François Role 
  
Stanislas Morbieu 
  
Mohamed Nadif 
  
  
  
  
CoClust: A Python Package for Co-clustering

Keywords: Data Mining, Co-clustering, Python

published or not. The documents may come    

Introduction

In the era of data science, clustering various kinds of objects (documents, genes, customers) has become a key activity and many high quality packaged implementations are provided for this purpose by many popular packages such as stats [START_REF] Core | R: A Language and Environment for Statistical Computing[END_REF], skmeans [START_REF] Hornik | Spherical k-Means Clustering[END_REF], kernlab (Karatzoglou, Smola, [START_REF] Kaiser | Kernlab -An S4 Package for Kernel Methods in R[END_REF], NbClust [START_REF] Charrad | NbClust: An R Package for Determining the Relevant Number of Clusters in a Data Set[END_REF], Cluto [START_REF] Karypis | CLUTO: A Clustering Toolkit[END_REF], scikitlearn [START_REF] Pedregosa | Scikit-learn: Machine Learning in Python[END_REF], SciPy (scipy.cluster module) [START_REF] Jones | SciPy: Open Source Scientific Tools for Python[END_REF], nltk (nltk.cluster module) [START_REF] Bird | Natural Language Processing with Python[END_REF], Weka [START_REF] Hall | The WEKA Data Mining Software: An Update[END_REF], etc. A natural extension of standard cluster analysis is co-clustering where objects and features are simultaneously grouped into meaningful blocks called co-clusters or biclusters, thus making large data sets easier to handle and interpret. In fact, since the seminal work of [START_REF] Hartigan | Direct Clustering of a Data Matrix[END_REF], co-clustering has found applications in many areas such as bio-informatics [START_REF] Cheng | Biclustering of Expression Data[END_REF][START_REF] Madeira | Biclustering Algorithms for Biological Data Analysis: A Survey[END_REF][START_REF] Tanay | Biclustering Algorithms: A Survey[END_REF][START_REF] Cho | Coclustering of Human Cancer Microarrays Using Minimum Sumsquared Residue Coclustering[END_REF][START_REF] Gupta | MIB: Using Mutual Information for Biclustering Gene Expression Data[END_REF]Hanczar andNadif 2011, 2012), web mining [START_REF] Xu | Co-clustering Analysis of Weblogs Using Bipartite Spectral Projection Approach[END_REF][START_REF] Charrad | Block Clustering for Web Pages Categorization[END_REF][START_REF] George | A Scalable Collaborative Filtering Framework Based on Co-Clustering[END_REF][START_REF] Deodhar | SCOAL: A Framework for Simultaneous Co-clustering and Learning from Complex Data[END_REF]) and text mining [START_REF] Dhillon | Co-clustering Documents and Words Using Bipartite Spectral Graph Partitioning[END_REF][START_REF] Dhillon | Information-theoretic Co-clustering[END_REF] and various co-clustering algorithms have been proposed over the years (recent surveys can be found in [START_REF] Freitas | Survey on Biclustering of Gene Expression Data[END_REF][START_REF] Eren | A Comparative Analysis of Biclustering Algorithms for Gene Expression Data[END_REF][START_REF] Henriques | A Structured View on Pattern Mining-based Biclustering[END_REF]).

While quite a large number of implementations of co-clustering algorithms 1 have been developed for gene expression data, such as biclust [START_REF] Kaiser | Kernlab -An S4 Package for Kernel Methods in R[END_REF], bicat [START_REF] Barkow | BicAT: A Biclustering Analysis Toolbox[END_REF] and bibench [START_REF] Eren | A Comparative Analysis of Biclustering Algorithms for Gene Expression Data[END_REF], in contrast, not so many implementations are available for co-clustering co-occurrence matrices such, for example, as document-term matrices used in text mining applications. The CoClust package presented in this paper therefore provides implementations of algorithms designed to efficiently handle such matrices. Depending on the method used, algorithms for co-clustering co-occurrence matrices can broadly be divided into several categories:

-Spectral methods: Spectral co-clustering methods treat the input data matrix as a bipartite graph between documents and words, and approximate the normalized cut of this graph using a real relaxation. Currently scikit-learn supports two spectral coclustering algorithms: (1) the well-known "Spectral Co-Clustering" [START_REF] Dhillon | Co-clustering Documents and Words Using Bipartite Spectral Graph Partitioning[END_REF]) and

(2) the "SpectralBiclustering" [START_REF] Kluger | Spectral Biclustering of Microarray Cancer Data: Co-clustering Genes and Conditions[END_REF] which is also available in the biclust R package.

-Model-based methods: In probabilistic co-clustering methods, two model-based coclustering methods are implemented in the blockcluster [START_REF] Iovleff | Blockcluster: Coclustering Package for Binary, Categorical, Contingency and Continuous Data-Sets[END_REF] and blockmodels [START_REF] Leger | Blockmodels: A R-package for Estimating in Latent Block Model and Stochastic Block Model, with Various Probability Functions, with or without Covariates[END_REF]) R packages. The first relies on the lalent block models (LBM), especially Gaussian, Bernoulli and Poisson LBM. The derived algorithms are of type Expectation-Maximization; for details see for instance [START_REF] Govaert | Clustering with Block Mixture Models[END_REF], 2005, 2008;[START_REF] Nadif | Model-based co-clustering for continuous data[END_REF]. The second relies on the Stochastic Block Model and the Latent Block Model without or with covariates. Both models have been extended to valued networks with optional covariates on the edges.

-Matrix factorization based methods: Matrix factorization based methods are also used in the clustering and co-clustering fields. However while packages exist for document clustering based on non-negative matrix factorization (e.g., the NMF R package (Gaujoux and Seoighe 2010) which includes different NMF methods) leading to clustering (see for instance [START_REF] Ding | Orthogonal Non-negative Matrix Tri-factorization for Clustering[END_REF][START_REF] Ding | Adaptive Dimension Reduction Using Discriminant Analysis and kmeans Clustering[END_REF])), there is unfortunately no package on Non Negative Matrix Trifactorization Factorization for co-clustering.

-Information theoretic based methods: Information theoretic based methods are used to co-cluster two-way contingency tables. In this approach, a joint probability distribution is first derived from the two-way contingency matrix. The loss function to minimize is then the loss in mutual information between this joint probability distribution and a distribution defined on a reduced contingency table obtained by collapsing the rows and the columns according to the partitions yielded by the co-clustering program. Notable algorithms in this area include [START_REF] Dhillon | Information-theoretic Co-clustering[END_REF][START_REF] Govaert | Co-Clustering[END_REF]).

-Modularity-based methods: The use of bipartite graph-modularity as a criterion to co-cluster matrices has been pioneered by [START_REF] Labiod | Co-clustering for Binary and Categorical Data with Maximum Modularity[END_REF]) and since further investigated in (Ailem, Role, andNadif 2015, 2016). This method allows to co-cluster binary or contingency matrices by maximizing an adapted version of the modularity measure traditionally used for networks.

Another dimension for characterizing co-clustering algorithms is to distinguish between general partitional co-clustering algorithms and those that seek to discover a diagonal structure (which is displayed to the user in the form of a block diagonal matrix). In the former case, the requested number of row clusters can be different from the requested number of column clusters while in the latter the two numbers obviously have to be the same in order to produce a diagonal structure. Diagonal algorithms assign each row and each column to exactly one co-cluster. For text mining applications, the attractiveness of this approach lies in its simplicity: each set of documents is automatically labelled by a set of terms. However, there may be occasions where one may want to associate a set of documents with several sets of terms. In this case, general, non-diagonal co-clustering methods may be more suitable.

Spectral methods and methods based on matrix factorization are fast and lend themselves to simple implementations. However, as we noted in a recent comparative study whose preliminary results can be found in [START_REF] Ailem | Co-clustering Document-term Matrices by Direct Maximization of Graph Modularity[END_REF], they are clearly outperformed by the other cited methods when co-clustering document-term matrices in terms of accuracy. Also, as indicated above, co-clustering spectral methods are already available in scikit-learn. Probabilistic co-clustering methods deliver better accuracy, but several open-source implementations already exist in the form of the above-mentioned blockcluster and blockmodels R. 2 The CoClust package presented in this paper therefore provides scikit-learn-compatible implementations of two modularity-based methods and one information theoretic based methods. It is freely available at https://pypi.python.org/pypi/coclust.

The first two algorithms, CoclustMod [START_REF] Ailem | Co-clustering Document-term Matrices by Direct Maximization of Graph Modularity[END_REF][START_REF] Ailem | Graph modularity maximization as an effective method for co-clustering text data[END_REF] and CoclustSpecMod [START_REF] Labiod | Co-clustering for Binary and Categorical Data with Maximum Modularity[END_REF], are recent representatives of the family of block-diagonal co-clustering algorithms. These algorithms have several advantages. First, being block-diagonal algorithms, they directly produce interpretable descriptions of the resulting document clusters since each document cluster is directly associated with one term cluster. Second, the experimental results described in [START_REF] Ailem | Co-clustering Document-term Matrices by Direct Maximization of Graph Modularity[END_REF] have shown that these algorithms can adapt to various kinds of matrices (whether they are binary, contingency, weighted or unweighted matrices).

In addition to this flexibility, they outperform popular, older block-diagonal algorithms such as the above-mentioned well-known "Spectral Co-Clustering" algorithm.

The third algorithm (CoclustInfo) is based on an information-theoretic approach. Informationtheoretic co-clustering has become very popular in the text mining community since the above-mentioned work by [START_REF] Dhillon | Information-theoretic Co-clustering[END_REF]. Its main benefits are speed of convergence and scalability. CoclustInfo is an implementation of the CROINFO algorithm described in (Govaert andNadif 2013, 2016).

Last but not least, the three algorithms have the advantage of simplicity since they can be implemented using simple alternated iterative procedures where one of the partitions is fixed (say, the column partition) and a better partition of the other set (say, the row partition) is searched.

The outline of the paper is as follows. We first review the theory underlying these algorithms (Section 2) before presenting the interface and API of the module that implements them (Section 3). We conclude with a benchmark that demonstrates the effectiveness of the software compared to other algorithms.

Theory

As said in the introduction, co-clustering algorithms simultaneously cluster rows and columns into partitions and a pair consisting of a row cluster and a column cluster determines a cocluster, which is a submatrix of the original data matrix. Diagonal algorithms assign each row and each column to exactly one co-cluster and so the rows and columns can be rearranged so that the co-clusters form a kind of diagonal (see for example Figure 1). Non-diagonal algorithms, on the other hand, do not have this restriction and rearranging the rows and columns according to the found partition may result into structures such as the one shown in Figure 2.

The CoClust package provides three co-clustering algorithms (two diagonal and one nondiagonal). The first two perform co-clustering by maximizing the modularity of bipartite graphs while the third one uses the information-theoretic notion of mutual information to define its criterion. Before describing these notions, we first give some general notations we will use throughout the paper.

General notations

We will consider the partition of the sets I of n objects and the set J of d attributes into g non overlapping clusters, where g may be greater or equal to 2. Let us define a n × g indicator matrix z = (z ik ) and a d × g indicator matrix w = (w jk ). The kth row cluster is defined by the set of rows i such that z ik = 1. In the same manner, the kth column cluster is defined by the set of rows j such that w jk = 1. Finally, X is the matrix used as input to all the methods described in this paper; X can be of any kind provided it is a matrix with non-negative entries (e.g., a graph adjacency matrix, or a document-term matrix, depending on the application domain).

Modularity-based, block-diagonal co-clustering

The first family of algorithms implemented in the CoClust package consists of two algorithms (CoClustMod and CoclustSpecMod) that seek an optimal block diagonal clustering, meaning that objects and features have the same number of clusters and that, after proper permutation of the rows and columns, the algorithm produces as result a block diagonal matrix (see Figure 1). In the context of document-term matrices, this co-clustering model has the advantage of directly producing interpretable descriptions of the resulting document clusters.

A notable block-diagonal co-clustering algorithm is the bipartite spectral graph partitioning algorithm described in [START_REF] Dhillon | Co-clustering Documents and Words Using Bipartite Spectral Graph Partitioning[END_REF]. Inspired by previous work on spectral graph clustering, this algorithm finds the optimal minimum cut partitions in a bipartite document-term graph by computing the second left and right singular vector of the normalized documentterm matrix, thus using a real relaxation of the discrete optimization problem. The block diagonal algorithms implemented in CoClust follow a completely different approach: they try to maximize a measure of the concentration of edges within co-clusters compared with the random distribution of edges between all nodes regardless of the co-clusters. This criterion is an adaptation to the bipartite case of the standard "graph modularity". Before describing the two algorithms, it is therefore useful to review this notion of "bipartite graph modularity".

Bipartite Graph Modularity (BGM)

In this section we first review the standard graph modularity measure, and show how to adapt it so that it can be used in the co-clustering context.

Modularity is a quality criterion often used for detecting communities in graphs, which has received considerable attention in several disciplines since the seminal work by [START_REF] Newman | Finding and Evaluating Community Structure in Networks[END_REF]. Intuitively, modularity compares the number of edges inside a cluster of nodes with the expected number if the edges in the graph were placed at random.3 

Given the graph G = (V, E), let X be a binary, symmetric adjacency matrix with (i, i ) as entry; and x ii = 1 if there is an edge between the nodes i and i . If there is no edge between nodes i and i , x ii is equal to zero. Finding a partition of the set of nodes V into homogeneous subsets leads to the resolution of the following integer linear program: max c Q(X, c) where Q(X, c) is the modularity measure:

Q(X, c) = 1 2|E| n i,i =1 (x ii - x i. x i . 2|E| )c ii (1) 
In this formula, c ii = g k=1 z ik z i k , meaning that c ii is 1 when node i and i are in the same group and 0 otherwise. In addition, |E| is the number of edges and x i. = i x ii is the degree of i.

Let now δ = (δ ii ) be the (n × n) data matrix defined by ∀i, i δ ii = x i. x i . 2|E| . Expression 1 then becomes Q(X, c) = 1 2|E| T race[(X -δ)c].
In summary, we seek a binary matrix c which is defined as zz and models a partition in a relational space, thus having the properties of an equivalence relation.

           c ii = 1, ∀i reflexivity c ii -c i i = 0, ∀(i, i ) symmetry c ii + c i i -c ii ≤ 1, ∀(i, i , i ) transitivity x ii ∈ {0, 1}, ∀(i, i ) binarity
In a bipartite context, the basic idea is to model the simultaneous row and column partitions using a relation c defined on I ×J. Noting that c = zw t and the general term can be expressed as follows: c ij = 1 if object i is in the same block as attribute j and c ij = 0 otherwise. Then c ij = g k=1 z ik w jk . Now, given a rectangular matrix X defined on I × J, modularity can be reformulated as follows in the co-clustering context:

Q(X, c) = 1 x .. n i=1 d j=1 g k=1 (x ij - x i. x .j x .. )z ik w jk , (2) 
where x .. = i,j x ij = |E| is the total weight of edges and x i. = j x ij (the degree of i in the binary case and the sum of the weights in the contingency and continuous cases) and x .j = i x ij (the degree of j in the binary case and the sum of the weights in the contingency and continuous cases). This modularity measure can also take the following form:

Q(X, c) = 1 x .. T race[(X -δ) zw ] = Q(X, zw ). (3) 
As the objective function 3 is linear with respect to C and as the constraints that C must respect are linear equations, the problem can theoretically be solved using an integer linear programming solver. However, this problem is N P hard, and as a result, in practice, we use heuristics for dealing with large data sets.

CoclustMod: Co-clustering by alternated maximization of BGM

In this section we describe the theory underlying CoClustMod, one of the two block-diagonal algorithms provided by the CoClust package [START_REF] Ailem | Co-clustering Document-term Matrices by Direct Maximization of Graph Modularity[END_REF][START_REF] Ailem | Graph modularity maximization as an effective method for co-clustering text data[END_REF].

Proposition 1: Let X be a (n × d) matrix with non-negative entries and c be a (n × d) matrix defining a block seriation, the modularity measure Q(X, c) can be rewritten as:

1. Q(X, c) = 1 x .. T race[(X w -δ w ) z] = Q(X w , z)
where

X w = (x w ik ) 1≤i≤n 1≤k≤g and δ w = (δ w ik ) 1≤i≤n 1≤k≤g respectively defined by x w ik = d j=1 w jk x ij and δ kj = x i. x w .k x.. where x w .k = d j=1 w jk x .j . 2. Q(X, c) = 1 x .. T race[(X z -δ z ) w] = Q(X z , w)
where

X z = (x z kj ) 1≤k≤g 1≤j≤d and δ z = (δ z kj ) 1≤k≤g 1≤j≤d respectively defined by x z kj = n i=1 z ik x ij and δ z kj = x z k. x .j
x.. where x z k. = n i=1 z ik x i. .

Proof for Proposition 1 can be found in [START_REF] Ailem | Co-clustering Document-term Matrices by Direct Maximization of Graph Modularity[END_REF]. This proposition is at the heart of the CoclustMod algorithm since it allows to maximize the modularity by alternatively maximizing Q(X w , z) and Q(X z , w). The optimal classification binary matrices z * and w * are respectively defined by z * = arg max z T race(X w -δ w ) z and w * = arg max w T race(X zδ z ) w. In fact, Q(X w , z) and hence modularity can be maximized by assigning row i to the cluster k maximizing (X w -δ w ) ik since we have:

Q(X w , z) = 1 x .. T race[(X w -δ w ) z] = 1 x .. i,k z ik (X w -δ w ) ik = 1 x .. n i=1 g k=1 z ik (X w -δ w ) ik
The same kind of argument applies for Q(X z , w), which leads to the different steps presented in Algorithm 1.

Algorithm 1 CoclustMod

Input: binary or contingency data X, number of clusters g Output: partition matrices z and w 1.

Initialization of w repeat 2. Compute X w 3. Compute z maximizing Q(X w , z) by z ik = 1 if k = arg max 1≤ ≤g x w i - x i. x w .
x.. and z ik = 0 otherwise; ∀i = 1, . . . , n 4. Compute X z 5. Compute w maximizing Q(X z , w) by w jk = 1 if k = arg max 1≤ ≤g x z j -

x z . x .j x.. and w jk = 0; ∀j = 1, . . . , d 6. Compute Q(X, zw ) until no change of Q(X, zw )

CoClustSpecMod: Co-clustering by spectral maximization of BGM

In this section we describe the theory underlying CoClustSpecMod, another block-diagonal algorithm provided by the CoClust package. In the same way as CoClustMod, CoClust-SpecMod sees modularity-based co-clustering as a trace maximization problem, but with two important differences as described in [START_REF] Labiod | Co-clustering for Binary and Categorical Data with Maximum Modularity[END_REF]. First, it uses normalized versions of the z and w matrices, and second, it maximizes modularity using a spectral approach, which contrasts with the direct maximization performed by CoClustMod.

The use of a normalized modularity matrix is motivated by the desire to balance the row and column cluster sizes. The z matrix is therefore replaced by a z = zh -1 2 where h is a diagonal matrix whose each diagonal element contains the number of elements in the kth row cluster. In the same way, the w matrix is replaced by a w = wf -1 2 where f is a diagonal matrix whose each diagonal element contains the number of elements in the kth column cluster. The modularity problem then amounts to the following trace maximization problem:

max z z=Ig, w w=Ig T race[z (X -δ) w], (4) 
This maximization is performed using a spectral approach by performing the following steps:

1. Scale the modularity matrix;

2. Approximate the scaled matrix using SVD;

3. Use the matrices produced by the SVD decomposition to form a new matrix, then apply a clustering algorithm (e.g., k-means) to cluster the new matrix.

Step 1 is performed as follows. Let B be a bipartite modularity matrix. A scaled version B of this matrix is computed as:

B = D -1 2 r BD -1 2 c
where D r = diag(A1) and D c = diag(A 1).

In step 2, B is approximated as g-1 k=1 Ũk λ k Ṽ k . where Ũ and Ṽ are derived from the singular vectors as follows:

Ũk = D 1 2 r U k ||D 1 2 r U k || and Ṽk = D 1 2 c V k ||D 1 2 c V k ||
Finally, Ũ and Ṽ are used to form a matrix Q = Ũ , Ṽ which is given as input to a clustering algorithm such as k-means. The different steps of CoClustSpecMod are presented in Algorithm 2.

Algorithm 2 CoclustSpecMod

Input: data X, number of clusters g Output: partition matrices R and C 1. Form the affinity matrix X 2. Define D r and D c to be the diagonal matrices D r = diag(X1) and D c = diag(X 1).

3. Find U ,V the (g -1) left-right largest eigenvectors of X = D -1 2 r XD -1 2 c . 4. Form matrices Ũ , Ṽ and Q = Ũ , Ṽ from U, V . 5.
Cluster the rows of Q into g clusters by using k-means 6. Assign object i to cluster R k if and only if the corresponding row of the matrix Q was assigned to cluster R k , and assign attribute j to cluster C k if and only if the corresponding row of the matrix Q was assigned to cluster C k .

Information-theoretic co-clustering

In this section we describe the notions underlying the third algorithm, CoclustInfo, provided by the CoClust package. In contrast to the previously described algorithms, CoclustInfo takes an information-theoretic approach and uses mutual information to define its criterion (Govaert and Nadif 2013) 4 . Another important difference is that this algorithm does not seek to discover a block-diagonal structure like the previously described algorithms. The requested number of row clusters can be different from the requested number of column clusters. A representative example of the kind of matrix obtained when using CoclustInfo is shown in Figure 2). Figure 2: Typical matrix obtained when using CoclustInfo to co-cluster a dataset. This matrix is to be compared to the kind of block-diagonal matrix obtained when using one of the two previously described graph-based algorithms.

Initial contingency table and associated joint distribution

Let X be a n × d contingency table such as the example shown in Table 1 (left). This table can be associated with two categorical random variables, taking values in the sets I = {1, . . . , i, . . . , n} and J = {1, . . . , j, . . . , d} respectively. In summary, we have two categorical variables, one taking values in the set I of rows and the other in the set J of columns. categorical variables I and J can be measured using mutual information. Intuitively, mutual information between two variables compares the observed frequencies in the data with the expected frequencies under the null hypothesis of no association. The mutual information between two variables I and J is expressed as

I(P IJ ) = i,j p ij log p ij p i. p .j .

Aggregated contingency table and associated joint distribution

In this section, we describe the new contingency table and associated joint distributions that can be derived when simultaneously aggregating the rows and the columns of a contingency table X according to a couple of partitions of the sets I and J. In fact, if z and w are partitions in g clusters and m clusters of the set I of the rows and the set J of columns of X, then a new two-way contingency table X zw = (x zw k ) can be associated with two categorical random variables taking values in sets K = {1, . . . , g} and L = {1, . . . , m} by merging the rows and columns according to the partitions z and w:

x zw k = i,j z ik w j x ij ∀k ∈ K and ∀ ∈ L.
The distribution that can be associated to z and w is the distribution

P zw KL = (p zw k ) defined on K × L by p zw k = x zw k N = i,j z ik w j p ij ∀(k, ) ∈ K × L. The following equation k, p zw k = i,j,k, z ik w j p ij = i,j p ij k, z ik w j = 1 since k, z ik w j = 1
shows that P zw KL is a distribution. Moreover it can be noticed that, as

p zw k = i,j, z ik w j p ij = i (z ik j (p jj w j )) = i z ik p i. since w j = 1
the row margins of this new distribution do not depend on the partition w and will be denoted p z k. . Similarly, the column margins k p zw k are equal to j w j p .j and will be denoted p w . . For instance, the aggregation of the rows and columns of the data according the partitions z = (1, 1, 2, 2, 3, 3) and w = (1, 1, 1, 2, 2) leads to the contingency table X zw and the distribution P zw KL reported in Table 2. Table 2 gives the original distribution P IJ and the distribution P zw KL obtained after aggregating the rows and columns. As can be seen in this example, the two distributions are similar. Using the mutual information applied on P zw KL distribution, we obtain the following measure:

I(P zw KL ) = k, p zw k log p zw k p z k. p w .
.

One can then express the loss in mutual information incurred when passing from the original probability matrix to the aggregated matrix as:

I(P IJ ) -I(P zw KL ) = KL(P IJ ||P zw KL )
where KL(

P IJ ||Q zw KL ) = i,j p ij log p ij p zw ij
is the Kullback-Leibler distance between the two distributions P IJ and P zw KL . This difference in mutual information is exactly the criterion minimized by the CoclustInfo algorithm. It has been shown [START_REF] Govaert | Co-Clustering[END_REF] that this loss in mutual information can equivalently be expressed as:

I(P IJ ) -I(R zwγ IJ ) = KL(P IJ ||R zwγ IJ )
where R zwγ IJ = (r zwγ ij ) is a distribution depending on the partitions z and w and a parameter γ.

R zwγ

IJ can be defined by r zwγ ij = p i. p .j k, z ik w j γ k . The parameter γ = (γ k ) corresponds to a matrix of size (g, m) where each γ k plays the role of the centroid of the co-cluster k and such that γ k > 0 ∀k, and k, p z k. p w . γ k = 1. It can be shown that R zwγ IJ is a distribution, which in addition has the same column and row margins that the P IJ distribution.

Before seeing how the W I (z, w, γ) = I(P IJ )-I(R zwγ IJ ) criterion can be optimized in practice, it is worth noting here that it is a generalization of the criterion proposed for the well-known ITCC algorithm [START_REF] Dhillon | Information-theoretic Co-clustering[END_REF]. 5The minimization of the criterion W I (z, w, γ) can be obtained by alternating the three computations: z = arg min z W I (z, w, γ), w = arg min w W I (z, w, γ) and γ = arg min γ W I (z, w, γ).

More precisely, it has been shown in [START_REF] Govaert | Co-Clustering[END_REF]) that the minimization of W I (z, w, γ) for fixed w and γ is obtained by assigning each row i to the cluster k maximizing p w i log γ k . Similarly, in the computation of w, the minimization of W I (z, w, γ) for fixed z and γ is obtained by assigning each column j to the cluster maximizing k p z kj log γ k . Finally, for the computations of γ, the problem can be formulated as arg max γ k, p zw

k log γ k with k, p z k. p w . γ k = 1 which yields to γ k = p zw k p z k. p w .
for all k, . These different steps are summarized in the pseudo-code shown in Algorithm 3. until convergence until convergence return z and w

Software

The CoClust package provides a set of convenience command-line tools enabling to launch a co-clustering task on a dataset by only providing the suitable parameters. In addition, for Python developers, it also exposes an API designed to provide a seamless integration with the scikit-learn library.

Scripts

The two scripts included in the CoClust package are:

• coclust which runs a co-clustering algorithm;

• coclust-nb which provides recommendations to select the best number of co-clusters.

Running a co-clustering algorithm: the "coclust" script

The coclust script can be used to run an algorithm on a data matrix. It also provides parameters for the evaluation of the results.

The user has to select an algorithm which is given as a first argument to coclust. The choices are:

• modularity;

• specmodularity;

• info.

These choices correspond to the CoclustMod, CoclustSpecMod, and CoclustInfo algorithms respectively.

The other options that have to be given depend on the algorithm. Some of them are however common to all of them:

• those describing the input matrix;

• those used for the evaluation;

• some of the output and algorithm parameters.

The input matrix can be given as a MATLAB file or a text file. For the MATLAB file, the key corresponding to the matrix must be given. For the text file, each line should describe an entry of a matrix with three columns: the row index, the column index and the value. The separator is given by a script parameter.

The names of the parameters are given in the sections corresponding to the algorithms.

CoclustMod Algorithm All the options available for the CoclustMod algorithm are summarized below:

--from=2 minimum number of co-clusters --to=10 maximum number of co-clusters For example, for the CSTR dataset, the best number of co-clusters found by the following command is 4, the same as the real number of clusters:

> coclust-nb datasets/cstr.csv --seed=1 --n_runs=30 --max_iter=60 --visu In this example, the best modularity is 0.478638 and is attained for 4 co-clusters. The evolution of the modularity against the number of co-clusters is plotted in Figure 3.

Python API

Each algorithm is implemented in a specific class, all sharing the same methods as those used by scikit-learn, thus making it very easy to integrate with this library. The following sections contain usage examples for each of the three algorithms. The examples also demonstrate how to load matrices stored in different formats.

CoClustMod usage

The following example shows how to load the Classic3 dataset from a MATLAB file. The MATLAB file is loaded using a function provided by the SciPy library. A matrix is then extracted from the MATLAB dictionary and stored in variable X. A co-clustering model with 3 co-clusters is then created, and receives as input the X matrix. Then, after displaying the maximum modularity value as well as its evolution over the iterations, (Figure 4), several graphical representations of the obtained term clusters are produced via the plot_cluster_top_terms and get_term_graph functions (Figures 5 and6). The get_term_graph function extracts the n most frequent terms in a given term cluster along with the k most similar (in terms of cosine similarity) neighbors of each of these most frequent terms. 

CoClustSpecMod usage

In this example, the CSTR dataset is imported as a CSV file. The first line of the file is the number of rows followed by the number of columns and the number of clusters the model is fitted with. 

CoClustInfo usage

In this example, the Classic3 dataset is imported from a MATLAB file. A model is created and fitted. A graph showing the evolution of the criterion is displayed along with the last γ kl matrix obtained at the end of the execution. This matrix allows to visually spot the most cohesive co-clusters produced by the algorithm (see Figure 8). >>> import scipy.io as io >>> from sklearn.metrics import (adjusted_rand_score as ari, ... normalized_mutual_info_score as nmi) >>> from coclust.coclustering import CoclustInfo >>> from coclust.evaluation.external import accuracy >>> from coclust.visualization import plot_delta_kl, plot_convergence >>> >>> print("1) Loading data") >>> file_name = "datasets/classic3.mat" >>> matlab_dict = io.loadmat(file_name) 

Combined usage

The following example shows how easy it is to run several algorithms on the same dataset and then plot the resulting reorganized matrices in order to have a first visual grasp of what can be expected from the different algorithms. A plot of three different reorganized matrices for the CSTR dataset is shown in Figure 9. 

Example of integration with scikit-learn

In the following example, the scikit-learn library is used to import the corpus of documents NG20 (see Section 4.1), select only five categories, and create a document-term matrix. This example shows how easy it is to include an algorithm of the CoClust package in a scikit-learn Pipeline.

>>> For a scikit-learn Pipeline, the set_params method takes a variable number of arguments, each of the form component__parameter. In pipeline.set_params(coclust__n_clusters =5), the component corresponding to the modularity co-clustering algorithm is named coclust and the parameter of the class CoClustMod we want to set to 5 is n_clusters.

Experiments

Description of datasets

To assess the performance of the three implemented algorithms, we tested them on 8 datasets of different size, sparsity and balance6 (see Table 3). The characteristics of each dataset are reported in Table 3.

-The CSTR dataset was previously used in [START_REF] Leger | Blockmodels: A R-package for Estimating in Latent Block Model and Stochastic Block Model, with Various Probability Functions, with or without Covariates[END_REF] -SPORTS is a dataset from the CLUTO toolkit [START_REF] Karypis | CLUTO: A Clustering Toolkit[END_REF], and is the same as that used in [START_REF] Zhong | Generative Model-based Document Clustering: A Comparative Study[END_REF]. This dataset contains documents about 7 different sports including baseball, basketball, bicycling, boxing, football, golfing and hockey.

-REVIEWS is also a standard dataset used by the CLUTO toolkit.

-WEBACE [START_REF] Ding | Adaptive Dimension Reduction Using Discriminant Analysis and kmeans Clustering[END_REF] contains news articles partitioned across 20 different topics obtained from the WEBACE project [START_REF] Han | WebACE: A Web Agent for Document Categorization and Exploration[END_REF].

-RCV1 (Cai and He 2012) is a subset of a newswire stories corpus made available by Reuters containing 4 categories: C15, ECAT, GCAT, and MCAT.

-Finally, NG20 is the 20 Newsgroups data set. In addition to the three algorithms included in the package (denoted as CoclustMod, Co-clustSpecMod and CoclustInfo in the experiments), we also included in the comparison the implementations of the two co-clustering algorithms available in scikit-learn, denoted as SpectralBi and SpectralCo in our experiments. 9

Setup

The experiments were performed on a standard workstation (CPU : Intel(R) Core(TM) i5-3210M CPU @ 2.50GHz; Memory : 8192 MB DDR3 @ 1600 MHz). 10 The reported results were obtained by running each algorithm 100 times with random initialization and averaging over the best 50 executions . 11 For SpectralBi and SpectralCo the default parameter values were used, except of course for the numbers of clusters which were set as the same values as for the other algorithms. The document-term contingency matrices were used in their original form without any pre-processing or weighting.

To evaluate the performance of the algorithms, we compared the results they generated with the true classes, by computing clustering accuracy, Adjusted Rand Index (ARI) and Normalized Mutual Information (NMI), the number of requested clusters corresponding to the values in the fourth column of Table 3.

Clustering accuracy, denoted Acc, measures the extent to which each cluster contains data points from the corresponding class and is defined by Acc

= 1 n max 1≤k≤g 1≤ ≤g [ C k ,L T (C k , L )],
where C k is the kth cluster in the final results, L is the true th class and T (C k , L ) is the number of entities that belong to class and are assigned to cluster k. The greater the clustering accuracy, the better the clustering performance. NMI [START_REF] Strehl | Cluster Ensembles -A Knowledge Reuse Framework for Combining Multiple Partitions[END_REF] is estimated by:

NMI = k, N k, n log nN k, N k N ( k N k n log N k n )( N n log N n )
,

where N k denotes the number of objects contained in the cluster C k (1 ≤ k ≤ g), N is the number of objects belonging to the class L (1 ≤ ≤ g), and N k, denotes the number of objects that are in the intersection between cluster C k and class L . The larger the NMI, the better the quality of clustering. 12 For ARI, we used the implementation provided by scikit-learn.

Results and discussion

In particular, the results presented in tables 5, 6 and 7. clearly show that the three CoClust implementations outperform the spectral implementations available in scikit-learn in terms of NMI and clustering accuracy. 13 More precisely, CoclustInfo and CoclustMod perform better than their spectral competitors (including CoclustSpecMod). Also, CoclustMod provides an easy way of estimating the appropriate number of clusters (a feature implemented 9 SpectralBi and SpectralCo are implementations of the algorithms described in [START_REF] Kluger | Spectral Biclustering of Microarray Cancer Data: Co-clustering Genes and Conditions[END_REF]) and [START_REF] Dhillon | Co-clustering Documents and Words Using Bipartite Spectral Graph Partitioning[END_REF].

10 Except for the co-clustering of NG20 using CoclustMod, which required more memory.

11 By "best", we mean the solution optimizing the criterion used by the given algorithm (for example, maximizing the modularity for CoclustSpecMod).

12 The datasets and benchmark code can be found in the benchmark directory of the package. 13 In these tables the number of row and column clusters requested is specified within parentheses after the dataset name.

by the coclust-nb script described in Section 3.1). There, is however a marked difference in execution time between CoclustInfo and CoclustMod. A drawback of CoclustMod is that it has to handle a non sparse, modularity matrix, which is both time and memory consuming. As a consequence, in terms of execution time, CoclustMod is the slowest of the five compared algorithms. In contrast, the implementations available in scikit-learn are very fast but, as already said, have significantly lower accuracy and NMI scores. 

Conclusion

Co-clustering is an important technique in the era of so-called "big data" since it allows to compress large, high dimensional matrices. However, few tools were available so far for the Python community, and the CoClust package, therefore, aims at filling this gap. By presenting and contrasting the theory and implementation of two distinct families of coclustering algorithms (block-diagonal and non diagonal algorithms). The paper also provides the reader with a representative survey of methods available in the co-clustering field.

Experimental results show that the three implemented algorithms adapt well to datasets of various balance and sparsity and can be used with good co-clustering performance in many settings. In particular, they clearly outperform the available Python implementations of coclustering algorithm in terms of result quality.

In the future we plan to include model-based co-clustering algorithms. We will more specifically focus on algorithms based on the Poisson latent-block model [START_REF] Govaert | Mutual information, phi-squared and model-based co-clustering for contingency tables[END_REF], but with extensions to these models to better take into account data sparsity. Adding postprocessing tools for facilitating the interpretation of the produced co-clusters is another path for future work.

Figure 1 :

 1 Figure 1: Left: Original data -Middle: data reorganized according to row clusters -Right: data reorganized according to row and column clusters.

4

  Chapter 4.

  z ik = 1 if k = arg max 1≤k ≤g p w i log γ k and z ik = 0 otherwise ∀i step 2. γ k = w j = 1 if = arg max 1≤ ≤m k p z kj log γ k and w j = 0 otherwise ∀j step 4. γ k = p zw k p z k. p w .

Figure 3 :

 3 Figure 3: Using modularity to detect the best number of clusters.

Figure 6 :

 6 Figure 5:CoclustMod: displaying the top terms of each cluster using the plot_cluster_top_terms function.

Figure 7 :

 7 Figure 7: CoclustSpecMod: plotting the sizes of the obtained co-clusters using the plot_cluster_sizes utility function.

Figure 8 :Figure 9 :

 89 Figure 8: CoclustInfo: evolution of the objective function across iterations (top), and heatmap showing the final γ kl values obtained for each row cluster k and each column cluster l. This may help to spot the interesting pairs of row ad column clusters (bottom).

Table 1 :

 1 Let now P IJ = (p ij ) denote the sample joint probability distribution associated with the two variables. It can be represented by a n × d matrix defined by p ij = p ij N with N = x .. . An example of the probability matrix corresponding to our sample contingency matrix is shown in Table1(right). As for other random variables, the association between the two Example of contingency table and associated joint distribution.

		1	2	3	4	5			1	2	3	4	5
	1	5	4	6	1	0	16	1	0.05 0.04 0.06 0.01 0.00	0.16
	2	6	5	4	0	1	16	2	0.06 0.05 0.04 0.00 0.01	0.16
	3	1	0	1	7	5	14	3	0.01 0.00 0.01 0.07 0.05	0.14
	4	1	1	0	6	5	13	4	0.01 0.01 0.00 0.06 0.05	0.13
	5	4	5	3	4	5	21	5	0.04 0.05 0.03 0.04 0.05	0.21
	6	5	4	4	3	4	20	6	0.05 0.04 0.04 0.03 0.04	0.20
		22 19 18 21 20	100		0.22 0.19 0.18 0.21 0.20	1.00

Table 2 :

 2 Aggregated contingency table X zw (left) and associated distribution P zw KL (right).

  and includes the abstracts of technical reports published in the Department of Computer Science of Rochester University.

	These abstracts were divided into 4 research fields: Natural Language Processing (NLP),
	Robotics/Vision, Systems, and Theory.
	-CLASSIC3 and CLASSIC4 7 consist respectively of 3 different document collections:
	CISI, CRANFIELD, and MEDLINE and 4 different document collections: CACM, CISI,
	CRANFIELD, and MEDLINE.

Table 3 :

 3 Description of datasets.

Table 4 :

 4 Compared execution times.

	Dataset	CoclustInfo	CoclustMod	CoclustSpecMod SpectralBiclustering SpectralCoclustering
	Classic3	1.211±0.254	3.188±0.987	7.146±0.015	0.178±0.008	0.060±0.010
	Cstr	0.290±0.057	0.349±0.053	0.146±0.009	1.813±0.019	0.024±0.003
	Webace	1.395±0.269	1.317±0.232	1.047±0.020	1.796±0.008	0.150±0.018
	Classic4	3.187±1.170	6.946±1.304	28.162±0.231	0.294±0.015	0.080±0.017
	Reviews 6.222±1.780	15.713±3.737	127.104±1.123	0.616±0.036	0.257±0.037
	Sports	6.865±1.482	23.658±4.984	169.982±0.676	0.751±0.046	0.303±0.041
	Rcv1	8.876±2.866	42.338±6.912	118.218±1.618	0.760±0.033	0.224±0.028
	Ng20	32.580±6.569 587.200±102.738 420.517±1.944	3.676±0.232	4.238±0.877
	Dataset	CoclustInfo	CoclustMod	CoclustSpecMod SpectralBiclustering SpectralCoclustering
	Classic3	0.935±0.001 0.918±0.003 0.914±0.000	0.336±0.060	0.227±0.038
	Cstr	0.653±0.027 0.591±0.032 0.717±0.000	0.136±0.031	0.308±0.039
	Webace	0.614±0.009 0.595±0.013 0.568±0.010	0.316±0.024	0.406±0.015
	Classic4	0.640±0.046 0.712±0.027 0.508±0.020	0.224±0.036	0.070±0.013
	Reviews 0.592±0.025 0.530±0.032 0.341±0.019	0.230±0.031	0.028±0.008
	Sports	0.568±0.038 0.547±0.026 0.544±0.010	0.202±0.038	0.058±0.011
	Rcv1	0.489±0.023 0.469±0.034 0.012±0.003	0.124±0.026	0.009±0.001
	Ng20	0.562±0.008 0.508±0.012 0.474±0.012	0.059±0.011	0.027±0.002

Table 5 :

 5 NMI values.

	Dataset	CoclustInfo	CoclustMod	CoclustSpecMod SpectralBiclustering SpectralCoclustering
	Classic3	0.987±0.000 0.983±0.001 0.979±0.000	0.646±0.071	0.665±0.032
	Cstr	0.713±0.058 0.714±0.052 0.817±0.000	0.399±0.023	0.609±0.036
	Webace	0.514±0.017 0.583±0.023 0.501±0.020	0.290±0.024	0.346±0.019
	Webace ori 0.539±0.039 0.567±0.019 0.478±0.018	0.308±0.014	0.372±0.017
	Classic4	0.781±0.082 0.888±0.018 0.596±0.011	0.582±0.026	0.427±0.014
	Reviews	0.718±0.024 0.686±0.035 0.477±0.006	0.481±0.037	0.329±0.011
	Sports	0.579±0.052 0.674±0.027 0.638±0.028	0.437±0.036	0.403±0.006
	Rcv1	0.707±0.026 0.710±0.042 0.301±0.000	0.434±0.028	0.294±0.001
	Ng20	0.484±0.020 0.394±0.021 0.283±0.020	0.088±0.005	0.084±0.002

Table 6 :

 6 Accuracy values.

	Dataset	CoclustInfo	CoclustMod	CoclustSpecMod SpectralBiclustering SpectralCoclustering
	Classic3	0.962±0.001 0.948±0.002 0.941±0.000	0.305±0.070	0.265±0.046
	Cstr	0.594±0.046 0.546±0.044 0.718±0.000	0.035±0.025	0.318±0.055
	Webace	0.435±0.029 0.550±0.031 0.334±0.037	0.145±0.026	0.235±0.021
	Classic4	0.548±0.102 0.703±0.040 0.299±0.055	0.233±0.033	-0.007±0.015
	Reviews 0.621±0.042 0.529±0.053 0.184±0.022	0.142±0.036	-0.003±0.003
	Sports	0.459±0.058 0.516±0.029 0.390±0.012	0.118±0.038	0.034±0.006
	Rcv1	0.492±0.027 0.484±0.043 -0.000±0.000	0.096±0.024	-0.001±0.000
	Ng20	0.377±0.011 0.285±0.019 0.196±0.019	0.009±0.003	0.006±0.001

Table 7 :

 7 ARI values.

It should however be noted as a word of warning that blockcluster is known to be a bit flawed and does not scale well, which could motivate us to integrate alternative implementations of probabilistic co-clustering algorithms into the CoClust package, as indicated in the conclusion.

The standard null model used in the literature also assumes that the nodes keep the degree they have in the original network.

This generalization is possible thanks to the introduction of the γ parameter. See[START_REF] Govaert | Co-Clustering[END_REF] for more details on this point.

The balance is the ratio of the number of documents in the smallest class to the number of documents in the largest class.

http://www.dataminingresearch.com/index.php/2010/09/classic3-classic4-datasets

http://qwone.com/ jason/20Newsgroups/

The meaning of the options is given below: optional arguments:

-h, --help show this help message and exit input:

if not set, "," is considered output:

--output_row_labels file path for the predicted row labels --output_column_labels file path for the predicted column labels --output_fuzzy_row_labels file path for the predicted fuzzy row labels --output_fuzzy_column_labels file path for the predicted fuzzy column labels --convergence_plot file path for the convergence plot --reorganized_matrix file path for the reorganized matrix algorithm parameters:

-n=2, --n_coclusters=2 number of co-clusters -m=15, --max_iter=15 maximum number of iterations -e=1e-09, --epsilon=1e-09 stop if the criterion (modularity) variation in an iteration is less than EP-SILON -i, --init_row_labels file containing the initial row labels, if not set random initialization is performed --n_runs=1 number of runs evaluation parameters:

-l, --true_row_labels file containing the true row labels

--visu=False

Plot modularity values and reorganized matrix (requires numpy/scipy and matplotlib).

CoclustSpecMod Algorithm The CoclustSpecM od algorithm takes almost the same options (a few less), a summary of which is given below:

The meaning of the options is the same as for the modularity algorithm.

CoclustInfo algorithm

The CoclustInf o algorithm being non diagonal, different numbers of clusters for the rows and the columns can be specified using the following parameters:

-K=2, --n_row_clusters=2 number of row clusters -L=2, --n_col_clusters=2 number of column clusters

Detecting the best number of co-clusters: the coclust-nb script

The coclust-nb script takes almost the same arguments as coclust modularity. A summary is given below:

coclust-nb [-h] [-k MATLAB_MATRIX_KEY | -sep CSV_SEP] [--output_row_labels OUTPUT_ROW_LABELS] [--output_column_labels OUTPUT_COLUMN_LABELS] [--reorganized_matrix REORGANIZED_MATRIX] [--from FROM] [--to TO] [-m MAX_ITER] [-e EPSILON] [--n_runs N_RUNS] [--visu] INPUT_MATRIX

The number of co-clusters being unknown, the to and from parameters serve to define the range within which the number has to be searched: