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Industrial conte

Multi-objective optimization of high dimen-
sional systems (d up to 40)
min (f1(x), .., fm(x))
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Computationally expensive CFD codes (24
hours per simulation) = optimization under re-

stricted budget = metamodel-based optimiza-
tion: Multi-Objective EGO |[1]

Multi-criteria. decision-aid: choice among the
optimal solutions made by a Decision Maker

Very tiny budget (= 100 evaluations), many
objectives (m =~ 6-8) = impossible for classical
MO-EGO approaches to uncover the Pareto
Front (growing size of Py with m)

How to obtain several optimal trade-
off solutions in spite of the extremely

parsimonious use of the computer code,
and the multiple conflicting objectives?

Targeting: moti

e Restricted budget and large number ot ob-
jectives = Uncovering the whele Pareto
Front Py in a "region of interest"

e Shrink search to a smaller subset =- faster
convergence

e Emphasize solutions that equilibrate the
objectives: (unknown) central part
of the Pareto Front (PF) = interesting so-
lutions for Decision Makers

Well-balanced

solutions
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Objective 2

Objective 1

Center of the P

Center C = Projection of closest non-dominated

point on Ideal-Nadir line £

Center of a conti

ront

Low dependence to variations of I and IN:
%%’ and |g§h < 1 for a continuous front
Insensitive to a linear scaling of the objec-
tives in a bi-objective case, and when L
intersects Py

Computationally cheap, even for large m
Estimation: GP simulations emphasizing
the edges of the PF = estimated Ideal,

Nadir and £ = estimated center C

GP simulations for estimating the Ideal-Nadir line
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Infill Criteria for targeti

IC = f(Y1("), ., Y (:);x;0): directs the search
towards attractive new designs x*

Modify existing IC through ® to direct the
search towards the estimated central area

e Hypervolume Indicator |2|:

H(Py;R)=A (Uyg;;{z 'y Xz =X R})
e EHI: Expected Improvement of the Hyper-

volume Indicator [3| (relatively to R), if
adding design x

Mon-dominated ®

_ Real
Pareto Front
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& Other (dominated) points

e Subspace targeted by R: Zgr = {y € R"™ :
y =R}

e Product of Expected Improvement
w.r.t. C: mEI(x;C) = [[._,EL(x;C;),

EI; (-, C;): EI in objective ¢ considering CA'Z
as the current minimum

e If R £ Py, EHI(;R) =mEI(-; R)

e Still cheap for large m
e Analytical expression
e Parallelizable

Use the estimated center C as reference point R
= Optimization directed towards the center

20 added points 4 20 added points
Initial Pareto Front Initial Pareto Front

Convergence towards th

When to stop the targeting of the center?

e Probability of domination p(y): probabil-
ity that objective vector y can be domi-
nated by any (f1(x),.., fm(x)), x € X

e Listimated using Pareto Fronts from GP

draws: p(y) = — > ]175;@)53,

MNsim

e Information about (local) uncertainty and
convergence towards the PF

Probability of domination in Y space p(1-p) in Y space

——- Simulated Fronts

——- Simulated Fronts

Assume local convergence towards the central
part of the PF when [~p(y)(1 — p(y))dy <€

After 2 iterations
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After local convergence:

b iterations remaining = what to do next?

e Local convergence detected

e Use the remaining budget b to converge to-
wards Py in a wider but attainable central
part _

e EHI(-,R), with R on £ = focus on cen-
tral part of Py, size of targeted subspace
depending on distance between Py and R

e Anticipate the algorithm’s behavior in the
next iterations and the final PF via wvir-
tual infills that depend on R.: forecast the
width of the PF that can be accurately
discovered in the last b steps

o Virtual infills: either through a Kriging
Believer strategy (anticipated y’s are the
kriging mean) or through GPs realizations
(anticipated y’s are samples)

e Small uncertainty on virtual final Pareto

Front = convergence in Zr = choose far-
thest R such that

Vol(ll,N) fijP(Y)(l —p(y))dy < ¢

Convergence forecast for two candidate reference points using GP simulations
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Summary

A two-step algorithm for targeting well-balanced
solutions within a few iterations:

e Estimate the Ideal-Nadir line LA, on which
the expected center of the PF is located

e Define a reference point R combining £
and the current approximation front Py

e Target the estimated central part of the
PF using R and a targeting infill criterion

e When convergence is detected, widen the
region of interest Zr by a backward step
of R calculated through virtual infills.
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