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Abstract
This article is inspired by two works from the early 90s. The first
one is by Bogaert and Tison who considered a model of automata
on finite ranked trees where one can check equality and disequality
constraints between direct subtrees: they proved that this class of
automata is closed under Boolean operations and that both the
emptiness and the finiteness problem of the accepted language are
decidable. The second one is by Niwinski who showed that one can
compute the cardinality of any ω-regular language of infinite trees.

Here, we generalise the model of automata of Tison and Bogaert
to the setting of infinite binary trees. Roughly speaking we consider
parity tree automata where some transitions are guarded and can
be used only when the two direct sub-trees of the current node
are equal/disequal. We show that the resulting class of languages
encompasses the one of ω-regular languages of infinite trees while
sharing most of its closure properties, in particular it is a Boolean
algebra. Our main technical contribution is then to prove that it also
enjoys a decidable cardinality problem. In particular, this implies
the decidability of the emptiness problem.

Categories and Subject Descriptors Theory of Computation [For-
mal languages and automata theory]: Tree languages

Keywords Automata on infinite trees, Automata with equality and
disequality constraints, Emptiness problem, Finiteness problem.

1. Introduction
Finite automata on infinite trees are a powerful tool for decision
procedures in logic and synthesis of finite state programs from
logical specifications [19–21]. Formulas of monadic second-order
logic (MSO) over infinite trees can be translated inductively into
equivalent finite automata using the closure properties of this
automaton class. Satisfiability of a formula then corresponds to
the non-emptiness problem for the equivalent automaton, which is
decidable, for example using game-theoretic techniques (see [22]).
In [17] it is shown that not only the emptiness problem is decidable
but one can even decide whether the language of an automaton on
infinite trees is finite, countable, or uncountable (it is shown that no
other cardinal is possible).

While finite automata on infinite trees enjoy very good algorith-
mic and closure properties, their expressive power is limited. One
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line of research studies extensions of automata on infinite trees, aim-
ing at identifying more expressive models while retaining (most of)
the algorithmic and closure properties. One important such exten-
sion, which has been studied in recent years, considers models that
can express (un)boundedness properties [4–6, 8, 9, 23] that cannot
be expressed with classical tree automata or MSO.

In the present paper, we consider a different kind of extension for
automata on infinite trees, namely by a mechanism for comparing
subtrees for equality.

The theory of tree automata with equality and disequality con-
straints on finite trees has been developed during the last two decades.
The original motivation for such models was to develop tools and
algorithms for non-linear term rewrite systems. Over the last two
decades, the decidability results have been pushed to stronger and
stronger models. As one remarkable result, the theory of these au-
tomata has provided tools for solving a long standing open question,
namely the decidability of the “HOM problem” [14, 15], which
asks for a given regular language T of finite trees and a tree ho-
momorphism h, whether the image h(T ) of T under h is a regular
tree language. Another motivation is the development of automaton
models for capturing constraints in XML specification languages,
like monadic key constraints for XML documents [1].

There are two types of equality and disequality constraints: local
constraints, specified in the transitions of a tree automaton, and
global constraints, evaluated on the level of runs of the automaton.
Local constraints are of the form u = v or u 6= v, where u and v
are tree nodes. For example, a constraint 0 = 10 is satisfied in a tree
if the left subtree (addressed by the node 0) of the root is equal to
the left subtree of the right subtree (addressed by the node 10) of
the root. In tree automata with equality and disequality constraints
(TAED), the transitions are enriched with such constraints, and
can be executed at a tree node if all constraints are satisfied by
the subtree rooted at this node. For the full class of TAED, the
emptiness problem is undecidable (see [10]). For some restricted
classes, however, positive algorithmic results have been obtained.
In [2] the model restricted to constraints of direct subtrees is
analysed and it is shown that emptiness and finiteness of the accepted
language are decidable for this model. Furthermore, this class of
automata is closed under Boolean operations. Another model with
decidable emptiness problem is obtained when restricting the use
of equality tests and allowing for arbitrary disequality tests. This
class is referred to as reduction automata (see [10] and references
therein).

A model with global constraints has been defined in [12, 13]. In
these tree automata with global equality and disequality constraints
(TAGED), the constraints are specified on the state space of the
automaton. A constraint q1 = q2 (or q1 6= q2) is satisfied in a
run of the automaton if all pairs of subtrees that evaluate to q1 and
q2, respectively, are equal (or different). Originally, this model has
been defined in [11] for analysing a logic called TQL for querying



semi-structured data [7]. As it turned out to be a useful tool for
deciding logics whose expressive power goes beyond MSO, the
model has been further investigated in [12, 13], where decidability
results for emptiness on restricted classes of TAGED have been
obtained. These results have then been further generalised in [1] to
the full class of TAGED (even enriched with arithmetic constraints).
Besides the use of TAGED for the logic TQL, there are variants of
monadic second-order logic with equality and disequality tests that
characterise the class of TAGED, and the algorithmic results lead to
decision procedures for these versions of MSO [1, 13].

This brief overview on tree automata with equality and disequal-
ity constraints over finite trees, shows that this is a very rich theory
that has produced powerful decidability results with interesting ap-
plications.

In this paper, we make a first step of extending this theory to
infinite trees. To the best of our knowledge, there is no existing work
on this subject. We study the model with local constraints between
siblings, which was the first one for the case of finite trees for which
the emptiness problem was shown to be decidable [2].

For infinite trees, we prove that the cardinality problem (that
asks for the cardinality of a given language) is decidable for parity
tree automata with equality and disequality tests between siblings.
We restrict to binary trees to simplify the presentation. In this case,
a transition of such an automaton either has no constraint, or it has
the constraint = or 6=, meaning that the two subtrees of the current
node are equal, resp. not equal.

We prove that the class of tree languages defined by these au-
tomata forms a Boolean algebra, and we show how equality con-
straints can be eliminated (making use of alternating tree automata
[16]). Our main contributions are decidability results for the empti-
ness and finiteness problems for automata on infinite trees with
equality and disequality constraints. The methods used for finite
trees do not generalise to infinite trees. For our solution, we have
to develop different methods for dealing with different acceptance
conditions.

We first present an algorithm that identifies for each state
of a given Büchi tree automaton with constraints whether the
unconstrained language accepted from this state is empty, finite,
countable or uncountable (the unconstrained language being the one
accepted by the automaton in which the equality and disequality
constraints are removed). Distinguishing these cases, we then
iteratively refine the knowledge on the constrained language for
each state: If the unconstrained language is empty or finite, one can
directly check which trees are contained in the constrained language.
Countable regular languages of infinite trees can be characterised
in terms of regular languages of finite trees [17], and thus for this
case we can build on the results for automata with constraints on
finite trees. This allows us to test whether the constrained language
is empty, finite, or countable in case the unconstrained language is
countable. Based on the information gathered in such an iteration,
we modify the automaton (possibly changing the unconstrained
languages of the states but not the constrained ones) and run the
test again for each state. If no new states are identified as empty,
finite, or countable, we can prove that the remaining states all accept
an uncountable constrained language, using a characterisation of
uncountable tree languages from [17].

We then develop an algorithm for co-Büchi automata using a
fixpoint computation that in each step invokes our algorithm for
Büchi automata. Finally we sketch an extension of our ideas to the
case of full parity tree automata.

The paper is structured as follows. In Section 2 we introduce
basic definitions and some results on automata with equality and
disequality constraints concerning closure properties and expres-
siveness. Section 3 then defines the decision problems concerning
the cardinality of languages and gives some examples. In Section 4

we study the cardinality of constrained languages in the case that
the unconstrained language is countable. Building on these results
we then develop an algorithm for determining the cardinality of the
constrained language of a Büchi tree automaton in Section 5. In
Section 6 we present the ideas for solving the cardinality problem
for co-Büchi automata, and in Section 7 we explain how to extend
the ideas to the full class of parity tree automata.

2. Definitions and Preliminary Results
2.1 Words
An alphabet is a finite set A of letters. In the sequel A∗ denotes
the set of finite words over A, and Aω the set of infinite words
over A. The empty word is written ε; the length of a word u is
denoted by |u|. For any k ≥ 0, we let Ak = {u | |u| = k},
A≤k = {u | |u| ≤ k} and A≥k = {u | |u| ≥ k}. We let
A+ = A∗ \ {ε}. Let u ∈ A∗ be a finite word and v ∈ A∗ ∪ Aω
be a (possibly infinite) word. Then u · v (or simply uv) denotes
the concatenation of u and v; the word u is a prefix of v, denoted
u v v, iff there exists a word w such that v = u · w. We denote by
u @ v the fact that u is a strict prefix of v (ie. u v v and u 6= v).

2.2 Trees
Let A be some finite alphabet. An A-labelled infinite tree is a
mapping t : {0, 1}∗ → A. Elements of {0, 1}∗ are called nodes
and we refer to ε as the root. For a node u, we refer to u0 (resp. u1)
as the left son (resp. right son) of u; the nodes u0 and u1 are said
to be siblings. A branch is an infinite word in {0, 1}ω .

For a given tree t and a node u ∈ {0, 1}∗ we denote by t[u]
the subtree of t rooted at u, that is the tree defined by letting
t[u](v) = t(uv) for every v ∈ {0, 1}∗. For a node u, we refer
to t[u0] (resp. t[u1]) as the left (resp. right) subtree rooted at u.

With any A-labelled tree t we associate a unique (A× {=, 6=})-

labelled tree denoted t
?
= obtained by annotating every node u in

t by an extra information regarding on whether the left and the
right subtrees rooted at u are equal or not. More formally, for every
u ∈ {0, 1}∗ one lets

t
?
=(u) =

{
(t(u),=) if t[u0] = t[u1]

(t(u), 6=) if t[u0] 6= t[u1]

A regular tree is a tree t that contains finitely many distinct
subtrees, ie. such that the set {t[u] | u ∈ {0, 1}∗} is finite. Let
RegTrees denote the set of regular trees.

Example 1. Let t be the {a, b}-labelled tree defined by t(ε) = a,
t(u0) = a and t(u1) = b for every node u ∈ {0, 1}∗. The tree
t is regular because t[u0] = t[0] and t[u1] = t[1] for every node

u ∈ {0, 1}∗. One can also remark that t
?
=(u) = (t(u), 6=) for every

node u ∈ {0, 1}∗.
An equivalent definition of regular trees is as follows (see also

[22]). Let G = (V,E ⊆ V × {0, 1} × V ) be an edge-labelled
finite directed graph, let r be a special vertex called the root and let
ξ → A be a function assigning a label in A to every vertex. Assume
moreover that E is deterministic, that is, for every vertex v there is
exactly one vertex v0 (resp. v1) in V such that (v, 0, v0) ∈ E (resp.
(v, 1, v1) ∈ E). From (G, r, ξ) we define a regular tree t by letting
t(u) = ξ(vu) where vu is the (unique) vertex that is reached from r
in G by following a path labelled by u. See Figure 1 for an example.

2.3 Tree Automata, ω-Regular Tree Languages
A (non-deterministic) parity tree automaton over an alphabet A is
a tuple A = (Q,A, qin,∆,Col) where Q is a finite set of control
states, A is a finite labelling alphabet, qin ∈ Q is the initial state,
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Figure 1: A graph (on the left) G; the regular tree associated with G
where the root is the node labelled by a

∆ ⊆ Q× A×Q×Q is the transition relation and Col : Q→ N
is a colouring function.

Let t be an infinite A-labelled tree. Then a run of A on t is
a Q-labelled tree r such that (r(u), t(u), r(u0), r(u1)) ∈ ∆ for
every u ∈ {0, 1}∗. A run r is accepting if r(ε) = qin and for
every branch α1α2 · · · ∈ {0, 1}ω , lim inf(Col(r(α1 · · ·αi)))i≥0

(the least colour that appears infinitely often) is even. We say that
the branch satisfies the parity condition. A tree t is accepted by A
if there is an accepting run of A on t.

In case all states are assigned the same (even) colour by Col, we
refer to A as a safety automaton; in case the colour given by Col
are either 0 or 1, we refer to A as a Büchi automaton and to the
states in Col−1(0) as final states (and we may in that case describe
Col by explicitly giving the final states instead of Col). A co-Büchi
automaton is a parity automaton using colours 1 and 2.

Let q be a state. Say that q is reachable if it can be reached from
the initial state by transitions. We say that q is productive if there
is some tree t, some accepting run r over t and some node u such
that r(u) = q.

We denote by L(A) the set of all trees accepted by A. We refer
to such a language as an ω-regular tree language and we denote by
REG the set of ω-regular languages. The following is a well-known
result [20].

Theorem 1. The class REG is an effective Boolean algebra.

2.4 Tree Automata With Equality And Disequality
Constraints Between Siblings

A parity tree automaton with (equality and disequality) con-
straints over an alphabet A is a parity tree automaton A over the
alphabet A× {=, 6=}. Hence, viewed as a standard tree automaton,
it recognises a language of A× {=, 6=}-labelled trees. However, it
will mainly be used to define languages of A-labelled trees: for that
we define

Lcon(A) = {t | t
?
= ∈ L(A)}

Remark 1. An alternative way of thinking of an automaton with
constraints processing an A-labelled tree is by considering it as
using guards: a transition (q, (a, ι), q0, q1) can only be fired in a
node labelled by a where both subtrees are equal (resp. different) in
case ι is = (resp. 6=).

In the following, we will refer to Lcon(A) as the language
recognised by A. Sometimes we explicitly refer to Lcon(A) as the
constrained language of A to stress that it satisfies the constraints

from the transitions. We denote by REG
?
= the class of languages

recognised by automata with equality and disequality constraints.
The following is an immediate consequence of the definition of

REG
?
= and of Theorem 1.

Theorem 2. The class REG
?
= is an effective Boolean algebra.

We shall for ease of presentation write (q, (a,⊥), q0, q1) ∈ ∆
to mean that both (q, (a,=), q0, q1) and (q, (a, 6=), q0, q1) belongs
to ∆. Hence, ⊥ can be understood as a no-constraint symbol.

Obviously, every standard tree automaton can easily be turned
into an equivalent tree automaton with constraints (using ⊥ in all
transitions). Furthermore, it is clear that the language of {a, b}-
labelled trees L = {t | t[0] = t[1]} can be recognised by some tree
automaton with constraints but not by a standard tree automaton.
This is summarised in the following fact.

Fact 1. The class REG is strictly included in REG
?
=.

Later on, it will be useful to consider the unconstrained version Â
of a tree automaton with constraints A. In the spirit of Remark 1, Â
mimicsA but ignores the guards. More formally, starting fromA =
(Q,A × {=, 6=}, qin,∆,Col) we let Â = (Q,A, qin,∆

′,Col)
where ∆′ = {(q, a, q0, q1) | (q, (a,=), q0, q1) ∈ ∆ or (q, (a, 6=
), q0, q1) ∈ ∆}. We refer to L(Â) as the unconstrained language
of A.

Fact 2. For any automaton with equality and disequality constraints
A one has Lcon(A) ⊆ L(Â).

2.5 Extended Tree Automata
We want to allow our automata to directly check, in some node u,
that t[u] is equal to some regular tree. This will not add any expres-
sive power to our model (both the constrained and the unconstrained
one) but it will later substantially simplify the presentation. We first
give the definition in the model without constraints.

An extended tree automaton is a tuple A = (Q,A, qin,
∆,Col) whereQ is a finite set of control states,A is a finite labelling
alphabet, qin ∈ Q is an initial state, Col : Q → N is a colouring
function and ∆ is a finite subset of Q × A × (Q ∪ RegTrees) ×
(Q ∪ RegTrees) called the (extended) transition relation.

A run ofA on t is a (Q∪RegTrees∪{]})-labelled tree r (where
] is a dummy symbol) such that the following holds.

1. For every node u ∈ {0, 1}∗ with r(u) ∈ Q, one has that
(r(u), t(u), r(u0), r(u1)) ∈ ∆;

2. For every node u ∈ {0, 1}∗ with r(u) ∈ RegTrees one has
r(u) = t[u] and for every v such that u @ v one has r(u) = ].

A run r is accepting if r(ε) = qin, and every branch α1α2 · · · ,
such that r(α1 · · ·αi) ∈ Q for all i ≥ 0, satisfies the parity
condition. A tree t is accepted by A if there is an accepting run
of A on t.

Extended tree automata with equality and disequality constraints
are defined in a similar way but working on A× {=, 6=}-labelled
tree; in particular we can safely assume that any regular trees used in

the transition relation is of the form t
?
= for some A-labelled regular

tree t.
For every regular tree t, it is straightforward to build a safety

tree automaton that accepts only t. This implies that extended tree
automata are not more expressive than classical ones.

Fact 3. For every extended tree automaton (possibly with con-
straints) one can build a (non-extended) tree automaton that recog-
nises the same language and uses the same set of colours in its
acceptance condition.

2.6 Getting Rid of Equality Constraints
In this paper we are interested in computing the cardinality of
languages of the form Lcon(A). For that we will consider special
cases of automata, automata with disequality everywhere, that



correspond to automata with a transition relation ∆ ⊆ Q ×
(A × {6=}) × Q × Q. Obviously, these automata are strictly
less expressive than the full class of automata with equality and
disequality constraints. However, Theorem 3 below shows that
one can remove equality constraints and even require disequality
constraints in all transitions without changing the cardinality of the
language.

Theorem 3. Let A be a parity automaton with equality and
disequality constraints. Then one can build an automaton B with
disequality everywhere (over an alphabet with two new symbols)
that is such that Lcon(A) and Lcon(B) have the same cardinality.
If A is a safety (resp. Büchi) automaton, then so is B.

Proof sketch. We only sketch the idea.
We use the concept of alternating automata, which can send

several states into the same direction in the tree. These states then
independently produce runs on the same subtree. In [16] it is shown
that this does not increase the expressive power of the automaton
model: each alternating parity automaton can be transformed into
an equivalent nondeterministic one. Furthermore, when starting
from an alternating safety or Büchi automaton, the equivalent
nondeterministic one has the same type of acceptance condition.

From a parity automaton with equality and disequality con-
straints A, we build an alternating automaton that replaces tran-
sitions (q, (a,=), q0, q1) with a transition (q, (a, 6=), {q0, q1}, ζ)
that sends both q0 and q1 to the left subtree (thus checking whether
both can accept the left subtree), and checks that the right subtree is
a fixed regular tree ζ over a new alphabet of two symbols. Further-
more, ζ is chosen such that it satisfies disequality everywhere. One
can show that the resulting language has the same cardinality as the
one of A.

We then apply the result from [16] to obtain an equivalent
nondeterministic automaton.

2.7 The Regular Tree Membership Problem
Let A be an extended automaton with constraints and let t be a
regular tree. The following result shows that we can decide whether
t ∈ Lcon(A).

Proposition 1. Let A be an extended automaton with equality and
disequality constraints and let t be a regular tree. Then one can
decide whether t ∈ Lcon(A).

Proof. Let (G = (V,E), r, ξ) be a finite graph defining t. We can

build t
?
= by checking for each node v whether the two subtrees are

equal or different. Checking whether (G, v0, ξ) and (G, v1, ξ) are
equal for the two successor nodes v0, v1 of v is the same as checking
(strong) bisimilarity of the associated transitions systems, which can
even be done efficiently (see eg. [18]). By definition of Lcon(A),

we now need to check whether t
?
= ∈ L(A). This can be done, for

example, by constructing a safety tree automaton that accepts only

t
?
=, and then test the intersection with A for emptiness, which is

decidable (see [22]).

3. Cardinality Problems for Constrained
Languages

One of the most important decision problems for automata is
the emptiness problem (decide whether the accepted language
of a given automaton empty). In terms of logic, this corresponds
to the satisfiability problem. Furthermore, many other decision
problems reduce to the emptiness problem by applying Boolean
operations (for example, the equivalence problem for automata). A
generalisation of the emptiness problem is the cardinality problem:

Definition 1 (Cardinality Problem). The cardinality problem asks,
for a given automaton with equality and disequality constraints A
to compute the cardinality of Lcon(A).

Obviously, the decidability of the cardinality problem implies the
decidability of the emptiness problem. Furthermore, it generalises
the finiteness problem, which is to decide for a given automaton
whether its language is finite.

3.1 Cardinality Profiles
We prove in the following sections that the cardinality problem
is decidable for parity automata with equality and disequality
constraints A. We make use of the cardinality profile κA of A,
which is a mapping that assigns to each state q of A the cardinality
of Lcon(Aq). Denote by ℵ0 the cardinality of the set of natural
numbers, and by 2ℵ0 the cardinality of the set of the real numbers.
We prove that Lcon(Aq) is either finite or in {ℵ0, 2ℵ0}, that is, κA
is a mapping κA : Q → N ∪ {ℵ0, 2ℵ0} (for regular languages of
infinite trees this is shown in [17]).

In Section 5 we give an algorithm that directly computes the car-
dinality profile for Büchi automata with disequality everywhere. It
relies on computing the cardinalities of the unconstrained languages
for each state. In the case where L(Âq) is countable, we propose
in Section 4 a technique to compute the cardinality of Lcon(Aq)
(which works for general parity automata, not only Büchi automata).
In case Lcon(Aq) is finite, q is replaced in A by the finitely many
regular trees it accepts. Iterating this process finally yields the cardi-
nality profile.

The two examples below illustrate that the cardinality of the
constrained and unconstrained language of a state can differ.

Example 2. Let ta be the regular tree whose root is labelled by a
and such that any left child is labelled by a and any right child is
labelled by b, ie. ta(ε) = a, ta(u0) = a and ta(u1) = b for any
u ∈ {0, 1}∗. Let tb be defined similarly but requiring that the root is
labelled by b. Note that ta[0] = ta and ta[1] = tb (resp. tb[0] = ta
and tb[1] = tb). Also remark that any siblings in ta (resp. tb) are
distinct.

Let A be the (extended) safety automaton with disequality con-
straints everywhere (QA, {(a, 6=), (b, 6=)}, qin,∆A,Col) where
QA = {qin, qb} and transitions (qin, (a, 6=), qin, tb), (qin, (a, 6=
), qb, tb), (qb, (b, 6=), ta, tb). Then L(Â) consists of those {a, b}-
labelled trees such that every right subtree is equal to tb, and the
leftmost branch contains at most one b (which is not at the root).
Thus, |L(Â)| = ℵ0.

However, the constrained language consists only of a single tree,
namelyLcon(A) = {ta}, which is the tree that does not contain any
b on the leftmost branch. This follows from the fact that a b-node on
the leftmost branch would induce a left subtree equal to tb, violating
the disequality constraint at the parent.

This gives an example of a safety automaton such that |L(Â)| =
ℵ0 while |Lcon(A)| is finite (in this case equal to 1 but one could
easily get any finite cardinality).

Example 3. Building on top of Example 2, we can construct a
safety automaton with disequality constraints everywhere B such
that |L(B̂)| = 2ℵ0 while Lcon(B) is empty. Indeed, assume that B
works by checking that the leftmost branch is labelled only by c’s
and that any right subtree of a node on that branch is such that the
root is labelled by c, the left subtree is ta while the right subtree is
accepted by the automaton A from Example 2:
B = (QB, {(a, 6=), (b, 6=), (c, 6=)}, qc,∆B,Col) with QB =

QA ∪ {qc, q′c} and ∆B = ∆A ∪ {(qc, (c, 6=), qc, q
′
c), (q

′
c, (c, 6=

), ta, qin)}.
Now, because L(Â) contains more than one tree different from

ta, it is easily seen that |L(B̂)| = 2ℵ0 (because for every node in



0∗11 we have two different possible trees to plug in). But because
Lcon(A) = {ta} it directly follows that Lcon(B) = ∅.

3.2 Infinity Profiles
In Section 6 we show for co-Büchi automata how to compute a
profile that does not distinguish the two infinite cardinalities, we
call this the infinity profile.

Formally, the infinity profile pA of A is defined by letting for
every state q ∈ Q,

pA(q) =

{
Lcon(Aq) if |Lcon(Aq)| <∞
∞ otherwise

Note that for states with finite languages it does not only assign the
cardinality of the language, but the language itself. Since we want
to compute with these profiles for parity automata with disequality
everywhere, we first show that such languages only consist of regular
trees, and thus can be explicitly represented.

Lemma 4. Let A be a parity automaton with disequality every-
where. If Lcon(A) is finite, then it contains only regular trees.

Proof. Assume that Lcon(A) contains a non-regular tree t. Let r be
an accepting run of A on t. Since t is non-regular, it has infinitely
many different subtrees. Hence, there is a state q and infinitely many
nodes u1, u2, · · · such that all the subtrees t[ui] are different and
r(ui) = q for all i. This means that Lcon(Aq) is infinite. If we now
pick one occurrence of q at a node u in r, we can replace the subtree
by infinitely many different subtrees that are all accepted from q
while retaining the disequality constraints (there are only finitely
many nodes above u at which disequality constraints have to be
satisfied). Hence, Lcon(A) is also infinite.

The next result shows that it is possible to compute the cardinality
profile of an automaton from its infinity profile. The proof is a direct
construction of either 2ℵ0 many different trees or the proof that
there are only countably many.

Proposition 2. Let A = (Q,A × {6=}, qin,∆,Col) be a parity
automaton with disequality everywhere and let pA be its infinity
profile. Then for every state q ∈ Q one can compute the cardinality
of Lcon(Aq), which belongs to N ∪ {ℵ0, 2ℵ0}.

Hence, computing the infinity profile is sufficient in order to
solve the cardinality problem.

4. The Case of Countable Unconstrained
Languages

In this section, we show that we can determine the cardinality of
Lcon(A) for a parity tree automaton with equality and disequality
constraints under the assumption that L(Â) is countable. For this,
we reduce the computation of the cardinality ofLcon(A) to a similar
question but for automata on finite trees (for which the solution is
known from [2]). So we first recall the setting and central results
for automata with constraints on finite trees. Then we explain a
characterisation of ω-regular tree languages of countable cardinality
from [17]. Finally we give the reduction.

4.1 Finite Trees
A tree domain is a prefix-closed subset Dom of {0, 1}∗ such that
for every u ∈ {0, 1}∗ one has u0 ∈ Dom⇔ u1 ∈ Dom.

We use two finite alphabets A2 and A0 for the internal (binary)
nodes and the leafs, respectively. An (A2, A0)-labelled finite tree
is a mapping t : Dom → A2 ∪ A0 where Dom is a finite tree
domain, and t(u) ∈ A2 iff u0, u1 ∈ Dom. Elements of Dom are
called nodes; we refer to ε as the root and to maximal elements (for

prefix ordering) in Dom as leaves. For a node u, we refer (when
exists) to u0 (resp. u1) as the left child (resp. right child) of u.

For a node u ∈ Dom we denote by t[u] the subtree of t rooted
at u, that is, the finite tree with domain u−1Dom = {v | uv ∈
Dom}) defined by letting t[u](v) = t(uv) for any v ∈ u−1Dom.
For a (non-leaf) u, we refer to t[u0] (resp. t[u1]) as the left (resp.
right) subtree rooted at u.

A (non-deterministic) finite-tree automaton over (A2, A0) is
a tuple A = (Q,A2, A0, qin,∆, Acc) where Q is a finite set of
control states, qin ∈ Q is an initial state, ∆ ⊆ Q×A2 ×Q×Q is
the transition relation andAcc ⊆ A0×Q is an acceptance condition.

Let t : Dom → A2 ∪ A0 be a finite (A2, A0)-labelled tree.
Then a run of A on t is a mapping r : Dom → Q such that
(r(u), t(u), r(u0), r(u1)) ∈ ∆ for every node u ∈ {0, 1}∗ that is
not a leaf. A run r is accepting if r(ε) = qin, and for every leaf
u ∈ Dom one has (t(u), r(u)) ∈ Acc. A tree t is accepted by A if
there exists an accepting run of A on t. We denote by L(A) the set
of all trees accepted by A. We refer to such a language as a regular
tree language.

With any (A2, A0)-labelled finite tree t we associate an (A2 ×
{=, 6=}, A0)-labelled tree denoted t

?
= obtained by annotating every

binary node u in t by an extra information regarding on whether the
left and the right subtrees rooted at u are equal or not (or whether u
is a leaf). More formally, for every u ∈ {0, 1}∗ one lets

t
?
=(u) =


t(u) if u is a leaf
(t(u),=) if t[u0] = t[u1]

(t(u), 6=) if t[u0] 6= t[u1]

A finite-tree automaton with (equality and disequality) con-
straints over an alphabet A is a finite-tree automaton A over
(A2 × {=, 6=}, A0). As for infinite trees, we define the constrained
language Lcon(A) of (A2, A0)-labelled finite trees by

Lcon(A) = {t | t
?
= ∈ L(A)}

Bogaert and Tison proved in [2] that one can compute the
cardinality of such languages.

Theorem 4 ([2]). LetA be a finite-tree automaton with equality and
disequality constraints. Then one can compute |Lcon(A)|. Moreover,
in case it is finite Lcon(A) can be computed.

4.2 Countable ω-Regular Tree Languages
We first recall a result due to Niwinski [17] characterising countable
ω-regular tree languages.

Let X = {x1, . . . , x`} be a set of substitution symbols that we
use as leaf alphabet A0. Let t : Dom → A ∪ X be an (A,X)-
labelled finite tree and let t1, . . . , t` be some A-labelled infinite
trees. Then we denote by t[x1/t1,...,x`/t`] the infinite A-labelled
tree built from t by replacing every leaf labelled by xi by the tree ti.
Formally: t[x1/t1,...,x`/t`](u) = t(u) if u ∈ Dom is not a leaf and
t[x1/t1,...,x`/t`][u] = ti if u is a leaf with t(u) = xi.

Theorem 5 ([17]). Let B be a parity tree automaton (without con-
straints) over an alphabet A. Then one can compute the cardinality
of L(B). Moreover, if this cardinality is at most countable one can
compute the following:

• A number ` and a finite set {t1, . . . , t`} of regular trees over an
alphabet A;

• A finite-tree automaton C over (A,X) with X = {x1, . . . , x`}
such that L(B) = {t[x1/t1,...,x`/t`] | t ∈ L(C)}.

Fix an automaton B = (Q,A, qin,∆,Col) that recognises a
countable set of infinite trees and a set B = {t1, . . . , t`} as in
Theorem 5. Without loss of generality we can assume that B is



closed under subtrees (ie. for every t ∈ B and every node u,
t[u] ∈ B): if needed, one adds the missing regular subtrees to
B. Also fix a set X = {x1, . . . , x`} as in Theorem 5. For every
(A,X)-labelled finite tree t, we say that t is B-reduced if for every
non-leaf node u in t, the infinite tree t[x1/t1,...,x`/t`][u] does not
belong to B.

Lemma 5. For every (A,X)-labelled finite tree t there exists a
unique (A,X)-labelled finite B-reduced tree t′ such that

t[x1/t1,...,x`/t`] = t′[x1/t1,...,x`/t`]

Proof. The tree t′ is built by considering all nodes u in t by length
lexicographic ordering and replacing t[u] by a single leaf labelled
xi whenever t[u] = ti for some ti ∈ B. Uniqueness comes from
the fact that two different B-reduced trees t1 and t2 lead to different
trees t1[x1/t1,...,x`/t`] and t2[x1/t1,...,x`/t`].

Lemma 6. The set of B-reduced trees is regular.

Proof. Let a ∈ A and t0, t1 be two trees: denote by a(t0, t1) the tree
with root labelled by a, left son t0 and right son t1. Note that a tree t
is B-reduced if and only if every node labelled by some a with two
children leaves labelled by some x0,x1 is such that a(t0, t1) /∈ B
for t0, t1 ∈ B. Hence an automaton accepting B-reduced trees
simply check this property.

Lemma 7. The following set is regular:

TL ={t | t is an (A,X)-labelled finite tree s.t.

t[x1/t1,...,x`/t`] ∈ L(B)}

Proof. For every state q of B, call Bq the automaton obtained
from B by taking q as the initial state. For every tree ti let Qi
be the set of states q such that Bq accepts ti. An automaton
B′ = (Q,A, qin,∆, Acc) accepting the set TL simply mimics B;
acceptance at the leaf requiring that a variable xi corresponds to a
state q ∈ Qi, ie. we let Acc =

⋃
i=1...`{xi} ×Qi.

Lemma 8. There exists a regular language Rd of (A,X)-labelled
finite trees such that

(i) Rd consists only of reduced trees;
(ii) L(B) = {t[x1/t1,...,x`/t`] | t ∈ Rd};

(iii) Rd and L(B) have the same cardinal.

Proof. Define Rd to be the set of B-reduced trees intersected with
the language TL from Lemma 7. It is regular because it is defined as
the intersection of two regular languages. Item (i) is by definition,
while items (ii) and (iii) follows from Lemma 7 and Lemma 5
(together with the fact that two differentB-reduced trees, lead to two
different infinite tree after substitution of the xi’s by the ti’s).

4.3 Back to Automata with Equality and Disequality
Constraints

The following fact relates the sibling equalities for a B-reduced tree
t and its infinite version t[x1/t1,...,x`/t`] after substitution .

Fact 9. Let t be an (A,X)-labelled finite B-reduced tree. Then for

every non-leaf node u in t one has t
?
=(u) = t

?
=
[x1/t1,...,x`/t`]

(u).

We are now ready to go back to automata with equality and
disequality constraints and give an analogue of Lemma 8.

Lemma 10. Let A be a parity automaton with equality and dise-
quality constraints such that L(Â) is countable. One can construct
an automaton C with equality and disequality constraints on finite
trees such that

(i) Lcon(C) consists only of reduced trees;
(ii) Lcon(A) = {t[x1/t1,...,x`/t`] | t ∈ L

con(C)};
(iii) Lcon(C) and Lcon(A) have the same cardinality.

Proof. Apply Lemma 8 to A viewed as a standard parity tree
automaton for (A × {=, 6=})-labelled trees. The resulting set Rd
comes with an automaton C. Fact 9 implies that the properties
transfer to the constrained languages of A and C.

Combining Lemma 10 and Theorem 4 directly leads to the
following result.

Theorem 6. Let A be an automaton with equality and disequality
constraints on infinite trees. If L(Â) is countable, then one can
compute the cardinality of Lcon(A), and in case it is finite Lcon(A)
consists only of regular trees and can be effectively computed.

5. Büchi Automata
We now turn to the solution of the cardinality problem for Büchi au-
tomata. We give an algorithm that takes as input a Büchi automaton
A with disequality constraints everywhere (we can always safely
assume this thanks to Theorem 3) and outputs its cardinality profile.
The algorithms identifies states with a countable unconstrained lan-
guage and determines the cardinality of the constrained language
based on the techniques developed in Section 4. If the constrained
language is finite, it basically replaces the state by the finitely many
regular trees in the constrained language. This is iterated until no
new states with countable unconstrained language are found.

We start by introducing two operations to be applied for states
with a finite constrained language. Then we present the algorithm in
more detail, and finally prove its correctness.

5.1 Replacing States by Finite Languages
We now give two constructions used in our algorithm. Each of them
takes an (extended) automaton with disequality everywhere A and
produces another automaton B that is such that (when used in the
right context) (i) Lcon(A) = Lcon(B); and (ii) L(B̂) ⊆ L(Â).

5.1.1 The operation A 7→ Aq 7→∅
Let A = (Q,A, qin,∆,Col) be an extended automaton with dise-
quality everywhere. Let q ∈ Q be a state such that Lcon(Aq) = ∅.
Then we define a new automatonAq 7→∅ = (Q\{q}, A, qin,∆′,Col)
where ∆′ is obtained from ∆ by only keeping transitions that do
not involve q, ie. ∆′ = {(p, (a, 6=), p0, p1) ∈ ∆ | p, p0, p1 6= q}.

The following is immediate.

Fact 11. For every extended automaton with disequality everywhere
A and for every state q such that Lcon(Aq) = ∅, one has that
Lcon(A) = Lcon(Aq 7→∅) and L(Âq 7→∅) ⊆ L(Â).

5.1.2 The operation A 7→ Aq 7→t1,...,tn
Let A = (Q,A, qin,∆,Col) be an extended automaton with
disequality everywhere. Let q ∈ Q be a state such that Lcon(Aq) =
{t1, . . . , tn} is a finite set of regular trees. Then we define a new
automaton Aq 7→t1,...,tn = (Q \ {q}, A, qin,∆′,Col) where ∆′

is obtained from ∆ by replacing every transition of the form
(p, (a, 6=), q0, q1) with q0 and/or q1 being equal to q by all the
transitions obtained by substituting occurrences of q with elements
of {t1, . . . , tn}, where in case q0 = q1 = q the trees substituted for
the two occurrences of q have to be different.

The following is immediate

Fact 12. For every extended automaton with disequality everywhere
A and for every state q such that Lcon(Aq) = {t1, . . . , tn}, one
has that Lcon(A) = Lcon(Aq 7→t1,...,tn) and L( ̂Aq 7→t1,...,tn) ⊆
L(Â).



Algorithm 1 Solve the cardinality problem for Büchi automata

Input: Tree automaton with disequality constraints everywhere
A = (Q,A, qin,∆, Acc)

Data Structure:
Set S ← Q
Automaton B ← A
Function κ : Q→ N ∪ {ℵ0, 2ℵ0}; κ(q)← 2ℵ0 for all q

Code:
1: while ∃q ∈ S s.t. |L(B̂q)| ≤ ℵ0 do
2: κ(q)← |Lcon(Bq)|
3: if κ(q) = 0 then
4: B ← Bq 7→∅
5: else if κ(q) < ℵ0 then
6: Let Lcon(Bq) = {t1, . . . , tn}
7: B ← Bq 7→t1,...,tn
8: end if
9: S ← S \ {q}

10: end while
11: return κ

5.2 Main Algorithm
Our algorithm (Algorithm 1) takes as input an automaton with dise-
quality constraints everywhere A = (Q,A, qin,∆, Acc). The algo-
rithm identifies states whose unconstrained language is countable
(which is decidable according to Theorem 5), and then determines
the cardinality of the constrained language (Theorem 6). States for
which the constrained language is finite are substituted by the reg-
ular trees in this language (which can be computed according to
Theorem 6) using the operation Aq 7→t1,...,tn , and states with empty
constrained language are eliminated using the operationAq 7→∅. Note
that these states remain in the state set because we want to keep the
set fixed. However, they become unreachable by these operations.

The modifications do not change the constrained language
accepted by the automaton (Facts 11 and 12). However, it might
change the unconstrained languages. In particular, an unconstrained
language that was uncountable may become countable by such
a modification (see Example 4 below). The algorithm iterates
this process until no new states with countable unconstrained
language are found, and returns a cardinality profile κ. We prove
that if the acceptance condition in A is a Büchi condition, then
κ is the cardinality profile of A. This proof basically amounts
to showing that the states for which the unconstrained language
is uncountable upon termination of the algorithm, also have an
uncountable constrained language.

Example 4. Consider the following execution of Algorithm 1 on
automaton B of Example 3. It first detects that |L(B̂qin)| ≤ ℵ0,
computes κ(qin) = 1 and therefore modifies B by changing it to
Bqin 7→ta . Next (for the new B), |L(B̂q′c)| ≤ ℵ0 and the algorithm
computes κ(q′c) = 0. Then, the algorithm detects that κ(qc) = 0.
Recall that the unconstrained language of qc is uncountable in the
original automaton. Finally, it detects that κ(qb) = 1.

5.3 Correctness
Fix an automaton with disequality constraints everywhere A =
(Q,A, qin,∆, Acc) and let B denote the automaton B at the end of
the execution of Algorithm 1.

For the correctness proof, we define a partitionQ∅]Qf]Qc]Qu
of Q by letting Q∅ = {q | κ(q) = 0}, Qf = {q | 1 ≤ κ(q) < ℵ0},
Qc = {q | κ(q) = ℵ0} and Qu = {q | κ(q) = 2ℵ0}.

Note that the states from Q∅ and Qf are not reachable anymore
in B because they have been substituted by the regular trees from
their languages in the transitions.1

Remark that thanks to Fact 11 and Fact 12 we get the following
invariant for Algorithm 1.

Lemma 13. At any moment in the execution of Algorithm 1 one has
Lcon(Bq) = Lcon(Aq).

The preceding invariant directly implies the correctness of the
sets Q∅, Qf and Qc.

Lemma 14. For every q ∈ Q∅ ∪Qf ∪Qc, one has κ(q) = κA(q).

The next lemma completes the picture.

Lemma 15. IfA is equipped with a Büchi condition, then for every
state q ∈ Qu one has κ(q) = κA(q) = 2ℵ0 .

The proof is a technical construction showing how to build
uncountably many trees in the constrained language of each state
in Qc. It is based on a result of Niwinski [17] that characterises
uncountable ω-regular languages.

Combining Lemma 15 and Theorem 3 we obtain the following
decidability result.

Theorem 7. The cardinality problem is decidable for Büchi tree
automata with equality and disequality constraints.

6. Co-Büchi Automata
A natural question is whether Algorithm 1 works for other conditions
than the Büchi condition, a first candidate here being the co-Büchi
condition. We negatively answer this question, by exhibiting below
a co-Büchi automaton with disequality constraints everywhere A
such that |L(Aq)| = 2ℵ0 for all states q of the automaton, while
Lcon(Aq) = ∅. On such an automaton Algorithm 1 wrongly
declares κA(q) = 2ℵ0 for all states q.

More precisely, define A = ({qa, qb}, {a, b}, qa,∆,Col)
where Col(qa) = 2 and Col(qb) = 1, and ∆ consists of those
transitions (qx, (x, 6=), q0, q1) where x ∈ {a, b} and q0, q1 are any
states. On a given input tree there is at most one possible run, namely
the one that assigns qx to each node labelled by (x, 6=).

The unconstrained language from state qx is the set of all trees
such that the root is labelled by x and such that any branch contains
finitely many b’s. It is easily seen that this set is uncountable (just
think of the trees where there might be a b only at nodes in 0∗1:
these trees are all accepted and there are uncountably many different
ones).

Now, we claim that Lcon(Aqx) = ∅ for x ∈ {a, b}. Indeed, by
contradiction, if there was an accepted tree, it would contain at least
one node labelled by b because the left and right subtrees of the
root must be different. Let u1 be such a node. Now, in the subtree
rooted at u1, for the same reason there is a node u2 labelled by b.
Hence, by repeating this process, we construct an infinite sequence
u1 @ u2 @ u3 · · · of nodes that are all labelled by b. Since all
these nodes belong to the same infinite branch, the tree cannot be
accepted, which leads to a contradiction.

This shows that we need to use different methods for solving
the cardinality problem for co-Büchi automata (and parity automata
in general). In this section we develop such methods for co-Büchi
automata with disequality everywhere. Note that Theorem 3 does
not apply to co-Büchi automata (removing equality constraints from
co-Büchi automata might result in a more complex parity condition).
However, the goal of this section is to introduce the main ideas

1 The initial state can be an exception since it is always reachable. This can
be dealt with and does not produce any problems but we do not want to
obfuscate the presentation with such a minor detail.



in a simple setting. In the next section we briefly explain how
to generalise the ideas to parity conditions, for which Theorem 3
applies.

From now on, letA = (Q,A×{6=}, qin,∆,Col) be a co-Büchi
automaton (ie. Col : Q→ {1, 2}) with disequality everywhere. We
say that an infinite tree t is valid if we have t[u0] 6= t[u1] for every
node u. In the sequel we may focus on valid trees only (as trees
belonging to Lcon(A) are all valid).

6.1 Accepting Traces of A
In the sequel we call a trace of A a pair ρ = (tρ, rρ) where tρ is

an A-labelled infinite valid tree and rρ is a run of A on t
?
=
ρ starting

from some arbitrary state. The trace is called accepting if the run
satisfies the acceptance condition (we do not require the state at the
root to be initial in this definition). Depending on the context, we
should either think of a trace as a pair made of a tree and a run, or
as an (A×Q)-labelled tree.

We define two operations on sets of traces as follows.

• Attr(X) = {(tρ, rρ) trace of A | ∀ infinite branch π, ∃u @
π s.t. (tρ[u], rρ[u]) ∈ X}. Equivalently, by König’s lemma it
means that traces in Attr(X) are exactly those obtained by
considering a finite prefix of an arbitrary (valid) trace and plug
in every leaf a trace of X (starting from the same state as the
one at the leaf).

• Safety(X) = {(tρ, rρ) trace of A | ∀ infinite branch π, either
∀u @ π, Col(rρ(u)) = 2, or ∃u @ π s.t. (tρ[u], rρ[u]) ∈
X and Col(rρ(v)) = 2 for all v @ u}.

The following fact is immediate.

Fact 16. For a set X of accepting traces

1. X ⊆ Attr(X) and X ⊆ Safety(X), and
2. Attr(X) and Safety(X) are sets of accepting traces.

We now define an increasing transfinite sequence (Xα)α of
accepting traces by letting X0 = ∅, Xα+1 = Attr(Safety(Xα)),
and Xα =

⋃
β<αXβ for limit ordinals α. We call ATraces

the limit of this sequence. The definition of the sequence (Xα)α
corresponds to the nesting of greatest (Safety(·)) and least (Attr(·))
fixpoint in the semantics of a co-Büchi condition. Hence, the
following lemma is not surprising.

Lemma 17. The set ATraces is the set of accepting traces of A.

6.2 Computing Infinity Profiles
We now aim at computing the infinity profile pA ofA (see Section 3
for the definition). We approximate it from below, and thus work
with mappings p that associate with any state q ∈ Q either a finite
set of A-labelled valid regular trees or the value ∞ (recall that
according to Lemma 4 the finite sets used in infinity profiles consist
of regular trees). We refer to such a mapping p simply as a profile.

We aim at computing a sequence of profiles that converges to
the infinity profile of A. For that we compare profiles by letting
p1 ≤ p2 if for every q ∈ Q one has p1(q) � p2(q) where x � y
means that either y = ∞ or both x and y are sets and x ⊆ y. A
profile p is A-compatible if one has p ≤ pA. Note that the profile
that maps ∅ to every state is A-compatible.

We now give a profile counterpart of the X 7→ Attr(X) and
X 7→ Safety(X) operations. Let p be anA-compatible profile. We
define new profiles Attr(p) and Safety(p) as follows.

(i) For every state q ∈ Q such that p(q) is a finite set of regular
trees {t1, . . . , t`} we choose for every tree ti an (arbitrary)

accepting run ri of Aq over t
?
=
i : this leads to a set Xq of

accepting traces {(t1, r1), . . . , (t`, r`)}.

(ii) For every state q ∈ Q such that p(q) = ∞ we choose an
(arbitrary) infinite countable subset {ti | i ≥ 1} ⊆ Lcon(Aq)
and for every tree ti we choose an (arbitrary) accepting run

ri of Aq over t
?
=
i : this leads to an infinite countable set Xq of

accepting traces {(ti, ri) | i ≥ 0}.
(iii) We let X =

⋃
q∈QXq and consider Attr(X). Then for ev-

ery state q ∈ Q we consider the set Tq = {t | ∃(t, r) ∈
Attr(X) with r(ε) = q}: if this set is finite (hence, con-
sists only of regular trees, by Lemma 18 below) we let
Attr(p)(q) = Tq and otherwise we let Attr(p) =∞.

(iv) We let X =
⋃
q∈QXq and consider Safety(X). Then for

every state q ∈ Q we consider the set Tq = {t | ∃(t, r) ∈
Safety(X) with r(ε) = q}: if this set is finite (hence, con-
sists only of regular trees, by Lemma 18 below) we let
Safety(p)(q) = Tq and otherwise we let Safety(p) =∞.

A simple analysis of this process yields the following result.

Lemma 18. Let p be anA-compatible profile. The following holds.

(1) Neither Attr(p) nor Safety(p) depends on the choice of the ri
(resp. (ti, ri)) at step (i) (resp. at step (ii)).

(2) p ≤ Attr(p) and p ≤ Safety(p).
(3) If Attr(p)(q) 6=∞ then it consists only of regular trees.
(4) If Safety(p)(q) 6=∞ then it consists only of regular trees.

One key ingredient of the decision procedure for co-Büchi
automata is given in the next two lemmas, which show that Attr(p)
and Safety(p) can effectively been computed starting from p.

Lemma 19. Let p be an A-compatible profile. Then one can
compute Attr(p).

Proof sketch. The main idea is to construct an extended Büchi
automaton B that behaves like A at the beginning but has to do
on every branch one of the following actions:

• When being in some state q such that p(q) 6=∞, check that the
current subtree belongs to p(q).

• When being in some state q such that p(q) = ∞ check that
the current subtree belongs to a fixed countable ω-regular set of
valid trees (using labels from an alphabet disjoint from A).

The final states are the ones used after stopping simulating A.
The infinity profile of B is then shown to be equal to Attr(p)

on the states of A. Since B can be built so that it only requires a
Büchi acceptance condition we can use the results from Section 5
and compute its infinity profile.

The idea for the next lemma is the same as for the proof
Lemma 19.

Lemma 20. Let p be an A-compatible profile. Then one can
compute Safety(p).

The following lemma says that pA is the smallest fixpoint of
the operator p 7→ Attr(Safety(p)), which is a direct consequence
of the definition of the operator p 7→ Attr(Safety(p)) and of the
characterisation in Lemma 17.

Lemma 21. Let p be a profile that is A-compatible. If p =
Attr(Safety(p)) then p = pA.

Hence a natural idea from Lemma 19, Lemma 20 and Lemma 21
is to start from the profile that maps ∅ to every state and to
iteratively apply the operator p 7→ Attr(Safety(p)) until reaching
a fixpoint. Unfortunately, it is not clear whether this sequence always
converges in a finite number of steps. Hence, we need to speed-up
the convergence.



6.3 Speeding-Up Convergence
We first need to introduce some basic definitions (partly borrowed
from [17]).

Let q ∈ Q be a state and let t be a (valid) tree. We say that t is

q-good if there exists an accepting run r ofAq on t
?
=, a node u 6= ε

such that (i) t[u] = t, (ii) r(u) = q, and (iii) the smallest colour
seen in r between the root and u (included) is even.

Lemma 22. Given a regular tree t one can decide for any state q
whether t is q-good.

Proof. One first checks that t is valid (see the proof of Proposition 1).
Then the problem boils down to a question on standard tree automata
and can be solved with classical methods, for example using a
two-player game on a finite graph with an ω-regular winning
condition.

Two distinct q-good trees can be combined to build infinitely
many accepted trees, as stated in the following lemma.

Lemma 23. Let q be a state. If there are two trees t 6= t′ that are
both q-good then Lcon(Aq) is uncountable.

We now describe an algorithm — InfinityCheck(q0, T ) — that
takes as input a state q0 together with a finite set T of regular trees
in Lcon(Aq0) and checks whether the set T contains enough infor-
mation to identify Lcon(Aq0) as being infinite based on Lemma 23.
In this case it outputs “infinite”, and “do not know” otherwise. The
algorithm works as follows:

(1) Define X = {t′ | t′ is a subtree of some t ∈ T}.

(2) Define Qreach = {q | ∃r accepting t
?
= from q0 for some t ∈

T and ∃u with r(u) = q}, ie. we consider those states that
appear in accepting runs over trees in T .

(3) For all states q ∈ Qreach, let Good(q) = {t ∈ X |
t is q-good}. For all states q /∈ Qreach, let Good(q) = ∅.

(4) If for some q ∈ Qreach, |Good(q)| > 1 then return “Infinite”
and stop.

(5) Define the profile pGood by letting pGood(q) = Good(q).
Compute Attr(pGood)(q0). If it is equal to ∞ then return
“Infinite” otherwise return “Do not know”.

Now let p be a profile. We define SpeedUp(p) by letting for
any state q, SpeedUp(p)(q) = ∞ if p(q) = ∞ or if p(q) 6=
∞ and the algorithm InfinityCheck(q0, T ) returns “Infinite” on
(q,p(q)); and SpeedUp(p)(q) = p(q) otherwise (ie. if the algo-
rithm InfinityCheck(q0, T ) returns “Do not know”). Obviously,
p ≤ SpeedUp(p).

The next lemma shows that the previous sequence converges in
finite time to infinity profile of A.

Lemma 24. Let p0 be the profile that maps ∅ to every state
and let (pi)i≥0 be defined by letting, for any i ≥ 0, pi+1 =
SpeedUp(Attr(Safety(pi))). Then the sequence (pi)i≥0 con-
verges in a finite number of steps to pA.

Lemma 24 implies that we can compute the infinity profile of
A. In combination with Proposition 2 we obtain the following
decidability result.

Theorem 8. The cardinality problem is decidable for co-Büchi
automata with disequality everywhere.

7. Parity Automata
We now turn to the general case whereA is a parity automaton with
disequality everywhere using colours in [0, n]. Our main result is

an algorithm to compute the infinity profile of such an automaton.
Hence combined with Theorem 3 and Proposition 2 we obtain the
following result.

Theorem 9. The cardinality problem is decidable for parity tree
automata with equality and disequality constraints.

Proof sketch. Computing the infinity profile of A is quite involved
and we only explain here the key ideas and relate to the Büchi and
co-Büchi cases presented in Sections 5 and 6.

The algorithm proceeds by induction on the number of colours.
More precisely, for 0 ≤ k ≤ n+ 1, we consider runs using colours
in [k, n], the base case being the one where k = n + 1 and the
targeted one being the one where k = 0.

The algorithm is based on an inductive characterisation of
accepted traces generalising the one we gave for the co-Büchi case.
Here, it is no longer sufficient to work on traces: in order to manage
a larger set of colours than for the co-Büchi setting, we need to
consider contexts which can be viewed as traces with holes (possibly
infinitely many).

Of special interest are those contexts CParity([k, n]) that are
accepting (meaning that every infinite branch is accepting) and
only use colours in [k, n] (but remember we can have infinitely
many holes). It is important here to stress that we do not deal with
constraints for the moment (as we did also in the co-Büchi case). A
key ingredient is an inductive characterisation of CParity([k, n])
using CParity([k + 1, n]) in terms of two operators on sets of
context denoted X 7→ Iter

{k}
∗ (X) and X 7→ CoBuchi[k−1,n](X),

which is inspired by the characterisation of winning regions from
[24]. Unsurprisingly, the characterisation is dissymmetric depending
on whether k is even or odd.

Next, we defineA-pre-profiles which are an analogue of profiles
as defined in the co-Büchi case. These are mapping that approximate
from below the infinity profile ofA. A difficulty here is that, in order
to deal with the induction, we need more information than the sole
pre-profile. For this reason we have an operation Cnt(k,p) that
builds a (compact but possibly infinite representation of a) set of
valid accepting contexts (a context is valid if every infinite subtree
in it is valid). In a nutshell, a context belongs to Cnt(k,p) if it is
valid and can be obtained by completing an accepting context (that
only uses colours ≥ k) using the informations from the pre-profile
p. An important fact is that Lcon(A) = Cnt(0,p∅) where p∅ is
the pre-profile that maps ∅ to any state.

To compute the profile of Lcon(A) = Cnt(0,p∅) we need two
ingredients. First we derive from the inductive characterisation of
CParity([k, n]) an inductive characterisation of Cnt(k,p) depend-
ing on Cnt(k + 1,p) and using two operators X 7→ IterR∗(X)
and X 7→ CoBuchiR(X), which are a slight modification of the
previously mentioned ones that were putting constraints on a set of
colours C to be used while here the constraints is on a set of states
R to be used. The second (easy) ingredient is a notion of profile
Profp(X) for a set X of contexts knowing a pre-profile p (used to
derive informations at holes). As this notion coincides with the one
on trees when considering context without holes, our original prob-
lem is reduced to compute Profp∅(Cnt(0,p∅)) and this latter task
is made possible thanks to the previous inductive characterisation of
Cnt(k,p).

Therefore we define an algorithm Profiler(k,p) that takes as
input an integer k ∈ [0, n + 1] and a pre-profile p and outputs
Profp(Cnt(k,p)). The algorithm works by case inspection. The
base case is when k > n. For the case where k is odd it follows the
same approach as for the co-Büchi case, constructing an increasing
sequence of under-approximations that is ensured to converge thanks
to (a slight variant of) the previous SpeedUp operator. For the
case where k is even we have to deal with the X 7→ IterR∗(X)
operator and the first step is to prove that it suffices to apply this



operator to a subset of contexts which we prove to be regular.Then
we successively apply this operator as long as we discover countable
(regular) set of contexts: for each of them we can compute their
cardinality in the constrained version using the same technique as in
Section 4. Finally, when no more countable sets are found we prove
that for the remaining states their constrained version has cardinality
2ℵ0 : this is done by generalising the technique of Lemma 15 used
in the Büchi case.

8. Discussion
In this paper we have started an investigation of automata with
equality and disequality constraints on infinite trees, by analysing
the model with constraints between siblings. Besides showing that
the resulting language class forms a Boolean algebra, our main
contribution is a solution for the cardinality problem (and hence
for the emptiness and finiteness problems). While this shows that
this extension of classical parity tree automata preserves many
of the good properties, we do not have a result concerning the
projection of languages accepted by automata with constraints
between siblings. For establishing connections to logic, projection
is an essential operation for dealing with quantifiers. Nevertheless,
our results can be used to solve some decision problems for MSO
over infinite trees. First of all, given an MSO formula ϕ and a
parity tree automaton with constraints between siblings A, it is
decidable whether ϕ has a model accepted by A (transform ϕ
into an equivalent parity automaton, take the intersection with A,
and test the resulting automaton for emptiness). Furthermore, it is
also possible to solve satisfiability for extended MSO queries, for
example, Boolean combinations of queries of the following form,
where ϕ,ϕ0, ϕ1 are standard MSO formulas:

∀x.(t[x] |= ϕ) =⇒ (t[x0] 6= t[x1] ∧ t[x0] |= ϕ0 ∧ t[x1] |= ϕ1)

A tree t satisfies this query if for each node x at which the subtree
t[x] satisfies ϕ, the two subtrees of x are different and satisfy ϕ0

and ϕ1, respectively. The satisfiability of such a property can be
checked by building a parity automaton with sibling constraints that
guesses a node at which the property fails, and then complementing
this automaton and testing it for emptiness.

In future work we plan to consider further decision problems
for this automaton class, for example the regularity problem, ask-
ing for a given automaton with constraints whether the accepted
language is regular (for the case of finite trees this is known to be
decidable [3]). Furthermore, we want to investigate models with
global constraints. In particular, we are interested in finding models
with decidable emptiness problem that capture extensions of MSO
with isomorphism tests.
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