Targeting Well-Balanced Solutions in Multi-Objective Bayesian Optimization under a Restricted Budget

<u>David Gaudrie</u>^{1,2,3}, Rodolphe le Riche², Victor Picheny³, Benoît Enaux¹, Vincent Herbert¹

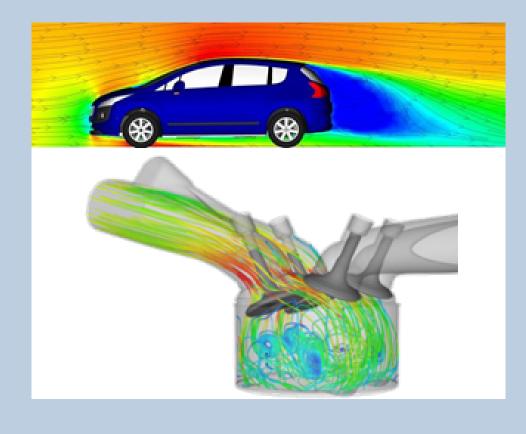
¹Groupe PSA, ²CNRS, Mines Saint-Étienne, ³MIAT, Université de Toulouse, INRA

Industrial context

Multi-objective optimization of high dimensional systems (d up to 40)

$$\min_{\mathbf{x} \in X \subset \mathbb{R}^d} (f_1(\mathbf{x}), ..., f_m(\mathbf{x}))$$

Computationally expensive CFD codes (24 hours per simulation) \Rightarrow optimization under restricted budget \Rightarrow metamodel-based optimization: Multi-Objective EGO [1]



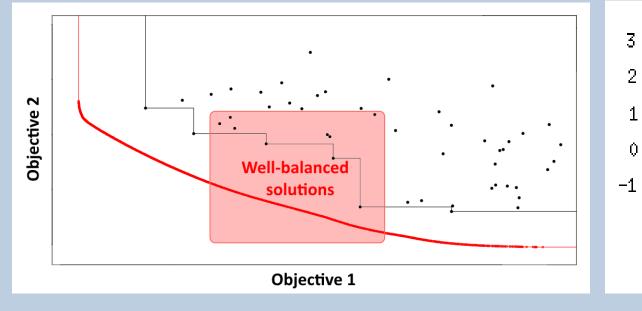
Multi-criteria decision-aid: choice among the optimal solutions made by a Decision Maker

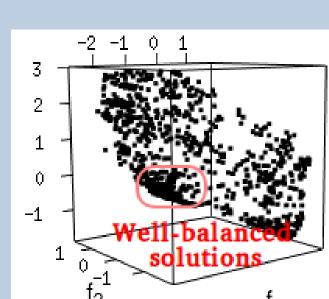
Very tiny budget (≈ 100 evaluations), many objectives ($m \approx 6\text{-}8$) \Rightarrow impossible for classical MO-EGO approaches to uncover the Pareto Front (growing size of $\mathcal{P}_{\mathcal{Y}}$ with m)

How to obtain several optimal tradeoff solutions in spite of the extremely parsimonious use of the computer code, and the multiple conflicting objectives?

Targeting: motivations

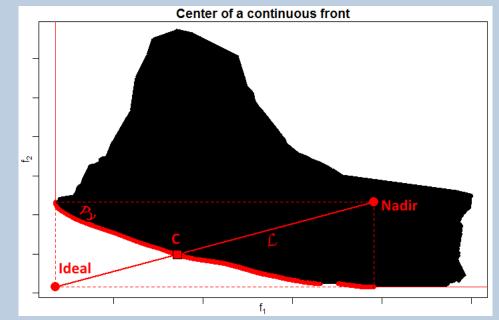
- Restricted budget and large number of objectives \Rightarrow Uncovering the whole Pareto Front $\mathcal{P}_{\mathcal{Y}}$ in a "region of interest"
- Shrink search to a smaller subset \Rightarrow faster convergence
- Emphasize solutions that equilibrate the objectives: (unknown) central part of the Pareto Front (PF) ⇒ interesting solutions for Decision Makers



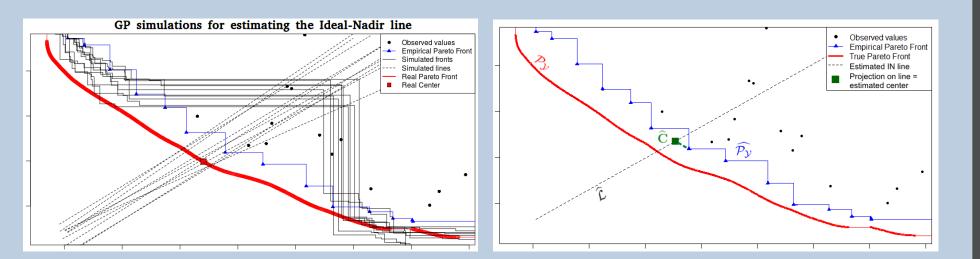


Center of the Pareto Front

Center \mathbf{C} = Projection of closest non-dominated point on Ideal-Nadir line \mathcal{L}



- Low dependence to variations of **I** and **N**: $\left|\frac{\partial C_i}{\partial I_i}\right|$ and $\left|\frac{\partial C_i}{\partial N_i}\right| < 1$ for a continuous front
- Insensitive to a linear scaling of the objectives in a bi-objective case, and when \mathcal{L} intersects $\mathcal{P}_{\mathcal{Y}}$
- Computationally cheap, even for large m
- Estimation: GP simulations emphasizing the edges of the PF \Rightarrow estimated Ideal, Nadir and $\widehat{\mathcal{L}} \Rightarrow$ estimated center $\widehat{\mathbf{C}}$

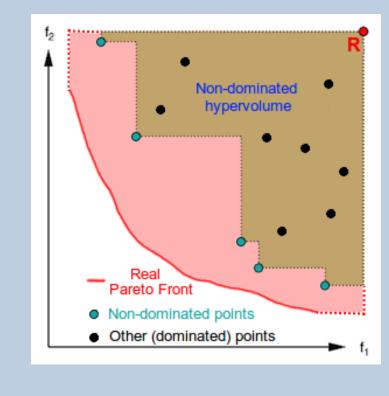


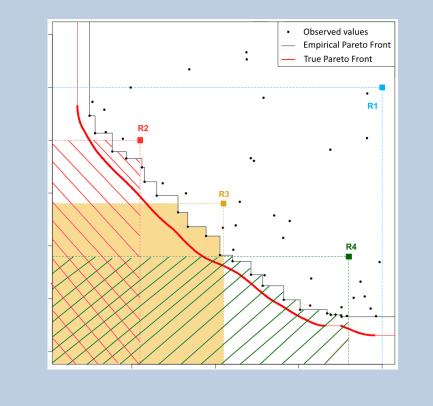
Infill Criteria for targeting the center

 $IC = f(Y_1(\cdot), ..., Y_m(\cdot); \mathbf{x}; \boldsymbol{\Theta})$: directs the search towards attractive new designs \mathbf{x}^*

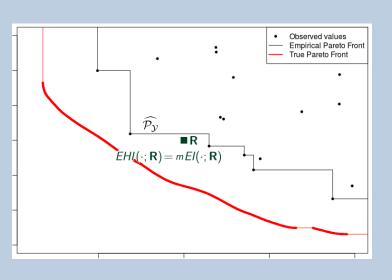
Modify existing IC through Θ to direct the search towards the estimated central area

- Hypervolume Indicator [2]: $H(\widehat{\mathcal{P}_{\mathcal{Y}}}; \mathbf{R}) = \Lambda \left(\bigcup_{\mathbf{y} \in \widehat{\mathcal{P}_{\mathcal{Y}}}} \{ \mathbf{z} : \mathbf{y} \leq \mathbf{z} \leq \mathbf{R} \} \right)$
- EHI: Expected Improvement of the Hyper-volume Indicator [3] (relatively to **R**), if adding design **x**



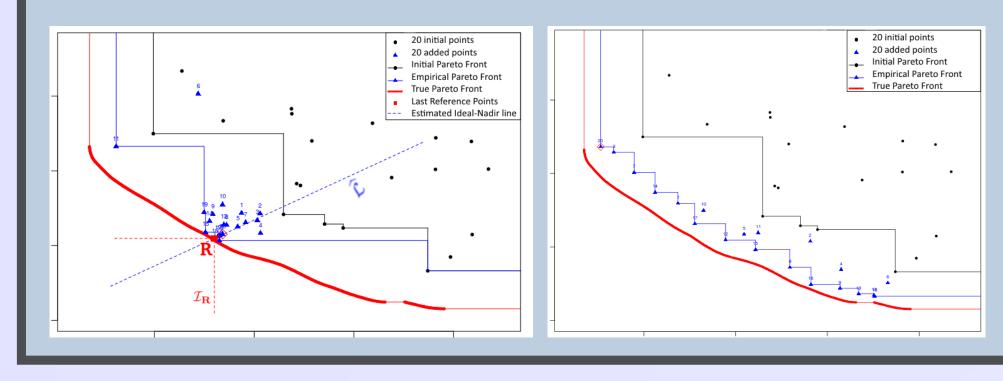


- Subspace targeted by \mathbf{R} : $\mathcal{I}_{\mathbf{R}} = \{\mathbf{y} \in \mathbb{R}^m : \mathbf{y} \leq \mathbf{R}\}$
- Product of Expected Improvement w.r.t. $\widehat{\mathbf{C}}$: mEI($\mathbf{x}; \widehat{\mathbf{C}}$) = $\prod_{i=1}^m \mathrm{EI}_i(\mathbf{x}; \widehat{C}_i)$, EI_i(·, \widehat{C}_i): EI in objective i considering \widehat{C}_i as the current minimum
- If $\mathbf{R} \npreceq \widehat{\mathcal{P}_{\mathcal{Y}}}$, $\mathrm{EHI}(\cdot; \mathbf{R}) = \mathrm{mEI}(\cdot; \mathbf{R})$



- Still cheap for large m
- Analytical expression
- Parallelizable

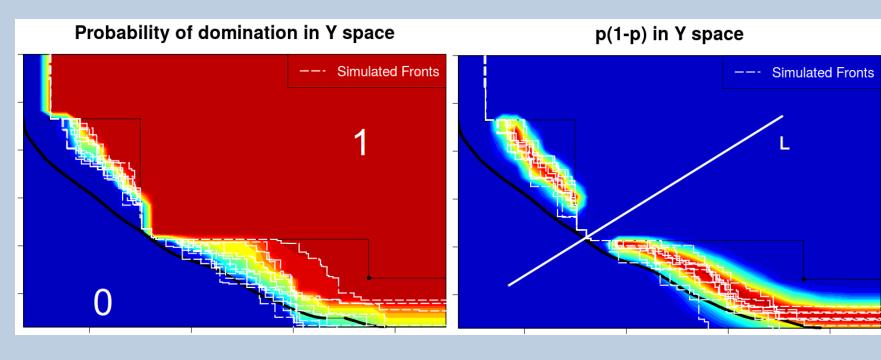
Use the estimated center $\widehat{\mathbf{C}}$ as reference point \mathbf{R} \Rightarrow Optimization directed towards the center



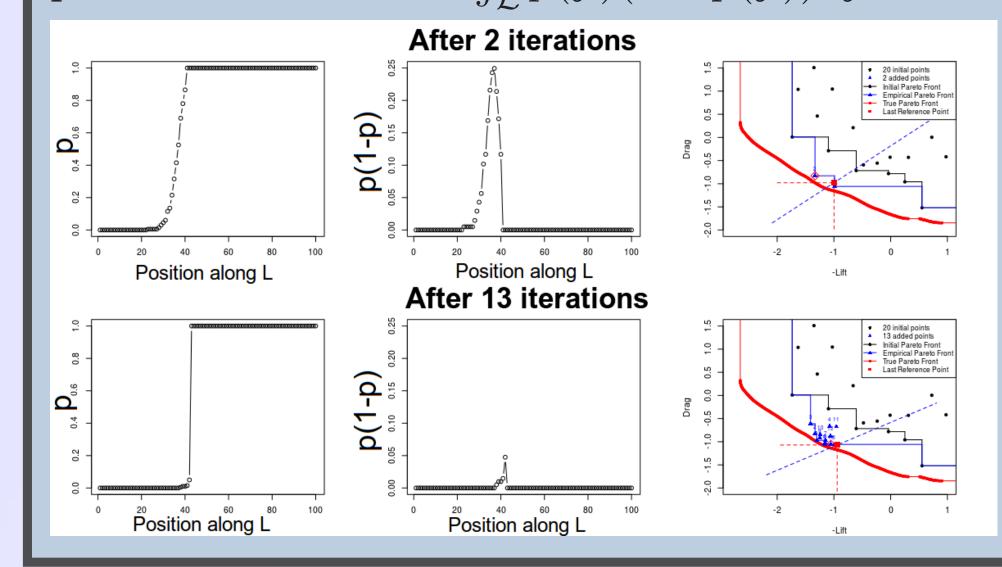
Convergence towards the center of the PF

When to stop the targeting of the center?

- Probability of domination $p(\mathbf{y})$: probability that objective vector \mathbf{y} can be dominated by any $(f_1(\mathbf{x}), ..., f_m(\mathbf{x})), \mathbf{x} \in X$
- Estimated using Pareto Fronts from GP draws: $p(\mathbf{y}) = \frac{1}{n_{sim}} \sum_{i=1}^{n_{sim}} \mathbb{1}_{\widetilde{\mathcal{P}_{\mathcal{Y}}}^{(i)} \preceq \mathbf{y}}$
- Information about (local) uncertainty and convergence towards the PF



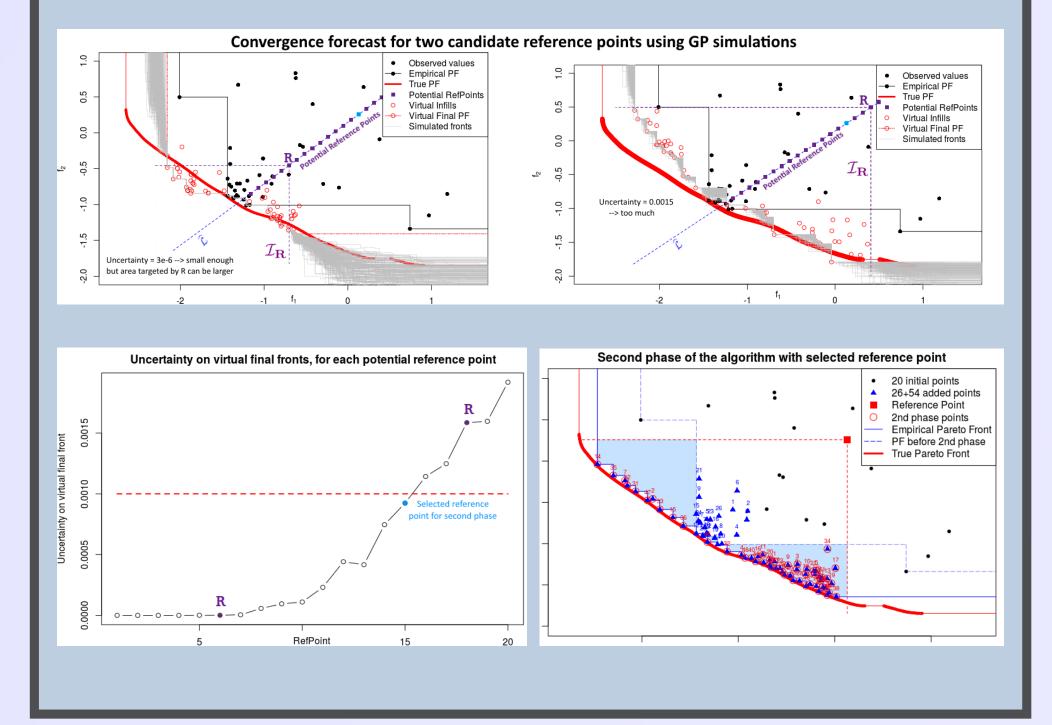
Assume local convergence towards the central part of the PF when $\int_{\widehat{\mathcal{L}}} p(\mathbf{y}) (1 - p(\mathbf{y})) d\mathbf{y} \leq \varepsilon$



After local convergence: expansion of the PF

b iterations remaining \Rightarrow what to do next?

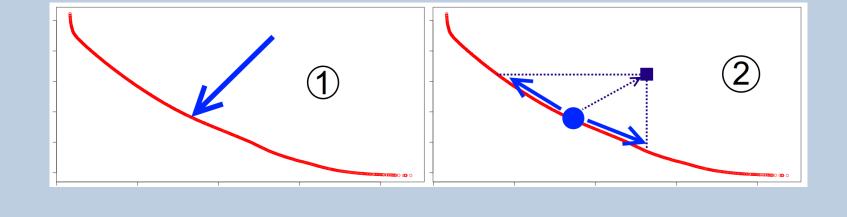
- Local convergence detected
- Use the remaining budget b to converge towards $\mathcal{P}_{\mathcal{Y}}$ in a wider but attainable central part
- EHI(·, **R**), with **R** on $\widehat{\mathcal{L}} \Rightarrow$ focus on central part of $\mathcal{P}_{\mathcal{Y}}$, size of targeted subspace depending on distance between $\mathcal{P}_{\mathcal{Y}}$ and **R**
- Anticipate the algorithm's behavior in the next iterations and the final PF via virtual infills that depend on R: forecast the width of the PF that can be accurately discovered in the last b steps
- Virtual infills: either through a Kriging Believer strategy (anticipated y's are the kriging mean) or through GPs realizations (anticipated y's are samples)
- Small uncertainty on virtual final Pareto Front = convergence in $\mathcal{I}_{\mathbf{R}} \Rightarrow$ choose farthest \mathbf{R} such that



Summary

A two-step algorithm for targeting well-balanced solutions within a few iterations:

- Estimate the Ideal-Nadir line $\widehat{\mathcal{L}}$, on which the expected center of the PF is located
- Define a reference point \mathbf{R} combining $\widehat{\mathcal{L}}$ and the current approximation front $\widehat{\mathcal{P}_{\mathcal{V}}}$
- Target the estimated central part of the PF using **R** and a targeting infill criterion
- When convergence is detected, widen the region of interest $\mathcal{I}_{\mathbf{R}}$ by a backward step of \mathbf{R} calculated through virtual infills.



References

- [1] D. R. Jones, M. Schonlau, and W. J. Welch, Efficient global optimization of expensive black—box functions, Journal of Global Optimization, 13, 455–492 (1998)
- [2] E. Zitzler and L. Thiele, Multiobjective Optimization
 Using Evolutionary Algorithms A Comparative
 Case Study, Conference on Parallel Problem Solving
 from Nature (PPSN V), pages 292–301 (1998)
- [3] M. Emmerich, K. Giannakoglou, B. Naujoks, Single and Multiobjective Evolutionary Optimization Assisted by Gaussian Random Field Metamodels, IEEE Transactions on Evolutionary Computation, 10 (2006)