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ABSTRACT

Multimodal patch matching addresses the problem of finding
the correspondences between image patches from two differ-
ent modalities, e.g. RGB vs sketch or RGB vs near-infrared.
The comparison of patches of different modalities can be done
by discovering the information common to both modalities
(Siamese like approaches) or the modality-specific informa-
tion (Pseudo-Siamese like approaches). We observed that
none of these two scenarios is optimal. This motivates us to
propose a three-stream architecture, dubbed as TS-Net, com-
bining the benefits of the two. In addition, we show that
adding extra constraints in the intermediate layers of such net-
works further boosts the performance. Experimentations on
three multimodal datasets show significant performance gains
in comparison with Siamese and Pseudo-Siamese networks†.

Index Terms— Multimodal Patch Matching, Siamese
network, Deep Metric Learning

1. INTRODUCTION AND RELATED WORK

Patch matching, the task consisting in determining the cor-
respondences between image patches, is essential for many
computer vision problems, i.e., multi-view reconstruction,
structure from motion, object-instance recognition, etc. In
this work, we aim to study the problem of matching patches
in a multimodal setting where input patches come from dif-
ferent sources, i.e. RGB images vs hand-drawn sketches or
RGB vs near-infrared images.

Broadly speaking, there are two main ways to design
local patch matching systems, either by employing hand-
crafted features or through machine learning techniques. Pi-
oneer works in patch matching [1] are based on handcrafted
features such as the SIFT descriptor/detector or some vari-
ants, e.g. [2], DAISY, [3], etc. Such approaches usually use
conventional distance to measure patch similarity, e.g. the Eu-
clidean distance, which usually does not provide an optimal
solution for matching purposes. This family of approaches
relies heavily on human expertise.

In contrast with feature engineering, another approach to
patch matching consists in using supervised algorithms to find

†Codes and resources available at http://github.com/ensv/
TS-Net

adapted features or adapted similarity functions, for given
datasets. Machine learning allows to find optimal projections
minimizing (or maximizing) the distances between positive
patches (negative patches respectively) [4, 5, 6].

Recent breakthroughs in deep learning have strongly con-
tributed to this field. One of the first works in deep metric
learning is the one of Jahrer et al. [7] introducing a Siamese
networks inspired by the LeNet5 networks, and comparing
the so-obtained features with the Euclidean distance. Since
then, Siamese networks have been very popular in the litera-
ture. Several variants have been proposed, differing by their
weight-sharing strategy [8] (Siamese vs Pseudo Siamese),
combinations of the inputs [8, 9] (two channels input images
vs multi-scale images), similarity functions (conventional
distance [8, 10, 9, 11] or using metric layers [12]).

Another important aspect when training deep networks
for patch matching is the objective function. It can be (a) the
cross entropy (binary classification loss) [12] (b) the hinge
loss [8] (c) the triplet loss [13, 14] to incorporate the notion
of relative distance, relative distance [9] (d) the global loss
which models the loss as two distributions (positive and neg-
ative) to be pushed away from each other [14].

More specifically, the question of multimodal patch
matching has been investigated recently by several authors.
[15, 16] suggested to concatenate the different modalities as
different channels of the input data. [17] experimented the
use of Siamese networks for the matching of visible/SAR
patches. [18] studied the quadratic network, a variant of the
Siamese network that takes 4 patches as input. In the context
of cross-spectral face recognition [19] proposed two compo-
nents (one before and another one after the feature extraction
network) to allow the system to transform the NIR images
into the VIS spectrum. As we write, Siamese networks are
still seen as a reference for multimodal patch matching.

One important aspect of Siamese architectures is that
the weights of feature extraction towers are shared between
the inputs. This is to say that the network is trained to ex-
tract characteristics present in both modalities. In case of
the Pseudo-Siamese architectures, the feature towers are not
shared: contrarily to the Siamese networks, the motivation
is to extract modality specific information in order to better
discriminate the pair of inputs. Our motivation in this paper
is to take advantage of these two complementary aspects and



propose a novel architecture, dubbed as TS-Net. It consists
of two sub-networks, one Siamese and one Pseudo-Siamese
networks. Their outputs are combined with a fully connected
layer, acting as a weighting scheme between the modality
specific information and the common information present in
the input patches. The overall architecture is given Figure 1.

Our second contribution is to show that adding a con-
straint on the feature embedding, by means of a contrastive
loss in the feature extraction tower, helps to boost the perfor-
mance further. The idea is to encourage the network to bring
projections of positive pairs closer in the Euclidean space. In
the extreme case, this is equivalent to make two clusters of in-
put pairs at the metric layers, allowing to easily separate them
with an hyperplane instead of having to learn an arbitrarily
complex boundary.

The rest of the paper is organized as follows: Section 2
introduces the network architecture and the training method-
ology. Section 3 discusses the datasets and presents the ex-
perimental validation of the approach. Finally, Section 4 con-
cludes the paper.

2. THE PROPOSED THREE-STREAM NETWORK

As explained before, the proposed architecture for multi-
modal patch matching, denoted as the TS-Net architecture,
is intended to combine the advantages of both Siamese and
Pseudo-Siamese networks. The overall architecture of TS-
Net is given Fig. 1(c). Each sub-network has 2 main parts:
two feature extraction towers and a metric learning module.
In the case of the Siamese network, the parameters of the fea-
ture extraction towers are shared, while for Pseudo-Siamese
networks they are distinct. TS-Net takes a pair of patches as
input, one from each modality, and predicts independently in
each sub-network whether they are similar or not. Finally, the
outputs of each sub-network are combined by an additional
fully connected (FC) layer to produce the final prediction. In
the next paragraphs, the different components of TS-Net are
described and commented.

Feature extraction network. Each tower is based on convo-
lutional and pooling layers to hierarchically extract high-level
information from the input patches. We use max-pooling lay-
ers to reduce the dimensions of the feature maps by a factor
of 2. At the end of the tower, we use a bottleneck (fully con-
nected) layer to produce a compact output vector with 128
dimensions. Inspired from [12], we use Relu activation as a
non-linear activation function.

Tower Fusion. We observed in our experiments that subtract-
ing the layers produced better performance than concatenat-
ing them, as in the original MatchNet. So the output of the
feature extraction tower are element-wise subtracted before
they are fed to the metric network.

Metric network. The metric learning part of the network

consists of three fully connected layers. It takes a vector of
128 dimensions and produces a vector of dimension two, suit-
able for binary classification.

Losses. We treat patch matching as a binary classification
problem, as we observed it performs better (also observed by
[9]) than learning a similarity function. Therefore, Siamese
and Pseudo-Siamese parts of TS-Net are trained with binary
cross-entropy loss functions.

One contribution of this paper is to introduce additional
constraints, at the feature level, by means of a contrastive loss
[20] enforcing the features coming from the two feature tow-
ers to be close to each other if the pair is positive. This will
enable the features of positive pairs to be in the hypersphere
and the features of the negative pairs to be outside the hyper-
sphere.

The fusion of Siamese and Pseudo-Siamese networks is
done by introducing an additional cross-entropy loss on the
top of the two.

More formally, let (x1, x2) be the input pair of patches
and y the class label. y = 1 means the pair is positive (similar
patches), y = 0 means the pair is negative (different patches).
We denote by Len and Lcon the cross-entropy and the con-
trastive loss, with:
(a) Len = y log(ŷ) + (1− y) log(1− ŷ) where ŷ is output of
the Softmax layer, and
(b) Lcon = y 2

QD
2 + (1 − y)2Qe

−2.77
Q D where D is the

Euclidean distance between features. Q is the margin to be
optimized. The overall loss function is then given by:
L = Ltsneten + Lsiamen + Lpseudoen + λLsiamcon +
βLpseudocon , with λ and β two cross-validated parameters
in [0, 1].

In multimodal settings, it is not always guaranteed that
the two modalities can be projected into the same subspace.
In practice, we observed that optimal performance is obtained
for λ and β set to 10−2 (values obtained by cross validating
the parameters on the validation set).

Implementation details. We initialize the weights of each
convolutional layer using the Xavier initialization and all the
FC layers with a truncated normal distribution (stddev =
0.005 andmean = 0, bias = 0.1). While the original Match-
Net is trained with plain stochastic gradient descent, we found
that training with 0.95 momentum produce equal or better
performance. We train the network with lr = 10−3 with L2
regularization of 10−3 with neither dropout nor batchnorm.
Q is optimized experimentally on VeDAI validation set and
set to be 50 for the other two datasets. During training, we ob-
serve that the λ and β parameters should be carefully set and
the best performance we obtain is for λ = 10−2, β = 10−4 or
β = 10−2 on CUHK and NIR Scene (cross validation exper-
iments). We use batch size of 32 and train with at least 150
epochs. All the experimentations are done using Tensorflow
1.4 with NVIDIA P100 or K80 GPU. Patches are normalized



Fig. 1. The detailed architectures of (a) standard Siamese networks (b) Siamese networks with the proposed additional loss on
the feature towers (c) the proposed TS-Net network with additional losses on the feature extraction tower and on the metric
network. The numbers on each rectangle indicate the output size of this layer.

to have zero mean and unit standard deviation for each modal-
ity.

3. EXPERIMENTATIONS

Our aim in this section is to provide insights about TS-Net,
its behavior and, more importantly, to draw a comparison
with Siamese and Pseudo-Siamese networks, which are con-
sidered as a reference to this task. First, we run a series of
experiments on the VeDAI dataset to validate TS-Net. It con-
sists in evaluating different ways to fuse information either
in the metric or after the feature extraction network. Next,
we show that the gain in performance is not due to an in-
crease of the number of parameters. Finally, we run experi-
ments on three public datasets to experimentally validate our
network and compare it to Siamese and Pseudo-Siamese net-
works. To report the performance, we employ the standard
evaluation protocol defined in [6], namely the 95% error rate
criteria, abbreviated 95%ErrRate, which is the percentage of
false matches present when 95% of all correct matches are de-
tected. For each experimentation, we report the average per-
formance with its standard deviation on at least 3 runs (Table
2) and 8 runs (Table 3).

Datasets The proposed approach is experimentally validated
on three different datasets: VeDAI ∗, RGB-NIR Scene † and

∗https://downloads.greyc.fr/vedai/
†https://ivrl.epfl.ch/supplementary_material/

CUHK ‡. These 3 datasets contain images from two different
modalities. It is worth mentioning that these 3 datasets have
been created for different tasks. Therefore, it will provide an
opportunity to test and compare performance on a variety of
fields. For instance, VeDAI is generally used for Vehicle De-
tection in Aerial Imagery while CUHK for face sketch synthe-
sis/recognition. VeDAI, CUHK and RGB-NIR Scene contain
respectively a total of 1246, 188 and 477 pairs of images.

Pairs of Patch Generation. For each dataset, the images are
given as sets of aligned pairs (one image from each modal-
ity). To extract patches and form pairs, we uniformly sample
each image using grid-like layout where each cell has a width
and height of 64 × 64 pixels. This gives us a collection of
corresponding positive patches. We randomly choose patches
coming from different images to form negative pairs.

To make our patch matching experiments more realistic
and challenging, we artificially augment our datasets by in-
troducing some random affine transformations between the
images of the same pair. For each pair, we generate three
additional pairs using a random combination of: (i) Rotation
(-12 to 12 degrees), (ii) Translation (-5 to 5 pixels on both
axes) and (iii) Scale (0.8 to 0.99). For the validation and test
set, we keep only one pair among the four, chosen randomly.
Table 1 summarizes the number of train, test and validation

cvpr11/
‡http://mmlab.ie.cuhk.edu.hk/archive/facesketch.

html



Table 1. Number of pairs of patches in the train, test and
validation set, for each dataset. Each set contains 50% of
positive pairs and 50% of negative ones.

Dataset Train (70%) Test (20%) Validation (10%)
VeDAI 448k 128k 64k
CUHK 113k 32k 16k
NIR Scene 427k 122k 61k

Table 2. 95%ErrRate on VeDAI validation set using TS-Net.
Rows: tower fusion after the feature extraction network (bot-
tleneck layer), FC1, FC2 or FC3 of the metric layer. ‘1 En-
tropy‘ means there is only one classification loss at the top
of the network. ‘3 Entropy‘: each sub-network also has his
own classification loss. S*: Matchnet Network with the same
number of parameters as TS-Net.

3 Entropy losses 1 Entropy loss
FC3 (TS-Net) 0.52 ± 0.07 0.93 ± 0.05
FC2 0.62 ± 0.13 0.92 ± 0.05
FC1 0.74 ± 0.07 1.03 ± 0.06
Feature tower n/a 1.05 ± 0.07
S* n/a 1.01 ± 0.11

pairs of patches. Half are positive, half are negative.

Combining Siamese and Pseudo-Siamese networks. Our
motivation is to find an efficient way to combine the infor-
mation coming from the two sub-networks. We consider four
options depending on whether this fusion (element-wise sub-
traction) is done (a) after the feature extraction tower (b) after
the first (c) second or (d) third layer of the metric network.
In the case of early fusion, all the following layers are kept
as in MatchNet. Table 2 shows the performance given by
each alternative. It also compares the performance obtained
when 1 unique entropy loss (tsneten) is used, on the top of
the network, with the performance obtained when each sub-
network has, in addition, its own loss (Ltsneten + Lsiamen

+
Lpseudoen ). Based on these results, it is clear that the addi-
tional losses are important. The two additional losses help
to guarantee the Siamese and the Pseudo-Siamese network
learn complementary representation of the modalities. Con-
sequently, this is the reason why having a late fusion (after
FC3) is more beneficial. In addition, to guarantee that the
gain in performance of TS-Net is not due to a larger number
of parameters, we also provide the performance of MatchNet
(noted as S* in Table 2) when we increase the number of pa-
rameters in the feature tower by a factor of 1.45 and the bot-
tleneck by 2 to have exactly the same number of parameters as
in TS-Net. Experimental results suggest that this is roughly
equivalent to the performance of TS-Net without additional
losses with fusion at the FC1 layer.

Influence of the contrastive loss. Table 3 presents the ex-
perimental results given by the three architectures: Siamese,
Pseudo-Siamese and TS-Net network with/without the addi-
tional contrastive loss. In general, we observed that the error

Table 3. 95%ErrRate on the 3 datasets, for Siamese net-
work alone (S), Pseudo-Siamese network alone (PS), TS-
NET, without/with the additional contrastive loss (C).

Dataset Vedai CUHK NIR Scene
S 1.16 ± 0.07 5.07 ± 0.46 14.35 ± 0.20
PS 1.50 ± 0.08 5.56 ± 0.36 16.05 ± 0.30
TS-Net 0.52 ± 0.07 3.58 ± 0.14 12.40 ± 0.34
S+C 0.84 ± 0.05 3.38 ± 0.20 13.17 ± 0.86
PS+C 1.37 ± 0.08 3.70 ± 0.14 15.60 ± 0.28
TS-Net+C 0.45 ± 0.05 2.77 ± 0.07 11.86 ± 0.27

can be reduced by up to 30 % by adding this loss, for any
architecture and dataset. More importantly, this gain can be
obtained with negligible computing costs and with little ef-
fort. During training, we found that the margin Q and the
weighting value λ and β are crucial and need to be carefully
cross-validated. We also consider replacing it by the classical
contrastive loss. However it turned out to be very sensitive
to gradient explosion. In addition, to make these parameters
less sensitive during training, we tried to normalize the fea-
tures before feeding into the loss function in order to maintain
a fixed range of distances. Unfortunately, we observed some
(marginal) drop in performance.

Comparison to Siamese and Pseudo-Siamese network. In-
tuitively, the Pseudo-Siamese network has more parameters
and degree of freedom to project the two modalities onto
the new subspace. Hence, it should produce better results
compared to the Siamese network (See Table 3). However,
in practice, we observed the opposite. We perform a grid
search on the different parameters, regularization techniques
(dropout, L2/L1), different losses (entropy/contrastive loss)
with different strategy of combining the two towers (concate-
nation/subtraction). In all the experimentations, the Siamese
network always outperform the Pseudo-Siamese network.
This behavior has also been observed by [8, 15, 17]. When
combining the Siamese and Pseudo-Siamese network, we no-
tice significant improvement over the 3 datasets. On VeDAI
and CUHK, the error is reduced by almost 50% not counting
the additional loss at the feature level. On the three datasets,
our approach outperforms the Siamese and Pseudo-Siamese
networks. This fully justifies the competitiveness of our
approach.

4. CONCLUSIONS

We proposed a novel architecture, called TS-Net, for multi-
modal patch matching. TS-Net consists of two sub-networks:
a Siamese and Pseudo-Siamese network. Each of them is re-
sponsible for learning different types of complementary char-
acteristics from both modalities. In addition, we showed that
an additional loss, at the intermediate feature level, is ben-
eficial at the price of only a small additional computational
costs. Experimental results demonstrate the superiority of our



approach over Siamese and Pseudo-Siamese networks.
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