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Characterization of generalised Petersen graphs that are

Kronecker covers∗
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FAMNIT, University of Primorska, Slovenia
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Abstract

The family of generalised Petersen graphs G (n, k), introduced by Coxeter et al. [4]
and named by Mark Watkins (1969), is a family of cubic graphs formed by connecting
the vertices of a regular polygon to the corresponding vertices of a star polygon. The
Kronecker cover KC(G) of a simple undirected graph G is a special type of bipartite
covering graph of G, isomorphic to the direct (tensor) product of G and K2. We
characterize all generalised Petersen graphs that are Kronecker covers, and describe the
structure of their respective quotients. We observe that some of such quotients are again
generalised Petersen graphs, and describe all such pairs.

Keywords� generalised Petersen graphs, Kronecker cover
MSC: 57M10, 05C10, 05C25

1 Introduction

The generalised Petersen graphs, introduced by Coxeter et al. [4] and named by Watkins [16],
form a very interesting family of trivalent graphs that can be described by only two integer
parameters. They include Hamiltonian and non-Hamiltonian graphs, bipartite and non-
bipartite graphs, vertex-transitive and non-vertex-transitive graphs, Cayley and non-Cayley
graphs, arc-transitive graphs and non-arc-transitive graphs, graphs of girth 3, 4, 5, 6, 7 or 8.
Their generalization to I-graphs does not introduce any new vertex-transitive graphs but it
contains also non-connected graphs and has in special cases unexpected symmetries [2]. For
further properties of I-graphs also see [8, 12].

Following the notation of Watkins [16], for given integers n and k < n
2
, we can de�ne

a generalised Petersen graph G (n, k) as a graph on vertex-set {u0, . . . , un−1, v0, . . . , vn−1}.
∗Dedicated to Mark Watkins on the Occasion of his 80th Birthday.
†matjaz.krnc@upr.si
‡tomaz.pisanski@upr.si
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The edge-set may be naturally partitioned into three equal parts (note that all subscripts
are assumed modulo n): the edges EO (n, k) = {uiui+1}n−1i=0 form the outer rim, inducing a
cycle of length n; the edges EI (n, k) = {vivi+k}n−1i=0 form the inner rims, inducing gcd(n, k)
cycles of length n

gcd(n,k)
; and the edges ES (n, k) = {uivi}n−1i=0 , also called spokes, which induce a

perfect matching in G (n, k). Hence the edge-set may be de�ned as E (G (n, k)) = EO (n, k)∪
EI (n, k) ∪ ES (n, k).

Various structural aspects of the mentioned family have been pointed out. Examples
include identifying generalised Petersen graphs that are Hamiltonian [1] or Cayley [11, 14], or
isomorphic [8, 12, 15], or �nding their automorphism group [5]. Also, a related generalization
to I-graphs has been introduced in the Foster census [3], and further studied by Boben et al.
[2].

The theory of covering graphs became one of the most important and successful tools of
algebraic graph theory. It is a discrete analog of the well known theory of covering spaces in
algebraic topology. In general, covers depend on the values called voltages assigned to the
edges of the graphs. Only in some cases the covering is determined by the graph itself. One
of such cases is the recently studied clone cover [10]. The other, more widely known case is
the Kronecker cover.

The Kronecker cover KC (G) (also called bipartite or canonical double cover) of a simple
undirected graph G is a bipartite covering graph with twice as many vertices as G. Formally,
KC (G) is de�ned as a tensor product G × K2, i.e. a graph on a vertex-set V (KC (G)) =
{v′, v′′}v∈V (G), and the edge-set E (KC (G)) = {u′v′′, u′′v′}uv∈E(G). For H = KC (G), we also
say that G is a quotient of H. Some recent work on Kronecker covers includes Gévay and
Pisanski [6] and Imrich and Pisanski [9].

In this paper, we study the family of generalised Petersen graphs in conjunction with
the Kronecker cover operation. Namely, in the next section we state our main theorem
characterizing all generalised Petersen graphs that are Kronecker covers, and describing the
structure of their corresponding quotient graphs. In Section 3 we focus on the necessary
and su�cient conditions for a generalised Petersen graph to be a Kronecker cover while in
Section 4 we complement the existence results with the description of the structure of the
corresponding quotient graphs. We conclude the paper with some remarks and directions for
possible future research.

2 Main result

In order to state the main result we need to introduce the graph H and two 2-parametric
families of cubic, connected graphs.

Let H be the graph de�ned by the following procedure: Take the Cartesian product
K3�P3, remove the edges of the middle triangle, add a new vertex and connect it to all three
2-vertices. Note that the graph H is mentioned in [9] and is depicted in Figure 1.

As shown in [9], the Desargues graph G (10, 3) is the Kronecker cover of both G (5, 2) and
H. Note that in Figure 1 the edge-colored subgraphs of G (5, 2) and H lift to the edge-colored
subgraphs of G (10, 3), respectively.

To describe the quotients of generalised Petersen graphs, we use the LCF notation, named
by developers Lederberg, Coxeter and Frucht, for the representation of cubic hamiltonian
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Figure 1: The Desargues graph and both its quotients; H and the Petersen graph.

graphs (for extended description see [13]).

In a Hamiltonian cubic graph, the vertices can be arranged in a cycle, which
accounts for two edges per vertex. The third edge from each vertex can then
be described by how many positions clockwise (positive) or counter-clockwise
(negative) it leads. The basic form of the LCF notation is just the sequence
[a0, a1, . . . , an−1] of numbers of positions, starting from an arbitrarily chosen ver-
tex and written in square brackets.

To state our results, we only use a special type of such LCF-representable graphs, namely
C+(n, k) and C−(n, k), which we de�ne below.

De�nition 1. Assuming all numbers are modulo n, de�ne graphs

C+(n, k) =
[n

2
,
n

2
+ (k − 1),

n

2
+ 2(k − 1), . . . ,

n

2
+ (n− 1)(k − 1)

]
,

and similarly

C−(n, k) =
[n

2
,
n

2
− (k + 1),

n

2
− 2(k + 1), . . . ,

n

2
− (n− 1)(k + 1)

]
.

Note that throughout the paper, any instance of the de�nition above is used with such
values (n, k), so that the corresponding graph is well de�ned. In [9] it was proven that
G (10, 3) is the Kronecker cover of two non-isomorphic graphs. Here we prove among other
things that this is the only generalised Petersen graph that is a multiple Kronecker cover.
Every other generalised Petersen graph is either a Kronecker cover of a single graph or it is
not a Kronecker cover at all. More precisely;

Theorem 1. Among the members of the family of generalised Petersen graphs, G (10, 3) is

the only graph that is the Kronecker cover of two non-isomorphic graphs, the Petersen graph

and the graph H. For any other G ' G (n, k), the following holds:

a) If n ≡ 2 (mod 4) and k is odd, G is a Kronecker cover. In particular
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a1) if 4k < n, the corresponding quotient graph is G
(
n
2
, k
)
, and

a2) if n < 4k < 2n the quotient graph is G
(
n
2
, n
2
− k
)
.

b) If n ≡ 0 (mod 4) and k is odd, G is a Kronecker cover if and only if n | k2−1
2

and

k < n
2
. Moreover,

b1) if k = 4t+ 1 the corresponding quotient is C+(n, k) while

b2) if k = 4t+ 3 the quotient is C−(n, k).

c) Any other generalised Petersen graph is not a Kronecker cover.

For k = 1 and even n each G(n, 1) is a Kronecker cover. If n = 4t case b1) applies and
the quotient graph is the Möbius ladder Mn (see [7]). For G(4, 1) the quotient is K4 = M4.
Similarly, the 8-sided prism G(8, 1) is the Kronecker cover of M8. In case n = 4t+ 2 the case
a1) applies and the quotient is G(n/2, 1). For instance, the 6-sided prism is the Kronecker
cover of the 3-sided prism. For k > 1 the smallest cases stated in Theorem 1 are presented
in Table 1.

It is well-known that any automorphism of a connected bipartite graph either preserves
the two sets of bipartition or interchanges the two sets of bipartition. In the former case we
call the automorphism colour preserving and in the latter case colour reversing. Clearly, the
product of two color-reversing automorphisms is a color preserving automorphism and the
collection of all color preserving automorphisms determines a subgroup of the full automor-
phism group that is of index at most 2.

3 Identifying the Kronecker involutions

Before we state an important condition that classi�es Kronecker covers we give the following
de�nition.

De�nition 2. A color-reversing involution ω from the automorphism group of a bipartite
graph is called a Kronecker involution, if the vertices v and ω(v) are non-adjacent for every
vertex v.

We proceed by a well-known proposition from [9], regarding the existence of Kronecker
covers.

Theorem 2. For a bipartite graph G, there exists G′ such that KC (G′) ' G, if and only

if Aut(G) admits a Kronecker involution. Furthermore, the corresponding quotient graph

may be obtained by contracting all pairs of vertices, naturally coupled by a given Kronecker

involution.

The following result is well-known. One can �nd it, for instance in [8].

Theorem 3. A generalised Petersen graph G(n, k) is bipartite if and only if n is even and

k is odd.
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We also include the classi�cation concerning symmetries of generalised Petersen graphs,
which follows from the work of Frucht et al. [5], Nedela and �koviera [11], and Lovre£i£-
Saraºin [14].

Theorem 4 ([5, 11, 14]). Let G (n, k) be a generalised Petersen graph. Then

a) it is symmetric if and only if

(n, k) ∈ {(4, 1) , (5, 2) , (8, 3) , (10, 2) , (10, 3) , (12, 5) , (24, 5)} ,

b) it is vertex-transitive if and only if k2 ≡ ±1 (mod n) or if n = 10 and k = 2,

c) it is a Cayley graph if and only if k2 ≡ 1 (mod n).

In general the word symmetric means arc-transitive. For cubic graphs this is equivalent
to saying vertex-transitive and edge-transitive. For a generalised Petersen graph symmetric
is equivalent to edge-transitive.

In order to understand which generalised Petersen graphs are Kronecker covers we have
to identify all Kronecker involutions for each G(n, k). In what follows, for a given pair (n, k),
our arguments rely on the structure of the automorphism group A(n, k) of G (n, k). We
de�ne three types of permutations on the vertex set of a generalised Petersen graph which
are useful for describing elements of its automorphism group.

De�nition 3. For i ∈ [0, n− 1], de�ne the permutations α, β and γ on V (G (n, k)) by

α (ui) = ui+1, α (vi) = vi+1,

β (ui) = u−i, β (vi) = v−i,

γ (ui) = vki, γ (vi) = uki.

Let us paraphrase Theorem 5 of Lover£i£-Saraºin [14] that follows from Frucht et al. [5]

Theorem 5. If (n, k) is not one of (4, 1), (5, 2), (8, 3), (10, 2), (10, 3), (12, 5), or (24, 5), then
the following holds:

• if k2 ≡ 1 mod n, then

A(n, k) = 〈α, β, γ|αn = β2 = γ2 = 1, αβ = βα−1, αγ = γαk, βγ = γβ〉

• if k2 ≡ −1 mod n, then

A(n, k) = 〈α, β, γ|αn = β2 = γ4 = 1, αβ = βα−1, αγ = γαk, βγ = γβ〉

In this case β = γ2.

• In all other cases the graph G(n, k) is not vertex-transitive and

A(n, k) = 〈α, β|αn = β2 = 1, αβ = βα−1〉
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n k case involution quotient
4 1 b1 α2γ C+(4, 1)
6 1 a1 α3 G(3, 1)
8 1 b1 α4γ C+(8, 1)
10 1 a1 α5 G(5, 1)
10 3 · α5,∆ G(5, 2),H
12 1 b1 α6γ C+(12, 1)
12 5 b1 α6γ C+(12, 5)
14 1 a1 α7 G(7, 1)
14 3 a1 α7 G(7, 3)
16 1 b1 α8γ C+(16, 1)
18 1 a1 α9 G(9, 1)
18 3 a1 α9 G(9, 3)
18 5 a2 α9 G(9, 4)
20 1 b1 α10γ C+(20, 1)
20 9 b1 α10γ C+(20, 9)
22 1 a1 α11 G(11, 1)
22 3 a1 α11 G(11, 3)
22 5 a1 α11 G(11, 5)
24 1 b1 α12γ C+(24, 1)
24 7 b2 α12βγ C−(24, 7)
26 1 a1 α13 G(13, 1)
26 3 a1 α13 G(13, 3)
26 5 a1 α13 G(13, 5)
26 7 a2 α13 G(13, 6)
28 1 b1 α14γ C+(28, 1)
28 13 b1 α14γ C+(28, 13)

Table 1: The smallest generalised Petersen graphs that are Kronecker covers, together with
their corresponding Kronecker involutions ω and the quotient graphs.
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Observe that in the case when the underlying graph is symmetric, the automorphism
group may not be described by α, β and γ. For illustration, consider the following permuta-
tion ∆ of the vertex-set of Desargues graph G (10, 3), as constructed on Figure 1, where the
vertices touching the red or the blue hexagon are rotated around their ambient hexagon for
180◦, while the mapping of the rest of the vertices is de�ned by a horizontal re�ection. Since
any member of 〈α, β, γ〉 either �xes each rim set-wise or swaps them, it is easy to see that
∆ ∈ Aut(G (10, 3)) is not generated by α, β and γ. Hence the symmetric bipartite generalised
Petersen graphs need to be checked separately. It turns out that the quotients of generalised
Petersen graphs may be obtained by Kronecker involutions from 〈α, β, γ〉, or by ∆ (in the
case n = 10 and k = 3).

However, for the non-symmetric members of generalised Petersen graphs, Theorem 5
implies that any element of the automorphism group (including any Kronecker involution)
may be expressed in terms of α, β and γ. In fact, in the next lemma we show that any such
element may be expressed in a canonical way.

Lemma 6. For any automorphism ω from A(n, k) we may associate a unique triple (a, b, c) ∈
Zn × Z2 × Z2 such that ω = αaβbγc, whenever (n, k) is not equal to one of the pairs

(4, 1), (5, 2), (8, 3), (10, 2), (10, 3), (12, 5), or (24, 5).

Proof. Let G (n, k) be a generalised Petersen graph and let a, b, c be arbitrary integers. Then,
by de�nition of the three generators α, β, γ (or the three permutations) it clearly holds

1. βαa = α−aβ,

2. γαa = αakγ. If k2 ≡ 1 mod n.

3. γαa = α−akγ. If k2 ≡ −1 mod n.

4. γβ = βγ,

We omit the arguments for (1) and (4) as they are repeated from the de�nition. Property
(2) follows from the facts αγ = γαk and k2 ≡ 1 mod n. Since αaγ = γαak for any a, take
a = k and we get αkγ = γαk2 = γα and the result follows. In a similar way we prove (3).

By using the commuting rules (1�4) above we may transform any product of permutations
α, β, γ to a form αaβbγc with 0 ≤ b, c ≤ 1. In non-vertex-transitive case we have c = 0 while
in vertex-transitive non-Cayley case, one could have γ, γ2, γ3. However, we may always use
the fact that γ2 = β and the result follows readily.

A shorter proof was suggested by a referee: Namely, from Theorem 5 it clearly follows
that both β and γ normalize α, and so the fact that the intersection of 〈α〉 and 〈β, γ〉 (which
is clearly isomorphic to one of Z2, Z2×Z2 and Z4) is trivial implies that A(n, k) is a semidirect
product of Zn by Z2, Z2 × Z2 or Z4.

Note that in a bipartite G (n, k) automorphisms α and γ are color reversing, while β is
color preserving.

Proposition 7. For a bipartite generalised Petersen graph G (n, k), the following statements

hold:

1. αa is a Kronecker involution if and only if a = n/2 and n ≡ 2 (mod 4);
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2. αaβ is not a Kronecker involution;

3. if k2 ≡ −1 (mod n), then neither αaγ nor αaβγ is a Kronecker involution, for any

admissible a.

Proof. We prove the claims separately.
(1) Let ω = αa be a Kronecker involution. It is clear that ω does not �x any edge, and

since ω is an involution we trivially have a = n
2
. But since ω must be color-reversing, a must

at the same time be odd, hence the conclusion.
(2) Let ω = αaβ be a Kronecker involution. Since ω is color-reversing, a must be odd.

Letting i = a−1
2
, it is enough to observe that an edge uiui+1 is �xed by ω.

(3) In both cases, the resulting squared permutation can be written in form αa′β, which
contradicts the fact that the original permutation is an involution.

In every generalised Petersen graph G(n, k) the permutations α and β are automorphisms.
Moreover, they generate the dihedral group Dn of order 2n of automorphisms which is, in
general, a subgroup of the full automorphism group A(n, k). The two vertex orbits under Dn

are exactly the outer rim and the union of the inner rims. The three edge orbits are outer-rim,
inner-rim and the spokes. Clearly, Proposition 7 deals with Kronecker involutions from Dn

and in particular implies the condition for G (n, k) being Kronecker cover described in a) of
Theorem 1. But additional Kronecker involutions may exist by the fact that the automor-
phism group of a generalised Petersen graph may be larger then Dn. In the next subsection
we describe these additional Kronecker involutions, which may (see (3) of Proposition 7) only
happen when k2 ≡ 1 (mod n).

3.1 Additional Kronecker involutions with k2 ≡ 1 (mod n)

In what follows, we assume k2 ≡ 1 (mod n) and de�ne Q, such that k2 − 1 = Qn. The only
two permissible types of involutions are αaγ and αaβγ.

For an integer i let b(i) be the maximal integer such that 2b(i) divides i. In particular, we
have

b(n) = b(k + 1) + b(k − 1)− b(Q). (1)

In the following two subsections, we prove the condition for a generalised Petersen graph
being a Kronecker cover, described in (b1) and (b2) of Theorem 1, respectively.

Involutions of type αaγ

We have ωa = αaγ such that ωa(vi) = uki+a and ωa(ui) = vki+a, so let us for easier notation
de�ne a function Ωa : Zn → Zn such that Ωa(i) = ki + a. By these de�nitions, we clearly
have the following properties:

P1. Permutation ωa is color reversing if and only if Ωa(i) ≡ i (mod 2), in other words if a
is even and k is odd.

8



P2. Permutation ωa is an involution if and only if Ωa(Ωa(i)) ≡ i (mod n), i.e. if ak+ a ≡ 0
(mod n).

P3. Permutation ωa may only �x a spoke. In particular, αa �xes some edge if and only if
there exists an integer i, such that Ωa(i) ≡ i (mod n).

Finally, let us de�ne a constant amin = n
gcd(n,k+1)

. The next lemma describes necessary
conditions for ωa to be a Kronecker involution.

Lemma 8. Let ωa be a Kronecker involution. Then the following claims are true:

(C1) ω2a is not a Kronecker involution;

(C2) there exists an odd integer s, such that a = samin;

(C3) amin is even;

(C4) Q is even;

(C5) k ≡ 1 (mod 4).

Proof. We prove the claims consecutively.
(C1) Since ωa is an involution, by (P2.) we have a+ ka ≡ 0 (mod n) and

Ω2a(a) ≡ (ak + a) + a ≡ a (mod n),

hence a is a �xed point.
(C2) From (P2.) it follows that a(k + 1) is a multiple of n. In other words, there exists

a positive integer C, such that a = Cn
k+1

. It is clear that a is minimized whenever Cn =
lcm(k + 1, n), i.e.

amin =
lcm(k + 1, n)

k + 1
=

n

gcd(n, k + 1)
.

Note that in general C may be some s-th multiple of lcm(k + 1, n), however the value of s
from our claim may by (C1) only be odd.

(C3) The claim follows from (P1.) and (C2) by the fact that a is even if and only if amin

is even.
(C4) Suppose that Q is odd, which implies that b(Q) = 0 and b(n) > b(k + 1). By (C2)

we have that a = samin, for some odd s. We will show that Ωa has a �xed point in r = k+a+1
2

.
Indeed, we have

Ωa(r)− r ≡
(
k + 1

2
+
a

2

)
(k − 1) + a

≡ Qn

2
+
k + 1

2
a ≡ n

2
+
s · lcm(n, k + 1)

2
(mod n).

To conclude the proof it is enough to notice that lcm(n, k+ 1) is an odd multiple of n by the
fact that b(n) > b(k + 1).
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(C5) By contradiction assume that k + 1 ≡ 0 (mod 4). We will show that in such case
we have b(n) = b(gcd(n, k + 1)), implying that amin is odd. Let t = b(n) and s = b(k + 1)
and note that by (C4) we have

t = s+ b(k − 1)− b(Q) ≤ s+ b(k − 1)− 1 = s,

hence there exist odd integers o1, o2 such that n = o12
t and k + 1 = o22

s, and

amin =
n

gcd(n, k + 1)
=

o12
t

gcd(o12t, o22s)

=
o1

gcd(o1, o22s−t)
≡ 1 (mod 2).

As desired, we are in contradiction with (C3).

We conclude the proof of condition (b1) of Theorem 1 by showing that the necessary
conditions (C4) and (C5) mentioned in Lemma 8 are in fact su�cient.

Proposition 9. Let Q be even and k ≡ 1 (mod 4). Then ωa is a Kronecker involution for

any a = samin and odd s.

Proof. We consequently prove that ωa is an involution, that it is color-reversing, and that it
does not �x any edge. Observe that ωa is an involution by the fact that

(k + 1)a ≡ (k + 1)s · lcm(n, k + 1)

k + 1
≡ 0 (mod n).

Notice that k ≡ 1 (mod 4) implies gcd(n, k + 1) ≡ 2 (mod 4) hence amin and a are even
which implies that ωa is color-reversing. Using (k + 1)(k − 1) = Qn, it follows

amin =
Qn

Qgcd(n, k + 1)
=

(k + 1)(k − 1)

(k + 1) · gcd(k − 1, Q)
=

k − 1

gcd(k − 1, Q)
. (2)

Now suppose that ωa �xes a spoke uivi. Then

0 ≡ i(k − 1) + a (mod n)

≡ i · amin · gcd(k − 1, Q) + s · amin (mod n)

≡ amin(i · gcd(k − 1, Q) + s) (mod n),

which is equivalent to

i · gcd(k − 1, Q) + s ≡ 0 (mod gcd(n, k + 1)) (3)

by the fact that amin | n. But (3) is a contradiction since clearly both gcd(n, k + 1) and
gcd(Q, k − 1) are even while s is odd.
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Involutions of type αaβγ

In this section we focus on Kronecker involutions that also include the re�ection β. While
this fact requires some adjustments by the fact that we are now considering involutions of
type αaβγ, the subsection is mostly a compact transcript of the previous one.

De�ne ω′a = αaβγ i.e. ω′a(vi) = ua−ki and ω′a(ui) = va−ki, and let Ω′a : Zn → Zn be a
function de�ned as Ω′a(i) = a− ki. In this case, the requirements for the ω′a being Kronecker
involution imply:

1. Permutation ω′a is color reversing if and only if a is even and k is odd.

2. Permutation ω′a is an involution if and only if a− ak ≡ 0 (mod n).

3. Permutation ω′a may only �x an i-th spoke if and only if there exists an integer i, such
that Ω′a(i) ≡ i (mod n).

De�ne a constant a′min = n
gcd(n,n−k+1)

, and note the following necessary conditions for ω′a to
be a Kronecker involution.

Lemma 10. Let ω′a be a Kronecker involution. Then the following claims are true:

(C ′1) ω2a is not a Kronecker involution;

(C ′2) there exists an odd integer s, such that a = samin;

(C ′3) amin is even;

(C ′4) Q is even;

(C ′5) k ≡ −1 (mod 4).

Proof. We omit the proofs of (C ′1), (C ′3) and (C ′5), since they may be transcribed from the
proofs of (C1), (C3) and (C5) along the same lines.

(C ′2) Since a(n− k+ 1) is a multiple of n, there exists a constant C such that a = Cn
n−k+1

.
It is clear that a is minimized whenever Cn = lcm(n− k + 1, n), i.e.

amin =
lcm(n− k + 1, n)

n− k + 1
=

n

gcd(n, n− k + 1)
.

Again, C may be some multiple of lcm(k + 1, n), however the value of s from our claim may
by (C ′1) only be odd.

(C ′4) Suppose that Q is odd and let ωa be such a Kronecker involution. By ((C ′2)) we have
that a = sa′min, for some odd s. Note that b(Q) = 0 implies b(k − 1) < b(n) and

b(n− (k − 1)) = min (b(n), b(k − 1)) = b(k − 1),

11



hence b(n) > b(n− k + 1). We will show that Ω′a has a �xed point in r = k−1+a
2

. Indeed, we
have

Ω′a(r)− r ≡ a−
(
k − 1

2
+
a

2

)
(k + 1) ≡ a− Qn

2
− a

2
· (k + 1) (mod n)

≡ −Qn
2

+
a

2
· (n− k + 1) ≡ n

2
− s · lcm(n, n− k + 1) · (n− k + 1)

2 · (n− k + 1)
(mod n)

≡ n

2
− s · lcm(n, n− k + 1)

2
(mod n).

To conclude the proof it is enough to notice that lcm(n, n − k + 1) is an odd multiple of n
by the fact that b(n) ≥ b(n− k + 1).

The proposition below shows that the necessary conditions mentioned in Lemma 10 are
in fact su�cient, which proves the condition (b2) of Theorem 1.

Proposition 11. Let Q be even and k ≡ 3 (mod 4). Then ω′a is a Kronecker involution for

any a = sa′min and odd s.

Proof. We consequently prove that ω′a is an involution, that it is color-reversing, and that it
does not �x any edge. Observe that ω′a is an involution by the fact that

(1− k)a ≡ (n+ 1− k)s · lcm(n− k + 1, n)

n− k + 1
≡ 0 (mod n).

Notice that k ≡ −1 (mod 4) implies gcd(n, n − k + 1) ≡ 2 (mod 4) hence amin and a are
even which implies that ωa is color-reversing. Using (k + 1)(k − 1) = Qn, it follows

a′min =
Qn

Q · gcd(n, n− k + 1)
=

(k + 1)(k − 1)

gcd (Qn, (k + 1−Q)(k − 1))

=
(k + 1)(k − 1)

(k − 1) · gcd(k + 1, k + 1−Q)
=

k + 1

gcd(k + 1, k + 1−Q)
. (4)

Now suppose that ω′a �xes a spoke uivi and, for easier notation, let g = gcd(k+ 1, k+ 1−Q).
Then

0 ≡ a− i(k + 1) (mod n)

≡ s · a′min − i · a′min · g (mod n)

≡ a′min(s− i · g) (mod n),

which is equivalent to

s− i · g ≡ 0 (mod gcd(n, n− k + 1)) (5)

by the fact that a′min | n. But (5) is a contradiction since clearly both gcd(n, n− k + 1) and
gcd(k + 1, k + 1−Q) are even while s is odd.

12



We conclude with an important corollary that holds for Kronecker involutions of both
types.

Corollary 12. If Q is even then ωn/2 is a Kronecker involution.

Proof. Suppose that k ≡ 1 (mod 4) and let s = gcd(n,k+1)
2

. Since k + 1 ≡ 2 (mod 4), clearly
also gcd(n, k + 1) ≡ 2 (mod 4) and s is an odd integer. But then ωs·amin

is a Kronecker
involution by Proposition 9, and clearly s · amin = n/2.

Similarly, if k ≡ −1 (mod 4), set s′ = gcd(n,n−k+1)
2

and notice that it is an odd integer,
while s′ · a′min = n/2.

In the next section we prove that for any generalised Petersen graph except G (10, 3), all
quotients are isomorphic, hence it will be convenient to always (when applicable) use the
canonical value of a = n/2.

4 The quotients of generalised Petersen graphs

For a given generalised Petersen graph, so far we identi�ed all its Kronecker involutions.
In this section we determine the structure of the corresponding quotient graphs, for each
of these involutions. Namely, the next two subsections deal with the structural part of the
statements a) and b) of Theorem 1, respectively.

4.1 Involutions of Dn

We already know that the only Kronecker involution in the Dihedral group is the rotation
αn/2, which is realized whenever n ≡ 2 (mod 4) and k is odd. In order to prove a) of
Theorem 1, it is enough to show the following proposition, which describes the corresponding
quotient graph explicitly.

Proposition 13. For an odd n and an integer k < n
2
, we have

KC (G (n, k)) '

{
G (2n, k) ; k is odd;

G (2n, n− k) ; k is even.

Proof of a) from Theorem 1. Let G ' G(n, k) and G′ ' KC (G), for an odd integer n and
k < n

2
. The edges of KC (G) are naturally partitioned into the following three groups:

(E1) u′iv
′′
i and u′′i v

′
i;

(E2) u′iu
′′
i+1 and u

′′
i u
′
i+1;

(E3) v′iv
′′
i+k and v′′i v

′
i+k.

For easier notation, de�ne k′ to be equal k or n− k, depending on whether k is odd or even,
respectively. Furthermore, let H := G (2n, k′) and denote its vertex set with

V (H) = {a0, . . . , a2n−1, b0, . . . , b2n−1} ,

13



while its edge set consists of edges of form aiai+1, aibi and bi, bi+k′ . To show the left implication
of Proposition 13, it is enough to show that G′ ' H. Throughout the proof all subscripts for
vertices of H (on the left-hand side) are assumed to be modulo 2n, while all subscripts for
vertices of G′ (on the right-hand side) are assumed to be modulo n. To show an equivalence,
we introduce a bijection f : V (H)→ V (G′), such that

ai 7→

{
u′i if i is even,
u′′i if i is odd,

and bi 7→

{
v′′i if i is even,
v′i if i is odd.

for any 0 ≤ i < 2n. Since n is odd, f is clearly a bijection and it is enough to show that f
is a homomorphism between H and G′. We now check that all edges of H map to edges in
G′. First observe that in H, edges of types aiai+1 and aibi map to these in (E2) and (E1),
respectively. Indeed, by de�nition we have

f (aiai+1) =

{
u′iu
′′
i+1 if i is even,

u′′i u
′
i+1 if i is odd,

and f (aibi) =

{
u′iv
′′
i if i is even,

u′′i v
′
i if i is odd.

Finally, for edges of type bi, bi+k′ , we now observe that

f (bibi+k′) =

{
v′′i v

′
i+k′ if i is even,

v′iv
′′
i+k′ if i is odd.

(6)

Indeed, if k is odd or even, we have

bi+k 7→

{
v′′i+k if i+ k is even,
v′i+k if i+ k is odd.

and bi−k+n 7→

{
v′′i+n−k if i− k + n is even,
v′i+n−k if i− k + n is odd,

respectively. Keep in mind that all subscripts on the right hand side are modulo n. By (6)
we conclude that edges of type bibi+k′ correspond to the edges of type (E3) in G′. Since both
G′ and H are by de�nition cubic and of the same cardinality, the isomorphism follows.

It remains to describe the behavior of the rest of Kronecker involutions satisfying the
conditions n ≡ 0 (mod 4) and n | k2−1

2
, while k < n

2
. In the next subsection we describe

their equivalence (for �xed n, k), and also the corresponding quotient structure.

4.2 The rim-switching Kronecker involutions

Let us now turn to the Kronecker involutions containing permutation α, which are described
by item b) in Theorem 1, so we assume that k2 ≡ 1 (mod n) and Q = k2−1

n
is even.

In such case, using Propositions 9 and 11 one may �nd a Kronecker involution of G (n, k),
depending on whether k ≡ 1 (mod 4) or k ≡ 3 (mod 4), respectively. In order to prove that
several instances of Kronecker involutions are equivalent, we will need the following extension
of the LCF notion.

De�nition 4. For an involution g without �xed points of type [n] → [n], we de�ne f(i) =
g(i)− i and write, for short, [f ] instead of [f(0), f(1), . . . , f(n− 1)].
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It is easy to see that both graphs C+(n, k) and C−(n, k) from De�nition 1 correspond to
[n
2

+ (k − 1)x] and [n
2
− (k + 1)x], respectively. In order to complete the proof of the main

theorem, it remains to show that for all possible Kronecker involutions, the corresponding
quotient is unique. We split the further analysis into two cases, depending on the value of k
(mod 4).

Case 1: k ≡ 1 (mod 4)

In this case, any odd s de�nes a = samin and subseqently a Kronecker involution of the form
ωa = αaγ, with Ωa(i) = a + ki. By De�nition 1 and Theorem 2 the corresponding quotient
graph G′ is isomorphic to an outer-rim, augmented by a matching edges of type i ∼ Ω−1a (i),
which implies G′ ' [fa], where

fa(i) = Ω−1a (i)− i = ik + a− i.

To show that for any odd s, all instances of corresponding Kronecker involutions are
equivalent, we �rst prove the following lemma.

Lemma 14. Let a′ = a+ gcd(k − 1, Q) · amin. Then [fa] ' [fa′ ].

Proof. To prove the claim it is enough to observe that the LCF sequence of graph [fa′ ] is
equivalent to the LCF sequence of [fa], cyclically shifted by one, i.e. fa′(i) = fa(i+1). Indeed,
by de�nition we have

fa′(i) = a+ gcd(k − 1, Q)amin + i(k − 1)

= a+ (i+ 1)(k − 1) = fa(i+ 1),

where the second line follows from (2).

We are now ready to show item b1) of Theorem 1.

Proposition 15. Let k2 ≡ 1 (mod n) with n | k2−1
2

and k ≡ 1 (mod 4). Then G (n, k) have
unique quotient [f ].

Proof of b1) of Theorem 1. Let S be the set of all gcd(n,k+1)
2

Kronecker involutions. The
Lemma 14 partitions S into equivalence classes with respect to the relation of having an
isomorphic corresponding quotients. We will show that S consists of only one such equiva-
lence class.

In other words, this is equivalent to being in an additive group of order gcd(n,k+1)
2

and
calculating the order of the element gcd(Q,k−1)

2
. Clearly, all classes of such partition of S have

the same cardinality, while the number of these classes is equal to

gcd

(
gcd(n, k + 1)

2
,
gcd(Q, k − 1)

2

)
= gcd

(
n

2
,
k + 1

2
,
k − 1

2
,
Q

2

)
≤ gcd

(
k + 1

2
,
k − 1

2

)
= 1.

But then any Kronecker involution, in particular the one with a = n
2
, corresponds to the

unique quotient of G (n, k).
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Case 2: k ≡ 3 (mod 4)

Also in this case, any odd s de�nes a = sa′min and subseqently a Kronecker involution of the
form ω′a = αaβγ, with Ω′a(i) = a − ki. By De�nition 1 and Theorem 2 the corresponding
quotient graph G′ is isomorphic to an outer-rim, augmented by matching edges of type
i ∼ Ω−1a (i), which implies G′ ' [fa], where

fa(i) = Ω′−1a (i)− i = a− ik − i.

We prove a similar lemma as in the previous case.

Lemma 16. Let a′ = a+ gcd(k + 1, k + 1−Q) · a′min. Then [fa] ' [fa′ ].

Proof. We similarly prove the claim by observing fa′(i) = fa(i− 1). Indeed, we have

fa′(i) = a+ gcd(k + 1, k + 1−Q)a′min − i(k + 1)

= a− (i− 1)(k + 1) = fa(i− 1),

where the second line follows from (4).

We are now ready to show item b2) of Theorem 1.

Proposition 17. Let k2 ≡ 1 (mod n) with n | k2−1
2

and k ≡ −1 (mod 4). Then G (n, k)
have unique quotient C−(n, k).

Proof of b2) of Theorem 1. Let S be the set of all gcd(n,k+1)
2

Kronecker involutions. Again,
we show that Lemma 16 eventually covers the whole set S.

In this case one may consider an additive group of order gcd(n,n−k+1)
2

and calculate the
order of the element gcd(k+1,k+1−Q)

2
. The number of such orbits is equal to

gcd

(
gcd(n, n− k + 1)

2
,
gcd(k + 1, k + 1−Q)

2

)
= gcd

(
n

2
,
k + 1

2
,
k − 1

2
,
Q

2

)
≤ gcd

(
k + 1

2
,
k − 1

2

)
= 1.

Since we described the quotients of all existing Kronecker involutions, this concludes the
proof of Theorem 1.

5 Concluding remarks and future work

In this paper, we classi�ed parameters (n, k) such that G (n, k) is a Kronecker cover of some
graph, and described the corresponding quotients. From our main result it easily follows:

Corollary 18. KC (G (n, k)) is itself a generalised Petersen graph if and only if n is odd.
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Figure 2: The Dürer graph G (6, 2) and its Kronecker cover KC(G (6, 2)) with proper vertex
two-coloring.

We analyzed the problem of Kronecker covers of the family of generalised Petersen graphs.
It would be interesting to transfer this problem to the family of I-graphs [2, 3, 12, 8] or Rose-
Window graphs [17], or some other families of cubic or quartic graphs.

Graphs KC (G (n, k)) that are not generalised Petersen graphs, in other words if n is odd,
fall into two known classes, depending on the parity of k. If k is odd, we have KC (G (n, k)) =
2G (n, k). It would be interesting to investigate the family of graphs KC (G (n, k)) with both
n and k even. The smallest case is depicted in Figure 2. This is the Kronecker cover of the
Dürer graph G (6, 2).
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