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Introduction

I describe a construction of cohomology classes in H*(M, ) from A, — algebra with A — scalar product. The con-

struction is analogous to the construction from [B3]. The constructed cohomology classes define a cohomological field

theory.

0.1 Notations.

Throughout the paper A denotes an A.,— algebra over an algebraically closed field &k, dimy A < oo unless specified
otherwise. We denote via C*(A, B) the Hochshild cochain complex of the A,,— bimodule B, and by AV = Homy(A, k)
the dual A.,— bimodule. For two A, — bimodules B and B’ we denote via Homy_4(B, B’) the chain complex of

(pre)morhisms Hom{ (T'A[1] ® B ® TA[1],B’) with the differential f — dy,, © fEfo g -

1 Propagator

1.1 Quasi-isomoprhisms of Hom, 4(A, AY) and the Hochschild cochains C*(A, AY).

The two complexes Homa_4(A, AY) and (C*(A, AV,b) are quasi-isomorphic. A quasi-isomorphism

D HOIHA,A(A,AV) — C*(/LAV)

(®f)(@,a1,...,a5) = > (=1 (apy,.. 0 06,001, a0) ()

r=0
is induced by the quasi-isomorpshim of bimodules A - A ®4_4 A with components

M (a,an, . ar) = (@01, a€),

An inverse quasi-isomorphism
©:C*(A,AY) — Homy_(A, AY)

s|1|r / / n o € S[1r+14s—s", / ro
(67) (asy...,a1,a,ay,...,a,.)(a") = (1) y(py (az,y...,a1,a,ay,...,a,,a  as,..

y Ay s Yy

s>s'>5>0

is induced by the quasi-isomorphism of bimodules

ARa_a2A— A

. 7as’+1)7as’>

FlL , , r o " e r|1r'+14+r" ’ ror "
71t (a1, ... ap, 0,0, .. a0, e al, . an) = (=1)T (a1y...,ar,a,ay,...,a..,a" ,ay,... al)

s Yl s Wty

ce ag+1)



1.2 Scalar product.
Let
U € Hom}(TA[1],AY),
b =0,
BY =0

denotes a cochain inducing an isomorphism of the A.,— bimodules

O(W)* " ¢ Hom(TA[1]® A® TA[1],AY)
0(F): A= AY
The morphism ©(¥) is an isomorphism when the component
O(¥)%0 ¢ Hom}'(A, AY)
is an isomorphism. The isomorphism 7 = ©(¥) is invertible:
7l AY S A
(n~1)*1** € Hom;™(TA[1] @ AY @ TA[1], A)
Without loss of generality the isomoprhism 7 can be assumed to be self-dual:
n=n.

Proposition 1. Let n € Homa_a(A, AY) = Homa_a(A ®a—a Ak), such that dprn = 0. Then n = dpgri,
1 € C*(A, AY) and
®(n) = Byx.

Proof. The composition ®dpr coincides with B O

1.3 Propagator.
Proposition 2. The degeneration of the Hochshild to cyclic spectral sequence is equivalent to the existence of operators
I, : C*(A,AY) — C*(A,Av) [—2K], k>1

such that
(14 uly +u?Iy +..)(b+uB) = b(1 +ul; + vl +...)

B=b, 1]
LB = b, I] (1.1)
LB=1b1)...

Proof. The operators I can be constructed from the homotopy contraction operators for the differentials on the k-th

page of the spectral sequence, see e.g. [BT]. O

Proposition 3. If
U e kerbN ImB

then for some ¥; € Hom; V¥ 1 (TA[1],AY), i >1,

U = B, (1.2)



and
¥, +BY, 1 =0 (13)

for i >1.

Proof. Since
U e kerbNImB

it follows that
¥ = BU,

for some W; € Hom} ™ (T'A[1],AY). Then
bW, € kerbNker B

since BbU; = —bW¥ = 0. Therefore there exist ¢] € ker B and Wy such that
bWy + byp] = —BYy

for some Wy € HomZH(Tﬁ [1],AY), see e.g. [C], lemma 36. Replacing U1 by ¥y +1] we get Uy, Uy satisfying (1.2),
(1.3). Then
bWy € ker(b) Nker(B)

and there exist ¢} € ker B and W3 such that
by + bypy = —BY3
Replacing ¥y by Uy + o0y we get Uy, Uy, Uy satisfying (1.2), (1.3) and so on. O

Proposition 4. Let
p=n""o> OL;¥;)on "
i=1
p € (pre)Homa_4(AY, A). (1.4)

Then
-1

dusop+(=1)"podu,, =n
Proof. Tt follows from eqs.(1.1),(1.2) and (1.3) that
I Uy) = O(b, ;] ¥y) + O(I1b%,) = O(BY,) — (1, BY3) = O(¥) — O(I, BY)

and

@(b[,\l/l) = @([b, Iz] \I’l) + @(Izb\pz) = @(Ii_lB\I/i) — @(IiB\IJH_l)
for ¢ > 2. Since
and

and also

it follows that
dusop+(=1)"podyu,, =n



2 Vertices

2.1 Tensors from Homy 4(AQa s A®...Q4 4 A A)

r

The tensors from the chain complexes Hom} (T'A[1] ® B ® TA[1],B’) representing the (pre)morhisms

Definition 5. A.,— bimodule (pre-)morphisms

M, EHOInA,A(A®A,AA®...®A,AA,A)7“2 1

r

Ei|1llkrg1 . (1 1 1 r r o r+l r+1 e, ki 1 1.1 rooor  r4l r+1
MT1‘|7+1.(a1’...,akl’a7..'7ak7"a7a1 ,...,akT+1)—>(—1) IU’A (al,...,akl,a,...,akr,a,a1 ,...,akT+1)

for » > 2 and M; act as the differential of these complexes.

Proposition 6. The operations M, satisfy the A.,— relations

M,,J (] MT” = 0

r'4r!'=r
2.2 Cyclically invariant morphisms

Definition 7. The bimodule morphisms

M, e Homg_ 4(A®a- 4 A®...Qa_a Ak)

r+1

are defined as compositions
noM, € HOmA_A(A®A_AA® .®A_A A,AV)

r+1
It follows from the compatibility of n with the A, — algebra that these tensors are invariant under natural Z/(r+1)Z

action

Definition 8. Using the tensor 7~! the cyclically invariant tensors from the various spaces
Z/rZ

Homg 4(A®4-_ 4 AR...Q4_4 A k) can be naturally composed. This defines the (twisted) modular op-

r
multi-cyclic
erad End,_ 4 .

This operad is an analogue of the twisted modular operad of endomorphisms considered in [B1].

Proposition 9. The operations M, define the “algebra” structure over the Feynman transform F(Ass) on Endﬁflf;'cydic

3 Cohomology classes.

Theorem 10. Assigning compositions of tensors to vertices, the Hochshild chains to external legs and the propagator
(1.4) to edges gives naturally a cocycle in generalized stable ribbon graph complex. These cocycles define naturally a

cohomological field theory.
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