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DEEP MULTI-SCALE ARCHITECTURES FOR MONOCULAR DEPTH ESTIMATION

M. Moukari'?, S. Picard', L. Simon?, F. Jurie?

(1) Safran — (2) Normandie Univ, UNICAEN, ENSICAEN, CNRS (UMR GREYC)

ABSTRACT

This paper aims at understanding the role of multi-scale
information in the estimation of depth from monocular im-
ages. More precisely, the paper investigates four different
deep CNN architectures, designed to explicitly make use of
multi-scale features along the network, and compare them
to a state-of-the-art single-scale approach. The paper also
shows that involving multi-scale features in depth estimation
not only improves the performance in terms of accuracy, but
also gives qualitatively better depth maps. Experiments are
done on the widely used NYU Depth dataset, on which the
proposed method achieves state-of-the-art performance.

Index Terms— monocular depth estimation, multi-scale
features, CNN architecture

1. INTRODUCTION

The estimation of depth information from images has a very
long history in the computer vision literature, for instance
in stereo vision [1]. As mentioned by Michels et al. [2]
many researchers have been inspired by the way humans use
monocular cues (e.g.texture, perspective, defocus) for esti-
mating depth information e.g., [3, 4].

One major breakthrough in this area arose from the use of
Deep Convolutional Networks, in order to train filters capa-
ble of detecting optimal cues for depth estimation. Mohan [5]
and Figen et al. [6] were among the firsts to propose depth
estimation algorithms using deep CNN. Such algorithms now
constitute the mainstream approach for depth estimation. Nu-
merous publications have extended this approach in several
directions. However, none of them scrutinize the importance
of multi-scale information, in particular regarding the perfor-
mance of depth estimation. This paper aims at filling this
gap by proposing and evaluating several architectures that are
multi-scale by construction and evaluate them on a public
dataset. Our experimentations allowed us to observe that if
multi-scale architectures bring only mild improvements over
careful designed single-scale architectures with small training
sets, they lead to state-of-the-art results on larger ones.

The rest of the paper is structured as follows. Section 2
presents the related works, Section 3 the different multi-scale
architectures while Section 4 experimentally compares them
and draw some conclusions.

Fig. 1. An example of our state-of-the-art monocular depth
estimation trained with a deep multi-scale architecture.

2. RELATED WORK

A number of deep learning methods have recently emerged to
address the problem of monocular depth estimation. The sem-
inal work of Eigen et al. [6] introduced a powerful deep CNN
approach allowing to estimate depth from monocular RGB
images in a feed-forward way. The proposed architecture is
composed of two stacked networks. The first one outputs a
coarse depth map while the second one refines it by apply-
ing 3 successive convolutions, using the coarse output and the
RGB image as inputs.

This work has been extended in [7] by adding a third scale
and by combining several tasks (multi-task learning frame-
work), predicting not only the depth but also the surface nor-
mals and the semantic labels of the input RGB images. Sev-
eral authors (e.g., [8]) have also tried to combine complemen-
tary tasks, such as semantic segmentation, to improve the es-
timation of the depth.

In practice, recent methods can be roughly categorized
into two main families: global methods that estimate the
depth map from the whole input image and local methods
that work locally on image patches. For instance, Eigen et
al. [6, 7] are both global methods. On the other hand, ap-
proaches such as [9, 10, 11, 12] are fundamentally based on
local predictions. Some of them [9, 10, 11] enforce some
global consistency between patches thanks to CREF, yet they
still remain fundamentally local. Furthermore, to alleviate the
cons of both categories, Wang et al. [8] and Chakrabarti et
al. [13] have designed hybrid approaches that fuse local and
global predictions.

As we write, the state-of-the-art architecture for depth es-
timation is an encoder-decoder network with a powerful en-
coder typically pre-trained for semantic purposes. For exam-
ple, Laina ef al. [14] use the ResNet architecture as a fea-
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Fig. 2. Our modified up-projection module. Unlike the
original proposed in [14], we perform nearest neighbors up-
sampling x2 and we use randomized ReLU.

ture extractor, after cutting off the last classification layers and
training a decoder on top of it to achieve the regression task of
depth prediction. They propose up-sampling layers based on
the principle of ResNet with skip connections and also show
that training with the BerHu loss can further improve the final
error. They achieve state-of-the-art performance on depth es-
timation from single monocular images. Although their work
yields impressive results, they do not integrate multi-scale
analysis along the network to enhance their prediction.

Convolutional architectures that are designed to use multi-
scale features all along the network are now well studied in
some research areas such as object detection, object recogni-
tion and semantic segmentation. The U-net [15] is a popu-
lar encoder-decoder architecture where skip connections al-
low the decoder to benefit from the mirror encoder features,
to help awareness of the finer details. Furthermore, Lin ef al.
[16] argue that, in addition to skip connections, it is useful
to have some intermediate outputs at lower resolution in the
decoder, constructing high-level semantic feature maps at dif-
ferent scales. They demonstrate that, at last, it allows to im-
prove both object detection and segmentation tasks. Eventu-
ally, dilated convolutions have been introduced to avoid down
sampling in the encoding part of the network while preserv-
ing the same receptive field. These layers have been exploited
for semantic segmentation in a recent work [17] to implement
deep feature extraction in a so-called spatial pyramid.

3. MULTI-SCALE ARCHITECTURES FOR DEPTH
ESTIMATION

Given the lack of literature on the proper handling of multi-
scale features for depth estimation, we propose here four ar-
chitectures inspired from other research areas such as seman-
tic segmentation. All four of them are built upon a highly
optimized single-scale network that we present first. The five
resulting network architectures are depicted in Fig. 3).

Single-scale network (SSN) This architecture is similar to
hourglass nets, combining an encoder and a decoder part.
We use the ResNet200 network [18], pre-trained on the Ima-
geNet classification task, as a feature extractor. The last two
layers, originally dedicated to classification purposes, are re-
moved. Furthermore, we modify the vanilla convolutions of
the last ResNet block to become 2-dilated convolutions. In
this case, the output features have a higher spatial resolution,
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Fig. 3. Schematics of the different compared methods.
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while maintaining the same receptive field. This type of strat-
egy has been denoted as the Dilated ResNet by Yu et al. [19].
Thereby, our dilated ResNet200 encoder outputs 2048 feature
maps at 1/16 of the size of the input image.

For the decoding part, we use a slightly different version of
the up-projection module, originally proposed in the work of
Laina et al. [14]. In our version (Fig. 2), we choose to use
the nearest neighbors up-sampling instead of the original un-
pooling layer because we found it faster, with no impact on
the final performance. Furthermore, as we conduct experi-
ments on few training images, we use randomized ReL.Us as
activation units instead of the original ReLUs. We found it
to generalize better when we learn on small-scale training set
(typically less than 800 images). Similar results are observed
in [20], reporting the effectiveness of randomized ReLUs to
combat overfitting on small-scale datasets. At the far end of
the network, we use a 3x3 convolution with 1 output channel,
followed by a ReLU. The output of this last layer serves as
our depth estimate.

Skip Connections (Skips) This first multi-scale variant is in-
spired by the U-Nets [15]: we use skip connections between
mirror layers (in terms of spatial resolution) to concatenate
features from the encoder with their counterpart of the same
size in the decoder (see Fig. 3 (b)).
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Fig. 4. ASPP block (adapted from [17]), with a pyramid of 1,
3, 6 and 12-dilated convolutions. BN stands for Batch Nor-
malization.

Feature Pyramid Outputs (FPQO) This architecture is in-
spired by the work of Lin ef al. [16]. It is the same archi-
tecture as the one used for Skips but with additional extra
intermediate outputs after the up-projection modules. These
extra outputs are designed as a fork of the network and each
contains one 3x3 convolution followed by a ReLU, allowing
depth estimation at lower scales (see Fig. 3 (c)). We experi-
mentally find more efficient to train each output sequentially,
starting with the lower resolution and fixing the previously
trained part of the network to learn a new output resolution.

Multi-Scale Middle Layer (MSML) This architecture also
uses an encoder based on the Dilated ResNet. However, the
last two ResNet blocks are replaced by 2 and 4 dilated ResNet
blocks. Thus, we keep a higher spatial resolution in the mid-
dle layer whose size becomes 1/8 of the input resolution.
Then, we gather all same-sized multi-scale encoder features
in the middle layer before building on the decoder. Early fea-
tures that are not the same size are first forwarded through a
max pooling layer to downsample them before concatenation
(see Fig. 3 (d)).

Dilated Spatial Pyramid (DSP) It relies on the same Atrous
Spatial Pyramid Pooling (ASPP) blocks as the ones intro-
duced by Chen et al. [17] (see Fig. 3 (e)). The decoder part is
build on top of the ASPP block [17]. We use a pyramid of 1,
3, 6 and 12-dilated convolutions to construct our ASPP block
instead of the originals 1, 6, 12 and 18-dilations to adapt to
the size of our features, as illustrated in Fig. 4.

Decoder designs Between the five architectures, the decoder
part varies slightly in the number of up-projections involved
to recover the same spatial size as the input, and also in the
amount of input and output features in each module. Hence,
we use the following syntax to shorten the notations: [NV;-
N,]. Each bracket represents one up-projection module with
N, input features and N, output features. All decoders up-
projections architectures are summarized in Table 1.

| Decoders up-projections (UpProj) architectures ‘

‘ Method H UpProjl ‘ UpProj2 ‘ UpProj3 ‘ UpProj4 ‘
SSN [2048-1024] | [1024-512] | [512-256] | [256-64]
Skips [3072-1024] | [1536-512] | [768-256] | [320-64]
FPO [3072-1024] | [1536-512] | [768-256] | [320-64]
MSML [3904-512] [512-256] [256-64] -
DSP [2560-1024] | [1024-512] | [512-256] | [256-64]

Table 1. Architecture of the different up-projections modules
for each experiment.

] | lowerisbetter [ higher is better |
’ Method H rel \ log \ rms H 01 \ 0o \ 03 ‘
SSN 0.167 | 0.066 | 0.603 || 77.9 | 94.9 | 98.9
Skips 0.163 | 0.065 | 0.599 || 79.2 | 95.1 | 98.9
MSML || 0.160 | 0.066 | 0.601 || 78.1 | 95.4 | 99.0
FPO 0.161 | 0.065 | 0.599 || 78.5 | 95.3 | 98.9
DSP 0.159 | 0.064 | 0.592 || 79.3 | 954 | 98.9

Table 2. Error comparison of the multi-scale methods on the
NYU Depth v2 test set. We only use the official subset of 795
training images for the learning stage.

4. EXPERIMENTS

This section presents an experimental validation of the dif-
ferent architectures proposed in the previous section. These
models are evaluated both quantitatively and qualitatively and
compared with the recent state-of-the-art results.

The NYU Depth v2 dataset. All our experiments have been
conducted on the popular and challenging NYU Depth bench-
mark [21]. This dataset is composed of 464 video sequences
of RGB-D indoor images, acquired with a Microsoft Kinect
camera. The spatial resolution is of 640x480 pixels. The
depth range goes from O to 10 meters. The dataset is split
into 249 training sequences and 215 test sequences, among
which only 795 training images and 654 testing images are
densely annotated with filled-in depth values [21]. For both
training and testing, we down sample the images by a factor
of 2, using the nearest-neighbor algorithm.

Extended NYU dataset. In the prospect of comparing our
approaches with state-of-the-art result, we have extended the
official NYU dataset. To do so, we randomly select equally
spaced frames from the raw training scene of the NYU Depth
dataset. We end up with about 16K unique images that we
process using the depth colorization routine provided in the
matlab NYU Depth toolbox. Similar unofficial training sets
are exploited in recent published work such as [14].

Details on the learning procedure To obtain as fair com-
parisons as possible, we train our different architectures with
the same hyper parameters and training procedures. We al-
ways rely on L2 losses and Stochastic Gradient Descent with
a batch of size 3 (except for MSML and the last 2 scales of
FPO where, due to memory limitations, we have used batches



of size 2). We train each network for at least 800 epochs and
stop the training when the score on the validation set increases
during 50 epochs. The learning rate is set to Se-3, the weight
decay to 5e-4 and momentum to 0.9. We also apply online
data augmentation, following the procedure reported in [6].

Evaluation criteria. We report the following four standard
performance criteria (y; and y; denote respectively the pre-
dicted and ground-truth depth at pixel 7. N stands for the
total number of pixels):

(a) Mean relative error (rel): + Zfil |9: — yil /v

(b) Mean log; error (log): % Zfil [log10 Ui — logio il

(c) RMSE (rms): \/% SN @)
(d) Threshold: % of y; s.t. max (z—, Z—) =6 < thr. In our

evaluations, Vk € {1,2,3}, the dj stands for the threshold
metric § < 1.25".

Experiments on the Official NYU dataset. As a first analy-
sis stage, we trained all our architectures on the small official
NYU training set (795 images). The results are presented in
Table 2. In regard to the multi-scale vs single-scale compar-
ison, we notice that every multi-scale network performs sim-
ilarly or better than SSN. Though the performance gap is not
so pronounced, we can conclude that for such a small dataset
a carefully designed architecture as SSN is quite competitive.
Considering now the multi-scale methods, DSP consistently
outperforms the other challengers. As a result, DSP stands
out as a promising design to achieve state-of-the-art results.

Experiment on the Extended NYU dataset. Given our pre-
vious analysis, we singled out the DSP method for training on
the unofficial but much larger scale NYU dataset. The learn-
ing procedure is the same, except that we train for about 60
epochs. The results are reported in Table 3, along with recent
state-of-the-art performance. We see that our proposed Large
Scale DSP (LS-DSP) network achieves the best results for al-
most all the usual metrics. Please note that, in the table, the
results of Laina et al. [14] were deliberately restricted to the
L2 loss while the authors recommend the berHu loss. This
intentional choice was made to mitigate the effect of the loss
in our comparison. Nonetheless, for the sake of fairness, we
should mention that Laina ef al. [14] obtain slightly better re-
sults on rel and log errors, while we achieve better results on
the 4 remaining metrics. We expect that in the case of DSP as
well, the berHu loss could further improve the performance.

Qualitative evaluation. Fig. 5 allows some qualitative com-
parisons of the single-scale network and two multi-scale ones
(Skips and DSP). We observed that the methods using skip
connections often produce sharper outputs, which is visible
on the edge of the furniture (2nd column), or the ridges on the
ceiling (1st column). Skip connections at the end of the net-
work give sharpest inferences, at the price of artifacts (edges

‘ H lower is better H higher is better ‘
] Method H rel \ log \ rms H o1 \ 0o \ 03 ‘

Eigen [7] || 0.158 - 0.641 || 76.9 | 95.0 | 98.8

Li [22] 0.143 | 0.063 | 0.635 || 78.8 | 95.8 | 99.1
Laina [14] || 0.138 | 0.060 | 0.592 || 78.5 | 95.2 | 98.7
Cao [23] || 0.141 | 0.060 | 0.540 || 81.9 | 96.5 | 99.2

[ LS-DSP [ 0.133 ] 0.057 | 0.569 || 83.0 [ 96.6 | 99.3 |

Table 3. Comparison of our LS-DSP network trained on the
extended dataset, against state-of-the-art results on NYU.

Fig. 5. From top to bottom: RGB test image, depth ground-
truth, SSN, Skips and LS-DSP outputs. Best viewed in color.

of the RGB images transferred to the depth map), visible on
the paintings (2nd column, 4th row). We made similar obser-
vations for FPO whose architecture is close to Skips, and, to
lesser extent as the skips are in the middle layer of the net-
work, with MSML. We also show our best results using the
DSP trained on the extended NYU dataset. We see that the
network generalizes well and produces better depth map than
SSN. We can see, for instance, better inferences of farther dis-
tances (3rd columns) and better defined shapes, e.g.the head
of the person (4th column).

5. CONCLUSIONS

This paper investigates the use of multi-scale information for
depth inference, a question that has not been discussed so far
in the literature. The presented experiments show that, on the
official NYU dataset with 795 training images, the proposed
multi-scale architectures consistently outperform the counter-
part single scale architecture. When trained on a larger train-
ing set, of a size comparable to the latest published methods,
the proposed DSP method gives impressive state-of-the art
results while, in addition, the inferred depth maps look quali-
tatively better.
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