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Abstract
We propose an integro-differential description of the dynamics of the fitness distribu-

tion in an asexual population under mutation and selection, in the presence of a phenotype
optimum. Due to the presence of this optimum, the distribution of mutation effects on
fitness depends on the parent’s fitness, leading to a non-standard equation with “context-
dependent" mutation kernels.

Under general assumptions on the mutation kernels, which encompass the standard
n−dimensional Gaussian Fisher’s geometrical model (FGM), we prove that the equation
admits a unique time-global solution. Furthermore, we derive a nonlocal nonlinear trans-
port equation satisfied by the cumulant generating function of the fitness distribution.
As this equation is the same as the equation derived by Martin and Roques (2016) while
studying stochastic Wright-Fisher-type models, this shows that the solution of the main
integro-differential equation can be interpreted as the expected distribution of fitness cor-
responding to this type of microscopic models, in a deterministic limit. Additionally, we
give simple sufficient conditions for the existence/non-existence of a concentration phe-
nomenon at the optimal fitness value, i.e, of a Dirac mass at the optimum in the stationary
fitness distribution. We show how it determines a phase transition, as mutation rates in-
crease, in the value of the equilibrium mean fitness at mutation-selection balance. In the
particular case of the FGM, consistently with previous studies based on other formalisms
(Waxman and Peck, 1998, 2006), the condition for the existence of the concentration
phenomenon simply requires that the dimension n of the phenotype space be larger than
or equal to 3 and the mutation rate U be smaller than some explicit threshold.

The accuracy of these deterministic approximations are further checked by stochastic
individual-based simulations.
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A*MIDEX, a French “Investissements d’Avenir" programme, from the European Research Council under the
European Union’s Seventh Framework Programme (FP/2007-2013) ERC Grant Agreement n. 321186 - ReaDi -
Reaction-Diffusion Equations, Propagation and Modelling and from the ANR NONLOCAL project (ANR-14-
CE25-0013).
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1 Introduction
Understanding the complex interplay between mutation and selection in asexuals is a central
issue of evolutionary biology. Recently, several modeling approaches have been proposed,
to describe the evolution of a population under the effects of these two forces. Most of these
modeling approaches assume that the fitness of the individuals depends on a single quantitative
trait (e.g., [2, 23, 36]). Other approaches, as in this study, directly focus on the dynamics of
fitness distributions (e.g., [1, 29]).

A rich literature (reviewed in [33]) has also focused on the interplay between drift selec-
tion and mutation in asexuals. These theories focus mainly on the expected mean fitness of
the population as it reaches a stationary regime, using models that directly focus on fitness
distributions. A few also considered transient behaviors of these models (e.g. [31, 35]), which
can be seen as an approximation for the expected distribution of fitness, over time (discussed
in [29]).

As fitness is a concept of fundamental importance to our study, we begin with an intuitive
definition of this concept. In an asexual population made of K genotypes, we say that the
genotype i has absolute Malthusian fitness mi if the abundance Ni(t) of the genotype at time
t satisfies N ′i(t) = miNi(t). Summing over all the indexes i = 1, . . . , K, we observe that the
total population size satisfies N ′(t) = m(t)N(t), with m(t) the mean fitness in the population
at time t. If we focus on the frequency pi(t) = Ni(t)/N(t), we get p′i(t) = pi(t) (mi −m(t)).

In this study, following the standard framework of Wright-Fisher or Moran models [25],
we assume a constant population size N and a continuum of fitness classes m ∈ R. In this
case, only relative Malthusian fitness matters. If we first neglect the effects of mutations, the
changes in genotype frequencies due to selection are determined by their relative fitness m
through the expression (see, e.g., [35]):

∂tp(t,m) = p(t,m) (m−m(t)), (1)

where m ∈ R is the relative Malthusian fitness, p(t,m) the distribution of fitness at time t,
and m : R+ → R is the mean fitness, defined for any t ∈ R+ by

m(t) =

∫
R
mp(t,m) dm. (2)

As we can observe in (1), contrarily to other traits, fitness determines its own evolution. We
can also note that the notion of relative fitness is defined by (1) up to an additive constant.

A second key step is to describe the distribution of mutation effects on fitness (or DFE,
in short). Most mathematical models of asexual evolution (e.g. all those reviewed in [33])
neglect the dependence of the DFE on the fitness of the parent, as discussed e.g. in [18]. Some
also ignore deleterious mutations and focus only on the contribution from beneficial ones [33].
However, accumulating data from evolution experiments, often in asexual microbes, has shown
that fitness epistasis is pervasive, i.e. that the fitness effects of mutations (individual effects or
full distributions) depend on the genetic background in which they arise (e.g. [9, 18, 24]). This
has lead to the idea that epistasis, once taken into account, might actually make evolution
predictable in spite of stochastic effects due to drift and mutation, at least in large populations
and at the fitness level [18, 27, 29]. This may explain why observed fitness trajectories, in
large asexual populations, appear relatively repeatable (across biological replicates), in spite
of non-repeatable patterns at the sequence level (e.g. [24]). This conjecture partly motivates
the present study of phenotypic adaptation as a deterministic dynamical system.
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Figure 1: Proportions of beneficial and deleterious mutations, in a two-dimensional phenotypic
space with a phenotypic optimum. In panel (b) the parent’s phenotype is farther from the
optimum than in panel (a), so that beneficial mutations are more frequent and of larger effect
on average in (b).

One option to implement epistasis into fitness dynamics models is by using Fisher’s Ge-
ometrical Model (FGM) with a single optimum, where a complex form of epistasis arises
naturally. The FGM has been shown to lead to fairly realistic DFEs (e.g., [28]) in their shape,
dependence on the environment or epistatic pattern (reviewed in [34]). It is a phenotype-fitness
landscape model: it assumes n-dimensional (breeding values for) phenotype, described by vec-
tors z ∈ Rn. The connection between phenotypes and relative Malthusian fitness is made
through a quadratic function m = −‖z‖2/2, with ‖ · ‖ the Euclidian norm in Rn. A standard
way of describing the effects of mutations on phenotypes is to assume that, given a parent with
phenotype z, the mutant offspring has a phenotype z+dz, where dz follows an n−dimensional
isotropic Gaussian distribution with variance λ > 0 at each trait (Gaussian FGM). In this
case, even if the distribution of mutation effects on phenotype is independent of the parent
phenotype, the DFE on fitness does depends on the parent fitness (because of the non-linear
relationship between z and m). This is illustrated in Fig. 1. These effects can be summarized
by a mutation kernel Jy: given a parent with fitness y, the mutant offsprings have fitness y+s,
with s a random variable with density Jy. We say that this DFE is context-dependent because
of its dependence on y. In spite of this complication, fitness still entirely determines its own
evolution, in the FGM under selection and mutation, because epistasis is mediated by fitness
alone.

Combining the equation (1) with the general assumption of a DFE that depends on background
fitness, we obtain the following integro-differential equation:

∂tp(t,m) = U (Jy ~ p− p) (t,m) + p(t,m) (m−m(t)) , t ≥ 0, m ∈ R, (3)

where U > 0 is a given constant corresponding to the mutation rate and Jy ~ p is defined, for
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any (t,m) ∈ R+ × R, by

(Jy ~ p− p)(t,m) =

∫
R
Jy(m− y) p(t, y) dy − p(t,m). (4)

This equation corresponds to a generalization of the equations studied in [17], where Jy = J
was supposed to be independent of the fitness y of the parent, leading to a standard convolution
product instead of the operator ~. These previous approaches with context-independent DFEs
ignore all forms of epistasis, including, for example, that generated by the presence of a fitness
optimum. Similarly, other approaches where the mutation effects are modeled with a diffusion
approximation, i.e., when U (Jy ~ p− p) (t,m) is replaced by D∂mmp(t,m) for some D > 0
also ignore epistasis ([1, 35]). In these two cases (as soon as the support of J intersects R+,
i.e., in the presence of beneficial mutations), the mean fitness m(t) converges to +∞ at large
times, in a non-realistic (superlinear) way, see [31] for a discussion on this aspect.

A closely related work has been proposed in [29]. Their study focuses on a stochastic
individual-based Wright-Fisher model combined with the FGM for the description of mutation
effects on fitness. Based on formal computations, they derived nonlocal nonlinear transport
equations satisfied by some generating function of the fitness distribution. Under some as-
sumptions corresponding to a diffusion approximation of the mutation effects on phenotype,
approximate linear transport equations arise that can be solved analytically, allowing to infer
the corresponding dynamics of the multivariate phenotype and fitness distribution. Another
related work has been developed by [2]. Their approach describes the dynamics of the distri-
bution of a 1-dimensional trait x, with corresponding fitness value −x2, i.e., in the presence
of a fitness optimum at x = 0. They managed, under a diffusion approximation for the mu-
tation effects on phenotypes, to give a full analytical description of the dynamics of the trait
distribution.

From a mathematical perspective, the equation (3) combines several difficulties, compared
to standard reaction-diffusion equations ∂tu = D∂xxu + f(u) with local diffusion and local
reaction terms. The mutation term U (Jy ~ p− p) is nonlocal, has no regularizing properties,
and is not a standard convolution product. The selection term (1) is also nonlocal due to
the term m(t). Equations of the type ∂tu = (J ? u − u) + f(u), with ? the convolution
product and a local reaction term f(u), have been extensively studied, especially regarding the
existence/nonexistence of traveling wave solutions and other spreading properties [3, 7, 11, 14,
15, 32, 39, 40, 41]. In the work [17] that was mentioned above, we considered nonlocal reaction
terms of the form (1), but again with a standard convolution product. In the recent work [5],
a reaction-diffusion equation with a general reaction term of the form f(x)−

∫
R f(y)u(t, y) dy

with f(x) → −∞ as |x| → ∞, generalizing the results in [2], has also been thoroughly
studied. Reaction-diffusion equations with other types of nonlocal reaction terms have also
been investigated in recent works [4, 6, 12, 13, 16, 19, 21]. Lastly, we mention that operators
of the type Jy ~ p − p or more generally of the type

∫
RK(m, y)p(t, y)dy − p(t,m) have also

been considered in [8, 10] with an emphasis on the study of the stationary states. Moreover,
the existence of stationary states and travelling waves for equations of the form ∂tu = ∂xxu+
µ (M ~ u− u) + f(u), with f(u) a nonlocal reaction term, has been studied in [20].

The paper is organized as follows. In Section 2, we detail all the assumptions on the initial
condition p(0, ·) = p0 and on the mutation kernels Jy. In Section 3, we present our main results
on equation (3). In particular, we derive some a priori estimates on the solutions (Section 3.1);
we state an existence and uniqueness result (Section 3.2); we connect this equation with
the formal theory developed in [29] for asexual models with selection and epistatic mutation
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(Section 3.3); we give a qualitative description of the stationary states of (3), and we apply
these results to the particular case of the Gaussian FGM (Section 3.4). In Section 4, we
present some numerical computations of the solutions of (3) under the assumptions of the
Gaussian FGM, and we compare the corresponding distributions with observed distributions
from individual-based simulations of the Wright-Fisher model. Lastly, we discuss our results
in Section 5. Our results are proved in Section 6.

2 Assumptions
Initial condition. We assume throughout this paper that the initial distribution of fitness
p0 ∈ L∞(R) ∩ L1(R) is a probability density function, that is,

p0(m) ≥ 0 for all m ∈ R and
∫
R
p0(m) dm = 1. (5)

Additionally, we assume that p0 satisfies

lim
m→−∞

p0(m) eα|m| = 0 for all α > 0. (6)

As mentioned in the introduction, we assume that there is a fitness optimum m? and, without
loss of generality as we work with relative fitnesses, we can assume that m? = 0. Thus, at
t = 0, all fitnesses must be less than or equal to 0. This means that the initial distribution p0
is such that:

supp p0 ⊂ R− := (−∞, 0]. (7)

General mutation kernels. We begin with the general assumptions that we use for our existence
and uniqueness result. For each fitness y ∈ R−, we assume that Jy ∈ L1(R) is a probability
density function:

Jy ≥ 0 in R and
∫
R
Jy(s) ds = 1. (8)

For mathematical convenience, we also set Jy = 0 in R for each y ∈ (0,+∞) and we assume
that, for each m ∈ R, the function y 7→ Jy(m − y) is measurable in R and finite almost
everywhere (a.e. for short) in R. As 0 is the fitness of the optimum, mutant offspring from
any parent with fitness y cannot have a fitness larger than 0. It follows that, for each y ≤ 0,
−y is an upper bound of the support of the mutation kernel Jy, that is,

Jy = 0 a.e. in (−y,+∞). (9)

When y = 0, the parent has the optimal fitness and all mutations lead to fitnesses m ≤ 0. This
is consistent with the assumption (9): the kernel J0 is supported in (−∞, 0], and therefore
leads to deleterious mutations only.

For technical reasons, we may also assume that the kernels (Jy)y≤0 are uniformly bounded
in R by a nonnegative function J ∈ L1(R) which decays faster than any exponential function
at −∞, in the sense that

Jy ≤ J a.e. in R for all y ≤ 0, and
∫ 0

−∞
J(m) eα|m| dm<+∞ for all α≥0. (10)
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Figure 2: Mutation kernels Jy corresponding to the Gaussian Fisher’s geometric model, with
phenotype dimension n = 6 and variance λ = 1, for parents with fitnesses y0 < 0, y1 < 0
and 0.

Kernels with log-linear moment generating function. In order to connect our results with the
theory described in [29], and to derive additional properties on the stationary states of (3),
we require some additional assumptions on the kernels Jy. We assume here that these kernels
have log-linear moment generating function in the sense that∫ −y

−∞
Jy(m) emz dm = M?(z) eω(z)y for all y ≤ 0 and z ≥ 0, (11)

where

M?(z) =

∫ 0

−∞
J0(s) eszds

is the moment generating function of the mutation kernel at the optimal fitness and ω ∈ C1(R+)
satisfies

ω 6≡ 0 and ω′(0) ≤ 0. (12)

The assumptions (11)-(12) are satisfied in several standard models (discussed in [29]). For
example, in the Gaussian Fisher’s Geometric model (FGM) mentioned in Section 1, we have
[29]:

ω(z) = − λz2

1 + λz
and M?(z) =

1

(1 + λz)n/2
, (13)

with λ > 0 being the variance of mutation effects per phenotypic trait, and n the dimension of
the phenotype space. The mutation kernels Jy are uniquely defined by their moment generating
function z 7→ M?(z)eω(z)y and, in the Gaussian FGM, their probability density function (pdf)
takes explicit form:

Jy(m) =
2

λ
fχ2

n(−2y
λ )

(
−2(m+ y)

λ

)
(14)

for all y ≤ 0 and m ≤ −y, where fχ2
n(−2y

λ ) denotes the pdf of the noncentral chi-square
distribution with n degrees of freedom and noncentrality −2y/λ; see Fig. 2 for an illustration.
Notice that these kernels also fulfill the assumptions (8)-(10).
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The assumption ω 6≡ 0 in (12) simply means that the kernels Jy do depend on the fitness
of the parents. The assumption ω′(0) ≤ 0 in (12) can be interpreted as follows. Using (11),
we get that:

Cy(z) = C?(z) + ω(z)y (15)

for all y ≤ 0 and z ≥ 0, where

Cy(z) = ln

(∫ −y
−∞

Jy(m)emzdm

)
and C?(z) = lnM?(z) = ln

(∫ 0

−∞
J0(m)emzdm

)
(16)

are the cumulant generating functions of Jy and J0 respectively. Then, from assumption (10),
the functions Cy and C∗ = C0 are of class C∞(R+) and they satisfy

C ′y(0) = C ′?(0) + ω′(0)y for all y ≤ 0. (17)

It follows that the mean effect of mutations on fitness y, namely C ′y(0) =
∫ −y
−∞mJy(m)dm, is a

non-increasing function of the fitness of the parent y : d
dy
C ′y(0) = ω′(0) ≤ 0. In the special case

of the FGM (Fig. 1), the parent fitness does not affect the expected fitness effect of mutations
(ω′(0) = 0).

3 Main results

3.1 Support of the solution

Under the assumption (9) on the mutation kernel, it is natural to expect that the upper bound
of the support of the solution p of (3) remains below the fitness optimum 0. As stated by
the proposition below, this is true even without assumptions (6) and (10) on the exponential
decay of p0 and Jy at −∞.

Proposition 3.1 Assume that p0 ∈ L∞(R)∩L1(R) satisfies assumption (7) and the mutation
kernels Jy ∈ L1(R) satisfy assumptions (8) and (9). Then, for any T ∈ (0,+∞] and any
nonnegative solution p of (3) such that

p ∈ C1([0, T ), L∞(R) ∩ L1(R)) and m ∈ C([0, T )),

there holds
supp p(t, ·) ⊂ (−∞, 0] for all t ∈ [0, T ).

The assumptions and conclusion of Proposition 3.1 show that the integral in (2) is computed
over (−∞, 0], as is the integral in (4), since Jy = 0 in R for all y > 0. From now on, we may
therefore define m and Jy ~ p as

m(t) =

∫ 0

−∞
mp(t,m) dm and (Jy ~ p)(t,m) =

∫ 0

−∞
Jy(m− y) p(t, y) dy.

Moreover, for every t ∈ [0, T ), the function (Jy ~ p)(t, ·) belongs to L1(R) and therefore the
integral defining (Jy ~ p)(t,m) converges for almost every m ∈ R.

Furthermore, the distribution p(t, ·) may or not reach the fitness optimum 0. The propo-
sition below shows that if the kernels Jy include some beneficial mutations for any y < 0, in
some strong sense, then the optimum is instantaneously reached. In other words, the following
result gives sufficient conditions for the upper bound of the support of the solution p(t, ·) to
be equal to 0.

7



Proposition 3.2 Assume that the mutation kernels Jy ∈ L1(R) satisfy assumptions (8)-(9)
and that the map

m 7→
∫ 0

−∞
Jy(m− y) dy

belongs to L∞(R). For any y < 0, set

Sy = sup
{
s > 0 s.t. Jy > 0 a.e. in (0, s)

}
≤ −y,

and assume that

Sy > 0 for all y < 0 and the map y 7→ Sy is continuous in (−∞, 0). (18)

Assume that p0 ∈ L∞(R)∩L1(R) satisfies assumptions (5) and (7) and assume that, for some
T ∈ (0,+∞], equation (3) admits a nonnegative solution p ∈ C1([0, T ), L∞(R) ∩ L1(R)) such
that m ∈ C([0, T )) and t 7→ p̃(t, ·) ∈ C1([0, T ), L∞(R)) with p̃(t,m) = e−tmp(t,m). Then

sup{supp p(t, ·)} = 0 for all t ∈ (0, T ). (19)

The above result is reminiscent of the strong parabolic maximum principle in parabolic
equations (see e.g. [30]): it shows that, provided that each kernel Jy (for y < 0) includes
some beneficial mutations in the sense of (18), the support of the solution propagates with
infinite speed, so that it instantaneously reaches the optimum m = 0. This property may not
be satisfied without the assumption (18).

3.2 Global existence and uniqueness

We are now in position to state our existence and uniqueness result.

Theorem 3.3 (Existence, uniqueness, exponential decay) Assume that p0 ∈ L∞(R) ∩
L1(R) satisfies assumptions (5)-(7) and the kernels Jy satisfy assumptions (8)-(10). Then
problem (3) with initial condition p0 admits a unique solution p ≥ 0 such that

(i) t 7→ p(t, ·) ∈ C1([0,+∞), L∞(R) ∩ L1(R)), m ∈ C([0,+∞)), supp p(t, ·) ⊂ (−∞, 0] for
all t ∈ [0,+∞), and∫

R
p(t,m) dm =

∫ 0

−∞
p(t,m) dm = 1 for all t ≥ 0;

(ii) p decays faster than any exponential function as m → −∞ in the sense that, for every
α > 0 and T > 0, there is Γα,T > 0 such that:

0 ≤ p(t,m) ≤ Γα,T eαm for all t ∈ [0, T ] and a.e. m ∈ (−∞, 0]. (20)

Lastly, the same decay property (20) is valid for |∂tp(t,m)| as well.

The decay assumptions (6) and (10) on p0 and Jy seem purely technical in the proof. It is
an interesting but still open question to prove the same type of result without these hypotheses.
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3.3 Cumulant generating function

Our goal here is to connect the equation (3) with the formal theory developed in [29] for Wright-
Fisher individual-based models. In [29], the authors derived a nonlocal transport equation
approximately satisfied by the expected cumulant generating function (CGF, for short) of the
fitness distribution.

In the sequel, we assume that the kernels Jy satisfy the assumptions (11)-(12), in addition
to the properties (8)-(10). Under the assumptions and notations of Theorem 3.3, we consider
the nonnegative solution p ∈ C1([0,+∞), L∞(R) ∩ L1(R)) of (3), and we define the cumulant
generating function C ∈ C1([0,+∞)× [0,+∞)) of the fitness distribution by

C(t, z) := ln

(∫
R
p(t,m) emz dm

)
= ln

(∫ 0

−∞
p(t,m) emz dm

)
, (21)

for t ≥ 0 and z ≥ 0. Notice that, from Theorem 3.3, the map t 7→ C(t, ·) is actually of class
C1([0,+∞), C∞([0,+∞))). Notice also that the quantity C(t, z) could be defined for all t ≥ 0
and all z ∈ R due to the decay properties (20). The CGF is a very useful tool to analyze the
properties of a distribution. In particular, it is easily seen that

∂zC(t, 0) =

∫ 0

−∞
mp(t,m) dm

is the mean fitness m(t) at a time t ≥ 0 and

∂zzC(t, 0) =

∫ 0

−∞
m2 p(t,m) dm− (m(t))2

is the variance in fitness within the population.
We now derive the equation satisfied by C. For any given t ≥ 0 and z ≥ 0, by multiplying

equation (3) by emz and integrating over (−∞, 0] with respect tom (all integrals below converge
due to the decay properties of p(t, ·) and ∂tp(t, ·) given in Theorem 3.3), we obtain:∫ 0

−∞
emz ∂tp(t,m) dm = U

∫ 0

−∞
emz

(∫ 0

−∞
Jy(m− y)p(t, y) dy − p(t,m)

)
dm

+

∫ 0

−∞
m emzp(t,m) dm− m(t)

∫ 0

−∞
emzp(t,m) dm.

(22)

Then, using the assumption (11), we get that:∫ 0

−∞
emz

∫ 0

−∞
Jy(m− y)p(t, y) dy dm =

∫ 0

−∞

(∫ −y
−∞

Jy(s)e
sz ds

)
p(t, y)eyz dy

= M?(z)

∫ 0

−∞
ey(z+ω(z)) p(t, y) dy.

Dividing the equality (22) by
∫ 0

−∞ emzp(t,m) dm and using Lebesgue’s dominated convergence
theorem, we then get the following proposition. In the statement, we point out that z+ω(z) ≥ 0
for all z ≥ 0, as follows from the assumptions (8), (9) and (11), see (71) and Appendix B below.
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Proposition 3.4 The function C ∈ C1([0,+∞) × [0,+∞)) is a classical solution of the fol-
lowing nonlocal equation

∂tC(t, z) = ∂zC(t, z)− ∂zC(t, 0) + U
(
eC(t,z+ω(z))−C(t,z)M?(z)− 1

)
, t ≥ 0, z ≥ 0,

C(0, z) = C0(z), z ≥ 0,

C(t, 0) = 0, t ≥ 0,

(23)

with initial condition

C0(z) = ln

(∫ 0

−∞
p0(m) emz dm

)
.

We obtain the same equation as equation (7) in [29]. The consequences of this result are
twofold. First, it shows that the solution p(t,m) of (3) can be interpreted as the expected
(expectation among replicate populations) distribution of fitness corresponding to Wright-
Fisher-type individual-based models, in a deterministic limit. Second, it gives a rigorous
mathematical basis to the statements in [29], which were based on formal computations. In
particular, it shows that the solution of (23) (provided that it is unique) is truly a cumulant
generating function, in the sense that it satisfies (21), with the following immediate conse-
quences: (i) C(t, ·) is convex (from Theorem 3.3 and the Cauchy-Schwarz inequality, see (80)
below), (ii) C(t, ·) is a non-increasing function. These two properties were conjectured without
proof in [29].

3.4 Stationary states

This section is devoted to the study of the stationary states of equation (3). Namely, we focus
on weak solutions p∞ of

U (Jy ~ p∞ − p∞) + (m−m∞) p∞ = 0, (24)

where

(Jy ~ p∞)(m) =

∫ 0

−∞
Jy(m− y) dp∞(y) and m∞ =

∫ 0

−∞
mdp∞(m). (25)

In the section, in addition to the assumptions (5)-(12), we assume that the family (p(t, ·))t≥0
converges weakly as t→ +∞ to a Radon measure p∞ in the sense that:

lim
t→+∞

∫
R
φ(m) p(t,m) dm =

∫
R
φ(m) dp∞(m) ∈ R (26)

for any continuous function φ : R → R such that |φ(m)| = O(|m|) as |m| → +∞. It then
follows from Proposition 3.1 and Theorem 3.3 that p∞ is nonnegative and satisfies

supp p∞ ⊂ (−∞, 0] and
∫ 0

−∞
dp∞(m) = 1.

Notice also from (26) that m∞ defined in (25) is a real number. Furthermore, the following
properties hold.

Proposition 3.5 Assume that (5)-(12), (18) and (26) hold and that, for any continuous func-
tion φ : R → R with compact support, the function (−∞, 0] 3 y 7→ ψ(y) =

∫
R Jy(m −

y)φ(m) dm is continuous. Then the measure p∞ satisfies

sup{supp p∞} = 0 and m∞ ≥ −U.
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We are now interested in the existence of a positive mass at the optimal fitness (that is,
0). To do so, notice that the measure p∞ can be written as a sum of two measures:

p∞ = ρ δ0 + (1− ρ) p?, (27)

where ρ ∈ [0, 1], δ0 is the Dirac measure at 0, and p? is a nonnegative measure supported in
(−∞, 0] such that p?((−∞, 0]) = 1 and p? has no mass at 0 in the sense that p?([−ε, 0]) → 0
as ε → 0. The following result shows a relationship between the existence of a positive mass
at 0 and the value of the equilibrium mean fitness m∞.

Proposition 3.6 Under the same assumptions as in Proposition 3.5, the measure p∞, written
as in (27), satisfies

ρ = 0 or m∞ = −U.

It turns out that the existence of a positive mass at 0 depends on the mutation rate U and
on the harmonic mean −s?H of the kernel at the optimal fitness J0 defined by

−s?H :=

(∫ 0

−∞

J0(s)

s
ds

)−1
= −

(∫ +∞

0

M?(z) dz

)−1
∈ (−∞, 0]. (28)

More precisely, the next proposition shows that p∞ admits a positive mass at 0 – meaning that
a positive proportion ρ of the population has the best possible phenotype – if s?H 6= 0 and U
is not too large.

Proposition 3.7 Under the same assumptions as in Proposition 3.5, the measure p∞, written
as in (27), is such that:

(i) if s?H = 0, then ρ = 0; furthermore, if s?H = 0 and

lim
z→+∞

z + ω(z) ∈ [0,+∞), (29)

then m∞ > −U ;

(ii) if s?H 6= 0, then

(a) if U < s?H , then ρ > 0 and m∞ = −U ;
(b) if

U > Uc := inf
{
U ≥ s?H : there is z > 0 with 1 + U ω(z)M?(z) = 0

}
, (30)

then ρ = 0 and m∞ > −U .

These results on the conditions of existence of a positive mass ρ > 0 at the optimum are
not straightforward to interpret intuitively (see also [37, 38] for a discussion of this issue for the
particular case of the FGM). If s?H = 0 (case (i)), the distribution of mutation effects s from
the optimal phenotype (kernel J0) typically decays exponentially or faster around s = 0. This
means that the optimal phenotype produces an amount of infinitely mild deleterious mutants.
These are so mildly counter-selected, relative to their optimal parent, that a population of
optimal phenotypes cannot build up, even when the mutation rate is infinitely small (albeit
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non-zero). On the other hand, when s?H 6= 0 (case (ii)), optimal phenotypes always gener-
ate non-vanishingly deleterious mutants, which tend to be counter-selected relative to their
optimal parent, thus allowing the maintainance/build-up of a class of optimal phenotypes.
However, even then, a large enough mutation rate leads to the erosion of this optimal class
(ρ = 0), because selection is not strong enough to maintain it, in the face of constant mutation
destroying it. This occurs a minima when U > Uc (we point out that Uc is finite from the
assumptions made on Jy and ω), and cannot occur when U < s?H .

The assumption (29) on ω(z) is more technical. As shown in Appendix A, (29) implies
that, for every y < 0, the upper bound of the support of the kernel Jy is equal to −y. In other
words, this means that any suboptimal parent (fitness y < 0) can yield mutant offspring with
the optimal phenotype (fitness 0, mutation effect s = −y).

Consider finally Fisher’s geometrical model. Namely, assume that the mutation kernels
satisfy assumptions (11) and (13)-(14). Then

s?H =

(∫ +∞

0

M?(z)dz

)−1
=

(∫ +∞

0

dz

(1 + λz)n/2

)−1
=

0, if n ≤ 2,
λ (n− 2)

2
, if n > 2.

(31)

In other words, s?H > 0 if and only if the phenotype space has more than two dimensions. The
following corollary is an immediate consequence of Proposition 3.7 under the assumptions of
the Fisher’s geometrical model.

Corollary 3.8 Assume (5)-(14) and (26).

(i) If n ≤ 2, then ρ = 0 and m∞ > −U ;

(ii) if n > 2, then

(a) if U ≤ s?H = λ(n− 2)/2, then ρ > 0 and m∞ = −U ;

(b) if U > Uc =
λ(n+ 2)n/2+1

16(n− 2)n/2−1
, then ρ = 0 and m∞ > −U .

One of the main ingredients in the proofs of the results of this section is the CGF C∞ of
p∞ defined by:

C∞(z) = ln

(∫
R

emzdp∞(m)

)
= ln

(∫ 0

−∞
emzdp∞(m)

)
(32)

for z ≥ 0. Assumption (26) shows that C(t, z) → C∞(z) as t → +∞ for all z ≥ 0 and that
C∞ is of class C1([0,+∞)) and is convex in [0,+∞) as a limit of the convex functions C(t, ·)
in [0,+∞). Passing to the limit as t → +∞ in (23), we also obtain that C∞ is a stationary
state of (23) in the sense that C∞ is a classical solution of the following equation:

C ′∞(z)− C ′∞(0) + U
(
eC∞(z+ω(z))−C∞(z)M?(z)− 1

)
= 0, z ≥ 0. (33)

Indeed, for any s ≥ 0, integrating (23) with respect to t over [s, s+ 1] leads to:

C(s+ 1, z)−C(s, z) =

∫ s+1

s

(
∂zC(t, z)− ∂zC(t, 0) +U

(
eC(t,z+ω(z))−C(t,z)M?(z)− 1

))
dt. (34)
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As the function C is of class C1(R+×R+), the mean value theorem implies that, for each z ≥ 0
and s ≥ 0, there is tz,s ∈ [s, s+ 1] such that∫ s+1

s

(
∂zC(t, z)− ∂zC(t, 0) + U

(
eC(t,z+ω(z))−C(t,z)M?(z)− 1

) )
dt

= ∂zC(tz,s, z)− ∂zC(tz,s, 0) + U
(
eC(tz,s,z+ω(z))−C(tz,s,z)M?(z)− 1

)
.

Then, using assumption (26), we get that, for all z ≥ 0,

lim
t→+∞

∂zC(t, z) = lim
t→+∞

∫ 0

−∞m emz p(t,m)dm∫ 0

−∞ emz p(t,m)dm
=

∫ 0

−∞m emzdp∞(m)∫ 0

−∞ emz dp∞(m)
= C ′∞(z).

Consequently, passing to the limit as s → +∞ in (34) and using limt→+∞C(t, z) = C∞(z),
equation (33) follows. Equation (33) will be used directly in some of the proofs, rather
than (24). Notice finally that

C ′∞(0) = m∞.

4 Numerical computations
The objectives of this section are (i) to check numerically the convergence of the solution
of (3) towards an equilibrium; (ii) to illustrate the results of Section 3.4 on the stationary
states; and (iii) to compare the distributions p obeying the integro-differential equation (3)
with empirical individual-based simulations given by a Wright-Fisher model. Namely, we
assume that the kernels Jy satisfy the assumptions (8)-(14). For the sake of clarity, we recall
these assumptions, which can be summarized as:

∫ −y
−∞

Jy(m) emz dm = M?(z) eω(z)y,

Jy(m) =
2

λ
fχ2

n(−2y
λ )

(
−2(m+ y)

λ

)
, ω(z) = − λz2

1 + λz
and M?(z) =

1

(1 + λz)n/2

(35)

for all y ≤ 0, m ≤ −y and z ≥ 0.

Description of a Wright-Fisher individual-based model. As mentioned in the introduction, we
assume a constant population size N . Under the assumptions of the FGM, each individual i =
1, . . . , N is characterized by a phenotype zi ∈ Rn. Its relative Malthusian fitness (exponential
growth rate) is mi = −‖zi‖2/2 and its corresponding Darwinian fitness is emi (geometric
growth rate, a discrete time counterpart of the Malthusian fitness). We assume non-overlapping
generations of duration δt = 1. Each generation, selection and genetic drift are jointly simulated
by the multinomial sampling of N individuals from the previous generation, each with weight
given by their Darwinian fitnesses. Mutations are then simulated by randomly drawing, for
each individual, a Poisson number of mutations, with rate U . We use a classic Gaussian FGM,
following e.g. [22, 26]: each single mutation has a random phenotypic effect dz drawn into an
isotropic multivariate Gaussian distribution: dz ∼ N (0, λIn), where λ > 0 is the mutational
variance at each trait, and In is the identity matrix of size n × n. Multiple mutations in a
single individual have additive effects on phenotype. In all our simulations, we started with a
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clonal population (all of the individuals in the population initially share the same phenotype
z0), and assumed a population size of N = 105 individuals.

Numerical computations. For our simulations, we considered three sets of values of the param-
eters (n, λ, U), each set of value corresponding to a different scenario in Corollary 3.8. The first
set of parameters is (n, λ, U) = (2, 1/30, 0.05). It corresponds to the assumptions of the first
part of Corollary 3.8 (since n = 2). The second set of parameters is (n, λ, U) = (6, 1/30, 0.05),
so that U < Uc ≈ 0.067, corresponding to the second case in Corollary 3.8. The third set of
parameters is (n, λ, U) = (6, 1/30, 0.55), corresponding to the last case in Corollary 3.8, with
U > Uc ≈ 0.533. We solved (3) in a bounded interval [−1.2, 0.05] (but only the values of the
solutions in the interval [−0.6, 0.05] are displayed in the figures), using an explicit scheme in
time with a time step δt = 0.1. The space was discretized, with a uniform step δm = 0.001.
The simulations were performed using the software Matlabr.

Fig. 3 depicts the dynamics of the fitness distribution obtained with the individual-based
and integro-differential approaches, for the three sets of parameter values (n, λ, U). In all
cases, starting from a clonal population with initial fitness −0.2 (that is, for (3), we consider
an initial condition p0 close to the Dirac mass at −0.2) we observe that the distributions p(t, ·)
obtained by solving (3) seem to converge towards a stationary distribution. The predictions of
the integro-differential approach are close to the empirical distribution given by the individual-
based model, from qualitative and quantitative viewpoints. Note that, for each set of parameter
values, the individual-based simulation was performed only once. The results may vary among
replicate simulations.

The predictions of the two approaches at large time (t = 5000) are depicted in Fig. 4.
Consistently with the result of Corollary 3.8, the distributions in Fig. 4a satisfy ρ = 0 and
m∞ > −U , the distributions in Fig. 4b satisfy ρ > 0 and m∞ ≈ −U , while the distributions
in Fig. 4c satisfy ρ = 0 and m∞ > −U . We also note in all cases a good agreement of
the distributions obtained from the integro-differential model with those obtained from the
individual-based approach.

5 Discussion
We proposed an integro-differential description of the dynamics of the fitness distribution in
a population under mutation and selection, in the presence of a phenotype optimum. Under
general assumptions on the mutation kernels, which encompass the standard Gaussian Fisher’s
Geometrical Model, we proved that the corresponding Cauchy problem (i.e., initial value prob-
lem) was "well-posed": it admits a unique time-global solution and the support of the solution
remains included in (−∞, 0], consistently with the existence of a fitness optimum at m = 0.

Furthermore, we were able to define the cumulant generating function C(t, z) of the fitness
distribution, and to derive a nonlocal nonlinear transport equation satisfied by C(t, z). This
equation is the same as the equation derived in [29] while studying stochastic Wright-Fisher-
type individual-based models. We illustrated the connection between equation (3) and a
Wright-Fisher-type individual-based model by performing numerical simulations. Under the
assumptions of the Gaussian FGM, these simulations showed that equation (3) accurately
describes the individual-based dynamics of fitness distributions. Additionally, the simulations
suggest that the fitness distribution converges towards a stationary state.

The equation satisfied by C(t, z) leads to a precise description of these stationary states. In
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Figure 3: Dynamics of the fitness distribution p(t,m): individual-based simulation with N =
105 individuals (left column) vs numerical solution of (3) with the assumption (35) (right
column). In all cases, we fixed λ = 1/30 for the mutational variance at each trait, and we
assumed a clonal initial population with fitness −0.2.
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Figure 4: Distribution p(t,m) at large time t = 5000, individual-based simulation (left column)
vs numerical solution of (3) with the assumption (35) (right column). The parameter values
are the same as in Fig. 3.
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particular, it leads to simple sufficient conditions for the existence/non-existence of a concen-
tration phenomenon at the optimal fitness value m = 0 (i.e, of a Dirac mass at m = 0 in the
stationary fitness distribution). Under the assumptions of the Gaussian FGM, the condition
for the existence of the concentration phenomenon simply means that the dimension n of the
phenotype space is larger than or equal to 3 and the mutation rate U is smaller than some
explicit threshold. The condition on the dimension of the phenotype space is also a necessary
condition: if n ≤ 2, a positive mass at 0 can no longer exist. This is reminiscent of the results
of [37] who stated that "when three or more characters are affected by each mutation, a single
optimal genetic sequence may become common".

These results on the stationary states also give important clues on the equilibrium value of
the mean fitness (m∞) at mutation-selection balance, called "mutation load": if a concentration
phenomenon occurs at m = 0 then, necessarily, m∞ = −U , where U denotes the mutation
rate. In the absence of concentration phenomenon, we conjecture that m∞ > −U (this is
true in the case of the Gaussian FGM, and in the general case under the technical assumption
(29)). The determination of the exact value of m∞ in this case remains a challenging open
problem, although approximate treatments are proposed in [29].

The main motivation for this study was to derive rigorous mathematical results when the
DFE is given by the Gaussian FGM. It is noteworthy that all of our results remain true for
another standard model of context-dependent DFE: the "House of Cards" model. With this
approach, given a parent with fitness y, the mutant offspring have fitness s, where s is a random
variable with a nonnegative fixed density JH ∈ L1(R) supported in (−∞, 0]. This means that
the mutation kernels Jy are given by

Jy = JH(y + ·) in R for every y ≤ 0.

Thus, the family Jy satisfies the same assumption (11) as the Gaussian FGM, with this time

M?(z) =

∫ 0

−∞
JH(s) eszds and ω(z) = −z,

thus, Proposition 3.7 can be applied. In this case, the assumption (29) is always fulfilled, and
the occurrence of a concentration phenomenon at the optimum depends on the harmonic mean
of JH .

6 Proofs of the main results
This section is devoted to the proof of the main results announced in Section 3 on the solutions
of (3), (23) and (33).

6.1 Proof of Propositions 3.1 and 3.2 on the support of p(t, ·)
Proof of Proposition 3.1. Assume that p0 ∈ L∞(R) ∩ L1(R) and the mutation kernels
Jy ∈ L1(R) satisfy assumptions (7)-(9). Let T ∈ (0,+∞] and p ∈ C1([0, T ), L∞(R) ∩ L1(R))
be a nonnegative solution of (3) such that m defined by (2) belongs to C([0, T )). Let A > 0
and denote

QA(t) =

∫ A

0

p2(t,m) dm for t ∈ [0, T ).
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The assumptions on Jy and p and Fubini’s theorem imply that, for every t ∈ [0, T ), the function
(Jy ~ p)(t, ·) belongs to L1(R) and that∫ b

a

(Jy ~ p)(t,m) dm =

∫ b

a

∫
R
Jy(m− y) pt, y) dy dm = 0

for every 0 ≤ a < b, hence (Jy ~ p)(t,m) = 0 for a.e. m > 0. Therefore, for every t ∈ [0, T ),
by multiplying (3) by p(t,m) and integrating over (0, A), we get that

1

2

∫ A

0

∂t(p
2)(t,m) dm = −U QA(t)−m(t)QA(t) +

∫ A

0

mp2(t,m) dm.

Since ∫ A

0

mp2(t,m) dm ≤ A

∫ A

0

p2(t,m) dm = AQA(t),

it follows that
1

2
Q′A(t) ≤ (A− U −m(t))QA(t)

for every t ∈ [0, T ). As QA(0) = 0 according to assumption (7), and since m(t) depends
continuously on t and QA ≥ 0 on [0, T ), Grönwall’s lemma implies that QA(t) = 0 for all
t ∈ [0, T ). Since A > 0 can be arbitrarily large, the proof of Proposition 3.1 is thereby
complete. �

Proof of Proposition 3.2. Assume that p0 and the mutation kernels Jy ∈ L1(R) satisfy
assumptions (5), (7)-(9) and (18). Let T ∈ (0,+∞] and p ∈ C1([0, T ), L∞(R) ∩ L1(R))
be a nonnegative solution of (3) such that m defined by (2) belongs to C([0, T )) and
t 7→ p̃(t, ·) ∈ C1([0, T ), L∞(R)) with p̃(t,m) = e−tmp(t,m). First of all, Proposition 3.1 implies
that supp p(t, ·) ⊂ (−∞, 0] for all t ∈ [0, T ).

Define
w(t,m) = e−tm+

∫ t
0 m(s)dsp(t,m)

for (t,m) ∈ [0, T )× R. By assumption, the function t 7→ w(t, ·) belongs to C1([0, T ), L∞(R)).
As p obeys (3), w is a solution of the following equivalent problem:{

∂tw = U
(
J ty ~ w − w

)
, t ∈ [0, T ), m ∈ R

w(0,m) = p0(m), m ∈ R,
(36)

with
J ty(s) = e−tsJy(s) (37)

for t ∈ [0, T ), y ∈ R and s ∈ R. As in (3), the equality ∂tw = U(J ty ~ w − w) is understood
for every t ∈ [0, T ), and for almost every m ∈ R (or equivalently for almost every m ∈ R− by
Proposition 3.1). Observe that, for every t ∈ [0, T ), p(t, ·) and w(t, ·) have the same support
(in particular, supp w(t, ·) ⊂ (−∞, 0] for every t ∈ [0, T )).

In order to prove that sup{supp w(t, ·)} = 0 for all t ∈ (0, T ), we are going to construct a
sub-solution w of (36). To do so, assume first, without loss of generality, that T < +∞ (the
conclusion in the case T = +∞ would then follow from the case T = n for any n ∈ N, n ≥ 1).
Since p0 is not trivial with p0 ≥ 0 in R and since supp p0 ⊂ (−∞, 0], there is µ < 0 such that

∀ ε > 0,

∫ µ

µ−ε
p0(m) dm > 0. (38)
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Let now N ∈ N such that
N ≥ eT (1−µ) > 1 (39)

and, for y ≤ 0 and s ∈ R, define

Ky(s) =


Jy(s)

N
if s <

lnN

T
,

0 if s ≥ lnN

T
.

Now, set
w(t,m) =

[
p0(m) + Ut(Ky ~ p0)(m)

]
e−Ut

for (t,m) ∈ [0, T ) × R. Since p0 ∈ L∞(R) and the map m 7→
∫ 0

−∞ Jy(m − y) dy is assumed
to be in L∞(R) as well, one infers that the map t 7→ w(t, ·) belongs to C∞([0, T ), L∞(R)).
Furthermore, since supp p0 ⊂ (−∞, 0] and Jy = 0 a.e. in (−y,+∞) for all y ≤ 0, one has
Ky ~ p0 = 0 a.e. in (0,+∞) (as for (Jy ~ p)(t, ·) in the proof of Proposition 3.1) and

w(t, ·) = 0 a.e. in (0,+∞), for each t ∈ [0, T ).

There also holds
∂tw(t,m) = −Uw(t,m) + Ue−Ut(Ky ~ p0)(m)

and
(J ty ~ w)(t,m) = e−Ut

[
(J ty ~ p0)(m) + Ut(J ty ~ (Ky ~ p0))(m)

]
,

hence

∂tw(t,m) + Uw(t,m)− U(J ty ~ w)(t,m)

= Ue−Ut
[(

(Ky − J ty)~ p0
)

(m)− Ut(J ty ~ (Ky ~ p0))(m)
] (40)

for (t,m) ∈ [0, T ) × R. Using the nonnegativity assumptions (5) and (8), we get, for each
t ∈ [0, T ) and a < b in R,∫ b

a

(
J ty ~ (Ky ~ p0)

)
(m) dm =

∫ b

a

∫
R

∫
R

e−t(m−y
′)Jy′(m− y′)Ky(y

′ − y) p0(y) dy dy′ dm ≥ 0

by Fubini’s theorem, hence

U t
(
J ty ~ (Ky ~ p0)

)
≥ 0 a.e. in R, for every t ∈ [0, T ). (41)

Moreover, for each t ∈ [0, T ), one hasKy(m−y)−J ty(m−y) = −J ty(m−y) = −e−t(m−y)Jy(m−y)
if m− y ≥ (lnN)/T , whereas

Ky(m− y)− J ty(m− y) =
( 1

N
− e−t(m−y)

)
︸ ︷︷ ︸

≤0

Jy(m− y) if m− y < lnN

T
.

As a consequence, from (8), one infers that, for every t ∈ [0, T ) and a < b in R,∫ b

a

(
(Ky − J ty)~ p0

)
(m) dm =

∫ b

a

∫
R

(
Ky(m− y)− J ty(m− y)

)
p0(y) dy dm ≤ 0,
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hence (Ky − J ty)~ p0 ≤ 0 a.e. in R for every t ∈ [0, T ). Then, together with (40) and (41), we
get that

∂tw(t,m) ≤ U
(
J ty ~ w − w

)
(t,m)

for all t ∈ [0, T ) and for a.e. m ∈ R. To sum up, w ∈ C∞([0, T ], L∞(R)) is a sub-solution of
problem (36).

Remember also that w(0, ·) = p0 = w(0, ·) in R. In order to conclude that w(t, ·) ≤ w(t, ·)
a.e. in R for every t ∈ [0, T ), we will apply the following comparison principle, whose proof in
postponed in Section 7.

Lemma 6.1 (Comparison principle) Let τ ∈ (0,+∞), $ ∈ C([0, τ ]) and h1, h2 ∈
C1([0, τ ], L∞(R)) be such that, for every t ∈ [0, τ ], h1(t, ·) = h2(t, ·) = 0 a.e. in (0,+∞)
and

∂th1(t,m)− U
(∫

R
J ty(m− y)h1(t, y)dy − h1(t,m)

)
+$(t)h1(t,m)

≤ ∂th2(t,m)− U
(∫

R
J ty(m− y)h2(t, y)dy − h2(t,m)

)
+$(t)h2(t,m)

(42)

for a.e. m ∈ R−, with J ty defined in (37). Assume that h1(0, ·) ≤ h2(0, ·) a.e. in R. Then, for
every t ∈ [0, τ ], h1(t, ·) ≤ h2(t, ·) a.e. in R.

Together with the fact that the map t 7→ w(t, ·) belongs to C1([0, T ), L∞(R)), Lemma 6.1
(applied with h1 = w, h2 = w, $ = 0 and every τ ∈ (0, T )) yields w(t, ·) ≤ w(t, ·) a.e. in R
for every t ∈ [0, T ). Hence, for each t ∈ [0, T ), there holds

p(t,m) ≥ etm−
∫ t
0 m(s)dsw(t,m) (43)

for a.e. m ∈ R.
Let now σ > 0 be such that

0 < σ < min
( lnN

2 |µ|T
,
1

2

)
,

where µ < 0 and N > 1 were given in (38) and (39). Let us show in this paragraph that, for
every t ∈ (0, T ), w(t, ·) > 0 in [µ, µ+ σSµ], where we recall that Sµ > 0 from assumption (18).
Using assumption (18) on the continuity of (−∞, 0) 3 y 7→ Sy ∈ (0,−y] and the property (38)
on µ, there is β ∈ (0, σSµ] such that Sy > 2σ Sµ for all y ∈ (µ− β, µ) and∫ µ

µ−β
p0(s) ds > 0. (44)

Pick any t ∈ (0, T ) and any a < b ∈ [µ, µ+ σSµ]. We have∫ b

a

eUtw(t,m)

Ut
dm ≥

∫ b

a

∫
R
Ky(m− y) p0(y) dy dm ≥

∫ b

a

∫ µ

µ−β
Ky(m− y) p0(y) dy dm

by Fubini’s theorem and the nonnegativity ofKy and p0. As 0 < β ≤ σSµ, µ ≤ a < b ≤ µ+σSµ
and 0 < Sµ ≤ |µ|, one infers that, for every y ∈ (µ− β, µ) and m ∈ [a, b],

0 < m− y ≤ 2σ Sµ < min
(
Sy,

lnN

T

)
.
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We deduce from the definition of Sy that∫ b

a

Ky(m− y) dm =

∫ b

a

Jy(m− y)

N
dm > 0

for all y ∈ (µ− β, µ). Together with (44) and the nonnegativity of p0, we get that∫ b

a

∫ µ

µ−β
Ky(m− y) p0(y) dy dm > 0.

As a consequence, ∫ b

a

w(t,m) dm > 0

for all a < b ∈ [µ, µ+ σSµ].
Pick any t0 in (0, T ) and remember that µ < µ + σSµ < 0 since 0 < σ < 1/2 < 1 and

0 < Sµ ≤ −µ = |µ|. It follows from (43) and the previous paragraph that∫ b

a

p(t0,m) dm > 0

for all a < b ∈ [µ, µ+ σSµ] (and p(t0, ·) ≥ 0 in R by assumption), hence∫ µ+σSµ

µ+σSµ−ε
p(t0,m) dm > 0

for every ε > 0. By observing that 0 < Sµ+σSµ ≤ −(µ + σSµ) < −µ = |µ| and by using
the same argument as in the previous paragraph with the initial condition p(t0, ·) instead of
p0 and with µ + σSµ instead of µ, we get that, for every t ∈ (t0, T ) and for every a < b ∈
[µ+ σSµ, µ+ σSµ + σSµ+σSµ ], ∫ b

a

w(t,m) dm > 0.

As t0 is arbitrary in (0, T ) and by remembering (43), we infer that, for all t ∈ (0, T ) and
a < b ∈ [µ+ σSµ, µ+ σSµ + σSµ+σSµ ],∫ b

a

p(t,m) dm > 0. (45)

Consider finally the sequence (S̃n)n∈N defined by

S̃0 = µ and S̃n+1 = S̃n + σSS̃n for all n ∈ N.

From the inequalities 0 < Sy ≤ −y (for all y < 0) and 0 < σ < 1/2 < 1, the sequence (S̃n)n∈N
is well-defined, increasing, and such that µ ≤ S̃n < 0 for all n ∈ N. It then converges to a limit

L = lim
n→+∞

S̃n

such that µ < L ≤ 0. If L were (strictly) negative, then the continuity assumption (18)
of y 7→ Sy in (−∞, 0) would imply that L = L + σSL, whence SL = 0, which is ruled out
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by (18). Therefore, L = 0. On the other hand, the arguments of the previous paragraphs
imply by immediate induction that (45) holds for every t ∈ (0, T ), every n ∈ N and every
a < b ∈ [µ, S̃n+1]. Hence, (45) holds for every t ∈ (0, T ) and a < b ∈ [µ, 0). Together with
Proposition 3.1, one gets that

sup{supp p(t, ·)} = 0

for every t ∈ (0, T ). The proof of Proposition 3.2 is thereby complete. �

6.2 Global existence: proof of Theorem 3.3

In order to show Theorem 3.3 on the global existence of solutions of (3), the general strategy
consists in applying Cauchy-Lipschitz theorem in some suitably chosen function space. To do
so, we first prove the local existence, with an existence time which is quantitatively defined in
terms of the kernels (Jy)y∈R− and the initial probability density p0.

Proposition 6.2 (Local existence) Let β ≥ 1, let the kernels Jy satisfy assumptions (8)-
(10) and let p0 ∈ L∞(R) ∩ L1(R) satisfy (5), (7) and

0 < K := ess sup
m∈R

(
p0(m) e−βm

)
< +∞. (46)

Let

T = min

{
β,

(
U

∫ 0

−∞
J(m) e2β|m| dm+ U ‖J‖L1(R) + 3Ke

)−1}
> 0. (47)

Then problem (3) admits a solution p ∈ C1([0, T ], L∞(R)∩L1(R)) such that m ∈ C([0, T ]) and
p decays at least like et/T+βm+tm as m→ −∞, in the sense that

0 ≤ p(t,m) ≤ Ket/T+(β+t)m ≤ Ke1+βm ≤ Ke1+Tm for all t ∈ [0, T ] and a.e. m ∈ R.

Furthermore, this solution is unique.

Remark 6.3 Notice that supp p(t, ·) ⊂ R− for every t ∈ [0, T ) from Proposition 3.1 and for
t = T too from the continuity of the map t (∈ [0, T ]) 7→ p(t, ·) in L∞(R) ∩ L1(R).

Proof of Proposition 6.2. Step 1: an auxiliary problem. Let β, p0 and K be defined as
in the statement of Proposition 6.2. We first show the local existence, for some well chosen
T > 0, of a solution v of the following nonlinear Cauchy problem:{

∂tv(t,m) = U
(
J ty ~ v − v

)
(t,m)−mv(t) v(t,m), t ∈ [0, T ], m ∈ R,

v(0,m) = p0(m), m ∈ R,
(48)

with J ty as in (37) and

mv(t) =

∫
R
m etmv(t,m) dm. (49)

To do so, let us first introduce the Banach space

L∞− (R) =
{
f ∈ L∞(R); supp f ⊂ R−

}
,
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pick any real number T such that 0 < T ≤ β, and consider the set

E =
{
f ∈ C([0, T ], L∞− (R); f(0, ·) = p0 and

0 ≤ f(t,m) ≤ K et/T+βm for all t ∈ [0, T ] and a.e. m ∈ R
}
,

and denote1

‖f‖E = ‖f(t,m) e−t/T−βm ‖L∞([0,T ]×R).

Notice that the set E is not empty since the function f defined by f(t,m) = p0(m) belongs to
E, as p0 satisfies (5), (7) and (46). Let us now define a map F as follows:

F : E → C1([0, T ], L∞− (R)),
v 7→ h,

where h = F (v) is the solution of the following linear Cauchy problem ∂th(t,m) = U
(∫

R
J ty(m−y)h(t, y)dy−h(t,m)

)
−mv(t)h(t,m), t ∈ [0, T ], m ∈ R,

h(0,m) = p0(m), m ∈ R.
(50)

Notice that, since v ∈ E, the function mv defined in (49) exists and belongs to C([0, T ]).
Furthermore, Lemma 6.4 below states that h is well defined as well.

Lemma 6.4 For any given v ∈ E with 0 < T ≤ β, the Cauchy problem (50) admits a unique
solution h ∈ C1([0, T ], L∞− (R)).

In order not to slow down the proof of Proposition 6.2, the proof of Lemma 6.4 is postponed
in Section 7.

Step 2: F maps E to E for T > 0 small enough. Consider any function v ∈ E, for some
T ∈ (0, β]. Since supp v(t, ·) ⊂ R− for all t ∈ [0, T ] and since 0 ≤ v(t,m) ≤ K et/T+βm for all
t ∈ [0, T ] and a.e. m ∈ R− with β ≥ 1, it follows that, for all t ∈ [0, T ],

|mv(t)| ≤
∫ 0

−∞
|y| et yv(t, y) dy ≤ K

∫ 0

−∞
|y| et y et/T+β y dy =

K et/T

(β + t)2
≤ K e. (51)

Now, set

h(t,m) =

{
K et/T+βm for (t,m) ∈ [0, T ]× R−,
0 for (t,m) ∈ [0, T ]× (0,+∞).

Using assumption (9) and the fact that Jy = 0 in R for all y > 0, we observe that∫
R
J ty(m− y)h(t, y) dy = 0 for any t ∈ [0, T ] and m ∈ (0,+∞).

1With a slight abuse of notation, we also use this notation for functions which are not necessarily in E.
Notice that the set E is complete for the topology induced by ‖ ‖E .
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On the other hand, for any (t,m) ∈ [0, T ]× R−, it follows from (10) and (37) that

U

(∫
R
J ty(m−y)h(t, y) dy−h(t,m)

)
= U h(t,m)

(∫ 0

−∞
Jy(m−y)e(β+t)(y−m)dy−1

)
≤ U h(t,m)

∫ 0

−∞
J(m− y) e(β+t)(y−m) dy

≤ U h(t,m)

∫
R
J(y) e−(β+t)y dy

≤ U h(t,m)

(∫ 0

−∞
J(y) e2β|y|dy+‖J‖L1(R)

)
.

(52)

Consider any real number T such that

0 < T ≤ min

{
β,

(
U

∫ 0

−∞
J(y) e2β|y|dy + U ‖J‖L1(R) +Ke

)−1}
. (53)

Therefore, using the inequalities of the previous paragraph together with (51), we get that, for
all (t,m) ∈ [0, T ]× R,

∂th(t,m) =
h(t,m)

T
≥ U

(∫
R
J ty(m− y)h(t, y)dy − h(t,m)

)
+ |mv(t)|h(t,m).

Observe also that h ∈ C1([0, T ], L∞− (R)). In other words, h ∈ C1([0, T ], L∞− (R)) is a superso-
lution of problem (50) satisfied by h = F (v). From the definition (46) of K and from (7), we
also know that 0 ≤ h(0,m) = p0(m) ≤ h(0,m) for a.e. m ∈ R.

Using the comparison principle of Lemma 6.1, we obtain that, for every t ∈ [0, T ],
0 ≤ h(t,m) ≤ h(t,m) for a.e. m ∈ R. Together with Lemma 6.4, it follows that h = F (v) ∈ E.

Step 3: F is a contraction mapping. Let T > 0 be as in (53), let v1, v2 ∈ E and define
H = F (v1)− F (v2). Notice that the function H belongs to C1([0, T ], L∞− (R)) from Lemma 6.4
and that it satisfies, for all t ∈ [0, T ] and a.e. m ∈ R,{

∂tH(t,m) = U
(
J ty ~H−H

)
(t,m)−(mv1(t)−mv2(t))F (v1)(t,m)−mv2(t)H(t,m),

H(0,m) = 0.
(54)

Define

H(t,m) =


‖v1 − v2‖E

2
et/T+βm for (t,m) ∈ [0, T ]× R−,

0 for (t,m) ∈ [0, T ]× (0,+∞).

Similar computations as for h and v above imply that

U

(∫
R
J ty(m− y)H(t, y) dy −H(t,m)

)
≤ U H(t,m)

(∫ 0

−∞
J(y) e2β|y|dy + ‖J‖L1(R)

)
(55)

for all (t,m) ∈ [0, T ] × R, and that |mv1(t) −mv2(t)| ≤ e ‖v1 − v2‖E for all t ∈ [0, T ]. Since
F (v1) ∈ E, it then follows that

|(mv1(t)−mv2(t))F (v1)(t,m)| ≤ K e ‖v1 − v2‖E et/T+βm = 2K eH(t,m), (56)
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for all t ∈ [0, T ] and a.e. m ∈ R−.
Finally, let us consider the real number T defined by (47). Using (51), (55) and (56), we

get that

∂tH(t,m) =
H(t,m)

T
≥ U(Jt~H−H)(t,m)+ |(mv1(t)−mv2(t))F (v1)(t,m)|+ |mv2(t)|H(t,m)

for all t ∈ [0, T ] and m ∈ R− (and also for m > 0 since all quantities are then equal to 0).
As above, this implies that H is a supersolution of equation (54) satisfied by H, while H ∈
C1([0, T ], L∞− (R)). The functions h1 := H and h2 := H then satisfy some inequalities of the
type (42) with $ = −mv2 and τ := T . Using again the comparison principle of Lemma 6.1,
we get that

H(t, ·) ≤ H(t, ·) a.e. in R for all t ∈ [0, T ].

Similarly, one has −H(t, ·) ≤ H(t, ·) a.e. in R for all t ∈ [0, T ]. This immediately yields

‖F (v1)− F (v2)‖E ≤
1

2
‖v1 − v2‖E.

Thus, F : E → E is a contraction mapping.

Step 4: conclusion. Consider now T > 0 as defined in (47). The Banach fixed point
theorem implies that F admits a unique fixed point v ∈ E. This function v then belongs to
C1([0, T ], L∞− (R)) from Lemma 6.4, it satisfies

0 ≤ v(t,m) ≤ Ket/T+βm for all t ∈ [0, T ] and a.e. m ∈ R

with supp v(t, ·) ⊂ R− for every t ∈ [0, T ]. This function v is also the unique such solution
of (48). Furthermore, with similar estimates as in (51) and (51), there is K ′ > 0 such that
|∂tv(t,m)| ≤ K ′et/T+βm for all t ∈ [0, T ] and a.e. m ∈ R−, and ∂tv(t,m) = 0 for all t ∈ [0, T ]
and a.e. m > 0.

Finally, letting
p(t,m) = etm v(t,m)

for (t,m) ∈ [0, T ] × R, it is straightforward to check that p ∈ C1([0, T ], L∞(R) is a solution
of (3) in [0, T ]×R, with supp p(t, ·) ⊂ R− for every t ∈ [0, T ]. Additionally, as v ∈ E, it follows
that p(t, ·) ∈ L1(R) for all t ∈ [0, T ]. Lastly, p ∈ C1([0, T ], L∞(R) ∩ L1(R)), the function

t 7→ m(t) =

∫
R
mp(t,m) dm =

∫ 0

−∞
mp(t,m) dm

is continuous in [0, T ]), and

0 ≤ p(t,m) ≤ K et/T+(β+t)m for all t ∈ [0, T ] and a.e. m ∈ R−.

The proof of Proposition 6.2 is thereby complete. �

Proof of Theorem 3.3. We are now in position to prove the global existence result of
Theorem 3.3. Let Tmax > 0 be the largest time such that equation (3) admits a solution
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p ∈ C1([0, Tmax), L∞(R) ∩ L1(R)) with m ∈ C([0, Tmax)) and, for every T ∈ (0, Tmax), there is
CT > 0 such that

0 ≤ p(t,m) ≤ CT eTm for all t ∈ [0, T ] and a.e. m ∈ R. (57)

Notice that Proposition 3.1 then implies that supp p(t, ·) ⊂ R− for every t ∈ [0, Tmax). It
follows from the local existence and uniqueness result of Proposition 6.2 applied with, say,
β = 1 that

Tmax ∈ (0,+∞].

Notice that Tmax does not depend on the choice β = 1 in Proposition 6.2, since (57) does not
involve any β. Our goal is to show that Tmax = +∞.

We begin with some fundamental estimates stated in the following lemma, whose proof is
postponed in Section 7.

Lemma 6.5 (Mass preservation and estimates on the mean fitness) We have:∫
R
p(t,m) dm =

∫ 0

−∞
p(t,m) dm = 1 for all t ∈ [0, Tmax) (58)

and
m(t) ≥ m(0) + t U µ for all t ∈ [0, Tmax), (59)

with

µ =

∫ 0

−∞
mJ(m) dm ∈ (−∞, 0).

Assume now by contradiction that Tmax < +∞. Define

v(t,m) = p(t,m) e−tm

for (t,m) ∈ [0, Tmax) × R. The function v is a solution of the Cauchy problem (48) for all
T ∈ [0, Tmax) and, from (57) and the regularity properties of p, the function v belongs to
C1([0, Tmax), L∞− (R)). Set now

β0 = Tmax + 1

and let
K0 = ess sup

m∈R

(
p0(m) e−β0m

)
be defined as in (46) in Proposition 6.2 with the choice β = β0. Denote

v(t,m) =

{
K0 eλ t+β0m for (t,m) ∈ [0, Tmax)× R−,
0 for (t,m) ∈ [0, Tmax)× (0,+∞),

where λ ∈ R is to be chosen later. Using (59) and the property m(t) = mv(t) for all t ∈
[0, Tmax), it is easily seen (as in Step 2 of the proof of Proposition 6.2) that, for every T ∈
(0, Tmax), v is a supersolution of the equation (48) (for which mv(t) = m(t) is considered as a
fixed coefficient) satisfied by v on [0, T ], provided that

λ ≥ U

∫ 0

−∞
J(m) e2β0|m|dm+ U ‖J‖L1(R) −m(0)− T U µ.
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Let then

λ? = U

∫ 0

−∞
J(m) e2β0|m|dm+ U ‖J‖L1(R) + |m(0)|+ Tmax U |µ| > 0.

Using the comparison principle of Lemma 6.1 applied with every τ ∈ (0, Tmax), we obtain that{
0 ≤ v(t,m) ≤ K0 eλ

?t+β0m for all t ∈ [0, Tmax) and a.e. m ∈ R−,
supp v(t, ·) ⊂ R− for all t ∈ [0, Tmax).

(60)

Now, for any θ ∈ (0, 1), set pθ = p(θ Tmax, ·). We have

0 ≤ pθ(m) = v(θ Tmax,m) eθ Tmaxm ≤ K0 eλ
? Tmax+(θTmax+β0)m = K0 eλ

? Tmax+(θTmax+Tmax+1)m

for a.e. m ∈ R−, while supp pθ ⊂ R−. For any θ ∈ (0, 1), the function pθ satisfies (5), owing
to (57) and (58). Furthermore,

0 < Kθ := ess sup
m∈R

(
pθ(m) e−(θTmax+Tmax+1)m

)
≤ K0 eλ

?Tmax < +∞. (61)

As a consequence, we can apply Proposition 6.2 with

β = θTmax + Tmax + 1 (62)

and the initial condition pθ. Thus, for any θ ∈ (0, 1), there exist a time Tθ > 0, defined as
in (47) with Kθ instead of K, and a unique solution p̃ ∈ C1([0, Tθ], L∞(R)∩L1(R)) of (3) with
initial condition pθ, such that

0 ≤ p̃(t,m) ≤ Kθ et/Tθ+(θTmax+Tmax+1+t)m

for all t ∈ [0, Tθ] and a.e. m ∈ R−, and supp p̃(t, ·) ⊂ R− for every t ∈ [0, Tθ]. Therefore,
for any θ ∈ (0, 1), problem (3) with initial condition p0 has a solution p ∈ C1([0, θ Tmax +
Tθ], L

∞(R) ∩ L1(R)) such that, for all t ∈ [θ Tmax, θ Tmax + min(Tθ, 1)]

0 ≤ p(t,m) ≤ Kθ e(t−θ Tmax)/Tθ+(θTmax+Tmax+1+t−θ Tmax)m ≤ K0 eλ
?Tmax+1+(θTmax+Tmax+1)m

for a.e. m ∈ R−, and supp p(t, ·) ⊂ R−.
On the other hand, from (61) and from the definitions (62) of β and (47) of Tθ > 0 with

Kθ instead of K, it follows that
lim inf
θ→1, θ<1

Tθ > 0.

Therefore, there exist θ′ ∈ (0, 1) and T ′ ∈ (Tmax, Tmax + 1) for which problem (3) with initial
condition p0 has a solution p ∈ C1([0, T ′], L∞(R) ∩ L1(R)) such that, for all t ∈ [θ′Tmax, T

′],

0 ≤ p(t,m) ≤ K0 eλ
?Tmax+1+(θ′Tmax+Tmax+1)m ≤ K0 eλ

?Tmax+1+T ′m (63)

for a.e. m ∈ R−, together with supp p(t, ·) ⊂ R−. Furthermore, (60) (remember that β0 =
Tmax + 1) implies that, for all t ∈ [0, θ′Tmax] and a.e. m ∈ R−,

0 ≤ p(t,m) = v(t,m) etm ≤ K0 eλ
?θ′Tmax+(Tmax+1)m ≤ K0 eλ

?θ′Tmax+T ′m,

and supp p(t, ·) ⊂ R− for all t ∈ [0, θ′Tmax]. Together with (63) in [θ′Tmax, T
′]×R−, it follows

that the solution p satisfies (57) for all T ∈ (0, T ′]. Finally, one infers that m ∈ C([0, T ′)). The
fact that T ′ is larger than Tmax contradicts the definition of Tmax.

As a conclusion, Tmax = +∞ and, from (57) holding for any T > 0, property (20) holds with
Γα,T = Cmax(α,T ). From the equation (3) itself and from (10), it also follows that |∂tp(t,m)|
decays faster than any exponential function as m → −∞ in the sense that (20) holds for
|∂tp(t,m)| as well. The proof of Theorem 3.3 is thereby complete. �
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6.3 Proof of the results on the stationary states of (24) and (33)
Proof of Proposition 3.5. Let us first show that sup{supp p∞} = 0. Assume not. Then
there is δ > 0 such that

p∞
(
(−δ, 0]

)
= 0 and p∞

(
[−δ − ε,−δ]

)
> 0 for all ε > 0. (64)

Consider now any nonnegative continuous function φ : R→ R with compact support included
in [−δ, 0], and such that ∫ −δ+η

−δ
φ(m) dm > 0 for all η > 0. (65)

Then, using (10) with J ∈ L1(R), and the fact that the function y 7→
∫
R Jy(m− y)φ(m) dm is

continuous (and bounded), it follows (as in the derivation of (33)) that

0 =

∫
R

∫
R
Jy(m− y)φ(m) dmdp∞(y)− U

∫
R
φ(m) dp∞(m)

+

∫
R
mφ(m) dp∞(m)−m∞

∫
R
φ(m) dp∞(m).

Since the measure p∞ is supported in (−∞,−δ] and the continuous function φ is supported in
[−δ, 0], one infers from the previous formula that∫

R

∫
R
Jy(m− y)φ(m) dmdp∞(y) = 0. (66)

From the assumption (18) on the positivity and continuity of y 7→ Sy on (−∞, 0), there is
ε ∈ (0, δ) such that 2ε < Sy for all y ∈ [−δ − ε,−δ]. It then follows from (66) and the
nonnegativity of Jy, φ and p∞ that∫ −δ

−δ−ε

∫ −δ+ε
−δ

Jy(m− y)φ(m) dmdp∞(y) = 0. (67)

On the other hand, for each y ∈ [−δ− ε,−δ] and each m ∈ [−δ,−δ+ ε], one has 0 ≤ m− y ≤
2ε < Sy. Hence, for every y ∈ [−δ− ε,−δ], one has Jy(·− y) > 0 a.e. in [−δ,−δ+ ε]. Together
with (65) and the nonnegativity of φ, it follows that∫ −δ+ε

−δ
Jy(m− y)φ(m) dm > 0 for all y ∈ [−δ − ε,−δ].

Together with (67) and the nonnegativity of p∞, one gets that p∞([−δ− ε,−δ]) = 0, a contra-
diction with (64). Therefore, one has shown that

sup{supp p∞} = 0.

Lemma 4.5 in [17]2 then implies that the CGF C∞ of p∞ satisfies C ′∞(z)→ 0 as z → +∞.
Finally, let us prove that m∞ ≥ −U . Using equation (33) satisfied by C∞ and the fact that

m∞ = C ′∞(0), we obtain that

m∞ + U = C ′∞(0) + U = C ′∞(z) + U eC∞(z+ω(z))−C∞(z)M?(z) ≥ C ′∞(z)

2It is immediate to see that the proof and the conclusion of [17, Lemma 4.5] hold good even if the nonnegative
probability measure p∞ is not in L∞(R).
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for all z ≥ 0. Thus, by passing to the limit as z → +∞, one immediately gets thatm∞+U ≥ 0.
The proof of Proposition 3.5 is thereby complete. �

Proof of Proposition 3.6. Equation (33) satisfied by C∞ can be rewritten as

eC∞(z) (C ′∞(0) + U − C ′∞(z)) = U eC∞(z+ω(z))M?(z) (68)

for all z ≥ 0. On the one hand we have

lim
z→+∞

eC∞(z) = lim
z→+∞

∫ 0

−∞
ezmdp∞(m) = ρ

from the definition of ρ ∈ [0, 1] in (27). On the other hand, we know from the previous
proposition that C ′∞(z) → 0 as z → +∞. By passing the limit as z → +∞ in (68), we get
that the right-hand side has a limit and that

ρ
(
C ′∞(0) + U

)
= U lim

z→+∞
eC∞(z+ω(z))M?(z).

Since

M?(z) =

∫ 0

−∞
J0(m) emzdm

is the MGF of the mutation kernel J0 at the optimal fitness, with J0 ∈ L1(R), one has
limz→+∞M?(z) = 0. Moreover, the function s 7→ eC∞(s) is continuous in [0,+∞) and
converges to ρ ∈ [0, 1] at +∞. Thus, it is bounded in [0,+∞). Therefore, we get that
limz→+∞ eC∞(z+ω(z))M?(z) = 0 and

ρ
(
m∞ + U

)
= ρ

(
C ′∞(0) + U

)
= 0,

that is to say that ρ = 0 or m∞ = −U . �

Proof of Proposition 3.7. Let us consider the MGF of p∞, namely the function defined in
R+ by

M∞(z) = eC∞(z) =

∫
R

ezmdp∞(m) =

∫ 0

−∞
ezmdp∞(m), for z ≥ 0.

Equations (33) and (68) with C ′∞(0) = m∞ can be rewritten as

M∞(z)
(
m∞ + U

)
−M ′

∞(z) = U eC∞(z+ω(z))M?(z). (69)

We then consider separately the cases s?H = 0 and s?H 6= 0, where s?H is defined in (28).
First case: s?H = 0. This case means that∫ +∞

0

M?(z) dz = +∞. (70)

Meanwhile, due to (8), (9) and (11), the function ω necessarily satisfies some properties, whose
proof is postponed in Appendix B below:

ω(0) = 0, ω(z) ≥ −z and ω′′(z) ≤ 0 for all z ≥ 0. (71)
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Thus, it follows the function z 7→ ω(z) + z is nonnegative and nondecreasing. It then has a
limit l ∈ [0,+∞] as z → +∞. Assume first here that

lim
z→+∞

z + ω(z) = l ∈ [0,+∞).

Thus, eC∞(z+ω(z))M?(z) ∼ eC∞(l)M?(z) as z → +∞ and∫ +∞

0

eC∞(z+ω(z))M?(z) dz = +∞. (72)

Since
∫ +∞
0

M ′
∞(z) dz = ρ− 1 and M∞(z) > 0 for all z ∈ [0,+∞), it follows from (69) and (72)

that m∞ + U > 0. From Proposition 3.6, this means that ρ = 0.
Assume now that

lim
z→+∞

z + ω(z) = +∞.

Since C∞ is nonincreasing in [0,+∞) from its definition (32) and since ω is nonpositive in
[0,+∞) by (12) and (71), we get that eC∞(z+ω(z))−C∞(z) ≥ 1 for all z ≥ 0. Thus, using (70),
one infers that ∫ +∞

0

eC∞(z+ω(z))−C∞(z)M?(z) dz ≥
∫ +∞

0

M?(z) dz = +∞. (73)

Let us then show that ρ = 0. If m∞ + U > 0, then Proposition 3.6 yields ρ = 0. Assume now
that m∞ +U = 0, in other words C ′∞(0) +U = 0. By integrating (33) over (0, A) with A > 0,
we obtain that ∫ A

0

eC∞(z+ω(z))−C∞(z)M?(z) dz = C∞(0)− C∞(A) = −C∞(A),

that is,

M∞(A) = eC∞(A) = exp

(
−
∫ A

0

eC∞(z+ω(z))−C∞(z)M?(z) dz

)
.

Knowing that limA→+∞M∞(A) = ρ and using (73), we finally get that

ρ = lim
A→+∞

exp

(
−
∫ A

0

eC∞(z+ω(z))−C∞(z)M?(z) dz

)
= 0.

Second case: s?H 6= 0. This case means that

0 <

∫ +∞

0

M?(z) dz =
1

s?H
< +∞.

Since C∞ is nonpositive by (32) and p∞((−∞, 0]) = 1, we also have that

0 <

∫ +∞

0

M?(z) eC∞(z+ω(z)) dz ≤
∫ +∞

0

M?(z) dz =
1

s?H
< +∞.

Using the inequality m∞ + U ≥ 0 and integrating (69) over (0,+∞) yields

0 ≤ (m∞ + U)

∫ +∞

0

M∞(z)dz = ρ− 1 + U

∫ +∞

0

M?(z) eC∞(z+ω(z))dz ≤ ρ− 1 +
U

s?H
. (74)
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Therefore, if U < s?H , then ρ > 0, and m∞ = −U by Proposition 3.6.
Let us now consider the set

E =
{
U ≥ s?H : there is z > 0 with 1 + U ω(z)M?(z) = 0

}
.

Remember that M?(z) > 0 for all z ≥ 0. Furthermore, as ω satisfies (12) and (71),
there is z0 > 0 such that ω < 0 in [z0,+∞). Therefore, for every U ≥ s?H such that
U > −1/(ω(z0)M?(z0)) (> 0), there holds 1 + U ω(z0)M?(z0) < 0 and, by continuity of ω
and M? and since ω(0) = 0, there is z1 > 0 such that 1 + U ω(z1)M?(z1) = 0. As a conse-
quence, the set E is not empty and

Uc := inf E ∈ [s?H ,+∞). (75)

Pick any U > Uc. We want to show that ρ = 0 and m∞ > −U . Assume by contradiction
that m∞ = −U , that is, C ′∞(0) = −U . Using (33), we obtain that, for all z ≥ 0,

−C ′∞(z) = U eC∞(z+ω(z))−C∞(z)M?(z) ≥ U
(
1 + .C∞(z + ω(z))− C∞(z)

)
M?(z).

Using (71) and the convexity of C∞ in [0,+∞), one infers that, for all z ≥ 0, C∞(z + ω(z))−
C∞(z) ≥ C ′∞(z)ω(z), hence −C ′∞(z) ≥ U

(
1 + C ′∞(z)ω(z)

)
M?(z), that is,

−C ′∞(z)(1 + Uω(z)M?(z))− UM?(z) ≥ 0. (76)

On the other hand, as U > Uc, there are U ′ ∈ [s?H , U) ⊂ (0, U) and z′ > 0 such that
1 +U ′ω(z′)M?(z

′) = 0, hence ω(z′)M?(z
′) = −1/U ′ < 0 and 1 +U ω(z′)M?(z

′) < 0. Again by
continuity, one infers the existence of z1 > 0 such that

1 + U ω(z1)M?(z1) = 0.

Formula (76) at z = z1 yields −UM?(z1) ≥ 0, which is ruled out since U > 0 and M?(z1) > 0.
Thus, m∞ > −U , and ρ = 0 by Proposition 3.6. The proof of Proposition 3.7 is thereby
complete. �

Proof of Corollary 3.8. Using (31), it is easily seen that s?H = 0 is equivalent to n ≤ 2.
Furthermore, in the Gaussian Fisher’s geometric model, ω(z) = −λz2/(1 + λz). Thus,

lim
z→+∞

z + ω(z) =
1

λ
< +∞.

Together with Proposition 3.7, we get the conclusion (i) of Corollary 3.8 in case n ≤ 2.
In case n > 2, then s?H = λ(n− 2)/2 > 0. Using again Proposition 3.7, we immediately get

that ρ > 0 and m∞ = −U if U < λ(n− 2)/2.
Let us show that the same result holds good with the large inequality U ≤ λ(n−2)/2 = s?H

(still with n > 2). First of all, by using Proposition 3.6 and equation (69) multiplied by ρ, one
has

−ρM ′
∞(z) = ρU eC∞(z+ω(z))M?(z)

for all z ≥ 0. Hence, afther integration over (0,+∞), one infers that

ρ(1− ρ) = ρU

∫ +∞

0

eC∞(z+ω(z))M?(z) dz.
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Therefore, ρ < 1. As a consequence, the function C∞ defined in (32) (with p∞ written as
in (27)) is (strictly) decreasing in [0,+∞) and thus negative in (0,+∞). Notice that these
properties hold under the general assumptions of Proposition 3.7. On the other hand, since,
here in the Gaussian Fisher’s geometric model, ω(z) = −λz2/(1 + λz) for all z ≥ 0, one has
z + ω(z) > 0 for all z > 0, hence eC∞(z+ω(z)) < 1 for all z > 0. Together with the positivity of
M?(z), it follows that

0 <

∫ +∞

0

M?(z) eC∞(z+ω(z)) dz <

∫ +∞

0

M?(z) dz =
1

s?H
< +∞.

As a consequence, if U ≤ λ(n− 2)/2 = s?H , then, as in (74), one gets that

0 ≤ (m∞ + U)

∫ +∞

0

M∞(z)dz = ρ− 1 + U

∫ +∞

0

M?(z) eC∞(z+ω(z))dz < ρ− 1 +
U

s?H
≤ ρ,

hence ρ > 0, and m∞ = −U by Proposition 3.6.
Lastly, still in case n > 2, a straightforward computation, using (13), implies that the

quantity Uc defined in (75) is equal to

Uc =
λ (n+ 2)n/2+1

16 (n− 2)n/2−1
.

Conclusion (ii)-(b) of Corollary 3.8 then follows immediately from Proposition 3.7. �

7 Proof of technical lemmas
This section is devoted to the proof of the technical lemmas, namely Lemmas 6.1, 6.4 and 6.5,
used in the proof of the main theorems in the previous sections.

7.1 Comparison principle

Proof of Lemma 6.1. Let τ , $, h1 and h2 satisfy the assumptions of the lemma. With a
slight abuse of notations, we write h1(t) = h1(t, ·) ∈ L∞− (R) and h2(t) = h2(t, ·) ∈ L∞− (R) for
t ∈ [0, τ ]. Set

Lt(h) := U
(
J ty ~ h− h

)
−$(t)h

for t ∈ [0, τ ] and h ∈ L∞− (R). For any such h ∈ L∞− (R), one has supp Lt(h) ⊂ R− and,
from (8), (10), (37) and similar calculations as in (52), there holds

‖J ty ~ h‖L∞(R) ≤ ‖h‖L∞(R)

(∫ 0

−∞
J(y) et|y|dy + ‖J‖L1(R)

)
, (77)

hence, Lt(h) ∈ L∞− (R). Then let us denote

a(t) = (h′2(t)− Lt(h2(t)))− (h′1(t)− Lt(h1(t)))

for t ∈ [0, τ ]. Notice that supp a(t) ⊂ R− for every t ∈ [0, τ ]. Furthermore, for any i ∈ {1, 2},
any t ∈ [0, τ ] any sequence (tn)n∈N in [0, τ ] converging to t, any m ∈ R− and any n ∈ N, one

32



has∣∣(J tny ~ hi)(tn,m)− (J ty ~ hi)(t,m)
∣∣ ≤ ∫

R
Jy(m− y) e−tn(m−y) |hi(tn, y)− hi(t, y)| dy

+

∫
R
Jy(m− y)

∣∣e−tn(m−y) − e−t(m−y)
∣∣ |hi(t, y)| dy

≤ ‖hi(tn, ·)−hi(t, ·)‖L∞(R)

(∫ 0

−∞
J(y) eτ |y|dy+‖J‖L1(R)

)
+‖hi(t, ·)‖L∞(R)

∫
R
J(y)

∣∣e−tny − e−ty
∣∣ dy.

Therefore, ‖J tny ~ hi(tn)− J ty ~ hi(t)‖L∞(R) → 0 as n→ +∞ from the assumptions on hi and
J and from Lebesgue’s dominated convergence theorem. Finally, one infers that the maps
t 7→ Lt(hi(t)) belong to C([0, τ ], L∞− (R)), and that a ∈ C([0, τ ], L∞− (R)).

Now define, for t ∈ [0, τ ],

w(t) = (h2(t)− h1(t)) eKt ∈ L∞− (R),

with
K = U + max

[0,τ ]
|$|.

It is straightforward to check that w is a solution of the ordinary differential equation

w′(t) = F (t, w), t ∈ [0, τ ], (78)

in L∞− (R), for some function F : [0, τ ]× L∞− (R)→ L∞− (R) defined by

F (t, w) = U J ty ~ w + w (K − U −$(t)) + a(t) eKt.

As above, the function F is continuous in [0, τ ]× L∞− (R). Furthermore, for any t ∈ [0, τ ] and
w,w′ ∈ L∞− (R), one has, as in (77),

‖J ty ~ w − J ty ~ w′‖L∞(R) ≤ ‖w − w′‖L∞(R)

(∫ 0

−∞
J(y) et|y|dy + ‖J‖L1(R)

)
≤ ‖w − w′‖L∞(R)

(∫ 0

−∞
J(y) eτ |y|dy + ‖J‖L1(R)

)
.

As a consequence, the function F is Lipschitz-continuous with respect to w uniformly in
t ∈ [0, τ ]. We can then define w̃ ∈ C1([0, τ ], L∞− (R)) as the unique solution of w̃′(t) =
max{F (t, w̃(t)), 0} in [0, τ ] with w̃(0) = w(0), that is,

w̃(t) = w(0) +

∫ t

0

max{F (s, w̃(s)), 0} ds.

We have w̃(t) ≥ w(0) and w(0) ≥ 0 a.e. in R by assumption. Additionally, from (42), there
holds a(t) ≥ 0 a.e. in R−, for all t ∈ [0, τ ]. As a consequence, and since K − U −$(t) ≥ 0 for
all [0, τ ], one infers that, for all t ∈ [0, τ ], F (t, w̃(t)) ≥ 0 a.e. in R−. We deduce that w̃ is also
a solution of the equation (78) satisfied by w. From the Cauchy-Lipschitz theorem, we deduce
that, for all t ∈ [0, τ ], w(t) = w̃(t) ≥ 0 and therefore h1(t, ·) ≤ h2(t, ·) a.e. in R. The proof of
Lemma 6.1 is thereby complete. �
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7.2 Existence for the Cauchy problem

Proof of Lemma 6.4. Let v ∈ E. We know by definition of the set E and Lebesgue’s
dominated convergence theorem that the function

t 7→ mv(t) =

∫ 0

−∞
mv(t,m) etm dm

is continuous in [0, T ]. Problem (50) can then be written as an ordinary differential equation{
h′(t) = G(t, h), t ∈ [0, T ],

h(0) = p0,
(79)

with
G : [0, T ]× L∞− (R) → L∞− (R)

(t,X) 7→ U
(
J ty ~X −X

)
−mv(t)X.

The function space L∞− (R−) is a Banach space for the uniform norm ‖ ‖∞ and as in the proof
of Lemma 6.1 above, the function G is continuous in [0, T ]× L∞− (R) and Lipschitz continuous
with respect to X uniformly in t ∈ [0, τ ]. Therefore, the Cauchy-Lipschitz theorem yields the
existence and uniqueness of a solution h ∈ C1([0, T ], L∞− (R)) of problem (79). �

7.3 Mass preservation and estimates on mean fitness

Proof of Lemma 6.5. Let us first show (58). We consider

φ(t) =

∫
R
p(t,m) dm =

∫ 0

−∞
p(t,m) dm

for t ∈ [0, Tmax). This quantity is a well-defined nonnegative real number due to (57) and the
definition of Tmax. By using (57) for every T ∈ [0, Tmax), integrating (3) against m over R−,
we obtain that φ is of class C1([0, Tmax)) and, for every t ∈ [0, Tmax),

φ′(t) =

∫ 0

−∞
∂tp(t,m) dm = U

∫ 0

−∞
(Jy ~ p)(t,m) dm− Uφ(t) +m(t)−m(t)φ(t).

From assumption (8), we have∫ 0

−∞
(Jy ~ p)(t,m) dm =

∫ 0

−∞

(∫ 0

−∞
Jy(m− y)dm

)
p(t, y) dy =

∫ 0

−∞
p(t, y) dy = φ(t).

Finally, φ′(t) = m(t)(1−φ(t)) for all t ∈ [0, Tmax). From assumption (5), there holds φ(0) = 1,
and since m ∈ C([0, Tmax)), it follows immediately that φ(t) = 1 for all t ∈ [0, Tmax).

Let us now turn to the proof of (59). By integrating (3) between 0 and t ∈ [0, Tmax),
multiplying by m, integrating over R− and using (57) and Fubini’s theorem, we get that, for
every t ∈ [0, Tmax),

m(t)−m(0) =

∫ 0

−∞

∫ t

0

m [U ((Jy ~ p)(s,m)− p(s,m)) + (m−m(s)) p(s,m)] ds dm

=

∫ t

0

∫ 0

−∞
m [U ((Jy ~ p)(s,m)− p(s,m)) + (m−m(s)) p(s,m)] dm ds.
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From (8), (10), (57), (58) and Fubini’s theorem, one infers that, for every s ∈ [0, t] (⊂ [0, Tmax)),∫ 0

−∞
m(Jy ~ p)(s,m) dm =

∫ 0

−∞

(∫ 0

−∞
(m− y + y) Jy(m− y) p(s, y) dy

)
dm

=

∫ 0

−∞

(∫ −y
−∞

mJy(m) dm

)
p(s, y) dy

+

∫ 0

−∞
y p(s, y)

(∫ 0

−∞
Jy(m− y) dm

)
dy

=

∫ 0

−∞
µJy p(s, y) dy +m(s),

with

µJy =

∫ −y
−∞

mJy(m) dm.

Then, using the fact that the functions m : t 7→
∫ 0

−∞mp(t,m) dm and t 7→
∫ 0

∞m
2 p(t,m) dm

are continuous in [0, Tmax), we deduce that, for every t ∈ [0, Tmax),

m(t)−m(0) = U

∫ t

0

∫ 0

−∞
µJy p(s, y) dy ds+

∫ t

0

∫ 0

−∞
m2p(s,m) dmds−

∫ t

0

(m(s))2 ds.

Then, by the Cauchy-Schwarz inequality and (58), we have

(m(s))2 =

(∫ 0

−∞
mp(s,m) dm

)2

≤
(∫ 0

−∞
p(s,m) dm

)(∫ 0

−∞
m2p(s,m) dm

)
=

∫ 0

−∞
m2p(s,m) dm

(80)

for all s ∈ [0, t] (⊂ [0, Tmax)). Therefore,

m(t) ≥ m(0) + U

∫ t

0

∫ 0

−∞
µJy p(s, y) dy ds for all t ∈ [0, Tmax).

Finally, using assumptions (8) and (10), we have, for all y ≤ 0,

µJy =

∫ −y
−∞

mJy(m)dm ≥
∫ 0

−∞
mJy(m)dm ≥

∫ 0

−∞
mJ(m) dm = µ.

Thus, since p is nonnegative and
∫ 0

−∞ p(t,m)dm = 1 for all t ∈ [0, Tmax), we get that m(t) ≥
m(0) + t U µ for all t ∈ [0, Tmax). The proof of Lemma 6.5 is thereby complete. �

Appendix A: Interpreting condition (29) on lim
z→+∞

z+ω(z)

We here show that the assumption (29) of Proposition 3.7, namely limz→+∞(z + ω(z)) ∈
[0,+∞), means that any parent can give mutant offspring with the optimal fitness 0, that is,
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sup{supp Jy} = −y for every y ≤ 0. To do so, differentiating equation (15) with respect to z,
we have (as in (17)):

C ′y(z) = C ′?(z) + ω′(z)y for all y ≤ 0 and z ≥ 0, (81)

where the C∞(R+) functions Cy and C? are defined by (16). Now, [17, Lemma 4.5] yields
limz→+∞ C ′y(z) = sup{supp Jy} and limz→+∞ C ′?(z) = sup{supp J0}. Passing to the limit
z → +∞ in (81), it follows that limz→+∞ ω

′(z) exists and

lim
z→+∞

ω′(z) y = sup{supp Jy} − sup{supp J0}

for all y ≤ 0. Assumption (29) then implies that ω′(z)→ −1 as z → +∞, hence

−y = sup{supp Jy} − sup{supp J0}

for all y ≤ 0. On the other hand, assumption (9) yields in particular sup{supp J0} ≤ 0.
If sup{supp J0} = −α < 0, then sup{supp Jy} = −y − α for all y ≤ 0, contradicting
assumption (18) for y > 0 small. Therefore, sup{supp J0} = 0, and

sup{supp Jy} = −y

for all y ≤ 0. In other words, any parent can give mutant offspring with the optimal fitness 0.

Appendix B: Proof of property (71) on ω

First of all, by taking z = 0 in (11), we immediately get that

ω(0) = 0.

Second, since ∫ −y
−∞

Jy(m) ezmdm ≤ e−zy
∫ −y
−∞

Jy(m) dm

for all y ≤ 0 and z ≥ 0, it follows from (8) and (9) that∫ −y
−∞

Jy(m) ezmdm ≤ e−zy

for all y ≤ 0 and z ≥ 0. Then, using (11), we get thatM?(z) eω(z)y ≤ e−zy and, for every y < 0,
we obtain that (lnM?(z))/y + ω(z) ≥ −z for all z ≥ 0. The limit as y → −∞ then yields
ω(z) ≥ −z for all z ≥ 0.

Third, observe that assumption (11) yields

ω(z) =
Cy(z)− C?(z)

y
,

for all y < 0 and z ≥ 0. Thus, as Cy and C? belong to C∞(R+), the function ω belongs to
C∞(R+) too. In order to show the concavity of ω, it is then sufficient to prove that ω′′ ≤ 0 in
R+. But since Cy is convex in R+ for every y ≤ 0, the previous displayed formula implies that

ω′′(z) =
C ′′y (z)− C ′′? (z)

y
≤ −C

′′
? (z)

y

for all y < 0 and z ≥ 0. The limit as y → −∞ yields ω′′(z) ≤ 0 for all z ≥ 0, and the proof
of (71) is thereby complete.
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