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Abstract

Learning the minimum/maximum mean among a finite set of distributions is a fundamental sub-task in plan-

ning, game tree search and reinforcement learning. We formalize this learning task as the problem of sequentially

testing how the minimum mean among a finite set of distributions compares to a given threshold. We develop

refined non-asymptotic lower bounds, which show that optimality mandates very different sampling behavior for

a low vs high true minimum. We show that Thompson Sampling and the intuitive Lower Confidence Bounds

policy each nail only one of these cases. We develop a novel approach that we call Murphy Sampling. Even

though it entertains exclusively low true minima, we prove that MS is optimal for both possibilities. We then

design advanced self-normalized deviation inequalities, fueling more aggressive stopping rules. We complement

our theoretical guarantees by experiments showing that MS works best in practice.

1 Introduction

We consider a collection of core problems related to minimums of means. For a given finite collection of probabil-

ity distributions parameterized by their means µ1, . . . , µK , we are interested in learning about µ∗ = mina µa from

adaptive samples Xt ∼ µAt
, where At indicates the distribution sampled at time t. We shall refer to these distri-

butions as arms in reference to a multi-armed bandit model [29, 27]. Knowing about minima/maxima is crucial in

reinforcement learning or game-playing, where the value of a state for an agent is the maximum over actions of the

(expected) successor state value or the minimum over adversary moves of the next state value.

The problem of estimating µ∗ =mina µa was studied in [35] and subsequently [10, 32, 9]. It is known that no

unbiased estimator exists for µ∗, and that estimators face an intricate bias-variance trade-off. Beyond estimation,

the problem of constructing confidence intervals on minima/maxima naturally arises in (Monte Carlo) planning

in Markov Decision Processes [17] and games [26]. Such confidence intervals are used hierarchically for Monte

Carlo Tree Search (MCTS) in [33, 15, 19, 24]. The open problem of designing asymptotically optimal algorithms

for MCTS led us to isolate one core difficulty that we study here, namely the construction of confidence intervals

and associated sampling/stopping rules for learning minima (and, by symmetry, maxima).

Confidence interval (that are uniform over time) can be naturally obtained from a (sequential) test of {µ∗ < γ}
versus {µ∗ > γ}, given a threshold γ. The main focus of the paper goes even further and investigates the minimum

number of samples required for adaptively testing whether {µ∗ < γ} or {µ∗ > γ}, that is sequentially sampling

the arms in order to decide for one hypothesis as quickly as possible. Such a problem is interesting in its own

right as it naturally arises in several statistical certification applications. As an example we may consider quality

control testing in manufacturing, where we want to certify that in a batch of machines each has a guaranteed

probability of successfully producing a widget. In e-learning, we may want to certify that a given student has
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sufficient understanding of a range of subjects, asking as few questions as possible about the different subjects.

Then in anomaly detection, we may want to flag the presence of an anomaly faster the more anomalies are present.

Finally, in a crowdsourcing system, we may need to establish as quickly as possible whether a cohort of workers

contains at least one unacceptably careless worker.

We thus study a particular example of sequential adaptive hypothesis testing problem, as introduced by Cher-

noff [7], in which multiple experiments (sampling from one arm) are available to the experimenter, each of which

allows to gain different information about the hypotheses. The experimenter sequentially selects which experiment

to perform, when to stop and then which hypothesis to recommend. Several recent works from the bandit literature

fit into this framework, with the twist that they consider continuous, composite hypotheses and aim for δ-correct

testing: the probability of guessing a wrong hypothesis has to be smaller than δ, while performing as few exper-

iments as possible. The fixed-confidence Best Arm Identification problem (concerned with finding the arm with

largest mean) is one such example [11, 22], of which several variants have been studied [21, 19, 14]. For example

the Thresholding Bandit Problem [28] aims at finding the set of arms above a threshold, which is strictly harder

than our testing problem.

A full characterization of the asymptotic complexity of the BAI problem was recently given in [13], high-

lighting the existence of an optimal allocation of samples across arms. The lower bound technique introduced

therein can be generalized to virtually any testing problem in a bandit model (see, e.g. [25, 14]). Such an optimal

allocation is also presented by [6] in the GENERAL-SAMP framework, which is quite generic and in particular

encompasses testing on which side of γ the minimum falls. The proposed LPSample algorithm is thus a candidate

to be applied to our testing problem. However, this algorithm is only proved to be order-optimal, that is to attain

the minimal sample complexity up to a (large) multiplicative constant. Moreover, like other algorithms for special

cases (e.g. Track-and-Stop for BAI [13]), it relies on forced exploration, which may be harmful in practice and

leads to unavoidably asymptotic analysis.

Our first contribution is a tight lower bound on the sample complexity that provides an oracle sample allocation,

but also aims at reflecting the moderate-risk behavior of a δ-correct algorithm. Our second contribution is a new

sampling rule for the minimum testing problem, under which the empirical fraction of selections converges to the

optimal allocation without forced exploration. The algorithm is a variant of Thompson Sampling [34, 1] that is

conditioning on the “worst” outcome µ∗ < γ, hence the name Murphy Sampling. This conditioning is inspired

by the Top Two Thompson Sampling recently proposed by [30] for Best Arm Identification. As we shall see, the

optimal allocation is very different whether µ∗ < γ or µ∗ > γ and yet Murphy Sampling automatically adopts

the right behavior in each case. Our third contribution is a new stopping rule, that by aggregating samples from

several arms that look small may lead to early stopping whenever µ∗ < γ. This stopping rule is based on a new

self-normalized deviation inequality for exponential families (Theorem 7) of independent interest. It generalizes

results obtained by [20, 22] in the Gaussian case and by [5] without the uniformity in time, and also handles subsets

of arms.

The rest of the paper is structured as follows. In Section 2 we introduce our notation and formally define our

objective. In Section 3, we present lower bounds on the sample complexity of sequential tests for minima. In

particular, we compute the optimal allocations for this problem and discuss the limitation of naive benchmarks to

attain them. In Section 4 we introduce Murphy sampling, and prove its optimality in conjunction with a simple

stopping rule. Improved stopping rules and associated confidence intervals are presented in Section 5. Finally,

numerical experiments reported in Section 6 demonstrate the efficiency of Murphy Sampling paired with our new

Aggregate stopping rule.
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2 Setup

We consider a family of K probability distributions that belong to a one-parameter canonical exponential family,

that we shall call arms in reference to a multi-armed bandit model. Such exponential families include Gaussian

with known variance, Bernoulli, Poisson, see [5] for details. For natural parameter ν, the density of the distribution

w.r.t. carrier measure ρ on R is given by exν−b(ν)ρ(dx), where the cumulant generating function b(ν) = lnEρ[eXν]
induces a bijection ν ↦ ḃ(ν) to the mean parameterization. We write KL (ν,λ) and d(µ, θ) for the Kullback-

Leibler divergence from natural parameters ν to λ and from mean parameters µ to θ. Specifically, with convex

conjugate b∗,

KL (ν,λ) = b(λ) − b(ν) + (ν − λ) ḃ(ν) and d(µ, θ) = b∗(µ) − b∗(θ) − (µ − θ)ḃ∗(θ).
We denote by µ = (µ1, . . . , µK) ∈ IK the vector of arm means, which fully characterizes the model. In this

paper, we are interested in the smallest mean (and the arm where it is attained)

µ∗ = min
a
µa and a∗ = a∗(µ) = argmin

a
µa.

Given a threshold γ ∈ I, our goal is to decide whether µ∗ < γ or µ∗ > γ. We introduce the hypotheses

H< = {µ ∈ IK ∣ µ∗ < γ} and H> = {µ ∈ IK ∣ µ∗ > γ}, and their union H = H< ∪H>.
We want to propose a sequential and adaptive testing procedure, that consists in a sampling rule At, a stopping

rule τ and a decision rule m̂ ∈ {<,>}. The algorithm samples Xt ∼ µAt
while t ≤ τ , and then outputs a decision m̂.

We denote the information available after t rounds by Ft = σ (A1,X1, . . . ,At,Xt). At is measurable with respect

to Ft−1 an possibly some exogenous random variable, τ is a stopping time with respect to this filtration and m̂ isFτ -measurable.

We aim for a δ-correct algorithm, that satisfies Pµ (µ ∈Hm̂) ≥ 1−δ for all µ ∈H. Our goal is to build δ-correct

algorithms that use a small number of samples τδ in order to reach a decision. In particular, we want the sample

complexity Eµ[τ] to be small.

Notation We letNa(t) = ∑t
s=1 1(As=a) be the number of selections of arm a up to round t, Sa(t) = ∑t

s=1Xs1(As=a)

be the sum of the gathered observations from that arm and µ̂a(t) = Sa(t)/Na(t) their empirical mean.

3 Lower Bounds

In this section we study information-theoretic sample complexity lower bounds, in particular to find out what the

problem tells us about the behavior of oracle algorithms. [12] prove that for any δ-correct algorithm

Eµ[τ] ≥ T ∗(µ)kl(δ,1 − δ) where
1

T ∗(µ) = max
w∈△

min
λ∈Alt(µ)

∑
a

wad(µa, λa) (1)

kl(x, y) = x ln x
y
+(1−x) ln 1−x

1−y
and Alt(µ) is the set of bandit models where the correct recommendation differs

from that on µ. The following result specialises the above to the case of testing H< vs H>, and gives explicit

expressions for the characteristic time T ∗(µ) and oracle weights w∗(µ).
Lemma 1. Any δ-correct strategy satisfies (1) with

T ∗(µ) =
⎧⎪⎪⎨⎪⎪⎩

1

d(µ∗,γ)
µ∗ < γ,

∑a
1

d(µa,γ)
µ∗ > γ, and w∗a(µ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1a=a∗ µ∗ < γ,

1

d(µa,γ)

∑j
1

d(µj,γ)

µ∗ > γ.
Lemma 1 is proved in Appendix B. As explained by [12] the oracle weights correspond to the fraction of

samples that should be allocated to each arm under a strategy matching the lower bound. The interesting feature

here is that the lower bound indicates that an oracle algorithm should have very different behavior on H< and H>.
OnH< it should sample a∗ (or all lowest means, if there are several) exclusively, while onH> it should sample all

arms with certain specific proportions.
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3.1 Boosting the Lower Bounds

Following [16] (see also [31] and references therein), Lemma 1 can be improved under very mild assumptions on

the strategies. We call a test symmetric if its sampling and stopping rules are invariant by conjugation under the

action of the group of permutations on the arms. In that case, if all the arms are equal, then their expected numbers

of draws are equal. For simplicity we assume µ1 ≤ . . . ≤ µK .

Proposition 2. Let k = maxa d(µa, γ) = max{d(µ1, γ), d(µK , γ)}. For any symmetric, δ-correct test, for all

arms a ∈ {1, . . . ,K},
Eµ[Na(τ)] ≥ 2 (1 − 2δK3)

27K2k
.

Proposition 2 is proved in Appendix B. It is an open question to improve the dependency in K in this bound;

moreover, one may expect a bound decreasing with δ, maybe in ln(ln(1/δ)) (but certainly not in ln(1/δ)). This

result already has two important consequences: first, it shows that even an optimal algorithm needs to draw all the

arms a certain number of times, even onH< where Lemma 1 may suggest otherwise. Second, this lower bound on

the number of draws of each arm can be used to “boost” the lower bound on Eµ[τ]: the following result is also

proved in Appendix B.

Theorem 3. When µ∗ < γ, for any symmetric, δ-correct strategy,

Eµ[τ] ≥ kl(δ,1 − δ)
d(µ1, γ) +

2 (1 − 2δK3)
27K2k

∑
a

(1 − d+(µa, γ)
d(µ1, γ) ) .

When d(µ1, γ) ≥ d(µK , γ), this bound can be rewritten as:

Eµ[τ] ≥ 1

d(µ1, γ)
⎛
⎝kl(δ,1 − δ) +

2 (1 − 2δK3)
27K2

∑
a

(1 − d+(µa, γ)
d(µ1, γ) )

⎞
⎠ . (2)

The lower bound for the case µ∗ > γ can also be boosted similarly, with a less explicit result.

3.2 Lower Bound Inspired Matching Algorithms

In light of the lower bound in Lemma 1, we now investigate the design of optimal learning algorithms (sampling

rule At and stopping rule τ ). We start with the stopping rule. The first stopping rule that comes to mind consists

in comparing separately each arm to the threshold and stopping when either one arm looks significantly below the

threshold or all arms look significantly above. Introducing d+(u, v) = d(u, v)1(u≤v) and d−(u, v) = d(u, v)1(u≥v),
we let

τBox = τ< ∧ τ> where
τ< = inf {t ∈ N∗ ∶ ∃aNa(t)d+(µ̂a(t), γ) ≥ C<(δ,Na(t))} ,
τ> = inf {t ∈ N∗ ∶ ∀aNa(t)d−(µ̂a(t), γ) ≥ C>(δ,Na(t))} , (3)

and C<(δ, r) and C>(δ, r) are two threshold functions to be specified. Box refers to the fact that the decision to

stop relies on individual “box” confidence intervals for each arm, whose endpoints are

Ua(t) = max{q ∶ Na(t)d+(µ̂a(t), q) ≥ C<(δ,Na(t))},
La(t) = min{q ∶ Na(t)d−(µ̂a(t), q) ≥ C>(δ,Na(t))}.

Indeed, τBox = inf {t ∈ N∗ ∶mina Ua(t) ≤ γ or mina La(t) ≥ γ}. In particular, if∀a,∀t ∈ N∗, µa ∈ [La(t),Ua(t)],
any algorithm that stops using τBox is guaranteed to output a correct decision. In the Gaussian case, existing work

[20, 22] permits to exhibit thresholds of the form C≶(δ, r) = ln(1/δ)+a ln ln(1/δ)+ b ln(1+ ln(r)) for which this

sufficient correctness condition is satisfied with probability larger than 1 − δ. Theorem 7 below generalizes this to

exponential families.
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Given that τBox can be proved to be δ-correct whatever the sampling rule, the next step is to propose sampling

rules that, coupled with τBox, would attain the lower bound presented in Section 3. We now show that a simple

algorithm, called LCB, can do that for all µ ∈ H>. LCB selects at each round the arm with smallest Lower

Confidence Bound:

LCB: Play At = argmina La(t) , (4)

which is intuitively designed to attain the stopping condition mina La(t) ≥ γ faster. In Appendix E we prove

(Proposition 15) that LCB is optimal for µ ∈ H> however we show (Proposition 16) that on instances of H< it

draws all arms a ≠ a∗ too much and cannot match our lower bound.

For µ ∈H<, the lower bound Lemma 1 can actually be a good guideline to design a matching algorithm: under

such an algorithm, the empirical proportion of draws of the arm a∗ with smallest mean should converge to 1. The

literature on regret minimization in bandit models (see [4] for a survey) provides candidate algorithms that have

this type of behavior, and we propose to use the Thompson Sampling (TS) algorithm [1, 23]. Given independent

prior distribution on the mean of each arm, this Bayesian algorithm selects an arm at random according to its

posterior probability of being optimal (in our case, the arm with smallest mean). Letting πt
a refer to the posterior

distribution of µa after t samples, this can be implemented as

TS: Sample ∀a ∈ {1, . . . ,K}, θa(t) ∼ πt−1
a , then play At = argmina∈{1,...,K} θa(t).

It follows from Theorem 12 in Appendix 5 that if Thompson Sampling is run without stopping,Na∗(t)/t converges

almost surely to 1, for every µ. As TS is an anytime sampling strategy (i.e. that does not depend on δ), Lemma 4

below permits to justify that on every instance of H< with a unique optimal arm, under this algorithm τBox ≃(1/d(µ1, θ)) ln(1/δ). However, TS cannot be optimal for µ ∈ H>, as the empirical proportions of draws cannot

converge to w∗(µ) ≠ 1a∗ .

To summarize, we presented a simple stopping rule, τBox, that can be asymptotically optimal for every µ ∈H<
if it is used in combination with Thompson Sampling and for µ ∈ H> if it is used in combination with LCB. But

neither of these two sampling rules are good for the other type of instances, which is a big limitation for a practical

use of either of these. In the next section, we propose a new Thompson Sampling like algorithm that ensures the

right exploration under bothH< andH>. In Section 5, we further present an improved stopping rule that may stop

significantly earlier than τBox on instances ofH<, by aggregating samples from multiple arms that look small.

We now argue that ensuring the sampling proportions converge to w∗ is sufficient for reaching the optimal

sample complexity, at least in an asymptotic sense. The proof can be found in Appendix C.

Lemma 4. Fix µ ∈ H. Fix an anytime sampling strategy (At) ensuring Nt

t
→ w∗(µ). Let τδ be a stopping

rule such that τδ ≤ τBox

δ , for a Box stopping rule (3) whose threshold functions C≶ satisfy the following: they are

non-decreasing in r and there exists a function f such that,

∀r ≥ r0, C≶(δ, r) ≤ f(δ)+ ln r, where f(δ) = ln(1/δ) + o(ln(1/δ)).
Then lim supδ→0

τδ
ln

1

δ

≤ T ∗(µ) almost surely.

4 Murphy Sampling

In this section we denote by Πn = P (⋅∣Fn) the posterior distribution of the mean parameters after n rounds. We

introduce a new (randomised) sampling rule called Murphy Sampling after Murphy’s Law, as it performs some

conditioning to the “worst event” (µ ∈H<):
MS: Sample θt ∼ Πt−1 (⋅∣H<), then play At = a∗(θt) . (5)

As we will argue below, the subtle difference of sampling from Πn−1 (⋅∣H<) instead of Πn−1 (regular Thompson

Sampling) ensures the required split personality behavior (see Lemma 1). Note that MS always conditions on H<
(and never onH>) regardless of the position of µ w.r.t. γ. This is different from the symmetric Top Two Thompson
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Sampling [30], which essentially conditions on a∗(θ) ≠ a∗(µ) a fixed fraction 1 − β of the time, where β is a

parameter that needs to be tuned with knowledge of µ. MS on the other hand needs no parameters.

Also note that MS is an anytime sampling algorithm, being independent of the confidence level 1 − δ. The

confidence will manifest only in the stopping rule.

MS is technically an instance of Thompson Sampling with a joint priorΠ supported only onH<. This viewpoint

is conceptually funky, as we will apply MS identically toH< and H>. To implement MS, we use that independent

conjugate per-arm priors induce likewise posteriors, admitting efficient (unconditioned) posterior sampling. Re-

jection sampling then achieves the required conditioning. In our experiments on H> (with moderate δ), stopping

rules kick in before the rejection probability becomes impractically high.

The rest of this section is dedicated to the analysis of MS. First, we argue that the MS sampling proportions

converge to the oracle weights of Lemma 1.

Assumption For purpose of analysis, we need to assume that the parameter space Θ ∋ µ (or the support of the

prior) is the interior of a bounded subset of RK . This ensures that supµ,θ∈Θ d(µ, θ) <∞ and supµ,θ∈Θ∥µ− θ∥ <∞.

This assumption is common [18, Section 7.1], [30, Assumption 1]. We also assume that the prior Π has a density

π with bounded ratio supµ,θ∈Θ
π(θ)
π(µ)

<∞.

Theorem 5. Under the above assumption, MS ensures Nt

t
→w∗(µ) a.s. for any µ ∈H.

We give a sketch of the proof below, the detailed argument can be found in Appendix D, Theorems 12

and 13. Given the convergence of the weights, the asymptotic optimality in terms of sample complexity follows

by Lemma 4, if MS is used with an appropriate stopping rule (Box (3) or the improved Aggregate stopping rule

discussed in Section 5).

Proof Sketch First, consider µ ∈ H<. In this case the conditioning in MS is asymptotically immaterial as

Πn(H<) → 1, and the algorithm behaves like regular Thompson Sampling. As Thompson sampling has sublinear

pseudo-regret [1], we must have E[N1(t)]/t→ 1. The crux of the proof in the appendix is to show the convergence

occurs almost surely.

Next, consider µ ∈ H>. Following [30], we denote the sampling probabilities in round n by ψa(n) =
Πn−1 (a = argminj θj ∣H<), and abbreviate Ψa(n) = ∑n

t=1 ψa(t) and ψ̄a(n) = Ψa(n)/n. The main intuition

is provided by

Proposition 6 ([30, Proposition 4]). For any open subset Θ̃ ⊆ Θ, the posterior concentrates at rate Πn(Θ̃) ≐
exp (−nminλ∈Θ̃∑a ψ̄a(n)d(µa, λa)) a.s. where an ≐ bn means 1

n
ln an

bn
→ 0.

Let us use this to analyze ψa(n). As we are on H>, the posterior Πn(H<) → 0 vanishes. Moreover,

Πn (a = argminj θj ,H<) ∼ Πn(θa < γ) as the probability that multiple arms fall below γ is negligible. Hence

ψa(n) ∼ Πn(µa < γ)
∑j Πn(µj < γ) ≐

exp (−nψ̄a(n)d(µa, γ))
∑j exp (−nψ̄j(n)d(µj , γ)) .

This is an asymptotic recurrence relation in ψa(n). To get a good sense for what is happening we may solve the

exact analogue. Abbreviating da = d(µa, γ), we find Ψa(n) = (n −∑j
lndj

dj
) 1

da

∑j
1

dj

+
lnda

da
and hence ψa(t) =

Ψa(t) −Ψa(t − 1) = 1/da

∑j 1/dj
= w∗a(µ). Proposition 10 then establishes that Na(t)/t ∼ Ψa(t)/t→ w∗a(µ) as well.

In our proof in Appendix D we technically bypass solving the above approximate recurrence, and proceed

to pin down the answer by composing the appropriate one-sided bounds. Yet as we were guided by the above

picture of w∗(µ) as the eventually stable direction of the dynamical system governing the sampling proportions,

we believe it is more revealing.
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5 Improved Stopping Rule and Confidence Intervals

Theorem 7 below provides a new self-normalized deviation inequality that given a subset of arms controls uni-

formly over time how the aggregated mean of the samples obtained from those arms can deviate from the smallest

(resp. largest) mean in the subset. More formally for S ⊆ [K], we introduce

NS(t) = ∑
a∈S

Na(t) and µ̂S(t) = ∑a∈S Na(t)µ̂a(t)
NS(t)

and recall d+(u, v) = d(u, v)1(u≤v) and d−(u, v) = d(u, v)1(u≥v). We prove the following for one-parameter

exponential families.

Theorem 7. Let T ∶ R+ → R
+ be the function defined by

T (x) = 2h−1 (1 + h−1(1 + x) + ln ζ(2)
2

) (6)

where h(u) = u − ln(u) for u ≥ 1 and ζ(s) = ∑∞n=1 n−s. For every subset S of arms and x ≥ 0.04,

P(∃t ∈ N ∶ NS(t)d+ (µ̂S(t),min
a∈S

µa) ≥ 3 ln(1 + ln(NS(t))) + T (x)) ≤ e−x, (7)

P(∃t ∈ N ∶ NS(t)d− (µ̂S(t),max
a∈S

µa) ≥ 3 ln(1 + ln(NS(t))) + T (x)) ≤ e−x. (8)

The proof of this theorem can be found in Section F and is sketched below. It generalizes in several directions

the type of results obtained by [20, 22] for Gaussian distributions and ∣S ∣ = 1. Going beyond subsets of size 1 will

be crucial here to obtain better confidence intervals on minimums, or stop earlier in tests. Note that the threshold

function T introduced in (6) does not depend on the cardinality of the subset S to which the deviation inequality is

applied. Tight upper bounds on T can be given using Lemma 21 in Appendix F.3, which support the approximation

T (x) ≃ x + 3 ln(x).
5.1 An Improved Stopping Rule

Fix a subset prior π ∶ ℘({1, . . . ,K}) → R
+ such that ∑S⊆{1,...,K} π(S) = 1 and let T be the threshold function

defined in Theorem 7. We define the stopping rule τπ ∶= τ> ∧ τπ< , where

τ> = inf {t ∈ N∗ ∶ ∀a ∈ {1, . . . ,K}Na(t)d− (µ̂a(t), γ) ≥ 3 ln(1 + ln(Na(t))) + T (ln(1/δ))} ,
τπ< = inf {t ∈ N∗ ∶ ∃S ∶ NS(t)d+ (µ̂S(t), γ) ≥ 3 ln(1 + ln(NS(t))) + T (ln(1/(δπ(S)))} .

The associated recommendation rule selectsH> if τπ = τ> andH< if τπ = τπ< . For the practical computation of τπ< ,

the search over subsets can be reduced to nested subsets including arms sorted by increasing empirical mean and

smaller than γ.

Lemma 8. Any algorithm using the stopping rule τπ and selecting m̂ = > iff τπ = τ>, is δ-correct.

From Lemma 8, proved in Appendix G, the prior π doesn’t impact the correctness of the algorithm. However it

may impact its sample complexity significantly. First it can be observed that picking π that is uniform over subset

of size 1, i.e. π(S) =K−11(∣S ∣ = 1), one obtain a δ-correct τBox stopping rule with thresholds functions satisfying

the assumptions of Lemma 4. However, in practice (especially more moderate δ), it may be more interesting to

include in the support of π subsets of larger sizes, for which NS(t)d+ (µ̂S(t), γ) may be larger. We advocate the

use of π(S) =K−1(K
∣S ∣
)−1, that puts the same weight on the set of subsets of each possible size.
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Links with Generalized Likelihood Ratio Tests (GLRT). Assume we want to testH0 againstH1 for composite

hypotheses. A GLRT test based on t observations whose distribution depends on some parameter x rejects H0 if

the test statistic maxx∈H1
ℓ(X1, . . . ,Xt;x)/maxx∈H0∪H1

ℓ(X1, . . . ,Xt;x) has large values (where ℓ(⋅;x) denotes

the likelihood of the observations under the model parameterized by x). In our testing problem, the GLRT statistic

for rejectingH< is minaNa(t)d−(µ̂a(t), γ) hence τ> is very close to a sequential GLRT test. However, the GLRT

statistic for rejectingH> is∑K
a=1Na(t)d+(µ̂a(t), γ), which is quite different from the stopping statistic used by τπ< .

Rather than aggregating samples from arms, the GLRT statistic is summing evidence for exceeding the threshold.

Using similar martingale techniques as for proving Theorem 7, one can show that replacing τπ< by

τGLRT
< = inf

⎧⎪⎪⎨⎪⎪⎩t ∈ N
∗
∶ ∑
a∶µ̂a(t)≤γ

[Na(t)d+ (µ̂a(t), γ) − 3 ln(1 + ln(Na(t)))]+ ≥KT ( ln(1/δ)
K

)⎫⎪⎪⎬⎪⎪⎭
also yields a δ-correct algorithm (see [2]). At first sight, τπ< and τGLRT

< are hard to compare: the stopping statistic

used by the latter can be larger than that used by the former, but it is compared to a smaller threshold. In Section 6

we will provide empirical evidence in favor of aggregating samples.

5.2 A Confidence Intervals Interpretation

Inequality (7) (and a union bound over subsets) also permits to build a tight upper confidence bound on the mini-

mum µ∗. Indeed, defining

Uπ
min(t) ∶=max{q ∶ max

S⊆{1,...,K}
[NS(t)d+ (µ̂S(t), q) − 3 ln(1 + ln(1 +NS(t)))] ≤ T (ln 1

δπ(S))} ,
it is easy to show that P (∀t ∈ N, µ∗ ≤ Uπ

min(t)) ≥ 1 − δ. For general choices of π, this upper confidence bound

may be much smaller than the naive bound mina Ua(t) which corresponds to choosing π uniform over subset of

size 1. We provide an illustration supporting this claim in Figure 5 in Appendix A. Observe that using inequality

(8) in Theorem 7 similarly allows to derive tighter lower confidence bounds on the maximum of several means.

5.3 Sketch of the Proof of Theorem 7

Fix η ∈ [0,1 + e[. Introducing Xη(t) = [NS(t)d+ (µ̂S(t),mina∈S µa) − 2(1 + η) ln (1 + lnNS(t))], the corner-

stone of the proof (Lemma 17) consists in proving that for all λ ∈ [0, (1+ η)−1[, there exists a martingaleMλ
t that

“almost” upper bounds eλXη(t): there exists a function gη such that

E[Mλ
0 ] = 1 and ∀t ∈ N∗,Mλ

t ≥ eλXη(t)−gη(λ). (9)

From there, the proof easily follows from a combination of Chernoff method and Doob inequality:

P (∃t ∈ N∗ ∶ Xη(t) > u) ≤ P (∃t ∈ N∗ ∶Mλ
t > eλu−gη(λ)) ≤ exp (− [λu − gη(λ)]) .

Inequality (7) is then obtained by optimizing over λ, carefully picking η and inverting the bound.

The interesting part of the proof is to actually build a martingale satisfying (9). First, using the so-called

method of mixtures [8] and some specific fact about exponential families already exploited by [5], we can prove

that there exists a martingale W̃ x
t such that for some function f (see Equation (15))

{Xη(t) − f(η) ≥ x} ⊆ {W̃ x
t ≥ e

x
1+η } .

From there it follows that, for every λ and z > 1, {eλ(Xη(t)−f(η)) ≥ z} ⊆ {e− ln(z)
λ(1+η) W̃

1

λ
ln(z)

t ≥ 1} and the trick is

to introduce another mixture martingale,

M
λ

t = 1 + ∫
∞

1

e
− ln(z)

λ(1+η) W̃
1

λ
ln(z)

t dz,

that is proved to satisfy M
λ

t ≥ eλ[Xη(t)−f(η)]. We let Mλ
t =Mλ

t /E[Mλ

t ].
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