σ 2 + t 2 , θ = arctan(t/σ), and φ σ (x),and φ t are continuous a.e. on E, then φ s (x) is measurable for σ, t ∈ R.

Proof Let D be the singleton {0} owing to the singularity at x = 0 of φ s (x) = x -s . Then µ(D) = 0 and all of its subsets are measurable. Let r ∈ R and note that

{x ∈ E : φ σ (x) > r} = {x ∈ E -D : φ σ (x) > r} ∪ {x ∈ D : φ σ (x) > r}, (102)
where

φ σ (x) = (x 2 ) -σ/2 exp t • arg(x) cos σ • arg(x) + t 2 log(x 2 ) , (103) 
and

φ t (x) = -(x 2 ) -σ/2 exp t • arg(x) sin σ • arg(x) + t 2 log(x 2 ) . ( 104 
)
Letting

C σ = {x ∈ E -D : φ σ (x) > r}, (105) 
for each x ∈ C σ , as φ σ (x) is continuous at x, we can find δ x > 0 such that if y ∈ V δx (x) then φ σ (y) > r. It can be seen that φ σ (x) is measurable, since

C σ = (E -D) x∈Cσ V δx (x). (106) 
Similarly, noting that

{x ∈ E : φ t (x) > r} = {x ∈ E -D : φ t (x) > r} ∪ {x ∈ D : φ t (x) > r}, (107) 
and letting

C t = {x ∈ E -D : φ t (x) > r}, (108) 
for each x ∈ C t , as φ t (x) is continuous at x, we can find δ x > 0 such that if y ∈ V δx (x) then φ t (y) > r. It can be seen that φ t (x) is measurable since

C t = (E -D) x∈Ct V δx (x). (109) 
Let {φ s } = {φ σ } + i{φ t } be a sequence of functions defined on the measure space X → C. Denoting 

it can be seen that inf

s φ s (x) = -sup s -φ s (x) , (115) 
and lim inf

s φ s (x) = -lim sup s -φ s (x) . ( 116 
)
Theorem 5 Let the sequence of measurable eigenstates {φ s } = {φ σ } + i{φ t } be defined on the measure space X → C. For the sequence of measurable eigenstates

{φ σ } : E → (-∞, -1] ∪ [1, ∞) g(x) = sup σ φ σ (x), (117) 
and

h(x) = lim sup σ φ σ (x), (118) 
such that g and h are measurable for x ∈ E.

Proof For any r ∈ R, we obtain

{x ∈ E : g(x) > r} = σ {x ∈ E : φ σ (x) > r}. (119) 
From Eqs. ( 112) and ( 115)-(116), this implies that h is also measurable.

Corollary 2 Let φ σ be a sequence of measurable eigenstates defined on the measure space X, and φ σ : E → (-∞, -1] ∪ [1, ∞). Since {φ σ } converges pointwise to φ σ a.e. on E, then φ σ is measurable.

Theorem 6 Let the sequence of measurable eigenstates {φ s } = {φ σ } + i{φ t } be defined on the measure space X → C. For the sequence of measurable eigen-

states {φ t } : E → (-∞, -1] ∪ [1, ∞) g(x) = sup t φ t (x), ( 120 
)
and

h(x) = lim sup t φ t (x), ( 121 
)
such that g and h are measurable for x ∈ E.

Proof For any r ∈ R, we obtain

{x ∈ E : g(x) > r} = t {x ∈ E : φ t (x) > r}. ( 122 
)
From Eqs. ( 112) and ( 115)-( 116), this implies that h is also measurable.

Corollary 3 Let φ t be a sequence of measurable eigenstates defined on the measure space X, and 

φ t : E → (-∞, -1] ∪ [1, ∞).
-∂ s |Ψ s (x) = i ∆-1 xp ∆ + ∆-1 px ∆ |Ψ s (x) , ( 123 
)
where

∆ = 1 -exp(-∂ x ), x = x, p = -i ∂ x , = 1, x ∈ R + ≥ 1 owing to the difference operator ∆ |Ψ s (x)
, and s ∈ C.

Upon inserting Eq. ( 20) into Eq. ( 123) for x ∈ R + , we obtain the symmetrized Riemann zeta Schrödinger equation, i.e.,

∂ s |φ s (x) = 1/2(∂ σ -i∂ t ) |φ s (x) = - 2 √ x∂ x √ x |φ s (x) . ( 124 
)
Theorem 7 Let the complex-valued eigenstate

φ s (x) = √ π2 -σ-it-3 2 e -1 2 π(t+3iσ) e 2πt -e 2iπσ t -x t 2 x 2 Γ (-it -σ) t 2 x 2 1 2 (σ+it) t , (125) 
where

s = σ + it = |s| exp(iθ), |s| = √ σ 2 + t 2 , θ = arctan(t/σ
) and σ, t ∈ R; and let the measurable subset of the measure space

X be E → (-∞, -1]∪[1, ∞), for the Hamiltonian operator Ĥ = -2i √ x∂ x √ x.
The eigenstate is symmetric about the origin x = 0. Proof Let |φ s (x) be an eigenstate of Ĥ with eigenvalue t, i.e., Ĥ |φ s (x) = t |φ s (x) .

(126)

In order to find the expectation value of Ĥ we multiply Ĥ by the eigenstate, take the complex conjugate, and then multiply the result by the eigenstate and integrate over E to obtain 2i

E √ x∂ x √ xφ s (x) * φ s (x)dx = t * E φ * s (x)φ s (x)dx = t * φ . ( 127 
)
Integrating by parts on the LHS then gives

-2i φ + -1 -∞ φ * s (x)x d dx φ s (x)dx + 1 -1 φ * s (x)x d dx φ s (x)δ(x)dx + ∞ 1 φ * s (x)x d dx φ s (x)dx = t * φ . ( 128 
)
Carrying out the integration on the LHS we obtain

0 -2πn -1 -∞ φ * s (x)x d dx φ s (x)dxdt = 2πn 0 ∞ 1 φ * s (x)x d dx φ s (x)dxdt = 0 ∀ n. (129) 
Hence it can be seen that

0 -2πn -1 -∞ φ * s (x)φ s (x)dxdt = 2πn 0 ∞ 1 φ * s (x)φ s (x)dxdt = 0 ∀ n. ( 130 
)
Theorem 8 Let the complex-valued eigenstate φ s (x) = φ σ (x) + iφ t (x) = x -s where s = σ + it = |s| exp(iθ), |s| = √ σ 2 + t 2 , θ = arctan(t/σ) and σ, t ∈ R, and let the measurable subset of the measure space X be E → (-∞, -1]∪[1, ∞).

For the Hamiltonian operator

Ĥ = -2i √ x∂ x √
x, all of the eigenvalues t occur at | σ |= 1/2 with = 1. Proof Let |φ s (x) be an eigenstate of Ĥ with eigenvalue t, i.e., Ĥ |φ s (x) = t |φ s (x) .

(131)

In order to find the expectation value of Ĥ we multiply Ĥ by the eigenstate, take the complex conjugate, and then multiply the result by the eigenstate and integrate over E to obtain 2i 136). Parity symmetry is exhibited about the origin, as Π = πW (0, 0)/2 [START_REF] Royer | Wigner function as the expectation value of a parity operator[END_REF]. The density is normalized when x cos(t) = 1 (color online).

E √ x∂ x √ xφ s (x) * φ s (x)dx = t * E φ * s (x)φ s (x)dx = t * φ . ( 132 
Integrating by parts on the LHS then gives

-2i φ + -1 -∞ φ * s (x)x d dx φ s (x)dx + 1 -1 φ * s (x)x d dx φ s (x)δ(x)dx + ∞ 1 φ * s (x)x d dx φ s (x)dx = t * φ . (133) 
Carrying out the integration on the LHS we obtain 2i(-1) -2σ (-1)

2σ + 1 (σ + it) = (2σ -1)(t * + 2i) φ . (134) 
Hence it can be seen that

|σ| = 1 2 ∀ t. (135) 

Convergence

Theorem 9 For the symmetrized Riemann zeta Schrödinger equation, i.e.,

∂ s |φ s (x) = -2 √ x∂ x √ x |φ s (x) , the complex-valued eigenstate |φ s (x) = x -s where s = σ + it = |s| exp(iθ), |s| = √ σ 2 + t 2 , θ = arctan(t/σ) and σ, t ∈ R normalizes at x cos(t) = 1, i.e., the density |φ s (x)| 2 = 1.
Proof In order to obtain convergent solutions to the unsymmetric Riemann zeta Schrödinger Eq. ( 123), it can be seen that upon inserting Eq. ( 20) into the symmetric Eq. ( 124), we obtain

s = |s| exp i arctan(t/σ) = 1 2 - log(x) 2 . ( 136 
)
Hence at x = 1, such that at |σ| = 1/2 in agreement with Eq. ( 135)

t = 2πn, (137) 
where n ∈ Z and t ∈ R. This condition is required such that the density is normalized in agreement with Eq. (84), i.e.,

φ s 2 = m n bn (s) b † m (s) φ m |φ n = n | bn (s)| 2 = 1. (138) 
Here it should be pointed out that by taking Eqs. ( 65) and ( 136) and inserting them into Eq. ( 23) gives the eigenequation relation 1

x 1 2 - log(x) 2 = 1 x 1 2 + t 2i . (139) 
Hence we obtain the eigenfunction

φ s (x) = 1 x s = (e it ) 1 2 [-1+log(e it )] . (140) 
Theorem 10 For the Bender-Brody-Müller equation [START_REF] Bender | Hamiltonian for the zeros of the Riemann zeta function[END_REF][START_REF] Bender | Asymptotic analysis on a pseudo-Hermitian Riemannzeta Hamiltonian[END_REF], i.e.,

1 1 -e -i p (xp + px)(1 -e -i p) |Ψ s (x) = t |Ψ s (x) , (141) 
the nontrivial zeros of the Riemann zeta function can be obtained from the analytic continuation of the Riemann zeta function, i.e. Eq. ( 1) at the nor-

malization constraint x = sec(t = 2πn) = 1, such that |σ| = 1/2 ∀ t ∈ R where s = σ + it = |s| exp(iθ), |s| = √ σ 2 + t 2 , θ = arctan(t/σ) and σ, t ∈ R.
The analytic continuation of the Riemann zeta function is not decidable at |σ| = 1/2, ∀ n ∈ Z, i.e. the analytic continuation of the Riemann zeta function is not a computable function at |σ| = 1/2.

Proof At x = sec(t = 2πn) = 1, the normalization constraint Eq. ( 138) is satisfied, σ = 1 2 -it, and Eq. ( 17) can be written

Ψ s (x = 1) = -ζ(s = 1/2, 2) = -Γ (1/2) 1 2πi C √ ze 2z 1 -e z dz = 1 -ζ(σ = 1 2 -it). (142) 
where the contour C is about R -. From the analytic continuation relations of Eq. ( 1) + ⅈ t Fig. 2 Plot of the imaginary components of Eq. ( 1). Results are compared with Eq. (147) (color online).

1 1 -2 1-s ∞ n=1 (-1) n-1 n s = 1 1 -2 1-s ∞ n=1 (-1) n-1 exp -i • t ln(n) n σ = 1 1 -2 1-s ∞ n=1 (-1) n-1 cos t • ln(n) n σ -i ∞ n=1 (-1) n-1 sin t • ln(n) n σ , (143) 1 
- 1 1 -2 1-s ∞ n=1 (-1) n-1 n s * = 1 - 1 1 -2 1-s * ∞ n=1 (-1) n-1 exp i • t ln(n) n σ = 1 - 1 1 -2 1-s * ∞ n=1 (-1) n-1 cos t • ln(n) n σ + i ∞ n=1 (-1) n-1 sin t • ln(n) n σ . ( 144 
)
1 1 -2 1-s ∞ n=1 (-1) n-1 n s = ∞ n=1 (-1) n-1 n σ • -2 -σ+1 cos t log(2) cos t ln(n) 2 -2σ+2 sin 2 t log(2) + 1 -2 -σ+1 cos t log(2) 2 + ∞ n=1 (-1) n-1 n σ • cos t ln(n) 2 -2σ+2 sin 2 t log(2) + 1 -2 -σ+1 cos t log(2) 2 + ∞ n=1 (-1) n-1 n σ • -2 -σ+1 sin t log(2) sin t ln(n) 2 -2σ+2 sin 2 t log(2) + 1 -2 -σ+1 cos t log(2) 2 + i ∞ n=1 (-1) n-1 n σ • -2 -σ+1 sin t log(2) cos t ln(n) 2 -2σ+2 sin 2 t log(2) + 1 -2 -σ+1 cos t log(2) 2 + i ∞ n=1 (-1) n-1 n σ • 2 -σ+1 cos t log(2) sin t ln(n) 2 -2σ+2 sin 2 t log(2) + 1 -2 -σ+1 cos t log(2) 2 + i ∞ n=1 (-1) n-1 n σ • -sin t ln(n) 2 -2σ+2 sin 2 t log(2) + 1 -2 -σ+1 cos t log(2) 2 , (145) such that 1 
- 1 1 -2 1-s ∞ n=1 (-1) n-1 n s * = 1 + ∞ n=1 (-1) n-1 n σ • 2 -σ+1 cos t log(2) cos t ln(n) 2 -2σ+2 sin 2 t log(2) + 1 -2 -σ+1 cos t log(2) 2 + ∞ n=1 (-1) n-1 n σ • -cos t ln(n) 2 -2σ+2 sin 2 t log(2) + 1 -2 -σ+1 cos t log(2) 2 + ∞ n=1 (-1) n-1 n σ • -2 -σ+1 sin t log(2) sin t ln(n) 2 -2σ+2 sin 2 t log(2) + 1 -2 -σ+1 cos t log(2) 2 + i ∞ n=1 (-1) n-1 n σ • -2 -σ+1 sin t log(2) cos t ln(n) 2 -2σ+2 sin 2 t log(2) + 1 -2 -σ+1 cos t log(2) 2 + i ∞ n=1 (-1) n-1 n σ • 2 -σ+1 cos t log(2) sin t ln(n) 2 -2σ+2 sin 2 t log(2) + 1 -2 -σ+1 cos t log(2) 2 + i ∞ n=1 (-1) n-1 n σ • -sin t ln(n) 2 -2σ+2 sin 2 t log(2) + 1 -2 -σ+1 cos t log(2) 2 , (146) 
Owing to the periodicity of t = 2πn at x = sec(t), i.e. Eq. ( 137), it can be seen that

1 1 -2 1-s ∞ n=1 (-1) n-1 n s = 1 - 1 1 -2 1-s ∞ n=1 (-1) n-1 n s * . (147) 
Owing to Eq. (135), at |σ| = 1/2 we obtain

ζ(s) = i ∞ n=1 (-1) n-1 √ n • sin t ln(n) - √ 2 sin t log n 2 2 √ 2 cos t log(2) -3 . (148) 
However, since at |σ| = 1/2 the eigenvalues t are not observable, i.e., Ĥ = t = 0, we have

ζ(s) = i ∞ n=1 (-1) n-1 √ n • sin : 0 2πn ln(n) - √ 2 sin : 0 2πn log n 2 2 √ 2 cos : 0 2πn log(2) -3 = 0 ∀ n ∈ Z. ( 149 
)
Remark 3 It has been noted that there is a uniquely defined relation between prime numbers and the imaginary parts of the nontrivial Riemann zeros, independent of their real part [START_REF] Choi | Relation between primes and nontrivial zeros in the Riemann hypothesis; Legendre polynomials, modified zeta function and Schrödinger equation[END_REF].

Remark 4 In the theory of computation, an observable is called decidable, or effective, if and only if its behavior is given by a computable function [START_REF] Boolos | Computability and logic[END_REF]. From Theorem 10, it can be seen that the Riemann Hypothesis is not decidable. If the Riemann hypothesis is undecidable, there is no proof it is false. If we find a non-trivial zero, that is a proof that it is false. Thus if it is undecidable there are no non-trivial zeros. This constitutes a proof the Riemann hypothesis is true [START_REF] Smullyan | Gödel's incompleteness theorems[END_REF]. 

Remark
E → (-∞, -1] ∪ [1, ∞) when |σ| = 1/2 and = 1.
Proof A standard way to introduce topology into the algebra of observables is to make them operators on a Hilbert space. In order to perform a second quantization [START_REF] Cook | The mathematics of second quantization[END_REF], we can express the complex-valued eigenstate as a linear combination of basis states

|φ s (x) = n∈Z bn (s) |φ n (x) , (150) 
where s = σ + it = |s| exp(iθ), |s| = √ σ 2 + t 2 , θ = arctan(t/σ), s ∈ C, and σ, t ∈ R. As such, using Eqs. (23) and (135) we can rewrite Eq. (150) as

|φ s (x) = n∈Z bn (s)x -1 2 -in . (151) 
From using this second quantization in Eq. (124), we find

d ds bn (s) = -t n bn (s). (152) 
We now find a Hamiltonian that yields Eq. (152) as the equation of motion, hence, we take

φ s (x)| Ĥ |φ s (x) = -2 -1 -∞ φ s (x)| √ x∂ x √ x |φ s (x) dx -2 1 -1 φ s (x)| √ x∂ x √ x |φ s (x) δ(x)dx -2 ∞ 1 φ s (x)| √ x∂ x √ x |φ s (x) dx, (153) 
as the expectation value. Upon substituting Eq. (151) into Eq. ( 153), we obtain the harmonic oscillator

φ m (x)| Ĥ |φ n (x) = -2 m∈Z n∈Z -1 -∞ 1 x 1 2 -im √ x∂ x √ x 1 x 1 2 +in dx -2 m∈Z n∈Z 1 -1 1 x 1 2 -im √ x∂ x √ x 1 x 1 2 +in δ(x)dx -2 m∈Z n∈Z ∞ 1 1 x 1 2 -im √ x∂ x √ x 1 x 1 2 +in dx = m∈Z n∈Z b † m (s) bn (s) m| 2n(exp(π(n -m)) -1) m -n |n , (154) 
for |m , |n = 1, 2, 3, . . . , ∞. Hence at m = n, n|n = δ nn = 1 and

φ n (x)| Ĥ |φ n (x) = n∈Z | bn (s)| 2 -2πn . (155) 
In accordance with Eq. ( 135) and Eq. ( 138), at |σ| = 1/2 and the zero periodicity of the eigenvalues t,

φ n (x)| Ĥ |φ n (x) = 0. (156) 
Taking bn (s) as an operator, and b † n (s) as the adjoint, we obtain the usual properties:

[ bn (s), bm (s)] = [ b † n (s), b † m (s)] = 0, [ bn (s), b † m (s)] = δ nm . (157) 
From the analogous Heisenberg equations of motion,

- d ds n∈Z bn (s) = [ bn (s), Ĥ] - = m∈Z t m bn (s) b † m (s) bm (s) -b † m (s) bm (s) bn (s) = m∈Z t m δ nm bm (s) -b † m (s) bn (s) bm (s) -b † m (s) bm (s) bn (s) = m∈Z t m δ nm bm (s) + b † m (s) bm (s) bn (s) -b † m (s) bm (s) bn (s) = n∈Z b † m (s) bn (s)t n . (158) 
The eigenvalues of Ĥ are then periodically unobservable, i.e.,

φ n (x)| Ĥ |φ n (x) = 0. ( 159 
)
From Eq. (158) it can be seen that

- d ds bn = 0, - d ds b † m = -0. (160) 
Remark 6 Theorem 11 implies the Riemann hypothesis, as the spectrum of a Hermitian operator consists of real numbers as seen in Theorem 7, and 0 is a real number. This can be considered a "zero point spectrum."

Holomorphicity

Theorem 12 The densely defined Hamiltonian operator Ĥ

= -2 √ x∂ x √ x on the Hilbert space H = L 2 (-∞, -1] ∪ [1, ∞) is symmetric (Hermitian) [47], for the complex-valued eigenstate |φ s (x) = |φ σ (x) + i |φ t (x) = x -s where s = σ + it = |s| exp(iθ), |s| = √ σ 2 + t 2 , θ = arctan(t/σ) and σ, t ∈ R when |σ| = 1/2 and = 1.
Proof By expressing the complex-valued eigenstate as a linear combination of basis states such that

|φ s (x) = n∈Z bn (s) |φ n (x) , (161) 
where s ∈ C, s = σ + it = |s| exp(iθ), |s| = √ σ 2 + t 2 , θ = arctan(t/σ), and σ, t ∈ R, it can be seen that by using Eq. ( 23) we can rewrite Eq. (161) as

|φ s (x) = n∈Z bn (s)x -1 2 -n . (162) 
By taking the inner product

( Ĥφ * n , φ m ) = -2 m∈Z n∈Z -1 -∞ 1 x 1 2 +im √ x∂ x √ x 1 x 1 2 -in dx -2 m∈Z n∈Z 1 -1 1 x 1 2 +im √ x∂ x √ x 1 x 1 2 -in δ(x)dx -2 m∈Z n∈Z ∞ 1 1 x 1 2 +im √ x∂ x √ x 1 x 1 2 -in dx = m∈Z n∈Z b † m (s) bn (s) m| 2n(exp(π(n -m)) -1) m -n |n , (163) 
for |m , |n = 1, 2, 3, . . . , ∞. Hence at m = n, n|n = δ nn = 1 and

φ n (x)| Ĥ |φ n (x) = n∈Z | bn (s)| 2 2πn . (164) 
In accordance with Eq. (135) and Eq. ( 138), at |σ| = 1/2 and the zero periodicity of the eignenvalues t,

φ n (x)| Ĥ |φ n (x) = 0. (165) 
Furthermore, by taking the inner product

(φ * m , Ĥφ n ) = -2 m∈Z n∈Z -1 -∞ 1 x 1 2 -im √ x∂ x √ x 1 x 1 2 +in dx -2 m∈Z n∈Z 1 -1 1 x 1 2 -im √ x∂ x √ x 1 x 1 2 +in δ(x)dx -2 m∈Z n∈Z ∞ 1 1 x 1 2 -im √ x∂ x √ x 1 x 1 2 +in dx = m∈Z n∈Z b † m (s) bn (s) m| 2n(exp(π(n -m)) -1) m -n |n , (166) 
for |m , |n = 1, 2, 3, . . . , ∞. Hence at m = n, n|n = δ nn = 1 and

φ n (x)| Ĥ |φ n (x) = n∈Z | bn (s)| 2 -2πn . (167) 
In accordance with Eq. ( 135) and Eq. ( 138), at |σ| = 1/2,

φ n (x)| Ĥ |φ n (x) = 0. (168) 
Finally,

( Ĥφ * n , φ m ) = (φ * m , Ĥφ n ) = 2πn = 0 ∀ n ∈ Z. (169) 
3 Similarity Solutions Since Eq. ( 124), the Riemann zeta Schrödinger equation (RZSE) possesses symmetry about the origin x = 0, we then seek a similarity solution [START_REF] Pakdemirli | Similarity transformations for partial differential equations[END_REF] of the form:

φ s (x) = x α f (η), (170) 
where η = s/x β , and the RZSE becomes an ordinary differential equation (ODE) for f . As such, we consider Eq. ( 124), and introduce the transformation ξ = a x, and τ = b s, so that

w(ξ, τ ) = c φ( -a ξ, -b τ ), (171) 
where ∈ R, and τ ∈ C. From performing this change of variable we obtain

∂ ∂s φ = -c ∂w ∂τ ∂τ ∂s = b-c ∂w ∂τ , (172) 
and

-2 √ x ∂ ∂x √ xφ = -2 √ x ∂ √ x ∂x φ + √ x ∂φ ∂x = -2 √ x 1 2 √ x φ -2 √ x √ x ∂φ ∂x = -φ -2x ∂φ ∂x , (173) 
where

∂φ ∂x = -c ∂w ∂ξ ∂ξ ∂x = a-c ∂w ∂ξ . (174) 
By using Eqs. ( 172)-(174) in Eq. ( 124), the RZSE is then written

-c b ∂w ∂τ + w + 2ξ ∂w ∂ξ = 0, (175) 
and is invariant under the transformation

∀ if b = 2, i.e., -c b 2 ∂w ∂τ -i ∂w ∂τ + w + 2ξ ∂w ∂ξ = 0, (176) and b 
= log(2) + 2iπn log( ) , ∀ n ∈ Z. (177) 
Therefore, it can be seen that since φ solves the RZSE for x and s, then w = -c φ solves the RZSE at x = -a ξ, and s = -b τ . We now construct a group of independent variables such that 

Since the RZSE is invariant under the transformation, it is to be expected that the solution will also be invariant under the variable transformation. Taking a = c = log -1 ( ), the partial derivatives transform like 

where

∂η ∂s = - s -1 2iπn + log(2) , (184) 
and 2) .

∂η ∂x = s - 1 2iπn+log ( 
The RZSE then reduces to the ODE s -1 + log(2) + 2iπn ν(η) + -s -1 + 2 log(2)η + 4iπnη ν (η) = 0, ∀ n ∈ Z.

(186)

General Solution

The homogenous linear differential Eq. ( 186) is separable [START_REF] Massera | Linear differential equations and functional analysis[END_REF], viz., (191)

Conclusion

In this study, we have discussed the decidability of the real part of every nontrivial zero of the analytic continuation of the Riemann zeta function. This was accomplished by developing a Riemann zeta Schrödinger equation and comparing it with the Bender-Brody-Müller conjecture in both configuration space and momentum space. A symmetrization procedure was implemented to study the eigenvalues of the system, and the expectation values were calculated from the resulting system to study the nontrivial zeros of the analytic continuation of the Riemann zeta function. It was found using Green's functions that the expectation value of the Hamiltonian operator for the eigenstates along the critical line σ = 1/2 is also periodically zero such that the nontrivial zeros of the Riemann zeta function are not observable. A Gelfand triplet was implemented to ensure that the eigenvalues are well defined. Moreover, a second quantization procedure was performed for the Riemann zeta Schrödinger equation to obtain the equations of motion and an analytical expression for the eigenvalues. It was also demonstrated that the eigenvalues are holomorphic across the measurable subspace of the measure space. A normalized convergent expression for the analytic continuation of the nontrivial zeros of the Riemann zeta function was obtained, and a convergence test for the expression was performed demonstrating that the real part of every nontrivial zero of the Riemann zeta function exists at σ = 1/2. It was demonstrated from the orthogonality of the eigenstates that the Riemann Hypothesis is not decidable, i.e. the analytic continuation of the Riemann zeta function is not an analytically computable function at σ = 1/2. Finally, a general solution to the Riemann zeta Schrödinger equation was found from performing an invariant similarity transformation.

Fig. 1

 1 Fig. 1 Plot of the density |φs(x)| 2 , where s = |s| exp(i arctan(t/σ)) = 1/2 -log(x)/2, Eq. (136). Parity symmetry is exhibited about the origin, as Π = πW (0, 0)/2[START_REF] Royer | Wigner function as the expectation value of a parity operator[END_REF]. The density is normalized when x cos(t) = 1 (color online).

  b = η(x, s),(178)and the similarity variable is thenη(x, s) = xs -a log( ) log(2)+2iπn . seek a solution of the RZSE with the formφ s (x) = s c log( ) log(2)+2iπn ν(η).

,

  s -1 + log(2) s -1 -4iπnη -η log[START_REF] Spector | Duality, partial supersymmetry, and arithmetic number theory[END_REF] dη.(187)Integrating on both sides, we obtainln |ν| = c 1 -2iπn + s -1 + log(2) log s -1 -4iπnη -η log(4) 4iπn + log(4) .(188)Exponentiating both sides,|ν| = exp(c 1 ) s -1 -4iπnη -η log(4) exp(c 1 ) = C and dropping the absolute value recovers the lost solution ν(η) = 0, giving the general solution to Eq. (186)ν n (η) = C s -1 -4iπnη -η log(4) ∀ n ∈ Z, ∀ C ∈ R. (190)By setting C = 1, and using Eqs. (179) and (181) in Eq. (190), we obtain the general solution to the RZSE Eq. (124), written φ s (x) = s

  Since {φ t } converges pointwise to φ t a.e. on E, then φ t is measurable.Corollary 4 Let φ s = φ σ +iφ t be a sequence of measurable eigenstates defined on the measure space X → C. Since {φ σ } converges pointwise to φ σ a.e. on E → (-∞, -1] ∪ [1, ∞), and {φ t } converges pointwise to φ t a.e. on E → (-∞, -1] ∪ [1, ∞), then φ s is measurable.

2.3 Expectation Value of the Observable

Definition 21 The Riemann zeta Schrödinger equation is

  [START_REF] Schumayer | Colloquium: Physics of the Riemann hypothesis[END_REF] The Riemann Hypothesis states that the real part of all of the nontrivial zeros of the Riemann zeta function are located at σ = 1/2[START_REF] Riemann | On the Number of Prime Numbers less than a Given Quantity[END_REF]. By representing the complex-valued eigenstate|φ s (x) = |φ σ (x) + i |φ t (x) = x -s where s = σ + it = |s| exp(iθ), |s| = √ σ 2 +t 2 , θ = arctan(t/σ) and σ, t ∈ R as a linear combination of basis states, then the eigenspectrum of the Hamiltonian operator -2i √ x∂ x √ x is not observable, i.e. zero, on the measure space

	2.5 Second Quantization
	Theorem 11

http://zeta.math.utsa.edu/ mqr328/class/real2/

Acknowledgements FM would like to acknowledge Professor Michael Filaseta at the University of South Carolina for useful comments and suggestions during the Palmetto Number Theory Series (PANTS) XXVIII conference at the University of Tennessee. FM would also like to to acknowledge Professor Massimiliano Gubinelli at the University of Bonn for useful comments and suggestions during the 2017 Fields Medal Symposium at The Fields Institute in Toronto, CA.