Radu Ignat 
email: radu.ignat@math.univ-toulouse.fr
  
Luc Nguyen 
email: luc.nguyen@maths.ox.ac.uk
  
Valeriy Slastikov 
email: valeriy.slastikov@bristol.ac.uk
  
Arghir Zarnescu 
email: azarnescu@bcamath.org
  
  
Some uniqueness results for minimisers of Ginzburg-Landau functionals

Keywords: uniqueness, minimisers, Ginzburg-Landau. MSC: 35A02, 35B06, 35J50

We study the question of uniqueness of minimisers of the standard Ginzburg-Landau functional for R n -valued maps with a H 1/2 ∩ L ∞ boundary data that is non-negative in a fixed direction e ∈ S n-1 . We link the question of uniqueness on the one hand with the "escaping" phenomenon of minimizers, and on the other hand with a stability condition for critical points of the Ginzburg-Landau functional. In particular, we show that, when minimisers are not unique, they "escape" out of the range of the boundary condition and the set of minimisers is generated from any of its elements using appropriate orthogonal transformations of R n .

This note is based on the article [START_REF] Ignat | On the uniqueness of minimisers of Ginzburg-Landau functionals[END_REF] of the authors and represents the talk of the first author (Radu Ignat) given at the Workshop "Nonlinear Data: Theory and Algorithms" in Oberwolfach, 22 April -28 April 2018. It will be included in the volume Oberwolfach Reports No. 20/2018 dedicated to that workshop.

Model. We consider the following Ginzburg-Landau type energy functional

E ε (u) = Ω 1 2 |∇u| 2 + 1 2ε 2 W (1 -|u| 2 ) dx, 1
with ε > 0 being a fixed parameter, Ω ⊂ R m (m ≥ 1) is a bounded domain (i.e., open connected set) with smooth boundary ∂Ω and the potential W ∈ C 1 ((-∞, 1]; R + ) satisfies

W (0) = 0, W (t) > 0 for all t ∈ (-∞, 1] \ {0}, W is strictly convex.
(The prototype of the nonlinear potential is W (t) = t 2 /2.) We focus on minimisers of the energy E ε over the following set

A := {u ∈ H 1 (Ω; R n ) : u = u bd on ∂Ω}, n ≥ 1,
consisting of H 1 maps with a given boundary data (in the sense of H 1/2 -trace on ∂Ω):

u bd ∈ H 1/2 ∩ L ∞ (∂Ω; R n ).
The direct method in the calculus of variations yields existence of minimizers u ε of E ε over A for all range of ε > 0; moreover, any minimizer u ε belongs to C 1 ∩L ∞ (Ω; R n ) and satisfies the system of PDEs

-∆u ε = 1 ε 2 u ε W (1 -|u ε | 2 ) distributionally in Ω. (0.1)
Aim. We are interested in the question of uniqueness (or its failure) for the minimisers of

E ε in A for all range of ε > 0. If ε is large (i.e., ε ≥ ε 0 := (|W (1)|/λ 1 (Ω)) 1/2 where λ 1 (Ω)
is the first eigenvalue of (-∆) on Ω with zero Dirichlet data), then E ε is strictly convex and thus, there exists a unique solution u ε ∈ A of (0.1) which is the minimizer of E ε over A . If ε < ε 0 , the problem is more delicate and it was intensively studied in the last thirty years (for details, see the references in [START_REF] Ignat | On the uniqueness of minimisers of Ginzburg-Landau functionals[END_REF]). We provide results for this problem in the special case where the boundary data is non-negative in a (fixed) direction e ∈ S n-1 , i.e.,

u bd • e ≥ 0 H m-1 -a.e. in ∂Ω. (0.2)
Example 1. In the scalar case n = 1 with zero boundary data u bd = 0 on ∂Ω, if ε ≥ ε 0 , then ũε = 0 is the unique solution of (0.1) in A (so, the unique minimizer of E ε over A ). If ε < ε 0 , then there exists a unique positive solution u ε ∈ A (i.e., u ε > 0 in Ω) of (0.1) with zero boundary data, see e.g. [START_REF] Brezis | Remarks on sublinear elliptic equations[END_REF]; as a consequence of Theorems 0.1 and 0.3 (see below), we have that u ε and -u ε are the only two minimizers of E ε over A and moreover, the trivial solution ũε = 0 is unstable (i.e., the second variation of E ε at ũε is negative in a certain direction).

Example 2. For m = 2 and n = 3, we consider the unit disk Ω ⊂ R 2 and the boundary data carrying a given winding number k ∈ Z \ {0} on ∂Ω:

u bd (cos ϕ, sin ϕ) = (cos(kϕ), sin(kϕ), 0) ∈ S 1 × {0} ⊂ R 3 , ∀ϕ ∈ [0, 2π).
(Note that u bd satisfies (0.2) in the vertical direction e 3 .) As a consequence of Theorem 0.1 (see below), there exists ε k > 0 such that a) if ε ≥ ε k , the unique minimizer of E ε over A is given by ũε := fε (r)(cos(kϕ), sin(kϕ), 0), r ∈ (0, 1), ϕ ∈ [0, 2π),

where the radial profile fε is the unique solution of the ODE (see e.g. [START_REF] Ignat | Uniqueness results for an ODE related to a generalized Ginzburg-Landau model for liquid crystals[END_REF])

-f ε -1 r f ε + k 2 r 2 fε = 1 ε 2 fε W (1 -f 2 ε ) in (0, 1), fε (0) = 0, fε (1) = 1; b) if ε < ε k , then E ε admits exactly two minimizers u ± ε over A that have the form u ± ε := f ε (r)(cos(kϕ), sin(kϕ), 0) ± g ε (r)(0, 0, 1), g ε (r) > 0, r ∈ (0, 1), ϕ ∈ [0, 2π),
where the couple (f ε , g ε ) of radial profiles is the unique solution of the system

           -f ε -1 r f ε + k 2 r 2 f ε = 1 ε 2 f ε W (1 -f 2 ε -g 2 ε ) in (0, 1), -g ε -1 r g ε = 1 ε 2 g ε W (1 -f 2 ε -g 2 ε ) in (0, 1), f ε ≥ 0, g ε > 0 in (0, 1), f ε (0) = 0, f ε (1) = 1, g ε (0) = 0, g ε (1) = 0.
Moreover, the solution ũε of (0.1) (given at point a) above) is unstable if ε < ε k . These examples suggest the following phenomenology: if V = Span u bd (∂Ω) has codimension ≥ 1 in R n , then non-uniqueness of minimizers of E ε over A is equivalent with the existence of "escaping" solutions u ε ∈ A of (0.1) (i.e., u ε (Ω) ⊂ V ). This is highlighted by the following result:

Theorem 0.1 ([3]). Let u ε ∈ H 1 ∩ L ∞ (Ω; R n ) be
an "escaping" critical point of the energy E ε over A such that u ε • e > 0 a.e. in Ω in some direction e ∈ S n-1 for some ε > 0. Then u ε is a minimiser of E ε over A and we have the following dichotomy: a) If u bd (x 0 ) • e > 0 for some Lebesgue point x 0 ∈ ∂Ω, then u ε is the unique minimiser of

E ε over A . b) If u bd (x) • e = 0 for H m-1 -a.e. x ∈ ∂Ω, then all minimisers of E ε in A are given by Ru ε where R ∈ O(n) is an orthogonal transformation of R n satisfying Rx = x for all x ∈ Span u bd (∂Ω).
Using the above theorem, we prove the following result which completely characterises uniqueness and its failure for minimisers of the energy E ε over A under the assumption (0.2) for the boundary data u bd . Theorem 0.2 ([3]). Let ε > 0. If (0.2) holds in direction e ∈ S n-1 and V = Span u bd (∂Ω), then there exists a unique minimiser u ε of the energy E ε over A unless both following conditions hold:

i) u bd (x) • e = 0 H m-1 -a.e. x ∈ ∂Ω, ii) the functional E ε restricted to the set A res := {u ∈ A : u(x) ∈ Span(V ∪ {e}) a.e. in Ω}
has an "escaping" minimiser ǔε with ũε (Ω) ⊂ V . Moreover, if uniqueness of minimisers of E ε in A does not hold, then all minimisers of E ε in A are given by Rǔ ε where R ∈ O(n) is an orthogonal transformation of R n satisfying Rx = x for all x ∈ V .

The "escaping" phenomenon is closely related to stability properties of critical points if codim R n (V ) ≥ 1 with V = Span u bd (∂Ω). Indeed, by Theorem 0.1, every "escaping" critical point u ε of E ε over A is in fact a minimiser and there are multiple minimisers as one can reflect u ε about the orthogonal space to the escaping direction (so, non-uniqueness holds in this case). On the contrary, we show in the following that for a "non-escaping" critical point u ε of E ε over A (i.e., u ε (Ω) ⊂ V ), its stability is equivalent with its minimality and therefore, by Theorem 0.2, u ε is the unique minimiser.

Theorem 0.3 ([3]). Assume that V = Span u bd (∂Ω) ⊂ e ⊥ = {v ∈ R n : v • e = 0} for a direction e ∈ S n-1 . For any fixed ε > 0, if u ε is a bounded critical point of E ε in A confined in e ⊥ , i.e., u ε ∈ L ∞ (Ω; e ⊥ ) and u ε is stable in direction e, i.e., d 2 dt 2 t=0 E ε (u ε + tϕe) = Ω |∇ϕ| 2 - 1 ε 2 W (1 -|u ε | 2 ) ϕ 2 dx ≥ 0 for all ϕ ∈ H 1 0 (Ω),
then u ε is a minimiser of E ε in A . Moreover, if u ε is "non-escaping", i.e., u ε (Ω) ⊂ V , then u ε is the unique minimiser of E ε in A .

Our results hold true also for the harmonic map problem, thus covering the well-known result of Sandier and Shafrir [START_REF] Sandier | On the uniqueness of minimizing harmonic maps to a closed hemisphere[END_REF] on the uniqueness of minimising harmonic maps into a closed hemisphere. In fact, our argument does not assume the smoothness of boundary data and does not use the regularity theory of minimising harmonic maps, which appears to play a role in the argument of [START_REF] Sandier | On the uniqueness of minimizing harmonic maps to a closed hemisphere[END_REF].
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