A biology-based model to analyze growth data of earthworms exposed to copper at different ages **Sylvain BART**¹, Joël AMOSSÉ¹, Christian MOUGIN¹, Alexandre R. R. PÉRY¹, Céline PELOSI¹ ¹UMR ECOSYS, INRA, AgroParisTech, Université Paris-Saclay, 78026, Versailles, France Organic matter degradation Soil structure Water infiltration Gas exchange **Earthworms** - → The growth is an important parameter of the population dynamics - →There is no standardized test available for the assessment of chemicals on the growth period →Objective: Assess the impact of copper on earthworms growth and provide a relevant analysis of the results using a toxicokinetics (TK) model coupled with a biology-based toxicodynamic (TD) model. #### Material and methods A highly representative species of agroecosystems Aporrectodea caliginosa s.s (Savigny, 1826) <u>Cuprafor micro®:</u> Copper oxychloryde (50%) (INDUSTRIAS QUIMICAS DEL VALLES) → Sublethal concentrations applied 3.33 times the RD (25.8 mg kg⁻¹) 10 times the RD (77.5 mg kg⁻¹) 30 times the RD (232.5 mg kg⁻¹) - One individual per vessel - Fed ad libitum **Results & Discussion** Climate room (15 °C) #### The biology-based model **Results & Discussion** #### **Assumptions:** - Isomorphic growth - Low maintenance costs \rightarrow In the case of *ad libitum* food, this leads to the equation: $$\frac{dl}{dt} = a$$ « *l* » is the wet weight cubic root $\ll a$ » is a constant Weight(mg) = $$(at + l_0)^3$$ ### The toxicokinetic-toxicodynamic model #### The one compartiment model $$\frac{dC_i(t)}{dt} = k_u \ C_e(t) - k_e \ C_i(t)$$ **Results & Discussion** The internal concentration is scaled by the bio-concentration factor $$\frac{dc_i(t)}{dt} = k_e \left(C_e \left(t \right) - c_i(t) \right)$$ c_i(t) is proportional to the concentration in the tissue, but has the dimension of an external concentration. Dilution by growth (Kooijman & Bedaux, 1996) $$\frac{dc_i(t)}{dt} = \frac{k_e \left(C_e(t) - c_i(t)\right)}{l} - \frac{3a \ c_i}{l}$$ If $C_i > NEC$ (No Effect Concentration) hypothesis: increase of the growth energy costs proportional effects "b" to the difference between the c_i and the NEC $\frac{dl}{dt} = a \qquad \Longrightarrow \qquad \frac{dl}{dt} = \frac{a}{1 + b \times (c_i(t) - \text{NEC})}$ #### Results and Discussion Because of a drastic inhibition of growth, we simplified the toxicodynamic model because « b » is expected to be very big Only 2 parameters: \rightarrow the kinetics k_e →the NEC $$\frac{dc_i(t)}{dt} = \frac{k_e \left(C_e(t) - c_i(t)\right)}{l} - \frac{3a \ c_i}{l}$$ ➤ We estimate simultaneously the 2 parameter values on the all data (including the 3 different ages) #### Age of exposure: Age 2 Age 1 Age 3 Age 2 \rightarrow No effect at 3.33 times the RD (25.8 mg Cu kg⁻¹) → A growth inhibition depending on the age of exposure (importance of the dilution by growth in the toxicokinetic model) 100 0 **50** Time (days) 0 0 50 Time (days) 0 0 Time (days) 100 50 100 ### Conclusion → The biology-based model provided a relevant analysis of the toxicity data and the copper toxicity depends on the kinetics which is faster for small individuals. - → The model provided a NEC (No Effect Concentration) value (65 mg kg⁻¹), which does not depend on the time of exposure, and which is common to the 3 different ages. - → Copper appeared highly harmful for earthworm growth over the NEC which correspond to 8.4 times the RD. # Thanks you for your attention \rightarrow L ook ing for a pos t-doc toral pos i ti on Good bye earthworms...and what will be the next adventure !?! sylvain.bart@inra.fr sylvain1.bart@outlook.fr #### Keywords of my research: - Ecotoxicology - Modelling - Invertebrate - Risk assessment - Field and laboratory study - Pesticides and metals $$\frac{dC_i(t)}{dt} = k_u C_e - k_e C_i$$ $$BCF = \frac{\mathbf{k}_u}{\mathbf{k}_e}$$ $\mathbf{c}_i = \frac{C_i(t)}{BCF}$ $\mathbf{c}_i = c_i \frac{\mathbf{k}_u}{\mathbf{k}_e}$ $$\frac{dc_i(t)}{dt} \frac{K_u}{k_e} = k_u C_e - k_e C_i \frac{k_u}{k_e}$$ $$\frac{d\mathbf{c}_{i}(t)}{dt} \frac{\mathbf{k}_{u}}{\mathbf{k}_{e}} = \mathbf{k}_{u} \ \mathbf{C}_{e} - \mathbf{k}_{u} \ \mathbf{c}_{i}$$ $$\frac{dc_i(t)}{dt} = k_e (C_e - c_i)$$ **Table 1.** Characteristic of the LPC soil ($n = 7, \pm SE$) | Characteristic | LPC soil | |---|--------------------| | Clays ($< 2 \mu m$, g kg ⁻¹) | 226 ± 6.25 | | Fine silt $(2-20 \mu \text{m}, \text{g kg}^{-1})$ | 174.14 ± 3.03 | | Coarse silt (20-50 µm, g kg ⁻¹) | 298.86 ± 12.76 | | Fine sand (50-200 μm , g kg ⁻¹) | 239.14 ± 8.85 | | Coarse sand (200-2000 µm, g kg ⁻¹) | 47.86 ± 3.84 | | CaCO3 total (g kg ⁻¹) | 23.25 ± 8.06 | | Organic matter (g kg ⁻¹) | 32.64 ± 1.69 | | $P2O5 (g kg^{-1})$ | 0.08 ± 0.006 | | Organic carbon (g kg ⁻¹) | 18.86 ± 0.98 | | Total nitrogen (N) (g kg ⁻¹) | 1.49 ± 0.07 | | C/N | 12.69 ± 0.32 | | pН | 7.5 ± 0.21 | | Cu ^{tot} (mg kg ⁻¹) | 25.23 ± 1.6 |