

A biology-based model to analyze growth data of earthworms exposed to copper at different ages

Sylvain BART¹, Joël AMOSSÉ¹, Christian MOUGIN¹, Alexandre R. R. PÉRY¹, Céline PELOSI¹

¹UMR ECOSYS, INRA, AgroParisTech, Université Paris-Saclay, 78026, Versailles, France

Organic matter degradation

Soil structure

Water infiltration

Gas exchange

Earthworms

- → The growth is an important parameter of the population dynamics
- →There is no standardized test available for the assessment of chemicals on the growth period

→Objective: Assess the impact of copper on earthworms growth and provide a relevant analysis of the results using a toxicokinetics (TK) model coupled with a biology-based toxicodynamic (TD) model.

Material and methods

A highly representative species of agroecosystems

Aporrectodea caliginosa s.s (Savigny, 1826)

<u>Cuprafor micro®:</u> Copper oxychloryde (50%)

(INDUSTRIAS QUIMICAS DEL VALLES)

→ Sublethal concentrations applied
 3.33 times the RD (25.8 mg kg⁻¹)
 10 times the RD (77.5 mg kg⁻¹)
 30 times the RD (232.5 mg kg⁻¹)

- One individual per vessel
- Fed ad libitum

Results & Discussion

Climate room (15 °C)

The biology-based model

Results & Discussion

Assumptions:

- Isomorphic growth
- Low maintenance costs

 \rightarrow In the case of *ad libitum* food, this leads to the equation:

$$\frac{dl}{dt} = a$$

« *l* » is the wet weight cubic root

 $\ll a$ » is a constant

Weight(mg) =
$$(at + l_0)^3$$

The toxicokinetic-toxicodynamic model

The one compartiment model

$$\frac{dC_i(t)}{dt} = k_u \ C_e(t) - k_e \ C_i(t)$$

Results & Discussion

The internal concentration is scaled by the bio-concentration factor

$$\frac{dc_i(t)}{dt} = k_e \left(C_e \left(t \right) - c_i(t) \right)$$

c_i(t) is proportional to the concentration in the tissue, but has the dimension of an external concentration.

Dilution by growth (Kooijman & Bedaux, 1996)

$$\frac{dc_i(t)}{dt} = \frac{k_e \left(C_e(t) - c_i(t)\right)}{l} - \frac{3a \ c_i}{l}$$

If $C_i > NEC$ (No Effect Concentration)

hypothesis: increase of the growth energy

costs

proportional effects "b" to the difference between the c_i and the NEC

 $\frac{dl}{dt} = a \qquad \Longrightarrow \qquad \frac{dl}{dt} = \frac{a}{1 + b \times (c_i(t) - \text{NEC})}$

Results and Discussion

Because of a drastic inhibition of growth, we simplified the toxicodynamic model because « b » is expected to be very big

Only 2 parameters:

 \rightarrow the kinetics k_e

→the NEC

$$\frac{dc_i(t)}{dt} = \frac{k_e \left(C_e(t) - c_i(t)\right)}{l} - \frac{3a \ c_i}{l}$$

➤ We estimate simultaneously the 2 parameter values on the all data (including the 3 different ages)

Age of exposure:

Age 2

Age 1

Age 3

Age 2

 \rightarrow No effect at 3.33 times the RD (25.8 mg Cu kg⁻¹)

→ A growth inhibition depending on the age of exposure (importance of the dilution by growth in the toxicokinetic model)

100

0

50

Time (days)

0

0

50

Time (days)

0

0

Time (days)

100

50

100

Conclusion

→ The biology-based model provided a relevant analysis of the toxicity data and the copper toxicity depends on the kinetics which is faster for small individuals.

- → The model provided a NEC (No Effect Concentration) value (65 mg kg⁻¹), which does not depend on the time of exposure, and which is common to the 3 different ages.
- → Copper appeared highly harmful for earthworm growth over the NEC which correspond to 8.4 times the RD.

Thanks you for your attention

 \rightarrow L ook ing for a pos t-doc toral pos i ti on

Good bye earthworms...and what will be the next adventure !?!

sylvain.bart@inra.fr
sylvain1.bart@outlook.fr

Keywords of my research:

- Ecotoxicology
- Modelling
- Invertebrate
- Risk assessment
- Field and laboratory study
- Pesticides and metals

$$\frac{dC_i(t)}{dt} = k_u C_e - k_e C_i$$

$$BCF = \frac{\mathbf{k}_u}{\mathbf{k}_e}$$
 $\mathbf{c}_i = \frac{C_i(t)}{BCF}$ $\mathbf{c}_i = c_i \frac{\mathbf{k}_u}{\mathbf{k}_e}$

$$\frac{dc_i(t)}{dt} \frac{K_u}{k_e} = k_u C_e - k_e C_i \frac{k_u}{k_e}$$

$$\frac{d\mathbf{c}_{i}(t)}{dt} \frac{\mathbf{k}_{u}}{\mathbf{k}_{e}} = \mathbf{k}_{u} \ \mathbf{C}_{e} - \mathbf{k}_{u} \ \mathbf{c}_{i}$$

$$\frac{dc_i(t)}{dt} = k_e (C_e - c_i)$$

Table 1. Characteristic of the LPC soil ($n = 7, \pm SE$)

Characteristic	LPC soil
Clays ($< 2 \mu m$, g kg ⁻¹)	226 ± 6.25
Fine silt $(2-20 \mu \text{m}, \text{g kg}^{-1})$	174.14 ± 3.03
Coarse silt (20-50 µm, g kg ⁻¹)	298.86 ± 12.76
Fine sand (50-200 μm , g kg ⁻¹)	239.14 ± 8.85
Coarse sand (200-2000 µm, g kg ⁻¹)	47.86 ± 3.84
CaCO3 total (g kg ⁻¹)	23.25 ± 8.06
Organic matter (g kg ⁻¹)	32.64 ± 1.69
$P2O5 (g kg^{-1})$	0.08 ± 0.006
Organic carbon (g kg ⁻¹)	18.86 ± 0.98
Total nitrogen (N) (g kg ⁻¹)	1.49 ± 0.07
C/N	12.69 ± 0.32
pН	7.5 ± 0.21
Cu ^{tot} (mg kg ⁻¹)	25.23 ± 1.6

