
HAL Id: hal-01804073
https://hal.science/hal-01804073

Submitted on 31 May 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Coincidence Problem in CPS Simulations: the
R-ROSACE Case Study

Henrick Deschamps, Gerlando Cappello, Janette Cardoso, Pierre Siron

To cite this version:
Henrick Deschamps, Gerlando Cappello, Janette Cardoso, Pierre Siron. Coincidence Problem in CPS
Simulations: the R-ROSACE Case Study. 9th European Congress Embedded Real Time Software and
Systems ERTS2 2018, Jan 2018, Toulouse, France. pp. 1-10. �hal-01804073�

https://hal.science/hal-01804073
https://hal.archives-ouvertes.fr


�

���������	
���������������������	�	�������	���������	�������������
�	������������	��������

��������������	��	��������
�������	������

�
�����������������	���������������������������

������ �	� ��� �
��� ����		� ��
�	������ ����� �������	� ���� ��� � ��� 	���� ������	��

��	�������	������� �	����������������������������������������
�		�������

���	��	���������������������������	����
����	���������

�����������	�
��	��� ��

�

�

�

�

������������ ���

an author's https://oatao.univ-toulouse.fr/20087

https://www.erts2018.org/authors_detail_inverted_Cappello%20Gerlando.html

Deschamps, Henrick and Cappello, Gerlando and Cardoso, Janette and Siron, Pierre Coincidence Problem in CPS
Simulations: the R-ROSACE Case Study. (2018) In: 9th European Congress Embedded Real Time Software and
Systems ERTS² 2018, 31 January 2018 - 2 February 2018 (Toulouse, France).



Coincidence Problem in CPS Simulations: the
R-ROSACE Case Study

Henrick Deschamps and Gerlando Cappello
Modelling and Simulation department

Airbus Operation SAS, Toulouse, France
Email: {firstname.name}@airbus.com

Janette Cardoso and Pierre Siron
Complex systems engineering department

ISAE-SUPAERO, University of Toulouse, France
Email: {firstname.name}@isae.fr

Abstract—This paper presents ongoing work on the formalism
of Cyber-Physical Systems (CPS) simulations.

We focus on a distributed simulations architecture for CPS,
where the running simulators exist in concurrent and sequential
domains. This architecture of simulation allows the expression
of structural and behavioral constraints on the simulation. We
call scheduling of simulation the temporal organization of the
simulators interconnection.

In this paper we address the problem of the interconnected
simulations representativity. To do so, we highlight the simil-
arities and differences between task scheduling and simulation
scheduling, and then we discuss the constraints expressible over
that simulation scheduling. Finally, we illustrate a constraint on
simulation scheduling with an extension of the open source case
study ROSACE, implemented with CERTI, a compliant High-
Level Architecture (HLA) RunTime Infrastructure (RTI). HLA
is an IEEE standard for distributed simulation.

Index Terms—Aeronautics, CPS, ROSACE, Modelling, Simu-
lation, Scheduling, HLA, CERTI.

I. INTRODUCTION

The aeronautical sector is subject to long and expensive
development cycles, especially on avionic products, corres-
ponding to a significant part of the development costs of a
civil aircraft. One of the main objectives of the aeronautical
industry is to identify and correct system design errors as
soon as possible. Using simulation during the development and
integration lifecycle of an avionics product is one answer to
this need, as long as the simulation sufficiently reflects reality.

Aircraft are systems including controllers tightly interacting
with the environment to stabilize the vehicles, which are
defined as Cyber-Physical Systems (CPSs) [1]. Thus, aircraft
simulations require the interaction of avionics simulations
with environment simulations. Due to the complexity of the
simulated systems and the simulated environments, as well
as the need of incrementally improve systems one by one,
simulations are more and more modular, composed of smaller
simulations.

We consider that every modular component of the simu-
lation is sufficiently representative. For that, we rely on the
existing knowledges in model engineering, these skills can be
different if the model represents a physical part or a cyber
part. Also, we do not address the problem of parallelization,
or of the distribution of large model simulations, our starting
point is a set of components produced by experts in model
engineering and distributed simulation engineering. With these

components, certain abstracted constraints and degrees of
freedom are expressed for the integration. Certain very hard
constraints for strong coupling during the solving of a set of
complex equations will be considered in the future.

With these hypotheses, our problematic is the composition
of the existing simulation components that reflect at best
the reality. This is a contribution to simulation integration
engineering.

Our approach is to propose in section III a formalism
supporting the description of the simulation components and
the logical model scheduling to be executed. Then we propose
in section IV another formalism for the targeted execution
architecture. This formalism is generic; section V describes
an implementation using HLA-CERTI, but any other imple-
mentation could be used. In section VI, we focus on some
simulation constraints: Logical latencies and in particular the
coincidence constraint. Section VII presents R-ROSACE, a
representative aeronautics application that allows to validate
our approach. The simulation results illustrate the impact of
coincidence problem in the cyber part of the CPS. Conclusions
are discussed in section VIII.

II. RELATED WORK

The simulation of Cyber-Physical Systems touch many
research and engineering1domains and is needed at different
steps in its design as represented in fig. 1.

Figure 1: CPS design.

1For an interesting discussion about research models and engineering
models, see [2].



The simulation focus can be more: - a) on the physical
side: The lack of analytical solution for complex systems
needs a simulation phase whose goal is to approximate the
behavior of the complex physical phenomenon as faithfully
as possible [3]; or - b) on the cyber side: it is necessary to
simulate the control to be embedded in the CPS from the
earlier stage until the simulation of the computer itself. The
simulation of physical systems always involves discretization
of some type of continuous (or hybrid) model described by
differential equations. A good survey about modeling and sim-
ulation of CPS is presented in [3]. Concerning the modeling,
the Ordinary Differential Equation (ODE) in fig. 1 may be
replaced by Partial Differential Equation (PDE) or Differential
Algebraic Equation (DAE). As for the simulation, differential
equations can be solved by discretizing the time (using, e.g.,
Runge-Kutta algorithms) or discretizing the state values (using
Quantized State System (QSS) algorithms). If the model is
quite complex, then parallelization is an interesting solution
for speed-up a simulation and/or to avoid model simplification.
A key point then is how to decouple models with ODE and
DAE, which are strongly sequential by nature. One approach
consists in using Transmission Line Modeling (TLM) [4] [5].

Another aspect to point out concerning simulation is that
more and more co-simulation is needed, providing interoper-
ability, exchange and reusability of simulations. Two standards
exist, with different characteristics: Functional Mock-up Inter-
face (FMI) and High-Level Architecture (HLA). HLA [6] is
a IEEE standard originally developed for distributed military
simulations and it was not real-time. However, nowadays,
HLA is also used in real-time simulation as in [7] [8] [9].
FMI is a tool independent standard to support both model
exchange and co-simulation of dynamic models, as for today
under the roof of the Modelica Association [10]. The standard
allows distributed simulation but it is up to the user to provide
the way to do so. Some work, as [11] [12] propose to combine
both standards HLA and FMI.

III. CHARACTERIZATION OF THE MODEL SCHEDULING

A. Model scheduling and task scheduling

This section clarifies the concept of “model scheduling” in
CPS simulation.

CPS are systems, often complex, composed of multiple
systems and interacting with an environment. A simulation
of CPS is a simulation of the cyber part, tightly interacting
with the simulation of the physical part. A simulation of
CPS comprises the assembly of the cyber part inserted in the
simulation framework, and a discretization of the physical part,
as illustrated in fig. 2.

These simulations are not necessarily monolithic. A simula-
tion of a system composed of multiple systems can be divided
into a simulation of the system components. For instance, a
simulation of an aircraft can be divided into the simulation
of the engines, the simulation of the structures, the simulation
of the rudder, etc. . . This distribution is particularly adapted
to systems where the components can evolve quickly and
independently, and when “hardware in the loop” is needed.

Figure 2: the heterogeneous assembly of components in CPS
simulation.

Model scheduling is defined in [13] as the temporal organiz-
ation of components periodical execution and the synchroniza-
tion of their interactions. In model scheduling, we call dataflow
the flow of data produced by components and consumed by
others. A dataflow is either a direct data production and
consumption between two close models, or a sequence of data
produced and consumed by components between two distant
components.

Model scheduling could be brought closer to task schedul-
ing. The periodical execution of component is similar to
the scheduling of periodical tasks, except that a component
execution instance can be divided in three steps: the data
consumption, the computation, and the data production. Fur-
thermore, the notion of the deadline is not refined yet, but
we consider it to be the next component iteration for the sake
of simplicity. Fig. 3 illustrate the similarity between task and
model scheduling.

Figure 3: Similarity between task and model scheduling.

More specifically, a component is equivalent to a task, and
components can be run sequentially or concurrently by logical
processors. An example of execution architecture is given in
section IV.

Nevertheless, model scheduling and task scheduling have
major difference, described in the two following subsection.

B. Dataflow and precedence

In task scheduling, one of the most major constraints is the
precedence constraint. This constraint is defined in [14] as a
relation between two activities i and j, by i → j, meaning j
cannot start before i.

A priori, the communication between simulation com-
ponents can be converted into precedence constraints. For



instance, if a component A produces data consumed by a
component B, then A must be executed before B. But the
problem is more complex with CPS scheduling.

In CPS systems, there are algebraic loops. With the pre-
vious example, A can produce a data for B, and B for A.
These algebraic loops lead to two conflicting constraints. The
solution is to find a precedence constraint that can be relaxed
in an algebraic loop and to break the loop. For instance, if the
data produced by B for A can be delayed, then the precedence
constraint between B and A is removed.

Nevertheless, in complex systems such as aircraft, algebraic
loops are common, and some systems are implied in multiple
loops. The dataflows are much more similar to a mesh than a
ring, as illustrated in fig. 4.

Figure 4: Ideal and more realistic views of dataflows in a CPS.

The relaxation of precedence constraints comes from the
simulated systems requirements and environment modelers
specialists. Systems, such as avionics, are designed to tolerate
certain delays when exchanging data, and environment model-
ers might design simulation components to tolerate delays.
More specifically, minimum and maximum latencies can be
associated with data exchanged between two components in a
simulation, as well as a long datapath between two components
separated by multiple components. As long as those latencies
are respected, precedences can be set, and the simulation will
still be representative.

IV. AN EXECUTION SIMULATION ARCHITECTURE

We consider an execution architecture named Simulation
Execution Architecture (SEA) and defined in [13]. In the
SEA, there is a double level of scheduling, a global scheduler
scheduling logical processors using local schedulers, illus-
trated in fig. 5. Logical processors, running in a concurrent
domain, can execute periodic tasks. Tasks are executed se-
quentially on logical processors. It has to be noted that the
global scheduler does not have information about the tasks
scheduled by its logical processors, and cannot give an order

between two tasks. There are two kinds of communications,
intraprocessor and interprocessor communications. Independ-
ently of the nature of the communications (shared memory,
variables, messages. . . ), those two kinds of communications
have different properties:
• Intraprocessor communication allows tasks in the same

logical processor exchanging information directly.
• Interprocessor communication allows tasks in different

logical processors exchanging information on logical pro-
cessors synchronization points, under the direction of the
global scheduler.

Figure 5: Illustration of the SEA double level of scheduling

In the SEA architecture, the components of a simulation
are statically associated to tasks for the simulation execution.
After the association, the periods of the tasks are set to the
period of the components.

In [8], examples of simulation executions are given, illus-
trated with HLA. In HLA, a distributed simulation is com-
posed of simulations, called federates. One of these execution
models is named time stepped, where a federate, associated
with a simulation component, is considered as a periodical
task. In this execution model, data produced by simulation
component can only be consumed in the future. This imply
a cost in term of logical time delay for every dataflow.
In this paper, the model of execution is close to this time
stepped execution model, but a federate executes multiple
simulation components. This execution model is illustrated in
fig. 6, linked to simulation components allocation. This model
execution optimizes the use of logical time and allows the
definition of task sequence, where logical time delay can be
null. This notion of null delays does not exist in real time
scheduling or most of the distributed simulation.

V. IMPLEMENTING THE SEA WITH HLA
The SEA can be implemented with different distributed

simulations. In this paper, we will focus on HLA/CERTI.
The High-Level Architecture (HLA) is a standard from

the IEEE, for software architecture [6]. This standard defines
methods and a framework to build global simulations com-
prised of smaller simulations, the federates. The HLA feder-
ates communicate through a RunTime Infrastructure (RTI) [7],



Figure 6: Illustration of different logical time latencies between
components.

and using publication/subscription mechanisms to exchange
data. In this paper, we consider the CERTI implementa-
tion [15] for the RTI.

Model instances in the same federate run sequentially.
Model instances in different federates run concurrently.
• The models are components of simulation hardcoded or

imported into a federate from a library.
• The logical processors and local schedulers are the fed-

erates.
• The global scheduler is composed of the RTI Gateway

(RTIG) and RTI Ambassadors (RTIAs).
• The intraprocessor communication is shared memory.
• The interprocessor communication is network communic-

ation through RTIG and RTIA.
Fig. 7 illustrates the implementation of the execution archi-

tecture of simulation with HLA/CERTI, with a partition of 4
models a, b, c and d and three logical processors, considering
the use of one computer for the two first logical processors,
and one computer for the third one.

The scheduling mechanisms are divided into two levels: The
CommonFederate, and the SpecializedFederate inheriting the
CommonFederate.

The CommonFederate holds lists of subscribable and pub-
lishable objects, bound to a list of attributes, following re-
commendations from [16]. The CommonFederate advances its
logical time depending on the minor frames through HLA ser-
vices and executing library models depending on their frequen-
cies. SpecializedFederates, inheriting from CommonFederate,
initialise the minor frame and the previous list, depending on
the ports in and out linked to extraprocessor communications.
The intraprocessor communication is a simple shared memory,
instantiated with SpecializedFederate attributes.

Fig. 8 depicts the structural bindings of models in Spe-
cializedFederates. Listing 1 depicts how the CommonFederate

Figure 7: Illustration of the HLA/CERTI execution architec-
ture.

is declared, and how it handles simulation phases. Listing 2
depicts how the SpecializedFederate overrides the simulation
step, creating the sequence of models.

Figure 8: Structure of the binding of models from the library
with HLA/CERTI federates.

Listing 1: abstract federate declaration
1 structure CommonFederate
2
3 −− Ordered set of models to run periodically.
4 ordered_set<model> models
5
6 −− Variables for intraprocessor communications.
7 map<string name, data value> internal_consumptions,

internal_productions
8 −− Variables for extraprocessor communications.
9 map<string name, data value> external_consumptions,

external_productions
10
11 Time t −− Federate current time
12 Time ts −− Federate timestep (GCD of models periods)
13
14 void run():
15 begin
16 ordered_set<void (∗)()> phases = {
17 creation_phase,
18 initialization_phase,
19 simulation_loop_phase,
20 ending_phase,
21 closing_phase
22 }
23 foreach phase in phases:
24 phase()
25 end run;
26
27
28 −− Federation creation and joining
29 virtual void creation_phase()
30



31 −− Publications and subscription declarations,
32 −− binding of external_∗ with HLA attributes,
33 −− times, variables and models init and synchronization.
34 virtual void initialization_phase()
35
36 −− Loop simulation step until the end of the simulation.
37 virtual void simulation_loop_phase()
38
39 −− Deleting registered objects and leaving federation.
40 −− The last one destroy the federation.
41 virtual void ending_phase()
42
43 −− Function to be specialized by federates.
44 virtual void simulation_step() = 0
45
46 ...
47 end

Listing 2: simulation step
1 begin
2 −− Waiting for the other federates
3 time_advance_request(t)
4 while not time_advance_grant(t):
5 wait()
6
7 −− Federate inputs retrieving
8 foreach cons in external_consumptions:
9 retrieve_attribute_value(cons, t)

10
11 −− Populating variable for models
12 foreach cons in external_consumptions:
13 internal_consumptions[cons.name] = cons.value
14
15 −− Models sequential run
16 foreach model in models:
17 if t % model.period: −− if the period is coherent
18 model.run(internal_consumptions, &internal_productions)
19
20 −− Populating variable for federate communication
21 foreach prod in internal_productions:
22 external_productions[prod.name] = prod.value
23
24 −− Federate outputs update
25 foreach prod in external_productions:
26 update_attribute_value(prod, t + ts)
27
28 −− Advancing local time
29 t += ts
30
31 end

VI. SIMULATION CONSTRAINTS

CPS simulation representativity and reproducibility require-
ments can be translated into constraints, either coming from
the simulated systems (frequencies, latencies, . . . ), or the
simulation execution. In this section, we will give an insight
of the currently identified expressible constraints on CPS
simulation scheduling.

In the SEA, interprocessor and intraprocessor communica-
tions might have different costs on logical time latencies. Fig. 9
illustrates how different partitions can lead to different logical
time latencies. In model C, if data from A and B are compared,
then it can lead to a simulation that is not representative of
the reality.

Let consider that the two models A and B are sending their
logical times to C, that subtracts these logical times. For the

Figure 9: Impact of the partitioning of components on data-
flows latencies.

first partition, we will have:
∀lt,C[lt + 1] = A[lt] − B[lt] = lt − lt = 0
But for the second partition, we will have:
∀lt,C[lt + 1] = A[lt + 1] − B[lt + 1] = lt + 1 − lt = 1. If
this subtracter has been designed without considering different
delays, the second execution is invalid.

We call the constraint of having same latencies on data-
paths the coincidence constraints. This constraint is not limited
to simple synchronization of transmission. More generally,
when a model iteration produces data, processed by other
models on different paths, another model might receive the
final production on these paths. If the different latencies on
different data-paths are representative of the real CPS, and the
final component models a system or physical phenomenon
tolerating delay, there is no problem, but most of the time
this is not the case, and coincidence constraints have to be
identified and respected when partitioning and mapping. Such
a case is considered in the R-ROSACE example following.

VII. EXAMPLE WITH R-ROSACE
A. Introduction to the case study

The ROSACE (Research Open-Source Avionics and Con-
trol Engineering) case study covers different steps from the
conception to the implementation of a baseline flight con-
troller. Originally, the ROSACE case study started with the
flight controller developed in Matlab/SIMULINK, ending with
a multi-periodic controller executing on a multi/many-core
target [17]. The case study itself is a longitudinal flight
controller, designed to be used as a benchmark and to illustrate
the translating of Matlab/SIMULINK specifications to multi-
threaded code executing on multi/many-cores.

A major challenge of designing ROSACE controller is the
need of interactions between control and software engineers.
Control engineering and computer science do not consider
the same problems in design, as these two disciplines are
technically and culturally separated. For instance, computer
science does not consider physical system requirements, such
as stability, while control engineering ignores important com-
puting limitations, such as tasks schedulability and network



resources. This issue is particularly prevalent when designing
CPS [18], endorsing our willingness to base our study on the
ROSACE case study.

The ROSACE case study objective is to validate the real-
time aspect of the controller implementation. The following
properties are taken into account:

P1 Settling time
P2 Overshoot
P3 Rise time
P4 Steady-state error
An operational scenario is a set of events that includes the

interaction of a system with its environment and its users. The
ROSACE case study has multiple operational scenarios. The
following multiple operational scenarios are taken into account
in the original case study:

Case 1 The pilot set a new value to the Vertical Speed (Vz ).
Vz : 0m.s−1 → 2.5m.s−1

Case 2 The pilot set a new value to the True Airspeed (Va).
Va : 230m.s−1 → 235m.s−1

Case 3 The pilot wait for t = 50s then set a new Altitude (h).
h : 10000m → 11000m, with Vz = −2.5m.s−1

Case 4 The pilot regularly set a new Altitude. h : 10000m →
10500m → 11000m → 11500m → 8000m, with Vz =

−2.5m.s−1

All of them are while in cruise flight, at equilibrium.
Case 1 also have the following requirements:

P1 Settling time Vz ≤ 10s
P2 Overshoot Vz ≤ 10%
P3 Rise time Vz ≤ 6s
P4 Steady-state error Vz ≤ 5%

B. Adding redundancy

R-ROSACE is an extension of the open source ROSACE
case study, adding redundant controllers [17] [19]. The ad-
ded redundancy allows us to create multiple datapaths with
different latencies.

The case study models and report is available in [20].
R-ROSACE has been implemented with multiple frame-

works, including HLA/CERTI, following the architecture of
simulation introduced in this paper, the redundancy of con-
trollers is illustrated in fig. 10.

Figure 10: R-ROSACE redundant controllers components,
with sensors and wiring as interfaces.

The Flight Control Computers (FCC) correspond to the
ROSACE controllers. Three controllers exist in the original
case study:

• Vertical Speed controller.
• True Airspeed controller.
• Altitude controller.

We group them in a single component, called FCC, and add
a monitoring logic, to use this FCC in command or monitor
mode, depending on its usage.

When using multiple FCCs, it must be determined which
one will provide commands to the actuators. From the Airbus
experience, we know that we have sufficiently information to
determine the command, but we have to introduce another
component, a wiring model containing switches. This compon-
ent will simulate the logic of selecting the commands using
the relays [21].

In R-ROSACE, we will consider a couple of FCCs, each
one is composed of a command, and a monitor. We will also
add the wiring model between this couple of FCCs, and the
actuators.

Figure 11 illustrates the placement of the components in the
redundant ROSACE case study. Moreover, the nature of each
component is highlighted (continuous or discrete).

Figure 11: The R-ROSACE case study components view

C. Simulation with different partitions and mappings

All the scenarios were implemented and simulated, however,
in the following, we will only present and analyze case 1.

Different partitions of R-ROSACE has been considered,
especially the two boundary ones:
• All the components of the simulation are in a single

logical processor, following the order of the dataflows
(latencies are minimized).

• Every component has its logical processor (latencies are
maximized).

Those two boundary partitions show us that there is no prob-
lem of logical latencies on R-ROSACE. They are illustrated
in figs. 12a, 12b, 13a and 13b, and their predicted executions
are illustrated in figs. 14a and 14b

We also consider partitions that should break the coincid-
ence requirements of the added redundancy. To do so, we
isolated the FCCs in a dedicated cluster and manipulated their
order during the mapping phase. Figs. 12c, 13c, 13d and 13e



illustrate the partitions and mappings, and the predicted exe-
cutions of the FCCs in their cluster are illustrated in figs. 15.
For predicted execution in fig. 15b, the requierment is broken
because FCC1A produce a value at t0, consumed by FCC1B
at t0 + period(FCC), but the sensors values used by FCC1A
and FCC1B came from different sensors model iterations. The
data from FCC1A and sensors are not coincident for FCC1B.
For predicted execution in fig. 15c, the problem is the same,
but with FCC1 and FCC2.

D. Simulation results

Simulation observations are presented for the vertical speed
in fig. 16.

P1, P2, P3 and P4 requirements from the R-ROSACE case
study (i.e., the avionics world, not the simulation world) are
verified for centralized and distributed simulations (figs. 16a
and 16b), as well as isolated FCC when they are mapped in
order, or partial order (figs. 16c and 16d).

We predicted that the execution of mapped FCCs in reverse
order, fig. 15c, should not be valid, and the observation of the
simulation results in fig. 16e confirm this prediction expressed
at simulation scheduling-level.

However, we also predicted that fig. 16d should not be
valid, as it does not respect the coincidence constraint, but the
case study requirements are still met. This particular test case
illustrates that simulated system can back simulation failure.
The point is that the FCC1 production is invalid, but FCC2
is, and the redundancy mechanism hides the FCC1 problem.
Adding others requirements and observing other metrics could
have, a posteriori, help identify the invalidity of the simulation,
but in the scope of CPSs simulation, this is not sufficient as
it covers the problem a posteriori and it must and is cover a
priori with the coincidence constraint.

VIII. CONCLUSION

In [13], we defined a formalism to analyze the scheduling
of CPSs simulations. With this formalism, certain temporal
requirements can be verified. Nevertheless, a complete set of
constraints could not be directly expressed in the formalism.

In this paper, we detailed the implementation of a case study,
R-ROSACE, available on [19]. We presented an execution
of the case study with HLA/CERTI. We identified in this
case study a constraint, expressible on the CPS scheduling
during the partition and mapping process. This constraint,
the coincidence constraint, is not HLA/CERTI specific, and
address every SEA implementation. Other implementation
presented in [13] had the same problem. This paper also
illustrates how to identify and express new constraints on CPSs
simulations schedulings formalized with SLA and SEA.

Synchronization of dataflow is already treated in the literat-
ure, nevertheless, the identification and treatment in the scope
of CPS simulation is particular as this problem occurs during
simulation components integration (i.e., this is totally related
to the simulation execution), and the simulation can be invalid,
without visible effects on the results.

(a) Centralized case — one
partition for all models

(b) Distributed case — one partition for each
models

(c) FCC standalone case — one partition for
FCCs couples

Figure 12: Considered partitions for this paper results present-
ation

(a) Centralized case — one partition for all models

(b) Distributed case — one partition for each models

Figure 14: Predicted executions for this paper results present-
ation, for simple partitions/mappings



(a) Centralized case
— one partition for all
models

(b) Distributed case — one partition for each
models

(c) FCC standalone case — one partition for
FCCs couples, com executed before mon

(d) FCC standalone case — one partition for
FCCs couples, one couple com before mon,
and one mon before com

(e) FCC standalone case — one partition for
FCCs couples, mon before com

Figure 13: Considered mappings for this paper results presentation

(a) FCC standalone case — one partition for FCCs
couples, com executed before mon

(b) FCC standalone case — one partition for FCCs
couples, one couple com before mon, and one mon
before com

(c) FCC standalone case — one partition for FCCs
couples, mon before com

Figure 15: Predicted executions in LP2 for this paper results presentation, for FCC standalone cases



In future work, we will identify more constraints, with
the aim of expressing them in a formalism. Furthermore, we
will improve our method of representing the SEA, to take
into account concepts that were left behind for now, such
as the preemption and overrun. This formalism should be
applied in the academic and industrial context to prove that
the scheduling of a distributed simulation, is valid by design.

The application of the verification of constraint such as the
coincidence constraint will be done with allocation algorithm,
automatically searching for the best partition and mapping
of an SLA on an SEA, and generating a scheduling of
simulation.

ACKNOWLEDGEMENT

The work described in this paper is supported through an
Industrial Agreement for Research Training — CIFRE —
financed by the National Association for Research in Tech-
nology (ANRT). This work is also financed and supervised by
Airbus, and supervised by the ISAE-SUPAERO, University of
Toulouse.

REFERENCES

[1] C. Landauer, “Flight Systems are Cyber-Physical Systems,” Nov. 2012.
[2] E. A. Lee, Plato and the Nerd: The Creative Partnership of Humans

and Technology. MIT Press, 2017.
[3] A. B. K.-E. Feki, “Distributed real-time simulation of numerical models

: application to power-train,” Ph.D. dissertation, Universite de Grenoble,
2014.

[4] M. Sjölund, R. Braun, P. Fritzson, and P. Krus, “Towards efficient distrib-
uted simulation in modelica using transmission line modeling,” in 3rd
International Workshop on Equation-Based Object-Oriented Modeling
Languages and Tools :, 2010.

[5] A. B. Khaled, M. B. Gaiid, N. Pernet, and D. Simon, “Fast multi-core co-
simulation of cyber-physical systems: Application to internal combustion
engines,” Simulation Modelling Practice and Theory, Elsevier, pp. 43–
48, 2014.

[6] Institute of Electrical and Electronics Engineers and IEEE-SA Standards
Board, IEEE standard for modeling and simulation (M & S) high level
architecture (HLA): object model template (OMT) specification. New
York: Institute of Electrical and Electronics Engineers, 2010, oCLC:
682577410.

[7] C. Gervais, J.-B. Chaudron, P. Siron, R. Leconte, and D. Saussié,
“Real-time distributed aircraft simulation through HLA,” in Proceedings
of the 2012 IEEE/ACM 16th International Symposium on Distributed
Simulation and Real Time Applications. IEEE Computer Society, 2012,
pp. 251–254.

[8] J.-B. Chaudron, Architecture de simulation distribuée temps-réel.
Toulouse, ISAE, Jan. 2012.

[9] J.-B. Chaudron, D. Saussié, P. Siron, and M. Adelantado,
“How to solve ODEs in real-time HLA distributed simulation,”
in SISO (Simulation Interoperability Standards Organization),
ORLANDO, United States, Sep. 2016. [Online]. Available:
https://hal.archives-ouvertes.fr/hal-01399161

[10] “Functional mock-up interface (fmi).” [Online]. Available: http:
//fmi-standard.org

[11] H. Neema, J. Gohl, Z. Lattmann, J. Sztipanovits, G. Karsai, S. Neema,
T. Bapty, J. Batteh, and H. Tummescheit, “Model-based integration
platform for fmi co-simulation and heterogeneous simulations of cyber-
physical systems,” 2013.

[12] A. Garro and A. Falcone, “On the integration of hla and
fmi for supporting interoperability and reusability in distributed
simulation,” in Proceedings of the Symposium on Theory of
Modeling &#38; Simulation: DEVS Integrative M&#38;S Symposium,
ser. DEVS ’15. San Diego, CA, USA: Society for Computer
Simulation International, 2015, pp. 9–16. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=2872965.2872967

[13] H. Deschamps, P. Siron, J. Cardoso, and G. Cappello, “Toward a
formalism to study the scheduling of Cyber-Physical systems simula-
tions,” in 2017 IEEE/ACM 21st International Symposium on Distributed
Simulation and Real Time Applications (DS-RT) (DS-RT’17), Rome,
Italy, Oct. 2017.

[14] L. Lamport, “Time, clocks, and the ordering of events in a distributed
system,” Communications of the ACM, vol. 21, no. 7, pp. 558–565, 1978.

[15] B. Bréholée and P. Siron, “Certi: Evolutions of the onera rti prototype,”
in Fall Simulation Interoperability Workshop, 2002.

[16] F. Kuhl, J. Dahmann, and R. Weatherly, Creating computer simulation
systems: an introduction to the high level architecture. Upper Saddle
River, NJ: Prentice Hall PTR, 2000.

[17] C. Pagetti, D. Saussié, R. Gratia, E. Noulard, and P. Siron, “The
ROSACE case study: from Simulink specification to multi/many-core
execution,” in 2014 IEEE 19th Real-Time and Embedded Technology
and Applications Symposium (RTAS). IEEE, 2014, pp. 309–318.

[18] D. Henriksson and H. Elmqvist, “Cyber-Physical Systems Modeling and
Simulation with Modelica,” 2011.

[19] “SchedMCore | Easy MultiCore Scheduling Analysis and Simulation.”
[Online]. Available: http://sites.onera.fr/schedmcore/

[20] “R-ROSACE case study.” [Online]. Available: https://svn.onera.fr/
schedmcore/branches/ROSACE_CaseStudy/redundant/

[21] R. Bernard, J.-J. Aubert, P. Bieber, C. Merlini, and S. Metge,
“Experiments in model based safety analysis: Flight controls,” IFAC Pro-
ceedings Volumes, vol. 40, no. 6, pp. 43–48, 2007. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1474667015310934

https://hal.archives-ouvertes.fr/hal-01399161
http://fmi-standard.org
http://fmi-standard.org
http://dl.acm.org/citation.cfm?id=2872965.2872967
http://dl.acm.org/citation.cfm?id=2872965.2872967
http://sites.onera.fr/schedmcore/
https://svn.onera.fr/schedmcore/branches/ROSACE_CaseStudy/redundant/
https://svn.onera.fr/schedmcore/branches/ROSACE_CaseStudy/redundant/
http://www.sciencedirect.com/science/article/pii/S1474667015310934


(a) Vertical speed evolution, centralized case — one partition for all models,
direct order

(b) Vertical speed evolution, distributed case — one partition for each model

(c) FCC standalone case — one partition for FCCs couples, com executed
before mon

(d) FCC standalone case — one partition for FCCs couples, one couple com
before mon, and one mon before com

(e) FCC standalone case — one partition for FCCs couples, mon before com

Figure 16: Vertical speed evolution in R-ROSACE, scenario 1: Vzc set to 2.5m.s−1


	Introduction
	Related work
	Characterization of the model scheduling
	Model scheduling and task scheduling
	Dataflow and precedence

	An execution simulation architecture
	Implementing the SEA with HLA
	Simulation constraints
	Example with R-ROSACE
	Introduction to the case study
	Adding redundancy
	Simulation with different partitions and mappings
	Simulation results

	Conclusion
	References

