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Introduction



Laboratoire Nationale des Champs Magnétiques Intenses

Magnetic Fields (T:Tesla)

Static Field: Pulsed Field:
e Grenoble: 36T, soon 43T, e Toulouse: 99T,
o Tallahassee, USA: 45T e Los Alamos, USA: 100T
Applications
e Semiconductors and nanophysics, e Magneto-science, Levitation,
e Chemistry, Biochemistry, e Applied Superconductivity

(c) Bitter

(a) Exterior

(b) Interior



Involved physics

Joules losses

Thermic Electric
e Non-Linear e Non-Linear
etk o
e Colburn correlation Conductivities e Current intensity on
boundary
Dilatation

Current density

Y Y
Magnetostatic

Elasticity
Li Lorentz forces
e Linear ‘; ‘ o Maxwell

e Deformation e Biot & Savart




Applications

Optimisation
e Use experimental measurements to identify unknown parameters, such
as heat exchange coefficient or conductivities

e Parametrize the form of the magnet to reach a better homogeneity of
the magnetic field in the region of interest

Output and control quantity of interest

e Use different experimental and geometric parameters to control the
magnetic field to create a magnetic structure to confine plasma

e Find parameters such as the magnetic field allow the levitation of an
object inside the region of interest
Real time computation and visualization of the magnetic field

e Allow the real time visualization of the effect of different parameters on

the magnetic field




Reduced Order Method



The Reduced Basis Method

Weak formulation of the model : a(u(p), v; ) = f(v; p)

FEM Approximation

N
XN = span{ér, .. o} — uV () = 3 0 b — AN () (1) = F¥ ()
i=1

FEM approximation space S — N x N system expensive to solve

N ~ 100

RB Approximation : u™(p) ~ vV () : linear combination of FEM solution

N
N N N N N N N N N
WY = span{u™ (p1), ..., 0™ (un)} = 0" () = ) o) ()™ () — AY(p)u" (u) = FY ()
— -
RB approximation space =i N X N system cheaper to solve
10 < N < 100



The reduced basis method

Ingredients

e Set of parameters : D*
e FEM ‘truth” approximation
e XN : finite element approximation space of dimension A/ >> 1
o N (1) € XN is solution of a(uN (u), v;p) = f(vip) Yve XN
e RB approximation
e Sample : Sy = {1 € DH, ..., uy € D*}
o Approximation space : Wy = span{u™N (p1), ..., uN (n)} with N << A
e Galerkin projection on W)y, to determine RB coefficients

“N(Ms)
N (n)




Efficient offline-online strategy

N x N system to solve :

Z D vic ) () = F(vigp), T< k<N

Computational opportunities
If the parameter dependance can be expressed as an affineQdecomposition :
f

a(u,vi 1) Ze ) agfuv) and - fvi) = 26000 (V)

N Qs

= ) 29" (i), 1™ (7)) | uf'( 29" N (1))

=1 =

precomputed precomputed

e Computationnally intensive initial preprocessing
e Greatly reduced marginal cost



Some Problematics

Multi-Physics Problems

e Monolithic Resolution

e Use Block Affine Decomposition

Non Affine Problems

e Empirical Interpolation Method (EIM) : approximate an expression with an
affine decomposition

e Discrete EIM (DEIM) : approximate a discrete operator (matrix or vector)
with an affine decomposition

Non Linear Problems

e Use of EIM/DEIM

e lterative methods : Picard / Newton



What if the problem is non-linear and non-affine ?

a and f depend on non affinely parametrized {w;(u,x, @)} :

a(u(p), vi i {wi(u,x; w)}i) = F(vi pi{wiu, x; p)}i) Vv e X
= Affine decomposition doesn't exists !

Solution : build an affine approximation using Empirical Interpolation Method

M
wi(u, X, o) ~ Wi, (u,x; ) = > B (u; 1) qim(X)
m=1



What if the problem is non-linear and non-affine ?

a and f depend on non affinely parametrized {w;(u,x, @)} :

a(u(p), vi pi {wi(u, x; ) }i) = £(v; pi {wi(u, x; p)}i) Vv e X

= Affine decomposition doesn't exists !

Solution : build an affine approximation using Empirical Interpolation Method
M
Mi (.
wi(u, X, o) ~ Wi, (u,x; ) = > B (u; 1) qim(X)
m=1
Qgim Mg ngf Q?fm M; Q?ff
D3 A m)al (uv) + Y Oh(w)al (u,v) = ) Y A () fE(v) + Y 05 () (v)
g=1 m=1 /=1 g=1 m=1 I=1
non-affine part of a affine part of a

non-affine part of f affine part of f



The Discrete Empirical Interpolation Method (DEIM)

e Build an affine approximation of a tensor T (1)

Tu(p) = Y, 87 (1) ®" (1)

where

e [3™M(u) are scalar functions, ™ : D — R
e ®™ are tensors independent of u

e Offline/Online strategy very close to EIM algoritm.

e Can automatically provide the affine decomposition of a parametrized
operator

e Geometric Parameters
e Complex Operator, ex : stabilization parameter
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DEIM : Computation of 3™ ()

At any rank M, the vector of coefficient @ (1) = (B8 (1), .., M ()" is the
solution of the M x M system

Bz, ©Om(p) = Tz, (1) (2)
where

e (Bzy )k, = (¥));, : the columns of Bz, are composed by the vectors ®; in
which you only keep the entry for the index ix € Zy

o (Tz,(10))k = (T(w))i, : Tz, (p) is the evaluation of the tensor T (i) in
which you only keep the entry for the index ix € Zy

Bz,, is updated during the greedy algorithm when a new couple (P, im) is
selected.

The computation of Tz,,(x) has to be done online. It can not depend of the
finite element dimension N !
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Applications




ThermokElectric CRB

Problem
Find V =" V,(n)¢” and T =3V | T,(p)¢&/ such that:
—V(@i(T)VV)=0 inQ, i=1,...,Pna
~V (k(T)VT)=j-EinQi, i=1,...,Pma
V =gw on [Nyp
—0i(T)VV -n=gw on Ny
—ki(T)VT -n=gm on Ny
—k(T)VT -n+ GRT = g2 on Ty

All the configuration is made through a json file.

Empirical Interpolation Method
We need to use EIM for the conductivities that depends on T and for the right

hand side:

Z Brne (1) Z B (1) Qs J-E~ Z Brng (1) A

mg=1 mg=1 me=1
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Reduced Biot & Savart

In the case of experimental parameters, non geometric (o, k, h, . ..):
o [ () x (x—1)
B(x; ——————~dr Vxe(
i) = G2 |, R e

Using reduced basis for j:

i) = —o(TVV = — 3 B2, (wal, (¢ 0 3V 9E! )

mg=1
leads to:
N M, %
@ 4 —qm, (NVE (r) x (x—r
Bixip) =D, D, Vi"(w) mﬂ(u)ﬂf e (1) Var (1) X (X TGS
i=1my=1 am D) ‘X*I‘|

£?m” (x) precomputed

We can use the same parallel algorithm to compute &7, (x).
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2287202

@

e Parameters: o, k, Vp, h, T,

Linear case: o(T) = o(To) and
k(T) = k(To)

e Dimensions:

o

_m
EanEamaaees s SRR

Qeond D
dofs | 1350000 | 3000
e Times:
B ... - FE RB
: 45s | 0.05s

100s | 0.0005s

é IS
W<

5130204




Geometric parameter

In the case of geometric parameter, we need to compute:

_ V4 -
Ho j —OV V)
¢’u. (Qcond)

B(x;
(xi 1) 47 |x —r[3

—oVV - J7h x (x—¢u(r
- @J @n ( w(0) dr VX € Qmgn
Q

an X — @ (r)®

ref
cond

We could use EIM for the term ¢, (r), but the absolute value would
prevent to extract the coefficients for the affine decomposition

And we need to compute it for every X € Qmgn
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Geometric parameter

In the case of geometric parameter, we need to compute:

_ V4 -
Ho j —OV V)
¢’y. (Qcond)

B(x;
(xi 1) 47 |x —r[3

—oVV - J7h x (x—¢u(r
- @J @n ( w(0) dr VX € Qmgn
Q

an X — @ (r)®

ref
cond
We could use EIM for the term ¢, (r), but the absolute value would

prevent to extract the coefficients for the affine decomposition

And we need to compute it for every X € Qmgn

Discrete Empirical Interpolation Method
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Biot & Savart with DEIM

We approach the magnetic field with:

Mg
B(x 1) ~ ) Bm(1)Qm(x)

To compute B(p), we need to solve the
following problem:

&1 (1) S E1(ty) B1(k) B(tyi )

Em(t) .. Em(ty) By () B(tpg; )
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Biot & Savart with DEIM

We approach the magnetic field with:

B(xi ) ~ ) Bm(1)Qm(x)

To compute B(p), we need to solve the
following problem:

£1(t1) A &1(tm) B1 (k) B(t1; )

Em(ty) .. Enm(tpy) Bm (k) B(tps: 1)

We only need to know B
on the interpolation points
ti, | = 1,...,/\//3
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Applications

Optimization of the homogeneity
We apply ¢ a geometrical

transformation to modify the
shape of the helices to attain a
better homogeneity

xcos(a(p)) + ysin(e(p))
¢ = [ —xsin(a(p)) + y cos(a(p))

where « is a Bezier curve which
control points are the
parameters p of the
optimization.

initial optimal
max |B;| | 0.41337 | 0.4051
min|B.| | 0.41076 | 0.4034
maxB:.[_ 9 [ 53819 | 3544.9

min |B,|

18



Conclusion and Perspectives




Conclusions and Perspectives

Conclusions
e Non-Linear ThermoElectric model with or
without geometric parameters

e Biot & Savart model with or without
geometric parameters

e First implementation of optimization
problems with or without geometric
parameters

Add Levitation and ions source
applications

Add Maxwell and Elasticity model
Use HDG methods
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Conclusions and Perspectives

Conclusions
e Non-Linear ThermoElectric model with or
without geometric parameters

e Biot & Savart model with or without
geometric parameters

e First implementation of optimization

problems with or without geometric Tha n k yOU |

parameters

Add Levitation and ions source
applications

Add Maxwell and Elasticity model
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