
HAL Id: hal-01803881
https://hal.science/hal-01803881v1

Submitted on 31 May 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Pleiades: Distributed Structural Invariants at Scale
Simon Bouget, Yérom-David Bromberg, Adrien Luxey, François Taïani

To cite this version:
Simon Bouget, Yérom-David Bromberg, Adrien Luxey, François Taïani. Pleiades: Distributed Struc-
tural Invariants at Scale. DSN 2018 - IEEE/IFIP International Conference on Dependable Systems
and Networks, Jun 2018, Luxembourg, Luxembourg. pp.542-553, �10.1109/DSN.2018.00062�. �hal-
01803881�

https://hal.science/hal-01803881v1
https://hal.archives-ouvertes.fr

Pleiades: Distributed Structural Invariants at Scale
Simon Bouget, Yérom-David Bromberg, Adrien Luxey, François Taiani

Univ Rennes, CNRS, Inria, IRISA
F-35000 Rennes, France

Email: {francois.taiani,simon.bouget,david.bromberg,adrien.luxey}@irisa.fr

Abstract—Modern large scale distributed systems increasingly
espouse sophisticated distributed architectures characterized by
complex distributed structural invariants. Unfortunately, main-
taining these structural invariants at scale is time consuming and
error prone, as developers must take into account asynchronous
failures, loosely coordinated sub-systems and network delays.

To address this problem, we propose PLEIADES, a new frame-
work to construct and enforce large-scale distributed structural
invariants under aggressive conditions. PLEIADES combines the
resilience of self-organizing overlays, with the expressiveness
of an assembly-based design strategy. The result is a highly
survivable framework that is able to dynamically maintain
arbitrary complex distributed structures under aggressive crash
failures. Our evaluation shows in particular that PLEIADES is
able to restore the overall structure of a 25,600 node system in
less than 11 asynchronous rounds after half of the nodes have
crashed.

I. INTRODUCTION

Modern distributed architectures are becoming increasing
large and complex. They typically bring together indepen-
dently developed sub-systems (e.g. for storage, batch process-
ing, streaming, application logic, logging, caching) into large,
geo-distributed and heterogeneous architectures [16]. These
complex architectures often require structural invariants to
be maintained in order to ensure the correct functioning of
the overall system, i.e. regarding the number of nodes, their
connections, and the system’s overall topology.

For instance, MongoDB [26], a popular document-oriented
no-sql database, must maintain a star topology between sets
of nodes organized in cliques (Figure 1a). Similarly the cross-
datacenter replication feature of Riak [33], a production-
level key-value datastore, requires multiple rings to maintain
connections across geo-distributed datacenters (Figure 1b).
Another example are large scale distributed systems such as
for example Ceph [38] or Glusterfs1 that rely on a hierarchical
cluster of nodes to provide reliable data distribution.

These systems only provide a single service (storage), and
must be combined with other sub-systems to construct actual
applications. Complete distributed applications thus present
even more complex architectures which may for instance com-
bine peer-to-peer elements and edge-servers, with datacenter-
hosted machines in a wide range of topologies [10], [16], [41].
This trend is compounded by the fact that, in the wake of
Netflix, a growing number of applications are today adopting
a microservice architecture. Such applications involve thou-

1https://www.gluster.org

(a) MongoDB (b) Riak (c) Microservices

Figure 1: Modern distributed systems must maintain
increasingly complex structural invariants

sands of services interconnected to form complex intertwining
structures (Figure 1c).

Maintaining such structural invariants at scale is particu-
larly challenging as it requires maintaining systemic prop-
erties in spite of continuous asynchronous failures, loosely
coordinated sub-systems, and network delays. As a result,
current distributed management frameworks such as Borg [35],
Mesos [15] or Kubernetes [7] have so far limited themselves
to basic structural properties mainly based on cardinality (e.g.
maintaining X instances of the same container, or same group
of containers). This is problematic for developers who must
increasingly enforce sophisticated invariants as distributed
systems continue to grow in scope and size.

In this paper we propose PLEIADES, a new framework
to construct and enforce large-scale distributed structural
invariants in a way that is autonomous and resilient. Our
approach leverages the power of self-stabilizing overlays [2],
[37], [36] for resilience, and assembly-based modularity [6],
[32] for expressiveness into a seamless framework. The result
is a framework that can maintain at runtime an arbitrary
number of distributed structures under aggressive conditions,
including catastrophic failures.

More precisely, we make the following contributions:

• We introduce PLEIADES, an assembly-based topology
programming framework that harnesses the autonomous
properties of self-organizing overlays to provide struc-
tural distributed invariants that are both scalable and
highly resilient.

• Through the design of PLEIADES, we demonstrate how
multiple self-stabilizing protocols can be combined to
produce a sophisticated self-organizing behavior that is
both modular and scalable.

• We present an extensive evaluation of our framework
that demonstrates its benefits in terms of expressive-
ness, efficiency, low overhead, robustness and dynamic
reconfiguation. We show for instance how a system with
25,600 nodes organized in a ring of rings is able to
reform its overall structure after 50% of the nodes have
crashed in 11 rounds, while consuming less than 2kB of
communication per node and per round.

The remainder of the paper is organized as follows: we first
motivate our work and present some background information
(Section II). We then present the design and workings of
PLEIADES (Section III), before moving on to its evaluation
(Section IV). We discuss related work (Section V) and con-
clude (Section VI).

II. PROBLEM, VISION, & BACKGROUND

A. Problem and vision

A growing number of distributed systems rely on complex
deployment topologies to provide their services. At the level
of individual services, Scatter [13] for instance constructs
a ring of cliques in which each individual clique executes
a Paxos instance, resulting in a scalable and resilient key-
value store with a high level of consistency. In the same vein,
MongoDB—a popular document oriented no-sql database—
maintains several replica sets, a clique of nodes using a leader-
election algorithm to implement a master-slave replication
scheme, which communicate with app servers following a
star topology [26]. Riak, a production level key-value datas-
tore derived from Amazon Dynamo, offers a cross-datacenter
replication service that connects several sink clusters around a
source cluster in a star topology. Each Riak cluster is deployed
in a ring topology, and the source cluster uses special nodes,
known as fullsync coordinators to handle the replication to
each sink [33]. The above systems only provide individual
services, and must be combined with other sub-systems to
provide a full-fledged application, leading to increasingly com-
plex distributed architectures. This trend has been popularized
with the massive adoption of microservices these last years as
witnessed by industry leaders like Netflix, Amazon, Twitter,
Airbnb, etc.. From their loosely couple nature, thousands of
microservices can be composed and structured [34], [25].
However, if the maintenance of each individual microservice
has been simplified, it is not the case of the overall microser-
vices ecosystem that becomes more complex.

Maintaining a complex distributed architecture in a large-
scale system is particularly challenging. Such architectures
typically rely on systemic invariants that degrade rapidly in the
face of failures and delays and must be monitored and repaired
continuously. Unfortunately, their maintenance requires coor-
dination and distributed knowledge sharing, which are difficult
to implement by practitioners without appropriate support.

In small systems, practitioners often overcome this chal-
lenge by intervening manually to keep systems running. As
systems grow, however, their developers must increasingly rely
on ad hoc mechanisms, developed specifically for particular

uses cases, which typically leverage simpler coordination
mechanisms such as ZooKeeper or Etcd and elaborate on
them to maintain more complex invariants. This approach is
highly problematic, as it delegates a core aspect a system’s
correctness to costly, cumbersome, and error-prone practices.

Preliminary solutions to address the structural maintenance
of large-scale systems can be found in modern deployment
automation tools such as Borg [35], Kubernetes [7], Aurora 2

or Mesos [15], and in self-organizing overlays. Unfortunately
both types of solution fall short of the resilience needs of
large-scale structural invariants. Deployment automation tools
have so far only focused on basic cardinality invariants (e.g.
in Kubernetes keeping the number of “pods”—a container
groupings—that are instantiated in a replica set at a given
level), while self-configuring overlays are optimized for simple
topologies, that are only suitable for very basic deployments
(e.g. a ring, a tree, a star).

B. Self-organizing overlays

Self-organizing overlays [17], [37] are a family of decentral-
ized protocols that are able to autonomously organize a large
number of nodes into a predefined topology (e.g. a torus, a
ring). Self-organizing overlays are self-healing, and can with
appropriate extension, conserve their overall shape even in the
face of catastrophic failures [5]. The scalability and robustness
of these solutions have made them particularly well adapted
to large scale self-organizing systems such as decentralized
social networks [24], [2], news recommendation engines [1],
and peer-to-peer storage systems [8].

Self-organizing overlays such as T-Man [17] or Vicinity [37]
are unfortunately monolithic in the sense that they rely on a
single user-defined distance function to connect nodes into a
target structure. Simple topologies such as ring or torus are
easy to realize in this model, but more complex combinations,
such as a star of cliques, are more problematic. Self-organizing
overlays lack in particular the ability to incrementally describe
complex structures, and do not lend themselves as a result to
the enforcement of complex structural invariants.

C. Key challenges and roadmap

In this paper, we take a somewhat extreme stance, and
argue that distributed structural invariants in modern large-
scale distributed systems should be enforced through a generic,
systematic and survivable framework (i.e. that is able to
withstand catastrophic failures). More precisely, we propose
PLEIADES, a framework in which complex structural invari-
ants can be expressed as an assemblage of simple shapes,
and autonomously maintained at runtime in spite of failures,
including catastrophic events. PLEIADES harnesses the expres-
siveness of assembly-based modularity and the resilience of
basic self-organizing overlays to provide self-healing capabil-
ity for complex distributed systems at scale.

To avoid any single point of failure, we rely on a fully de-
centralized design. Decentralization brings a number of crucial

2aurora.apache.org

benefits in terms of fault-tolerance and survivability, but also
important challenges in terms of coordination: the lack of any
central coordination point makes it hard to enforce system-
wide properties, while the scale which we target (several
thousands of nodes) renders typical deterministic agreement
protocols difficult to implement efficiently.

In our model, a structural invariant is expressed as a combi-
nation of invididual basic shapes (ring, grid, stars) which are
then connected together to describe the constraints the overall
system must obey. The creation and maintenance of basic
shapes, of their connecting points, and of their connection
are maintained through a number of continuous self-stabilizing
protocols. These individual protocols interact with one-another
to deliver the system’s overall survivability.

The protocols making up PLEIADES must resolve a number
of key challenges in a fully decentralized manner: (i) they must
allocate nodes to “system-level” shapes, (ii) construct individ-
ual basic shapes, (iii) bootstrap identification and communi-
cations between these shapes, (iv) and realize and maintain
the dynamic bindings that connect individual shapes according
to the developer’s intent. In the remaining of this paper, we
present these different mechanisms and how they are combined
to form PLEIADES.

III. THE PLEIADES FRAMEWORK

A. System model and overall organization

We assume that the target system executes on N nodes that
communicate through message passing (e.g. using the TCP/IP
stack). The overall organization of a node executing PLEIADES
is shown in Figure 2. Each node possesses a copy of the
system’s overall configuration file (shown on the right side
of the figure) which describes (i) which basic shapes should
be instantiated, and (ii) how these shapes should be connected.
For brevity’s sake, we do not discuss how this configuration
file is disseminated to every nodes: this step could rely on a
gossip broadcast [20], or, in a cloud infrastructure, each node
could retrieve the configuration from its original VM image.
Because PLEIADES is self-stabilizing, nodes may receive this
configuration at different points in time without impacting the
system’s eventual convergence.

Starting from this configuration file, PLEIADES constructs
and enforces the corresponding structural invariant (in Fig-
ure 2, two rings connected through two links) thanks to six
self-stabilizing and fully decentralized protocols (shown as
rectangles in the figure). These six protocols fall in three cate-
gories: the three bottom protocols (Global RPS, Same Shape,
and Remote Shapes) are membership protocols (denoted by the
symbol), i.e. helper protocols dedicated to locate and sample
nodes and shapes. The Shape Building protocol (symbol)
in the middle of the figure constructs individual shapes, while
the top two protocols (Port Selection, and Port Connection)
realize the connection between individual shapes (shown with
the symbol).

These six protocols execute in a fully decentralized manner,
without resorting to any centralized entities, a key property
regarding the scalability and resilience of our approach. Each

Global	Random	Peer	Sampling	(RPS)	

Same	Shape	 Remote	Shapes	

Shape	
Building	

Port	Selec:on	

Port	Connec:on	

V
local

VRPS

V
remote

Vshape

Config	file	
one	node	

towards_port[]

connected_to[]

views	 protocols	

Key:		 	membership 						shape 									connec6on	

Figure 2: PLEIADES consists of 6 self-stabilizing protocols
that build upon one another to enforce the structural
invariant described in a configuration file distributed to
all nodes in the system.

of these protocols also produces a self-stabilizing overlay. As
such, each node maintains for each protocol a small set or
array of other nodes in the system (called a view) that evolves
in order to respect specific properties. The view maintained
on a given node by each individual protocol is shown close
to each rectangle (e.g. Vlocal for the Same shape protocol,
and towards_port [] for the Port selection protocol). These
protocols build on one another: higher protocols in Figure 2
use the view constructed by lower protocols to construct their
own view.

In order to describe how these protocols collaborate to
deliver PLEIADES, we must start by describing how individual
shapes are described in our framework (in Section III-B),
and how new nodes join individual shapes (Section III-C),
before discussing first the membership and shape construction
protocols (Section III-D), and finally turning to the Port
Selection and Port Connection protocols (Section III-E).

B. Describing individual shapes

A shape s is a subset Ns ⊆ N of nodes organized in a
particular elementary topology. Each shape follows a particular
template, a reusable description of a shape’s properties, that
may be instantiated several times in a configuration file. (In
Figure 2 for instance, the two rings of the configuration file
would be two instances of the same template.) The structure
enforced by a shape template tplate is captured by four pieces
of information, that are used by the Shape Building protocol
to realize the shape’s elementary topology:

• the definition of a position space Etplate;
• a projection function ftplate : Ns 7→ Etplate that assigns a

position in Etplate to each node selected to be part of an
instance of tplate;

• a ranking function3 dtplate : Etplate × Etplate 7→ R;
• a number of neighbors (or shape fanout) per node, ktplate.

3As mentioned in [17], self-organizing overlays employ ranking functions
that cannot always be defined as global distance functions.

left right

[0	1	

Ering=[0,1[

port	at	0.25	port	at	0.75	

Figure 3: A simple ring template can be defined using
Ering = [0, 1[as position space, a random projection
function, the modulo distance, and a shape fanout kring = 2.

This information is sufficient for the Shape Building protocol
to connect each node in Ns to its ktplate closest neighbors
according to the ranking function dtplate().

For instance, a naive version of a self-stabilizing ring can
be defined as follows (Figure 3):

Ering = [0, 1[;

fring(n) = rand([0, 1[);

dring(x, y) = min(|x− y|, 1− |x− y|);
kring = 2.

This setting places nodes from Ntplate randomly on a circular
identifier space, and selects the two closest instances of
each node as its neighbors. (In practice, self-stabilizing rings
typically seek to select ktplate/2 predecessors and ktplate/2
successors as neighbors of each node, to prevent clustering.
See [17], [28], [31].)

In addition to its internal structure, a shape template also
defines a set of ports to which other shapes may connect.
In PLEIADES, a port is simply defined as a position in
Etplate, labeled with a name. Returning to the ring example of
Figure 3, we may define two ports, named left and right,
by associating them with the positions 0.25 and 0.75 within
the identifier space [0, 1[.

C. Node joining procedure

When a node joins a running instance of PLEIADES, it
decides which shape to contribute to based on the information
of the configuration file. This joining mechanism may exploit
a wide range of strategies, depending on uses cases: nodes in
a particular location may be constrained to only join certain
shapes, or nodes with certain properties may be forbidden
to join certain shape templates. For simplicity, the version
of PLEIADES we present in this paper uses a basic joining
procedure, in which a new node randomly selects with equal
probability one of the shapes of the configuration file. In
Figure 2 for instance, this means half of the nodes on average
would select the top ring, and the other half the bottom ring.

After it has selected its shape, a node populates the config-
uration variables shown in Table I, using the configuration file
and the shape template definition. For instance, in the two-ring
example of Figure 2, a node contributing to the top ring would
pick a random id in [0, 1[, initialize the shape.∗ variables from
the ring template definition, and the k.∗ variables regarding
port connection from the configuration file. Here we would
have for instance left.remote_shape.template = ring and

Table I: Configuration state of node n, in shape s

id Position of node n in shape s;
shape.id ID of the shape s;

shape.template Template of the shape s;
shape.ports List of shape s’s ports;

s Maximum size of Vlocal;

∀k ∈ shape.ports:
k.id Position of port k in shape s;

k.remote_shape.id ID of remote shape linked to k;
k.remote_shape.template Template of remote shape linked to k;

k.remote_port Remote port linked to port k.

Table II: Views of membership and shape building prot.

VRPS View of the Global RPS protocol;
Vlocal View of the Same Shape protocol s;
Vremote View of the Remote Shapes protocol;
Vshape View of shape s’s shape building protocol;

Table III: State of the connection protocols on node n

∀k ∈ shape.ports:
is_port[k] Boolean, whether n in charge of port k

towards_port[k] Local node that seems closest to port k
connected_to[k] Remote node that seems in charge of port k

left.remote_shape.remote_port = left, meaning that the
left port of the top ring should be connected to the left

port of the bottom ring.

D. The Membership and Shape Building protocols

Just after joining a shape, a node possesses no information
about which other nodes belong to the same shape, or how
to contact other nodes in other shapes. This information is
provided by PLEIADES’s three membership protocols. The
Global Random Peer-Sampling (RPS) protocol [18] maintains,
on each node, a continuously changing sample VRPS of other
nodes’ descriptors. A node descriptor allows its complete
identification on the system. It contains its network address,
the ID of the shape it resides on, and its position on this shape.

This global peer sampling is then used to maintain two
additional membership protocols: the Same Shape Protocol
(SSP), and the Remote Shapes Protocol (RSP).

These two protocols, along with the list of neighbors re-
turned by the Shape Building protocol, are used in turn by
the Port Selection and Port Connection protocols (discussed
in Section III-E), to create and maintain the links between the
shapes according to the specification coded in the PLEIADES
configuration file.

The notations of the views maintained by each node to
implement the three membership protocols (Global RPS, Same
Shape Protocol, and Remote Shapes Protocol) and the Shape
Building protocol are summarized in Table II. We discuss each
mechanism in turn in more detail in what follows. We take
interest in a node n, that belongs to a shape s.

1) Global Random Peer Sampling (RPS): We assume that a
RPS service is available for every node, and we simply emulate
it in our experiments. Decentralized and efficient solutions
exist, such as proposed by Jelasity et al. [18]. RPS protocols

Algorithm 1: SSP: Same Shape Protocol on n

Output: n.Vlocal converges to a s-sized sample of
nodes from shape s

� Bootstrap by filtering the global peer sampling
1 cand← {n′ ∈ n.VRPS | n′.shape.id = n.shape.id}
2 cand← cand ∪ n.Vlocal

� Exploit our neighbors’ knowledge
3 if cand 6= ∅ then
4 q ← 1 random node ∈ cand

� Remote request to q

5 cand← cand ∪ q.Vlocal
6 end

� Truncation
7 n.Vlocal ← up to s random nodes ∈ cand

converge towards a constantly changing overlay that is close
to a fixed-degree random graph. This graph shows a short
diameter, which is useful to propagate or build distributed
knowledge. This graph also remains connected with high
probability, even under catastrophic failures, a particularly
interesting property for our framework.

2) Same Shape Protocol (SSP): This overlay provides a
node n with a view Vlocal of neighbors in the same shape s. The
sub-procedure managing this overlay is shown in Algorithm 1.
Upon bootstrap, Vlocal is empty. Each round, n takes candidate
neighbors from the Global RPS overlay, keeping only nodes
from its shape (line 1) in cand. It goes on merging its current
Vlocal with the candidate set on line 2. If cand is not empty
(line 3), n selects a random neighbor q from cand (line 4)
and fetches q’s local view, to add it to cand (line 5). To limit
memory consumption, the size of the local view Vlocal is bound
to s elements (line 7).

If we assume the global peer-sampling overlay provides a
uniformly distributed view of the complete system, we can
calculate the average number of rounds to get at least s
neighbors in function of the total number of nodes and shapes:
the time to find the first neighbor is inversely proportional to
the number of shapes, and the number of known neighbors
then grows exponentially. In practice, simulations show that
the size s needed for our framework is reached in a few rounds
(Section IV) which allows the system to converge and reach
a stable state quickly and efficiently.

3) Remote Shapes Protocol (RSP): This overlay is used to
initiate inter-shape contacts. Upon bootstrap, Vremote is empty.
During each round, the candidate set cand is first filled with
the previous content in the remote view Vremote and the global
peer sampling view VRPS on line 1. Then, n randomly picks a
node q in cand (line 3), fetches its remote view q.Vremote, and
adds it to its candidate set (line 4).

Lines 7 to 11 use the candidate set cand to fill n.Vremote with
one single descriptor per remote shape. To limit the memory
consumption if the topology features many shapes, we propose

Algorithm 2: RSP: Remote Shapes Protocol on n

Output: n.Vremote converges to a view of one node per
“close” shape.

� Bootstrap using the global peer sampling
1 cand← n.Vremote ∪ n.VRPS

� Exploit other nodes’ knowledge
2 if cand 6= ∅ then
3 q ← 1 random node ∈ cand

� Remote request to q

4 cand← cand ∪ q.Vremote
5 end

� Keep one node per “close” shape
6 foreach close shape s′ 6= s do
7 cands′ ← {n′ ∈ cand | n′.shape.id = s′}
8 if cands′ 6= ∅ then
9 n.Vremote[s

′]← 1 random node ∈ cands′

10 end
11 end

to trim each node’s remote view by keeping only descriptors
from shapes that are considered close to s. This closeness
metric is left to future work, but could be computed from
the overall target topology or the shape’s ID.

In detail, for each “close” shape s′, line 7 filters candidate
nodes from shape s′ into cands′ , and lines 8-9 take a random
node from cands′ (if not empty) to fill n.Vremote[s

′] (that is,
the remote view’s descriptor slot for shape s′).

4) Shape Building Protocol: We use a variant of Vicin-
ity [37] to organize the nodes that have joined a shape s into the
basic topology prescribed by the shape’s template tplate. (The
pseudo-code is not shown for space reasons.) Vicinity uses a
greedy push-pull procedure to populate each node n’s view
Vshape with close neighbors, according to the ranking function
dtplate(), and then connects n to its ktplate closest neighbors.
Note that Vshape’s size must be at least ktplate, but in practice
Vshape is usually larger, and we can bound its maximum size if
we want to limit memory consumption. Vicinity exploits the
transitivity of most ranking functions: if n is ranked close to
o, and o is ranked close to p, then n is likely to be ranked
close to p. However, whereas Vicinity uses a system-wide peer
sampling protocol to find potential new neighbors, we restrict
our Shape Building Protocol to the view Vlocal constructed
by the Same Shape Protocol. This restriction to Vlocal insures
the isolation and co-existence of multiple shapes in the same
system.

E. The Port Selection and Connection protocols

The Port Selection procedure is executed between nodes
within the same shape in order to determine which nodes are in
charge of shape s’s ports (these nodes are dubbed port nodes)
while the Port Connection procedure is executed by port nodes
to locate the remote port of the linked shape, and to establish

Algorithm 3: Port Selection on node n

Output: is_port[k] and towards_port[k] are greedily
resolved for each port k in the shape s.

1 foreach k ∈ n.shape.ports do
� Find closest node to port k among local nodes

2 cand← n.Vlocal∪n.Vshape∪{n, n.towards_port[k]}
3 closest←

GETCLOSEST(cand, k, n.shape.template)
4 n.is_port[k]← (n = closest)
5 if n.is_port[k] then
6 n.towards_port[k]← n
7 else

� If n is not port node, remote request to
closest

8 n.towards_port[k]←
closest.towards_port[k]

9 end
10 end

Function getClosest(cand, k, tplate)
Output: Returns the closest node from port k, among

cand nodes belonging to shapeof template
tplate

1 closest← argminp∈cand (dtplate(p.id, k.id))
2 return closest

the link requested by the PLEIADES target specification. The
variables used to maintain the state of the Port Selection and
Port Connection protocols are shown in Table III.

1) GETCLOSEST(cand,k, tplate): This function is used by
both the Port Selection and Port Connection routines to find
the closest node to a port. Given a set of nodes cand and a
port k, that all belong to the same shape s of template tplate,
GETCLOSEST uses the shape template’s rank function, dtplate
(see Section III-A), to measure the “distance” of each node
in cand to the port k. The function returns the node whose
distance to port k is minimal.

2) Port Selection: We want each node n to know the
port node of each of its shape’s ports. The Port Selection
routine maintains two variables for that purpose: for each port
k of shape s, towards_port[k] contains the address of the
presumed port node for k, and the is_port[k] flag is set when
n believes it is in charge of k (in that case, is_port[k] points
to n itself).

The variable shape.ports contains the whole set of shape
s’s ports, given by the configuration. To fill is_port[k] and
towards_port[k], n iterates over each port k in shape.ports
(line 1). By calling GETCLOSEST, n then checks which node is
closest to the port k among all local nodes it knows of (lines 2-
3). Candidates are taken from the local view Vlocal computed
by SSP, from the Shape Building protocol’s view Vshape, in
addition to n itself and the previous towards_port[k]. n

Algorithm 4: Port Connection on node n

Output: n establishes a link with the node most likely
in charge of k2 within dist_shape

1 foreach k1 ∈ n.shape.ports do
� Only executed by presumed port node for k1

2 if n.is_port[k1] then
3 shape_id← k1.remote_shape.id
4 shape_template←

k1.remote_shape.template
5 k2 ← k1.remote_port

� Closest remote node from k2 that n knows
of

6 cand← {n.Vremote[k1], n.connected_to[k1]}
7 closest←

GETCLOSEST(cand, k2, shape_template)
� Remote request: who is the port node for k2?

8 n.connected_to[k1]←
closest.towards_port[k2]

9 end
10 end

sets is_port[k] to true if it is the closest node to k, and to
false otherwise (line 4). towards_port[k] is set to n if n
seems to be the port node (line 6). Otherwise, n requests
the closest node’s own towards_port[k] (line 8), making
towards_port[k] greedily converge to the port node for k.

3) Port Connection: When a node n believes it is in charge
of a port k1, it needs to find the other end of the topological
link: the port node for k2 in the remote shape (called s2). The
goal of the Port Connection routine, when n is in charge of
a port k1, is to maintain the connected_to[k1] variable to the
address of k2’s port node.

From lines 1 to 5, we iterate over each port k1 in
shape.ports, check that n is in charge of k1, and create
several variables: shape_id contains the ID of the linked shape
s2, shape_template is s2’s shape template, k2 represents the
remote port of k1’s link. n then picks the closest node to
k2 among two potential candidates (line 6): Vremote[k1] (the
random node from s2 provided by RSP), and connected_to[k1]
(n’s previous estimation of k2’s port node). It then calls the
GETCLOSEST function on line 7, that will use the remote
shape’s ranking function to find the closest node to k2 among
the candidate set. Finally, on line 8, n requests closest for its
towards_port[k2] (leveraging the Port Selection procedure)
to fill n.connected_to[k1]. This implementation again allows
connected_to[k1] to converge towards k2’s real port node in
a greedy fashion.

IV. EVALUATION

In this section, we first discuss our evaluation set-up
(Section IV-A) before briefly illustrating how PLEIADES can
be used to create a range of advanced distributed struc-
tures (Section IV-B). We then evaluate the performance of

clique	

star	

port	

Inter-shape		
binding	(a) (b) (c)

Legend:	

Figure 4: The PLEIADES configurations used to create the
systems shown in Figure 5.

PLEIADES without reconfiguration or failures, in terms of
convergence speed, scalability, and communication overhead
(Section IV-C). Finally we test the reactions of PLEIADES
under important perturbations, such as when a large portion
of the system crashes, or an on-the-fly reconfiguration occurs
(Section IV-D).

A. Evaluation set-up and methodology

We implemented the protocols that make up PLEIADES on
top of PeerSim [27], except for the Global RPS protocol,
which we emulated directly through PeerSim’s API. We set
the maximum size of Vlocal to 10, that of Vremote to the number
of shapes in the systems, and we did not bound Vshape, as in
the original Vicinity protocol [37]. In order to demonstrate the
capabilities of PLEIADES we created several shape templates
(ring, star, clique) to serve as building blocks for more
complex structural invariants. All experiments were averaged
over 25 runs, to smooth the noise due to the probabilistic
nature of gossip algorithms. We computed 90% confidence
intervals but did not display them on the figures because they
were too small to be readable.

B. Examples

Figure 4 graphically presents three configuration files used
by PLEIADES to construct the three distributed systems shown
in Figure 5. These three examples connect simpler shapes to-
gether (cliques and stars, shown symbolically in Figure 4 and
with different colors in Figure 5). The resulting toplogies can
be found in real-world applications, such as database sharding
(Figure 5a), distributed key value stores (Figure 5b) or partially
decentralized services using super-peers (Figure 5c).

These three examples illustrate PLEIADES’s simplicity of
use and expressiveness: a few basic shapes suffice to create
an infinite number of variations that can be tailored to an
application’s needs.

C. Performances

PLEIADES targets very large systems using decentralized
protocols. Decentralization, because it avoids any central point
of coordination, and carries the risk of a degraded perfor-
mance and/or high overhead. In the following we evaluate
PLEIADES’s performances in terms of convergence speed
(Section IV-C1), scalability (Section IV-C2), and communi-
cation overhead (Section IV-C3).

1) Convergence: We evaluate PLEIADES’s convergence on
a scenario comprising three rings connected into a ring of
rings, whose configuration is represented in Figure 7. Figure 6
shows the execution of PLEIADES with this configuration on
100 nodes at three stages of the execution: after initialization
(Fig. 6a), while the system is converging (Fig. 6b) and once
converged (Fig. 6c). The overall system converges to the
structure prescribed by its configuration in only 6 rounds.
A round’s duration is highly dependent on an application’s
needs, but setting for instance a round to 5s (a realistic
assumption in light of PLEIADES’s low communication costs
as we will see in Section IV-C3), 6 rounds would correspond
to a convergence time of 30s to organize 100 nodes from an
arbitrary starting state. This time is comparable to the boot up
time of a virtual machine on a public cloud.

Figure 8 shows the progress of the various sub-protocols that
constitute PLEIADES on a ring of rings with a larger systems of
25,600 nodes, and a larger configuration comprising 10 rings.
The figure charts over time the proportion of nodes in the
correct state for a given protocol, from the point of view of a
global omniscient observer. Except for the Port Connection
Protocol, all protocols experience a rapid phase shift once
they start converging, as is common in decentralized greedy
protocols [17], [37]. The sequence of convergence roughly
follows the dependencies between the protocols illustrated in
Figure 2: the membership protocols Remote Shapes (RSP) and
Same Shape (SSP) are the first to converge, followed by the
Shape Building protocol (which depends on SSP), and the Port
Selection protocol (which depends on Shape Building and on
SSP).

The Port Connection protocol shows a less regular pro-
gression. The peak around round 4 is due to a few nodes
that briefly believe they are ports (because Port Selection
has not converged yet), and erroneously connect to remote
shapes, thus falsely increasing our metric. In other words,
Port Connection briefly converges to a local maximum but
quickly escapes it when Port Selection starts to converge. Note
however how ports get successfully connected even though the
routing information provided by the Port Selection protocol is
not fully converged yet: after 10 rounds, both the individual
rings (Shape Building) and their connections (Port Connection)
are in place to about 90%.

2) Scalability: PLEIADES scales well when the number of
nodes and shapes in the system augments. We measured the
convergence time of the system in rounds for a large variety
of configurations, according to the following convergence
criteria:

• Same Shape Protocol (SSP): at least 90% of the nodes
have found 10 neighbours in the same shape;

• Remote Shapes Protocol (RSP): at least 90% of the nodes
have found a node in each shape;

• Shape Building Protocol: at least 90% of the nodes have
found their 2 closest neighbours in the ring;

• Port Selection Protocol: at least 90% of the ports are
assigned to the correct node (and only this one);

0

6

24

18

12

3

2

5

4

1

7

11

9

10

8

27

29

28

25

26

19

21

22

23

20

14

13

16

15

17

(a) A star of 5 Clique shapes, similar to topologies
used in database sharding.

0

5

15

3

2
4

1

10

7

9

8

6

19

16

17

18

13

11
12

14

(b) A ring of 4 Clique shapes, similar to topologies
used in distributed key-value stores.

0

13

39
26

8

3

11

7

12

10

9

2

6

4

5

1

25

16

20
17

24

22

15
21

14

19

18

23

43

49

47

45

42
44

46

48

40

41

30

32

27

37

38

28

35

34

31

29

36

33

(c) A clique of 4 Star shapes, similar to topologies
used in partially decentralized services with super-
peers.

Figure 5: The result topologies corresponding to the configurations of Figure 4 (after 10 rounds of simulation).

0

21

1

14

32

20

6

12

7

56

2

59

11

48

51

313

10

47

4

18

33

5

16

8

9

30

61

15

17

19

85

80

54

65

22

53

23

58

66

24

25

26
71

79

27

28

89

60

29

31

34

83

77

90

35

78

39

74

70

36

49

63

41
69

37

38

46

42

40

67

94

43
44

45

95

50

93

5264

55

57

62

68

72 88

97

82

73

81

75

96

86
76

84

87

92

91

98

99

(a) Random initial state

0

89
17

31

85

80

29

19

5

6

1
10

21

15

2

41

20

11

50 44

33

26
32

3

4

12

23

24

18

7

25

13

9

8

16

14

22

30

77
27

28

34
36

63

56

66

3545

59
60

55

65

37
39

38

49

40

67

42

88

64

82

94

54

43 61

51

46

52

58

47

53

48

62

57

68

87

90

71

75

69

97

95

74

98

93

70

79

91

78

83

72

92

73

81

86

76

84

99

96

(b) After 2 rounds, the general shape emerges.

0
17

28

29

19

85

110 21
5

15

2

41

20

22

50
44

33

23

3

27

32

4

11

24

12

31

6

18

7

25

13

9

8

16

14

30

26

77

89

34

36

63

56

52

35
45

59

60

55

65

37

38

49

39

67

40

42

88

64

82

94

54

43 61
57 51

46

58

66

47

53

48

62

68

87

90

71

75

69

74

95

97

93

70

79

91

78

83

72

92

73

81

86

99

98

76

84

96

80

(c) After 6 rounds, the system has converged.

Figure 6: A system of 100 nodes converges in 6 rounds towards three connected rings (colored in blue, red, and black).

Figure 7: The PLEIADES configuration used in Figure 6.

• Port Connection Protocol: at least 90% of the ports found
their related port in the remote shape.

In Figure 10, a configuration with 20 rings linked together
sequentially is deployed for different number of nodes. All
protocols converge in a few rounds, even for large number
of nodes. Most importantly, they converge as fast or faster
than the Shape Building protocol. Hence, the target complex
topology is achieved sensibly at the same time as the local
basic shapes.

It is interesting to note that the Remote Shape protocol
(RSP) converges in constant time as the number of nodes

augments. This is due to the fact that the ratio nodes/shapes
is constant, so independently the total number of nodes in the
system, it is as likely to find a node in a given shape. The
abnormally high point for the Shape Building protocol (SSP)
at 200 nodes is due to the fact that there are exactly 10 nodes
per shape; so the convergence criterion used means that a node
must have found all other nodes in the shape. But in practice,
finding 6 or 7 of them is enough and does not hinder the
convergence of the other protocols, as depicted on the graph.
For larger numbers of nodes per shape, the convergence time
is roughly constant, for the same reason as for RSP.

The other two protocols scale logarithmically with the
number of nodes, similar to the Shape Building protocol.

In Figure 11, various configurations are deployed on a
system of 25,600 nodes. Convergence time increases slowly
with the number of shapes involved in the system, and even
a complex system with 20 shapes converges in less than 15
rounds.

3) Communication overhead: Compared to an ad-hoc ap-
proach optimized for a given problem, PLEIADES incurs some

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25

C
o
n
v
e
rg
e
n
c
e

Rounds

Shape Building

Same Shape (SSP)

Remote Shape (RSP)

Port Selection

Port Connection

Figure 8: Progress of the different protocols of PLEIADES
over time (in rounds) for a ring of rings with 25,600 nodes
and 10 rings. Except for Port Connection, all protocols
experience a rapid phase change.

overhead. This is the price to pay for a simpler and more
systematic way to design topologies. In the following, we
make the (very generous) assumption that an ad-hoc approach
would not cost anything more than the resources needed to
create the basic shapes, and we use the costs from the Shape
Building protocol as our baseline.

For these measures, we considered that: (i) a node ID would
use 16 bytes (IPV6 address); (ii) a node "position" would use
8 bytes (64-bit double); (iii) a shape ID would use 8 bytes
(64-bit integer).

First, Figure 12 shows that the bandwidth consumption
pattern over time is similar for the baseline and the overhead.
Both rapidly reach a state where their bandwidth consumption
per round and per node is stable. The actual values are also
pretty low. For 25,600 nodes and 20 shapes, the bandwidth
consumption per round is around 1,800 bytes, all combined.

The overhead is, of course, dependent on the complexity
of the target topology. The more shapes and ports there are,
the more messages are used to find and connect them. But
even with large numbers of shapes, the overhead remains
of a magnitude similar to the baseline. Figure 13 shows the
ratio between baseline and overhead for different numbers of
shapes on a system of 25,600 nodes in its stable state. This is
measured once the system has converged because it is when
nodes have discovered all their neighbors that the messages
exchanged are heavier and the bandwidth consumption is the
highest. It increases linearly with the number of shapes. As
depicted in Figure 13 for 50 shapes, the bandwidth ratio is
around 2, which in absolute value represents 1900 bytes, so it
represents a very negligible amount.

D. Resilience

In the previous section, we showed that PLEIADES per-
forms well under normal circumstances. In this section, we
now consider how it reacts when heavily stressed. We used
two scenarii: firstly, a dramatic crash where about half the
nodes shut down (paragraph IV-D1); secondly, an on-the-fly
reconfiguration of the target topology, changing the number of
basic shapes in the system (paragraph IV-D2).

1) Dramatic crash: PLEIADES is extremely resilient, even
in presence of catastrophic failures. To analyze this, a config-
uration with 4 shapes is deployed over different numbers of
nodes, and stressed with various dramatic events, as illustrated
in Figure 15.

At first, we let the system converge as in the previous ex-
periments. Then, we make each node crash with a probability
p = 0.5, resulting in half the nodes crashing simultaneously
on average and a totally broken topology (15a), and we let
the system converge towards the new resulting target topology
(15b). Finally, we simultaneously inject as many nodes as
crashed earlier (15c) and we let the system converge back to
the original target topology (15d). We consider two modes of
reparation, either restoring crashed nodes to their last known
state with a back-up, or providing new blank nodes initialized
with random neighbors.

At each step, we measure the convergence time in rounds.
For this experiment, we consider the system as a whole
is converged when all the criteria in subsection IV-C2 are
satisfied. Figure 14 plots the results: as shown previously, the
initial convergence is quite fast and grows logarithmically with
the number of nodes in the system: around 10 rounds even for
very large systems of 20,000+ nodes.

More importantly, both the self-repair after crash and the
return to the original target are faster than the initial conver-
gence, even with such a dramatic rate of failure as we chose:
they converge 2 to 5 rounds faster. Indeed, the nodes that are
still online don’t start with the same blank state as for the
initial convergence, and this additional information more than
compensates the stress caused by the crashes or re-injection,
which enables the system to converge extremely fast.

2) Dynamic Reconfiguration: We argued that PLEIADES
would help composing complex systems-of-systems and pro-
mote re-using previous works. But that means PLEIADES will
need to be deployed to real systems that do not start in a
random state.

We tried to dynamically reconfigure a system that was
already deployed and converged to a stable state. For that, we
need to define a reconfiguration policy that maps the relation
between previous and current shape assignment. We shifted
from a system with 3 shapes to 4 shapes, so we randomly
assigned 1/3 of the nodes in each shape to the new shape.
Many other policies may be envisioned, but due to space
constraints we will only consider this one. At a given round
(Figure 9b), the new configuration is sent to all the nodes,
and some of them are allocated to the new shape. Only 2
rounds later (Figure 9c), the nodes in the new shape already
found each others, and the previous shapes restored their stable
state almost perfectly, despite losing some neighbors. A new
stable state is rapidly reached (Figure 9d). All measurements
presented in Section IV-C1 revealed that performances are at
least as good for a dynamic reconfiguration from a converged
state than for a system deployed from a random initial state.
As with the crash scenario, this is due to some nodes—
those not affected by the reconfiguration—starting with more
information than with a random start.

0
17

28

29

19

85

110 21
5

15

2

41

20

22

50
44

33

23

3

27

32

4

11

24

12

31

6

18

7

25

13

9

8

16

14

30

26

77

89

34

36

63

56

52

35
45

59

60

55

65

37

38

49

39

67

40

42

88

64

82

94

54

43 61
57 51

46

58

66

47

53

48

62

68

87

90

71

75

69

74

95

97

93

70

79

91

78

83

72

92

73

81

86

99

98

76

84

96

80

(a) The system is deployed and con-
verged to a stable state.

0

17

28

29

19

1

10

21

5

15

2

20

22

33

23

3

27

32

4

11

24

12

31

6

18

7

25

13

9

8

16

14
30

26

34
3663

56
52

35

45

59

60

55

65

37

50

41

38

49

39

67

40

44

42

64

54

43

61

57

51

46

58

66

47

53

48

62

68 8790
7175

69

74

95

97

93

70

77

79

85

91

78

83

72

92

82

73
81

86

99

98

76

84

96

89

80

88

94

(b) When a new configuration is de-
ployed, inter-shape links are reset, and
nodes may be assigned to a new shape.

0 2928
11

19

54

1

10

63

74

58

2

41

20

12

40

65

33

24
3

32

4

23

27

22

79

78

5

31

21

6

15

7

25

13

9

8

16

14
30

37

17

85

26

50

70
89

68

18

91
38

77

34

36

52

56

66

35

53

39

49

67

42
88 64

60

94

82
57

45

43

61

51

44

59

55

46

47

62

48

69
97

95

98

93

83

71

87

90

72

75

92

73

81

86

99

76

80

84

96

(c) After 2 rounds, nodes that did not
change shape are already converged,
and the newly introduced shape is start-
ing to form.

0

29

28

11

19

77

1

10

63

74

58

241

20

12

40

65

33

24

3

32

4

79

27

23

35

5

31

21

6

15

7
25

13

9
8

16 14

30

37

17
85

44

50

70

89

68

18

96

84

22
54

26

78

38

53

91

34

36

52

56

66

39

49

67

42

88

64

60

94

82

57

45
43

61

51

59

55

46

47

62

48

69

97

95

98

93

83

71

87

90

72

75

92

73

81

86 99

76

80

(d) The system reaches its new stable
state after 5 rounds, faster than from a
random start.

Figure 9: Dynamic reconfiguration and convergence to a new stable state.

 0

 5

 10

 15

 20

 25

 30

 100 1000 10000

#
 o

f
ro

u
n
d
s

to
 c

o
n
v
e
rg

e

of nodes (log scale)

Shape Building

Same Shape (SSP)

Remote Shape (RSP)

Port Selection

Port Connection

Figure 10: Convergence time of the PLEIADES protocols
for a system of 20 connected rings (a ring of rings), for
various system sizes. PLEIADES converges rapidly and
scales well with the number of nodes.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 5 10 15 20

#
 o

f
ro

u
n
d
s

to
 c

o
n
v
e
rg

e

of basic shapes

Shape Building
Same Shape (SSP)

Remote Shape (RSP)
Port Selection

Port Connection

Figure 11: Convergence time of the PLEIADES protocols
for a system of 25,600 nodes implementing a ring of
rings, for various numbers of rings. The convergence time
of PLEIADES only slowly increases with the number of
individual rings.

To conclude, PLEIADES is extremely resilient, even in
dramatic scenarii where a large proportion of the network
is affected (up to 50%). The most difficult case is actually
the initial cold start, because nodes start with very little
information. In all other scenarii we tested, at least some nodes
keep their knowledge of the network, which is enough to speed
up the process.

V. RELATED WORK

Wireless Sensor Networks (WSN) have been a fertile ground
for holistic programming frameworks aiming to simplify the
programming of a very large number of distributed entities, as
PLEIADES seeks to achieve.

Among them, approaches such as Kairos [14] and Reg-
iment [30] draw their inspiration from existing distributed
programming models. They provide means to quantify over

multiple nodes, and hide the details of inter-node communi-
cation and coordination. Adopting a different stance, acqui-
sitional query processors (e.g. TinyDB, Cougar, MauveDB)
completely hide individual nodes, and provide a usually
declarative approach to express which kind of data to sense,
when, where and how often to sense and to aggregate it [11],
[21], [4]. Sensing queries are then transparently mapped
onto the WSN, taking into account various constraints such
as energy consumption and reliability. Both node-dependent
macro-programming approaches and acquisitional query pro-
cessors move away from individual nodes and towards holistic
programming abstractions. None of them however is able
to maintain the distributed structural invariants supported by
PLEIADES.

Originally proposed in the context of fixed networks [12],
tuple-spaces provide a shared memory data abstraction to dis-
tributed systems in which tuples can be written to, read from,
and queried by individual nodes. The model has been ported to

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 5 10 15 20

B
a
n
d

w
id

th
 (

b
y
te

s/
ro

u
n
d

)

Rounds

Shape Building Protocol
Overhead of PLEIADES

Figure 12: Bandwidth overhead of
PLEIADES over the shape building
protocol, per node, per round (20
shapes, 25,600 nodes). Both protocols
peak once all views have stabilized,
and remain below 1kB (2kB in total).

 0

 0.5

 1

 1.5

 2

 2.5

 0 10 20 30 40 50

B
a
n
d

w
id

th
 r

a
ti

o

of basic shapes

Ratio of overhead bandwidth
 over baseline bandwidth

Figure 13: Evolution of the bandwidth
overhead of PLEIADES (ratio) vs. the
number of basic shapes (25,600 nodes,
stable state). PLEIADES’s overhead re-
mains very small even for 50 basic
shapes (< 2kB in absolute value).

 0

 5

 10

 15

 20

 100 1000 10000

#

o
f
ro
u
n
d
s

to

c
o
n
v
e
rg
e

of Nodes (log scale)

Initial convergence
Convergence after 50% crash

Convergence after repair (statefull)
Convergence after repair (stateless)

Figure 14: PLEIADES’s convergence
time after half of the nodes have
crashed, and after re-injecting new
nodes (4 connected rings, note the log
x axis). PLEIADES’s stabilization speed
is logarithmic in the system’s size.

0

33

1

31

2

3

4

36

73

69

6

10

60

11

7 74

41

8

25

9

24

26
44

57

61

12 80 13 50 18

14

15

52

20

17

21

23

27

28

29

34

32

37

35

38

43

42

45

46

48 4749
51

55

54

56

89

90

19

22

66

65

67

68

99

70

71

72

75

76

78

77

79

86

85

88

87

92

91

93

94

97

98

5

16

30

39

40

53

58

59

62

63

64

81

82 83

84

95

96

(a) Half the nodes crash (represented
with a dashed line). The topology is
completely broken.

0

32

3

27

4

1

28

5

24

11

41

9

59

12

78

19

80

57

61

15

16

17
18

25

77

47

69

83

34

66

36

63

39

40
93

46

91

95

48

51
62

99

97
84

88

89

2

6

78

10

13
14

20

21

22

23

26
29

30

31

33

35

37

38

4243

44

4549

50

52

53

54

55

56

58

60

64

65

67

68 70

71

72

73

74

75

7679

81

82

85

86

87

90

92

94

9698

(b) After 3 rounds, the system’s struc-
ture has been reestablished.

0

32

3

27

4

128
5

24

11

2

41

9
59

12

6
7

8

57

61

78

19

80

10

43

15

16

13

47

25

14

17

1820

21

22

23

55

87

77

69

83

26

29

30 31

33

34

66

36

63

39

35

40

37

38

93

46

91

95

48

42 44

45

51

49
81

50

86

53

52

54

56

58
62

60
64

65

67

68

99

97

70

7273

71

74

75

76

84

79

82

88
89

85
90

92

94

96
98

(c) After reinjecting the crashed
nodes, the original structural invariant
has been lost.

0

32

35

65

3

1

33

2

31

5

6

71

4

41

9

7

8

59

11

58

61

12

26

43

24

28

10

78

80

14

15

13
47

81

16

17

18

19

20

21

22

23

55

25

87

76

60

75
77

27

29

64 30

34

67

36

66

37
38

39

40

42

93

44

92

94

45

46

48

51

49

52

50

86

53

54

56

57

62

63

68

99

69

98

70

72

73

74
79

82

83

84

85

88

89

90

91

95

96

97

(d) But after just 3 rouds the system
is back to the original target, even
faster than during the initial bootstrap
phase.

Figure 15: Resilience and self-repair after a dramatic crash or a large node injection.

more dynamic systems with TineeLime [9], and TOTA (Tuple
On The Air) [23]. Tuple-spaces are however more a high-level
coordination model than a mean of organizing a large number
of pre-existing entities as we do.

Neighborhood primitives such as Hood [40], Abstract Re-
gions [39], and Logical Neighborhoods [29] are complemen-
tary to tuple-spaces. They provide scoping mechanisms that
limit communication to sets of nodes (regions, or neighbor-
hoods) selected according to a wide range of criteria. They are
largely orthogonal to our approach, and could be exploited for
instance to refine the shape joining mechanism of PLEIADES.

PLEIADES bears some similarity to Fragmented Ob-
jects [19], [22], in which a component’s state is distributed
(fragmented) among a number of distributed nodes in a manner
that is fully transparent to its users. Fragmentation distributes
a component’s locus of computation, allowing for components
to thus execute concurrently in a fully distributed manner.
By relying on code mobility and state transfer mechanisms,
fragmented objects can allow a component to extend or retract
according to the current system’s needs. However, implemen-
tations of fragmented components proposed so far [19] tend to

be heavy-weight. They also typically rely solely on Remote
Procedure Calls (RPC), an interaction paradigm that is ill-
suited to loosely coupled large-scale systems.

PLEIADES can also be seen as a concrete example of some
of the high-level capabilities sketched out by Blair et al.
for Holons [3], a new paradigm for programming large-scale
distributed systems relying on autonomous self-organization
and opportunistic interactions.

VI. CONCLUSION & FUTURE WORKS

Large-scale distributed systems are becoming omnipresent
while growing in size and complexity. Specifying and im-
plementing such systems in a resilient manner is becoming
increasingly tiresome and cumbersome for developers.

To address this challenge, we have introduced the PLEIADES
framework. PLEIADES follows a programming-by-assembly
design, while exploiting self-organizing overlays. However,
PLEIADES goes a step further by considering elementary
shapes as collective distributed entities and by enabling the
creation of resilient, scalable, and complex distributed struc-
tural invariants through the assembly of these shapes.

To reach this aim, the PLEIADES framework combines six
self-organizing protocols that work together to construct and
maintain the structure prescribed in a PLEIADES configuration
file. The resulting system is able to recover from catastrophic
crash failures—such as the loss of a majority of the system’s
nodes—in only a few rounds while consuming a very limited
bandwidth. PLEIADES further scales logarithmically in the
number of system’s nodes, and close to linearly in the number
of elementary shapes.

We are currently designing a Domain Specific Language
(DSL) to further increase the ease of programming of complex
reliable large-scale distributed systems, and to strengthen the
programming-by-assembly design of our approach. We are
also integrating our approach on top of Kubernetes to augment
Kubernetes’s basic structural properties.

ACKNOWLEDGMENTS

This work was partially funded by the PAMELA (ANR-16-
CE23-0016) and O’Browser (ANR-16-CE25-0005) projects of
the French Agence Nationale de la Recherche (ANR), and
by the DeSceNt project granted by the Labex CominLabs
excellence laboratory of the French ANR (ANR-10-LABX-
07-01). It has also received funding from CHIST-ERA under
project DIONASYS, from the Swiss National Science Foun-
dation (SNSF) and ANR.

REFERENCES

[1] R. Baraglia, P. Dazzi, M. Mordacchini, and L. Ricci. A peer-to-
peer recommender system for self-emerging user communities based
on gossip overlays. J. of Comp. and System Sciences, 79(2), 2013.

[2] M. Bertier, D. Frey, R. Guerraoui, A.-M. Kermarrec, and V. Leroy. The
gossple anonymous social network. In Middleware, 2010.

[3] G. Blair, Y.-D. Bromberg, G. Coulson, Y. Elkhatib, L. Réveillère, H. B.
Ribeiro, E. Rivière, and F. Taïani. Holons: Towards a systematic
approach to composing systems of systems. In Int. Workshop on
Adaptive and Reflective Middleware, ARM, 2015.

[4] P. Bonnet, J. Gehrke, and P. Seshadri. Towards sensor database
systems. In MDM ’01: Second International Conference on Mobile
Data Management, pages 3–14, London, UK, 2001. Springer-Verlag.

[5] S. Bouget, H. Kervadec, A.-M. Kermarrec, and F. Taïani. Polystyrene:
The decentralized data shape that never dies. In 2014 IEEE 34th ICDCS,
pages 288–297. IEEE, 2014.

[6] E. Bruneton, T. Coupaye, M. Leclercq, V. Quéma, and J.-B. Stefani. The
FRACTAL component model and its support in Java. S:P&E, 2006.

[7] B. Burns, B. Grant, D. Oppenheimer, E. Brewer, and J. Wilkes. Borg,
Omega, and Kubernetes. Communications of the ACM, 59(5), 2016.

[8] I. Clarke, O. Sandberg, B. Wiley, and T. W. Hong. Freenet: A distributed
anonymous information storage and retrieval system. In Designing
Privacy Enhancing Technologies, pages 46–66, 2001.

[9] P. Costa, L. Mottola, A. L. Murphy, and G. P. Picco. Programming wire-
less sensor networks with the TeenyLime middleware. In Middleware,
2007.

[10] H. Deng and J. Xu. CorePeer: A P2P Mechanism for Hybrid CDN-P2P
Architecture, pages 278–286. 2013.

[11] A. Deshpande and S. Madden. Mauvedb: supporting model-based user
views in database systems. In Proceedings of the 2006 ACM SIGMOD
international conference on Management of data. ACM, 2006.

[12] D. Gelernter. Generative communication in linda. ACM Trans. Program.
Lang. Syst., 7(1):80–112, 1985.

[13] L. Glendenning, I. Beschastnikh, A. Krishnamurthy, and T. Anderson.
Scalable consistency in Scatter. Proceedings of the Twenty-Third ACM
Symposium on Operating Systems Principles, pages 15–28, 2011.

[14] R. Gummadi, O. Gnawali, and R. Govindan. Macro-programming
wireless sensor networks using kairos. In International Conference on
Distributed Computing in Sensor Systems (DCOSS), 2005.

[15] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph,
R. Katz, S. Shenker, and I. Stoica. Mesos: A Platform for Fine-
grained Resource Sharing in the Data Center. In Proceedings of the 8th
USENIX Conference on Networked Systems Design and Implementation,
NSDI’11. USENIX Association, 2011.

[16] Q. Huang, K. Birman, R. van Renesse, W. Lloyd, S. Kumar, and H. C.
Li. An analysis of facebook photo caching. In SOSP, 2013.

[17] M. Jelasity, A. Montresor, and O. Babaoglu. T-Man: Gossip-based fast
overlay topology construction. Computer Networks, 53(13), Aug. 2009.

[18] M. Jelasity, S. Voulgaris, R. Guerraoui, A.-M. Kermarrec, and
M. Van Steen. Gossip-based peer sampling. ACM TOCS, 25(3):8, 2007.

[19] R. Kapitza, J. Domaschka, F. J. Hauck, H. P. Reiser, and H. Schmidt.
Formi: Integrating adaptive fragmented objects into java rmi. IEEE
Distributed Systems Online, 7(10), 2006.

[20] A.-M. Kermarrec, L. Massoulie, and A. Ganesh. Probabilistic reliable
dissemination in large-scale systems. IEEE TPDS, 14(3), 2003.

[21] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. Tinydb:
an acquisitional query processing system for sensor networks. ACM
Trans. Database Syst., 30(1):122–173, 2005.

[22] M. Makpangou, Y. Gourhant, J.-P. Le Narzul, and M. Shapiro. Frag-
mented objects for distributed abstractions. In Readings in Distributed
Computing Systems. July 1994.

[23] M. Mamei and F. Zambonelli. Programming pervasive and mobile
computing applications: the tota approach. ACM TSEM, 2009.

[24] G. Mega, A. Montresor, and G. P. Picco. Efficient dissemination in
decentralized social networks. In P2P, 2011.

[25] D. Merkel. Docker: lightweight linux containers for consistent develop-
ment and deployment. Linux Journal, 2014(239):2, 2014.

[26] MongoDB Inc. MongoDB Manual (version 3.2) /
Sharded Cluster Query Routing. accessed 11 May 2016,
https://docs.mongodb.com/manual/core/sharded-cluster-query-router/.

[27] A. Montresor and M. Jelasity. PeerSim: A scalable P2P simulator. In
P2P, 2009.

[28] A. Montresor, M. Jelasity, and O. Babaoglu. Chord on demand. In Proc.
of the IEEE Int. Conf. on Peer-to-Peer Comp (P2P’05). IEEE, 2005.

[29] L. Mottola and G. P. Picco. Programming wireless sensor networks
with logical neighborhoods. In InterSense ’06: Proceedings of the
first international conference on Integrated internet ad hoc and sensor
networks, New York, NY, USA, 2006. ACM.

[30] R. Newton, G. Morrisett, and M. Welsh. The regiment macropro-
gramming system. In IPSN ’07: Proceedings of the 6th international
conference on Information processing in sensor networks, pages 489–
498, New York, NY, USA, 2007. ACM.

[31] I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M. F. Kaashoek,
F. Dabek, and H. Balakrishnan. Chord: A scalable peer-to-peer lookup
protocol for Internet applications. IEEE/ACM Transactions on Network-
ing, 11(1):17–32, 2003.

[32] F. Taiani, S. Lin, and G. Blair. GossipKit: A Unified Component
Framework for Gossip. IEEE Trans. on Soft. Eng., 40(2), 2014.

[33] B. Technologies. Riak KV Usage Reference / V3 Multi-
Datacenter Replication Reference: Architecture. accessed 11
May 2016, http://docs.basho.com/riak/kv/2.1.4/using/reference/v3-multi-
datacenter/architecture/.

[34] J. Thones. Microservices. Software, IEEE, 32(1):116–116, 2015.
[35] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune, and

J. Wilkes. Large-scale cluster management at Google with Borg. In
EuroSys. ACM, 2015.

[36] S. Voulgaris and M. v. Steen. Epidemic-style management of semantic
overlays for content-based searching. In Euro-Par 2005 Parallel Pro-
cessing. Springer Berlin Heidelberg, 2005.

[37] S. Voulgaris and M. van Steen. Vicinity: A pinch of randomness brings
out the structure. In Middleware 2013, pages 21–40. Springer, 2013.

[38] S. A. Weil, S. A. Brandt, E. L. Miller, and C. Maltzahn. Crush:
Controlled, scalable, decentralized placement of replicated data. In
Proceedings of the 2006 ACM/IEEE Conference on Supercomputing,
SC ’06, New York, NY, USA, 2006. ACM.

[39] M. Welsh and G. Mainland. Programming sensor networks using
abstract regions. In First USENIX/ACM Symposium on Networked
Systems Design and Implementation (NSDI ’04), pages 29–42, 2004.

[40] K. Whitehouse, C. Sharp, E. Brewer, and D. Culler. Hood: a neighbor-
hood abstraction for sensor networks. In MobiSys, 2004.

[41] H. Yin, X. Liu, T. Zhan, V. Sekar, F. Qiu, C. Lin, H. Zhang, and B. Li.
LiveSky: Enhancing CDN with P2P. ACM Trans. on Multimedia Comp.
Comm. & App., 6:16:1–16:19, 2010.

