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Industrial context
Multi-objective optimization of high dimen-
sional systems (d up to 40)

min
x∈X⊂Rd

(f1(x), .., fm(x))

Computationally expensive CFD codes (24
hours per simulation) ⇒ optimization under re-
stricted budget ⇒ metamodel-based optimiza-
tion: Multi-Objective EGO [1]

Multi-criteria decision-aid: choice among the
optimal solutions made by a Decision Maker
Very tiny budget (≈ 100 evaluations), many
objectives (m ≈ 6-8) ⇒ impossible for classical
MO-EGO approaches to uncover the Pareto
Front (growing size of PY with m)

How to obtain several optimal trade-
off solutions in spite of the extremely
parsimonious use of the computer code,
and the multiple conflicting objectives?

Targeting: motivations
• Restricted budget and large number of ob-

jectives ⇒ Uncovering the whole Pareto
Front PY in a "region of interest"

• Shrink search to a smaller subset⇒ faster
convergence

• Emphasize solutions that equilibrate the
objectives: (unknown) central part
of the Pareto Front (PF)⇒ interesting so-
lutions for Decision Makers

Center of the Pareto Front
Center C = Projection of closest non-dominated
point on Ideal-Nadir line L

• Low dependence to variations of I and N:
|∂Ci

∂Ii
| and | ∂Ci

∂Ni
| < 1 for a continuous front

• Insensitive to a linear scaling of the objec-
tives in a bi-objective case, and when L
intersects PY

• Computationally cheap, even for large m
• Estimation: GP simulations emphasizing

the edges of the PF ⇒ estimated Ideal,
Nadir and L̂ ⇒ estimated center Ĉ

Infill Criteria for targeting the center

IC = f(Y1(·), .., Ym(·); x; Θ): directs the search
towards attractive new designs x∗

Modify existing IC through Θ to direct the
search towards the estimated central area

• Hypervolume Indicator [2]:
H(P̂Y ; R) = Λ

(⋃
y∈P̂Y

{z : y � z � R}
)

• EHI: Expected Improvement of the Hyper-
volume Indicator [3] (relatively to R), if
adding design x

• Subspace targeted by R: IR = {y ∈ Rm :
y � R}

• Product of Expected Improvement
w.r.t. Ĉ: mEI(x; Ĉ) =

∏m
i=1EIi(x; Ĉi),

EIi(·, Ĉi): EI in objective i considering Ĉi

as the current minimum
• If R � P̂Y , EHI(·; R) =mEI(·; R)

• Still cheap for large m
• Analytical expression
• Parallelizable

Use the estimated center Ĉ as reference point R
⇒ Optimization directed towards the center

Convergence towards the center of the PF

When to stop the targeting of the center?

• Probability of domination p(y): probabil-
ity that objective vector y can be domi-
nated by any (f1(x), .., fm(x)), x ∈ X

• Estimated using Pareto Fronts from GP
draws: p(y) = 1

nsim

∑nsim

i=1 1
P̃Y

(i)�y
• Information about (local) uncertainty and

convergence towards the PF

Assume local convergence towards the central
part of the PF when

∫
L̂ p(y)(1− p(y))dy ≤ ε

After local convergence: expansion of the PF

b iterations remaining ⇒ what to do next?

• Local convergence detected
• Use the remaining budget b to converge to-

wards PY in a wider but attainable central
part

• EHI(·,R), with R on L̂ ⇒ focus on cen-
tral part of PY , size of targeted subspace
depending on distance between PY and R

• Anticipate the algorithm’s behavior in the
next iterations and the final PF via vir-
tual infills that depend on R: forecast the
width of the PF that can be accurately
discovered in the last b steps

• Virtual infills: either through a Kriging
Believer strategy (anticipated y’s are the
kriging mean) or through GPs realizations
(anticipated y’s are samples)

• Small uncertainty on virtual final Pareto
Front = convergence in IR ⇒ choose far-
thest R such that

1
V ol(I,N)

∫
y�R p(y)(1− p(y))dy ≤ ε

Summary
A two-step algorithm for targeting well-balanced
solutions within a few iterations:

• Estimate the Ideal-Nadir line L̂, on which
the expected center of the PF is located
• Define a reference point R combining L̂

and the current approximation front P̂Y
• Target the estimated central part of the

PF using R and a targeting infill criterion
• When convergence is detected, widen the

region of interest IR by a backward step
of R calculated through virtual infills.
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