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Abstract

The fitness coefficient, introduced in this paper, results from a competition between

parametric and nonparametric density estimators within the likelihood of the data. As

illustrated on several real datasets, the fitness coefficient generally agrees with p-values but

is easier to compute and interpret. Namely, the fitness coefficient can be interpreted as the

proportion of data coming from the parametric model. Moreover, the fitness coefficient can

be used to build a semiparamteric compromise which improves inference over the parametric

and nonparametric approaches. From a theoretical perspective, the fitness coefficient is

shown to converge in probability to one if the model is true and to zero if the model is false.

From a practical perspective, the utility of the fitness coefficient is illustrated on real and

simulated datasets.

Keywords: Goodness-of-fit; Density estimation; Semiparametric methods; Kernel smooth-

ing; Likelihood methods.

1 Introduction

A challenge of data analysis is to assess the quality of a model. The traditional approach

relies on goodness-of-fit tests where, loosely speaking, the ability of a model to fit the data

is measured through distances between the observed values and the values expected under

the model. Examples include the classical Pearson’s chi-squared test [2], the Kolmogorov or

Cramer-von-Mises goodness-of-fit tests [3, 8, 10], or likelihood-ratio based statistics [5, 6, 50]

(see [5] for an empirical likelihood approach).

In this context, p-values have emerged as natural instruments to measure the amount of

evidence in favor of the model. However, the use of p-values is subjected to several difficulties:
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(i) their calculation might require computationally intensive strategies as the bootstrap [21,

24, 45]; (ii) interpretation is notoriously difficult [29, 38] as emphasized again in a recent ASA

statement [52]; (iii) whenever some evidence has been found against the model, no information

is delivered to improve inference.

In this paper, we introduce the fitness coefficient, a new criterion for simultaneously mea-

suring the amount of evidence of a model and improving inference. Our goal is to provide an

alternative approach to the use of p-values in goodness-of-fit testing that is no longer sensitive

to the difficulties (i)-(iii).

Let X1, . . . , Xn be independent d-variate observations with common density f0. Let P =

{fθ : θ ∈ Θ} be a family of probability density functions representing the model. Given

the maximum likelihood estimator fθ̂n (based on the model), and the standard kernel density

estimator f̂n (free from the model) with kernel K : Rd → R+ and bandwidth hn > 0, define the

fitness coefficient α̂n as

α̂n ∈ argmax
α∈[0,1]

n∑
i=1

log
(
αfθ̂n(Xi) + (1− α)f̂LR

i,n

)
, (1)

where f̂LR
i,n is called the leave-and-repair (LR) kernel estimate of f0(Xi) and is given by

f̂LR
i,n =

 1

(n− 1)hdn

∑
j 6=i

K

(
Xi −Xj

hn

)+ ∆nq(Xi), (2)

with ∆n ≥ 0 and q : Rd → R+. The LR estimate is a modification of the well-known leave-one-

out (LOO) estimate usually employed in cross-validation procedures [18] and semiparametric

estimation [9].

The fitness coefficient has the following advantages.

(i) The fitness coefficient is easy to compute. It is the minimizer of a simple one dimen-

sional concave function.

(ii) The fitness coefficient is a measure of model quality. As seen in (1), the fitness co-

efficient α̂n follows from a competition between the parametric and the nonparametric approach

so as to maximize the likelihood of the observations. Hence, whenever the model is sufficiently

true, we expect a value of α̂n relatively close to one. This is because the parametric estimator is

likely to be more accurate than the nonparametric one. On the opposite, whenever the model

is wrong, we expect a value of α̂n close to zero. Because α̂nfθ̂n + (1 − α̂n)f̂n is a mixture

distribution between the parametric and the nonparametric estimates, the fitness coefficient is

interpreted as the proportion of data distributed under the model. For instance, if one draws a

bootstrap sample from the combination α̂nfθ̂n + (1− α̂n)f̂n then the fitness coefficient α̂n is the

proportion of data drawn from the fitted model fθ̂n . Therefore, the less the value of α̂n, the less

the bootstrap sample shall be “contaminated” by the nonparametric part of the combination.

To show the capability of the fitness coefficient, we compare it to p-values on a real data
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Figure 1: Estimated p-values (on a logarithmic scale) of the Cramer-Von-Mises goodness-of-fit
normality test against the values of the fitness coefficient for the CAC40 data.

example. Consider the problem of testing whether a given sample comes from a normal dis-

tribution. Specifically, we have 38 samples each consisting of n = 409 financial returns of a

company from the French stock market CAC40 and we wish to measure the quality of the

normal model for each of these samples. On the one hand a goodness-of-fit test based on the

Cramer-Von-Mises statistic [8] is carried out. On the other hand the fitness coefficient defined

by (1) is computed with a Gaussian kernel K, ∆n = 1/n, q(x) = tν(x/100) where tν is the

density of a Student-t distribution with ν = 3 degrees of freedom, and hn given by [42] (p. 48).

In Figure 1, we plotted the values of the fitness coefficient against the p-values on a logarithmic

scale. We can see a clear positive dependence relationship: large values for the fitness coefficient

correspond to large p-values. This suggests that, if one had used p-values to assess the fitness

of the normal model, he or she could have done so with the fitness coefficient.

The quality criterion induced by the fitness coefficient is different than that of information

criteria [4, 7] such as the Akaike information criterion [1] or the Bayesian information criterion

[40] which focus on the relative performances between models. Note that convex parametric

combinations recently have been proposed in the Bayesian literature [23] to assess the fitness of

a certain parametric model against another.

(iii) The fitness coefficient is useful to get robust semiparametric estimators. The

fitness coefficient offers a natural semiparametric alternative α̂nfθ̂n + (1− α̂n)f̂n for estimating

the probability density function f0 of the observations. The idea of forming such a convex

combination to get an estimator robust to misspecification while retaining a performance com-

parable to parametric estimators when the true density is close to the model was originally

developed by Olkin and Spiegelman [33]. Their method, referred to as the OS method, consists
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of computing

α̂OS
n ∈ argmax

α∈[0,1]

n∑
i=1

log
(
αfθ̂n(Xi) + (1− α)f̂n(Xi)

)
, (3)

where f̂n is the standard kernel density estimator. The OS method and the LR method given

in (1) differ in the choice of the nonparametric estimator in the combination. The OS method

was noticed to be sensitive to the choice of the bandwidth [12, 36].

Rather than considering the likelihood of the observations, some authors [25, 36, 43] inves-

tigate strategies based on the mean squared error between the combination αfθ̂n + (1 − α)f̂n

and the true density f0, but then the solution depends on the unknown distribution and hence

heavy bootstrap methods need to be employed.

To improve inference, there exist also other approaches than that of forming a convex com-

bination between the parametric and nonparametric estimators. The locally parametric non-

parametric estimation is developed for instance in [19, 20, 46], but is less appealing from the

point of view of model quality assessment because they do not provide any “fitness coefficient”.

Main contributions. By introducing the fitness coefficient, we provide a new measure for

assessing the quality of a model and an alternative to the OS method to get robust semipara-

metric estimators. Under mild conditions, the fitness coefficient α̂n is shown to converge in

probability to one if the model is true and zero otherwise, a property called consistency. Even

if the fitness coefficient is maximizing some objective function (over α ∈ [0, 1]), classical results

from M-estimation theory does not apply because, when the model is true, the limiting objec-

tive function is independent from α. The proposed approach follows from a fine comparison

between the rates of convergence of fθ̂n and f̂n. We moreover provide examples of densities

f0 that satisfy our set of assumptions. Using some real data as well as extensive simulations,

we observed that the LR approach is more stable than the OS approach and leads to more

accurate inference. This is in agreement with our theoretical analysis, which cannot include the

OS method as an example.

Outline. In Section 2, we introduce some quantities of interest and motivate the use of the LR

estimator f̂LR
i,n to compute the fitness coefficient α̂n. The consistency of the fitness coefficient

is stated in Section 3 where some examples are given. In Section 4, numerical experiments

are designed to measure the robustness of the fitness coefficient and the performance of the

corresponding density estimators. All the proofs are postponed to the Appendix.

2 The leave-and-repair estimator

The aim of this section is to define and motivate the use of the leave-and-repair (LR) estimator

f̂LR
n (2) introduced in the definition of the fitness coefficient α̂n (1). Compared with the OS
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method given in (3), the use of the LR estimator might seem irrelevant at first view but in fact

plays an important role to ensure the good behavior of the fitness coefficient.

The kernel density estimator of f0 at x ∈ Rd is given by

f̂n(x) =
1

nhdn

n∑
i=1

K

(
x−Xi

hn

)
.

For any h > 0, define the function fh as the convolution product between Kh(·) = K(·/h)/hd

and f0, that is, fh(x) = (Kh ? f0)(x), x ∈ Rd. Note that fhn(x) is the expected value of f̂n(x).

In other words, fhn(x) = E[f̂n(x)]. But since E[f̂n(Xi)|Xi] = fhn(Xi) + K(0)/(nhdn), we see

that f̂n(Xi) has a positive hn-dependent bias when estimating fhn(Xi), conditionally on Xi.

When studying the estimator decomposition, this bias term spreads to the diagonal terms of

some U -statistics and gives rise, in the end, to some non-negligible terms. This phenomenon is

common in semiparametric statisitcs, and has been noticed for instance in Remark 4 in [35].

To overcome the undesirable effects caused by this bias term, the leave-one-out (LOO)

estimator of fhn(Xi), given by

f̂LOO
n,i =

1

(n− 1)hdn

∑
j 6=i

K

(
Xi −Xj

hn

)
,

has been successfully used in several cross-validation procedures aiming at selecting the band-

width, either based on the likelihood [17, 26, 18] or on the mean squared error [37, 44] (see [27]

for a comparison). Since then, LOO estimators have been frequently used in semiparametric

studies [9].

The LR estimator proposed in this paper is inspired, but different, from the LOO estimator.

In view of (2), the LR estimator satisfies

f̂LR
n,i = f̂LOO

n,i + ∆nq(Xi).

If ∆n = 0 the LR estimator is equal to the LOO estimator. If q = K(0) and ∆n = 1/((n−1)hdn)

the LR estimator is equal to (n/(n− 1))f̂n(Xi). In general, one can think of ∆n as of order 1/n

and q as a density, yielding that q(X1) > 0 has probability 1.

The heuristic for using the LR estimator f̂LR
n,i instead of the LOO estimator f̂LOO

n,i is as fol-

lows. It is well-known that the Kullback-Leibler divergence of kernel density estimates depends

crucially on the tails of the true distribution f0 [18, 39]. As shown in [18], if the tail is too

heavy and the kernel K(x) vanishes too quickly as x becomes large then the Kullback-Leibler

divergence associated to the kernel density estimate goes to minus infinity. This is because some

of the f̂LOO
n,i , i = 1, . . . , n, might have very small values (possibly zero), leading to very large

values (possibly infinite) for some of the log(f̂LOO
n,i ). These values are involved in the computa-

tion of the Kullback-Liebler divergence and play an important role in our proofs when dealing

with the likelihood of the nonparametric estimate. We built the LR estimator to overcome this

issue by simply adding ∆nq(Xi) to the LOO estimator. We coined the term leave-and-repair

because the term ∆nq(Xi) repairs the LOO estimator. Since f̂LR
n,i ≥ ∆nq(Xi), the LR estimator
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is not subjected to the difficulties of the LOO estimator. By adding the term ∆nq(Xi) in (2),

however, a biais is introduced: now one has E[f̂LR
n,i |Xi] − fhn(Xi) = ∆nq(Xi). Thus, there is

a biais-variance tradeoff controlled by the sequence ∆n that must go to zero slowly enough to

keep f̂LR
n,i away from zero but also fast enough to keep the biais as small as possible. The right

compromise is given in the conditions in Theorem 2 (for instance ∆n = 1/n is one possibility).

Concerning the parametric estimator fθ̂n , we follow [33] by considering the maximum likeli-

hood estimator. Let P = {fθ : θ ∈ Θ} be the parametric model where Θ ∈ Rp is such that for

each θ ∈ Θ, fθ : Rd → R+ is a measurable function satisfying
∫
fθ(x) dx = 1. The maximum

likelihood estimator of f0 based on P and X1, . . . , Xn is fθ̂n where θ̂n (when it exists; this is

further assumed) is defined as

θ̂n ∈ argmax
θ∈Θ

n∑
i=1

log(fθ(Xi)).

The good behaviour of the maximum likelihood estimator is subjected to the assumption that

f0 ∈ P, that is, there exists θ0 ∈ Θ such that f0 = fθ0 .

To conclude the section, we consider existence and uniqueness of the fitness coefficient α̂n.

The existence follows from the use of the LR estimator f̂LR
n,i . Uniqueness of α̂n is obtained under

the mild requirement that the parametric and nonparametric estimators are distinguishable on

the observed data.

Proposition 1. Suppose that q(X1) > 0 a.s. and fθ̂n(Xi) 6= f̂LRn,i for at least one i ∈ {1, . . . , n}.
Then the fitness coefficient exists and is unique.

The proof is given in Appendix A.

3 Consistency of the fitness coefficient

Recall that consistency of the fitness coefficient α̂n means α̂n → 1 in probability if f0 ∈ P and

α̂n → 0 if f0 /∈ P, where f0 is the true underlying density and P is the parametric model.

Section 3.1 and Section 3.2 contain the main consistency theorem and some examples satisfying

our set of assumptions, respectively.

3.1 Assumptions and main result

Let ‖ · ‖2 be the Euclidean norm and for any set S ⊂ Rd and any function f : S → R, define

the sup-norm as ‖f‖S = supx∈S |f(x)|. Denote by λ the Lebesgue measure on Rd. Introduce

the density level sets

St = {x ∈ Rd : f0(x) > t}, t ≥ 0.

We shall assume the following.

6



(H1) The density f0 is bounded and continuous on Rd and the gradient ∇f0 of f0 is bounded

on Rd, and satisfies, for every x ∈ Rd and u ∈ [−1, 1]d,

|f0(x+ u)− f0(x)− uT∇f0(x)| ≤ ‖u‖22g(x),

where g is positive, bounded, integrable and
∫
g(x)2/f0(x) dx <∞.

(H2) The kernel function K : Rd → R+ integrates to 1 and takes one of the two following forms,

(a) K(x) ∝ K(0)(‖x‖2), or (b) K(x) ∝
d∏

k=1

K(0)(|xk|),

where K(0) : [0, 1] → R+ is a bounded function of bounded variation. The sequence

(hn)n≥1 is such that nh2d+4
n → 0, nhdn/| log(hn)| → ∞.

Whereas (H1) and (H2) are rather classical in the kernel smoothing littereature (see the

remarks just below Theorem 2), the following assumption is specific to our approach. We shall

see in Section 3.2 that this is satisfied for densities with classical tails.

(H3) The function q : Rd 7→ R+ is bounded, integrable, and satisfies E[| log(q(X1))|] < ∞.

There exist β ∈ (0, 1] and c > 0 such that
∫
Sct
f0(x) dx ≤ ctβ as t → 0. For any γ > 0,

bn = γ(nhdn)−1/β, there exists C > 0 such that, as n→∞,

sup
x∈Sbn

sup
u∈[−1,1]d

f0(x+ hnu)

f0(x)
≤ C, and hdnλ(Sbn)→ 0.

For the sake of clarity, the (classical) assumptions dealing with the parametric model are

postponed to the appendix: (A1) and (A2). They are taken from the monographs [48] and [31],

and they mainly ensure the asymptotic normality of θ̂n whenever f0 ∈ P.

Theorem 2. Suppose that assumptions (H1) to (H3), and (A1) are fulfilled.

(i) When f0 ∈ P, under (A2) and if (nhdn)∆n → 0, it holds that α̂n → 1, in probability.

(ii) When f0 /∈ P, if ∆n → 0 and (
√
| log(hn)|/nhdn + h2

n)| log(∆n)|1/β → 0, we have that

α̂n → 0, in probability.

Appendix B is dedicated to the proof of Theorem 2. We did not follow the approach used

in [33], which, we believe, is unsatisfactory because they do not consider the case when α̂n lies

in the border of [0, 1]. Actually, this is not straightforwardly remedied as the event α̂n = 0 or

α̂n = 1 has a non-negligible probability (as illustrated in the numerical experiments in section

4.1). The smoothness assumption stated in (H1) and the symmetries in the kernel function

ensure a control of order h2
n of the bias fh(x) − f(x), uniformly in x ∈ Rd (see Lemma B.7

stated in Appendix B.5). Such a rate could be improved by using higher order kernels but this

is not necessary here. Assumption (H2), (a) and (b), are borrowed from the empirical process
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literature; see among others [32, 15, 11]. They permit to bound, uniformly in x ∈ Rd, the

variance term f̂n(x)− fh(x). The fact that the kernel has a compact support can be alleviated

at the price of additional technicalities in the proof and assuming that the tails of the kernel

are light enough. We did not include this analysis in the paper for reasons of clarity.

For any dimension d ≥ 1, there exists a couple of sequences (hn,∆n)n≥1 that fulfills the

restrictions (i), (ii) of Theorem 2 and (H2). For instance, the optimal bandwidth hn ∝ n−1/(d+4),

which minimizes the asymptotic mean integrated squared error [51, equation (2.5)], and ∆n =

1/n, is one such sequence. This means that, in practice, one can choose the bandwidth according

to the various methods of the literature, see e.g. [42].

An interesting point in Theorem 2 is the two opposite roles played by the sequence ∆n in

(i) and (ii), respectively. The consistency when f0 ∈ P requires ∆n to be as small as possible

whereas when f0 /∈ P, ∆n must not be too close to 0. In the proof, the case ∆n = 0 (leave-one-

out) as well as ∆nq(Xi) = K(0)/(nhd) (OS method) need to be excluded, suggesting that these

other options are not consistent under our set of assumptions.

3.2 Distributions and bandwidth sequences satisfying (H3)

For densities f0 with unbounded supports, the verification of Assumption (H3) only depends

on some tail function g0 associated to the density f0. The meaning of this is made precise in

the following proposition.

Proposition 3. Suppose that for any A > 0, inf‖x‖≤A f0(x) > 0 and that there exists a function

g0 such that f0(x)/g0(x)→ 1 as ‖x‖ → ∞. Suppose that hn → 0 obeys nhdn →∞. If there exist

c2 > 0 and β ∈ (0, 1] such that∫
g0(x)≤t

g0(x) dx ≤ c2t
β, as t→ 0

and if for any γ > 0, bn = γ(nhdn)−1/β, there exists A > 0, C2 > 0 such that

sup
‖x‖>A, g0(x)>bn

sup
u∈[−1,1]

g0(x+ hnu)

g0(x)
≤ C2, and hdnλ(g0(x) > bn)→ 0, (4)

as n→∞, then (H3) is valid for f0 with the same value of β.

The proof of Proposition 3 is given in Appendix A. The function g0 in Proposition 3, not

necessarily a proper density function, represents the rate of decrease of f0(x) as ‖x‖ → ∞.

Example 1 (Mixture of densities). Let d = 1. Let f0(x) = π1f1(x) + π2f2(x), π1 > 0, π2 > 0,

π1 + π2 = 1, where f1 and f2 are densities such that f1(x)/f2(x) → 0 as |x| → ∞. Take

g0(x) = π2f2(x). Then, as |x| → ∞,

f0(x)

g0(x)
=
π1f1(x)

π2f2(x)
+ 1→ 1.

Hence the verification of (H3) by f0 only depends on the component f2.
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Putting g0 ∝ f0 (the symbol ∝ stands for proportionality) in Proposition 3 amounts to

check (H3) directly, which is done in the following examples.

Example 2 (Gaussian tails). Let d = 1 and g0(x) = κ1 exp(−κ2x
2), with κ1 > 0, κ2 > 0. For

clarity the computations are provided for κ1 = κ2 = 1 but can easily be extended for arbitrary

values. Because
∫

exp(−x2)≤t exp(−x2) dx ≤ t, as t → 0, we have that β = 1. Moreover, for

0 < bn < 1, we have

sup
exp(−x2)>bn

sup
u∈[−1,1]

exp(−(x+ hnu)2 + x2) ≤ sup
exp(−x2)>bn

sup
u∈[−1,1]

exp(−2hnxu)

= sup
exp(−x2)>bn

exp(2hn|x|)

≤ exp(2
√
− log(bn)hn)

Therefore, a sufficient condition on hn guaranteeing (4) is that h2
n log(n)→ 0, which is satisfied

under (H2).

Example 3 (Exponential tails). Let d = 1 and g0(x) = κ1 exp(−κ2x), with κ1 > 0, κ2 > 0.

The computations are very similar to the one presented in the Gaussian case. We find β = 1

and the condition on hn becomes hn log(n)→ 0 which is always true under (H2). Hence, as for

Gaussian tails, when the tails are exponential, (H3) is automatically satisfied under (H2).

Example 4 (Polynomial tails). Let d = 1 and g0(x) = κ1|x|−k with κ1 > 0, k > 1. For

simpicity, as in the Gaussian example, we focus on κ1 = 1. We find that β = (k − 1)/k. For

hn < |A|, we have

sup
|x|>A, |x|≤b−1/k

n

sup
u∈[−1,1]d

|x|k

|x+ hnu|k
= sup
|x|>A, |x|≤b−1/k

n

|x|k

(|x| − hn)k
=

1

(1− hn/A)k
n→∞→ 1.

Finally, since hnλ(g0 > bn) = 2b
−1/k
n = 2γ−1/k(nhn)1/(βk), a sufficient condition on hn guaran-

teeing (4) is that nhkn → 0.

The three examples considered above are informative on the interplay between the tails of f0

and the choice of hn. For distribution with light enough tails, including Gaussian, exponential

and polynomials with k ≥ 6, the conditions on hn required by (H3) are already fulfilled when

assuming (H2). Consequently, the optimal bandwidth which has order n−1/5 is included by our

set of assumptions. In contrast, as soon as k < 6 in the polynomial case, we have the additional

condition that nhkn → 0.

4 Numerical illustrations

In all the simulation experiments, we have set ∆n = 1/n, K(x) = exp(−x2/2)/
√

2π and q(x) =

tν((x − µq)/σq) where tν is the density of a Student-t distribution with ν = 3 degrees of

freedom, µq = 0 and σq = 100. With such a large variance and heavy tails, this choice of q is
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non informative. We made µq and σq vary but the results were very similar, suggesting that

the choice for q has little effect in practice (at least for light-tailed distribution). In all the

experiments but those in Section 4.1, the bandwidth was chosen according to the well known

rule of thumb given in [42] (p. 48, equation (3.31)). The choice of the bandwidth is discussed in

Section 4.1. In Section 4.2, we study the behavior of the fitness coefficient and the performance

of the estimators with respect to the amount of evidence of the model. In Section 4.3, we use the

LR method for protection against misspecification. All the numerical experiments were carried

out with the R software.

4.1 Sensitivity to the bandwidth: comparison of the fitness coefficient and

the OS coefficient

In this section, we study how a change in the bandwidth affects the fitness coefficient and the

OS coefficient. We reanalyze the data of Olkin and Spiegelman [33], consisting of yearly wind

speed maxima taken in the north direction in Sheridan, Wyoming. There are 20 observations

for the years 1958 to 1977: 70, 61, 61, 60, 61, 63, 61, 67, 61, 62, 47, 67, 61, 49, 55, 65, 57, 51, 47,

56. The parametric model is a Gumbel model, that is, log fθ(x) = (x− µ)/σ − exp((x− µ)/σ),

where θ = (µ, σ), µ is a real location parameter and σ > 0 a dispersion parameter obeying

varfθ = π2σ2/6 and Efθ = µ − σγ, where γ ≈ 0.58 is the Euler-Mascheroni constant. The

maximum likelihood estimator is given by θ̂n ≈ (62.1, 5.4).

Let h denote the bandwidth. In [33], it was arbitrarily chosen h = 0.7s, where s is the

standard deviation of the data. This yields α̂OS
n ≈ 0.8. But if h ≈ 0.43s, h ≈ 0.37s or h ≈ 0.21s

then one gets α̂OS
n ≈ 0. All the above values for h are grounded by well-known bandwidth

selection methods, see the textbook [42] (p. 47, eqn (3.30) and p. 48, eqn (3.31)) and [41]. By

contrast, the fitness coefficient yields α̂n ≈ 1. These findings are summarized in Figure 2 (a)

, where the coefficients are represented as functions of h. We see that the OS coefficient is

sensitive to the choice of the bandwidth: a slight difference in h can yield a large difference in

α̂OS
n = α̂OS

n (h) especially in the range 0.4 ≤ h ≤ 0.8. On the opposite, the fitness coefficient

is more robust: the estimated value for α̂n(h) remains close to one in a large range for h. In

Figure 2 (a), the fitness coefficient and the OS coefficient contradict each other and no more

credit can be given to any one of them because the ground truth is unknown.

To observe the behavior of the coefficients when the model is known to be true, we simulated

n = 400 observations according to a Gumbel distribution with mean and standard deviation

equal to those of the wind speed data, that is, 59.1 and 6.55 respectively. The results are shown

in Figure 2 (b). One has α̂n(h) ≈ 1 whatever h while α̂OS
n (h) ≤ 0.2 for all h chosen by the

bandwidth selection methods of the literature. These results tend to indicate that the fitness

coefficient is consistent but the OS coefficient is not. Let us note that Figure 2 (a) and (b) are

similar, making the Gumbel model plausible. The difference spotted in the range 0 ≤ h ≤ 0.2

can be explained by the ties of the wind speed data. (When h is small, one can see that (1) is

close to the likelihood of a Bernouilli trials experiment, the maximizer of which is given by the

proportion of untied observations, here one half.)

Whenever the model is wrong, we found on simulations that for most reasonable (that is,

10
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Figure 2: Values of the fitness coefficient and the OS coefficient as a function of the bandwidth h,
expressed as a proportion of the standard error of the data. Plain blue line: fitness coefficient.
Dashed black line: OS coefficient. The red sticks indicate various bandwidth values chosen
according to the literature (see text); (a) wind speed data, (b) simulations under a Gumbel
model, (c) simulations under a Gaussian model. In all cases the fitted model is a Gumbel
model.
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found in the literature as above) values of h, the values of the coefficients are close to zero,

as expected. This is illustrated in Figure 2 (c): the model is still Gumbel, but the n = 400

data points were generated according to a Gaussian distribution with mean 59.1 and standard

deviation 6.55.

4.2 Performance of the methods when the model and the truth intertwine

Parametric estimators perform better than kernel density estimators when the model is approx-

imately true, but worse otherwise. Can the semiparametric combination be uniformly best?

Does the fitness coefficient goes to unity as the model approaches the truth?

To get some insight, the following numerical experiment was done. We generated samples

of size n = 400 according to a density ft, for several values t in a certain index set, representing

the “distance” between ft and the model. Two settings have been tested.

Setting 1 The parametric model is given by fθ ∼ N(θ, 1) and the curve of true distributions

is given by ft ∼ N(0, (1 + t)2). The intersection between the model {fθ} and the family

{ft} is given by f0 ∼ N(0, 1); that is, θ = t = 0.

Setting 2 The parametric model is given by fθ ∼ N(0, θ2) and the curve of true distributions

is given by ft ∼ N(t, 1). The intersection between the model {fθ} the family {ft} is given

by a N(0, 1) as well.

For each t, we compute the maximum likelihood estimator, the standard kernel density

estimator, the fitness coefficient, the OS coefficient, and the semiparametric density estimator.

The semiparametric density estimator is the combination between the maximum likelihood

estimator and the kernel density estimator where the mixing coefficient can be either the fitness

coefficient (LR method) or the OS coefficient (OS method). To assess the performances of the

estimators, we compute the L2-distance to ft. The above procedure is repeated 500 times so

that the errors are averaged over the repetitions.

Figure 3 summarizes the results for the first setting. The errors for the parametric esti-

mator, shown in Figure 3 (a), shrink sharply as the model and the truth intersect. The error

for the nonparametric estimator is approximately constant. We see that the OS method per-

forms poorly: it fails to give accurate estimates near the truth. This behavior is explained in

Figure 3 (b), where we see that the values of the OS coefficient barely exceed 0.1. This is not

the case for the fitness coefficient; the values stretch entirely the range [0, 1] and are consistent

with the proximity between the truth and the parametric model. As a consequence, coming

back to Figure 3 (a), the error of the LR method is near the minimum of the parametric and

nonparametric errors. This means that, in practice, however close our parametric model is to

the truth, we never lose by choosing the LR method. Even more interestingly is the fact that

in the region where the parametric and the nonparametric estimators perform similarly, the LR

method performs better: this corresponds to the values t ≈ −0.10 and t ≈ 0.15. This fact is

clearly seen in Figure 3 (c) which pictures the averaged error integrated in the interval [−t, t]:
the LR method always has the lowest curve.
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The results for n = 50, 100, 200 and for setting 2 are similar and not shown here to limit the

length of the paper.

4.3 Application to multivariate density estimation

It is well known that building accurate multivariate parametric models is an uncertain and

difficult task. One way of addressing this problem consists of decomposing the target density

f0 into a copula c and the marginal densities f1, . . . , fd, that is,

f(x1, . . . , xd) = c(F1(x1), . . . , Fd(xd))f1(x1) · · · fd(xd)

(here the {Fj} stand for the distribution functions). This decomposition, also known as Sklar’s

theorem, is unique provided that the {Fj} are continuous; for more details about copulas, see

e.g. [13] or the books [30, 22]. The copula is assumed to belong to a parametric model {cξ, ξ ∈ Ξ}
and the true underlying parameter ξ is estimated [14] by

ξ̂ = arg max
ξ∈Ξ

n∑
i=1

log cξ

(
Ri,1
n
, . . . ,

Ri,d
n

)
,

where Ri,j is the rank of Xi,j among (X1,j , . . . , Xn,j) and Xi,j stands for the j-th coordinate of

the i-th observation. The marginals are estimated in a separate step. If one of the marginals

is misspecified, the estimation of the joint distribution is biased. In the following, a computer

experiment illustrates that the LR method can help to reduce this bias by avoiding misspecifi-

cation.

We have generated datasets of size n = 25, 50, 100, 150, . . . , 500 with a copula of the form (a

so-called Gumbel copula)

Cξ(u1, u2) = exp

{
−
[
(− log u1)ξ + (− log u2)ξ

]1/ξ
}
, ξ ≥ 1, (5)

with ξ = 3 and marginals f1 ∼ E(2), f2 ∼W (2, 1/2) where E(λ) is an exponential distribution

with mean 1/λ and W (a, b) is a Weibull distribution with shape a > 0 and scale b > 0, that is,

f2(x; a, b) =
a

b

(x
b

)a−1
exp

(
−
(x
b

)a)
, x > 0.

For each of the simulated datasets, the copula parameter ξ was estimated as mentioned above

and the marginals were estimated under three scenarios. In the first scenario we estimate them

nonparametrically with the standard kernel density estimator. In the second scenario we do as if

both marginals were exponentially distributed and compute the maximum likelihood estimator.

In the third scenario we form the convex combination with the maximum likelihood estimator

and the standard kernel density estimators, where the mixing coefficient is the fitness coefficient

(LR method).

The results for n = 200 and marginal estimation are shown in Figure 4. Figure 4 (a) pictures

the estimated densities with the parametric, nonparametric and semiparametric methods for the

13
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Figure 3: Performance of the methods when the truth {N(0, (1 + t)2), −0.5 < t < 0.5} ap-
proaches the model {N(θ, 1), −∞ < θ < ∞} until they intersect at t = 0. The L2-distance
averaged over the replications is pictured in (a) for the parametric estimator, the nonparametric
estimator, the OS method and the LR method. The integrated averaged distance is pictured
in (c). Figure (b) pictures the values of the fitness coefficient and the OS coefficient averaged
over the replications.
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truth

parametric

nonparametric

LR method

(a) (b)

Figure 4: Estimated densities for (a) the first marginal and (b) the second. The dotted violet,
dashed green and plain blue lines are the parametric, nonparametric and the semiparametric
estimates, respectively. The dotted-dashed red line corresponds to the true density. The size of
the dataset is n = 200.

first marginal, that is, when the parametric model is well specified. We see only two lines because

the parametric, semiparametric and the true densities are very similar, indicating that α̂ ≈ 1.

Figure 4 (b) corresponds to the misspecified second marginal. Here this is the nonparametric

and the semiparametric estimates which are nearly identical, indicating that α̂ ≈ 0.

Figure 5 shows the estimation for the bivariate joint density. In Figure 5 (b) we see that one

marginal misspecification led to a poor estimation of the joint density, especially in the joint

tails. Figure 5 (c) shows the estimated joint density with the nonparametric strategy for the

marginals. Drawbacks of nonparametric estimation are easily spotted: the estimated density is

multimodal and assumes positive values where it should be null. Visually, the best performance

is achieved with the semiparametric strategy in Figure 5 (d). The figures for n = 50, 100, 500

are similar and not shown to limit the length of the paper.

The squared L2-distances between the true joint density and the estimators are shown in

Figure 6. The semiparametric strategy performs best for all sample sizes.
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Figure 5: Contour plots of the true (a) and the estimated joint densities with the parametric
(b), nonparametric (c), and semiparametric (d) strategies. The size of the dataset is n = 200.
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Figure 6: Squared L2-distances between the true joint density and the estimators in function
of the sample size. From bottom to top, the plain blue line, green dashed line and violet dotted
line are the semiparametric, the nonparametric and the parametric error curves, respectively.
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Appendix A Proofs of the propositions

We define the mixture likelihood function Ln : [0, 1]→ [−∞,+∞) as

Ln(α) =
n∑
i=1

log
(
αfθ̂n(Xi) + (1− α)f̂LR

n,i

)
.

The fitness coeficient α̂n in (1) is then defined as a maximizer of Ln(α) over [0, 1].

A.1 Proof of Proposition 1

The presence of ∆nq(Xi) in f̂LR
n,i allows for Ln(α) > −∞ for all α ∈ [0, 1). If for all i, fθ̂n(Xi) > 0,

i.e., Ln(1) > −∞, then Ln is continuos on [0, 1] and the extreme value theorem yields the

existence of α̂n. Else, if Ln(1) = −∞, there exists δ > 0 such that supα∈[0,1−δ] Ln(α) >

supα∈(1−δ,1] Ln(α), meaning that the maximum is over [0, 1 − δ] and exists in virtue of the

extreme value theorem. Whenever fθ̂n(Xi) is not identically equal to f̂LR
n,i for all i = 1, . . . , n,

the function Ln is strictly concave and so comes the unicity.

A.2 Proof of Proposition 3

Let 0 < ε < 1. By assumption, there exists Ã > 0, such that for all |x| > Ã, we have

(1− ε)g0(x) ≤ f0(x) ≤ g0(x)(1 + ε).

For t > 0 small enough (i.e., taking any t < inf |x|≤Ã f0(x) implies that {|x| ≤ Ã} ⊂ {f0(x) > t},
or equivalently that Sct ⊂ {|x| > Ã}), it holds∫

Sct

f0(x) dx =

∫
f0(x)≤t

f0(x) dx ≤ (1 + ε)

∫
(1−ε)g0(x)≤t

g0(x) dx.

Consequently, we obtain that
∫
Sct
f0(x) dx ≤ tβc2(1 + ε)/(1− ε)β.

Remark that

λ(St) ≤ λ({|x| ≤ Ã}) + λ({|x| > Ã} ∩ St) ≤ λ({|x| ≤ Ã}) +

∫
(1+ε)g0(x)>t

dx,

which is enough to obtain the last point of (H3).

Suppose that 0 < hn ≤ 1. By enlarging Ã (i.e., taking Ã := Ã+
√
d), we have, for all |x| > Ã

and u ∈ [−1, 1]d,

(1− ε)g0(x+ hnu) ≤ f0(x+ hnu) ≤ g0(x+ hnu)(1 + ε).
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Let bn = γ(nhdn)−1/β and A1 = max(A, Ã). As soon as |x| ≤ A1,

sup
u∈[−1,1]d

f0(x+ hnu)

f0(x)
≤ ‖f0‖Rd

inf |x|≤A1
f0(x)

.

Otherwise,

sup
|x|>A1, f0(x)>bn

sup
u∈[−1,1]d

f0(x+ hnu)

f0(x)
≤ (1 + ε)

(1− ε)
sup

|x|>A1, (1+ε)g0(x)>bn

sup
u∈[−1,1]d

g0(x+ hnu)

g0(x)
.

We conclude by remarking that the previous is bounded, by (1 + ε)C2/(1− ε).

Appendix B Proof of Theorem 2

Theorem 2 follows from the application of two high-level results, corresponding respectively

to the well-specified and misspecified case. Both high-level results take place in the following

general framework: given a triangular sequence of non-negative real numbers ξn,i, i = 1, . . . , n,

n ≥ 1, we consider the mixture likelihood function given by

Ln(α) =

n∑
i=1

log
(
αfθ̂n(Xi) + (1− α)ξn,i

)
.

Here the sequence (ξn,i) is left unspecified in order to highlight the assumptions that we need on

the nonparametric part. This random sequence could be the non-parametric estimator evaluated

at Xi, i.e., f̂n(Xi), the LOO estimate f̂LOO
n,i or the LR estimate f̂LR

n,i with ∆n > 0. In this slightly

new context, we define α̂n as

α̂n ∈ argmaxα∈[0,1]Ln(α).

In both cases, respectively, the misspecified and well-specified case, the approach taken is similar.

We compare the empirical likelihood of the mixture to the one of the parametric estimate (in

the well-specified case) or the nonparametric estimate (in the misspecified case).

In the proofs below, it is convenient to introduce the normalized version of Ln(α), given by

L̃n(α) =
n∑
i=1

log

(
αfθ̂n,i + (1− α)ξn,i

f0,i

)
,

where, for any real valued function f , we have introduced the short-cut notation fi for f(Xi).

B.1 Case (i) : the model is well-specified

We are based on some restricted mean quadratic error

Q(p)
n (S) =

n∑
i=1

(
fθ̂n,i − f0,i

f0,i

)2

1{Xi∈S}, Q(np)
n (S) =

n∑
i=1

(
ξn,i − f0,i

f0,i

)2

1{Xi∈S},
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and some averaged linear error

M (p)
n =

n∑
i=1

(
fθ̂n,i − f0,i

f0,i

)
, M (np)

n =
n∑
i=1

(
ξn,i − f0,i

f0,i

)
.

The proof of the following theorem is given in Section B.3.1.

Theorem B.1. Suppose that f0 ∈ P and let S ⊂ Rd and b > 0 be such that for all x ∈ S,

f0(x) > b. If the following convergences hold in probability, as n→∞,

‖fθ̂n − f0‖S → 0, max
i=1,...,n, :Xi∈S

|ξn,i − f0,i| → 0, (6)

Q
(p)
n (S)

Q
(np)
n (S)

→ 0,
|M (p)

n |+ |M (np)
n |

Q
(np)
n (S)

→ 0, (7)

then, α̂n → 1 as n→∞, in probability.

We now verify the conditions of the previous theorem when ξn,i is the LR sequence f̂LR
n,i and

when (H1), (H2), (H3), (A1), (A2) and nhdn∆n → 0 are fulfilled.

Condition (6). The first convergence in (6) holds in virtue of (21) established in Section C.

For the second one, it holds that

f̂LR
n,i =

(
n

n− 1

)(
f̂n(Xi)−

K(0)

nhdn

)
+ ∆nq(Xi).

Applying the first statement of Proposition C.1 in [35] (which is a consequence of Theorem 2.1

in [15]), we have, under (H1) and (H2), that

‖f̂n − fhn‖Rd = OP

(√
| log(hn)|
nhdn

)
.

Together with Lemma B.9, we obtain that ‖f̂n − f0‖Rd = OP(
√
| log(hn)|/nhdn) + O(h2

n). Con-

sequently, we get

max
i=1,...,n

|f̂LR
n,i − f0,i| ≤

(
n

n− 1

)(
‖f̂n − f0‖Rd +

K(0)

nhdn

)
+ ∆n‖q‖Rd +

‖f0‖Rd
n− 1

= OP

(√
| log(hn)|
nhdn

+ h2
n + ∆n

)
. (8)

The latter bound indeed goes to 0, in probability, as n→∞.

Condition (7). We proceed as follows, with ξn,i = f̂LR
n,i :

(a) By Lemma B.3, stated in Section B.4, there exists c > 0 such that with probability going

to 1, hdnQ
(np)
n (S) ≥ c. The set S is chosen equal to {f0(x) > b} where b > 0 is such that it

is non-empty.
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(b) We show in Lemma B.4 that hdn|M
(np)
n | → 0 in probability.

(c) In Lemma B.5 (resp. Lemma B.6), it is established, under (A1) and (A2), that Q
(p)
n (S) =

OP(1) (resp. |M (p)
n | = OP(1)).

All this together implies that (7) holds true.

B.2 Case (ii) : the model is misspecified

When the model is misspecified, i.e., f0 /∈ P, the following high-level conditions are enough to

ensure the convergence in probability αn → 0. These conditions are easily implied by (A1),

(H1), (H2), (H3) and | log(∆n)|1/β(
√
| log(hn)|/nhdn +h2

n) as demonstrated below. The proof of

this theorem is given in Section B.3.2.

Theorem B.2. Suppose that f0 /∈ P and E[| log(f0,1)|] < ∞, that the class P is Glivenko-

Cantelli (i.e., (20) holds) with Θ compact, that the envelop FΘ is such that E[log(FΘ,1)] < +∞,

and that for every x ∈ Rd, θ 7→ fθ(x) is a continuous function defined on Θ. Suppose that there

exists β ∈ (0, 1] and c > 0 such that, as t → 0,
∫
Sct
f0(x) ≤ ctβ, and q : Rd → R+ such that

E[| log(q(X1))|] <∞, ξn,1 ≥ ∆nq1 a.s., and

| log(∆n)|1/β max
i=1,...,n

|ξn,i − f0(Xi)| → 0,

then, α̂n → 0, as n→∞, in probability.

We already argued that (20) is implied by (A1). The continuity of fθ is deduced from the con-

tinuity of log(fθ) provided by (A1). The bound given in (8) together with | log(∆n)|1/β(
√
| log(hn)|/nhdn+

h2
n)→ 0 implies the stated convergence with ξn,i = f̂LR

n,i .

B.3 Proofs of the high-level Theorems

B.3.1 Proof of Theorem B.1

Because f0 ∈ P, it holds that fθ̂n,i > 0 for all i = 1, . . . , n, which guarantees the exis-

tence of a maximizer α̂n (as explained in the proof of Proposition 1). By definition of θ̂n,∑n
i=1 log (f0,i) ≤

∑n
i=1 log

(
fθ̂n,i

)
. Consequently, maxα∈[0,1] L̃n(α) ≥ 0 and for every ε > 0, the

event maxα∈[0,1−ε] L̃n(α) < 0 implies that α̂n > 1 − ε. Thus, let ε ∈ (0, 1), the proof will be

completed by showing that with probability going to 1,

sup
α∈[0,1−ε]

L̃n(α) < 0.

A useful notation in the following is

x̂i,n = 1 +
α(fθ̂n,i − f0,i)

f0,i
+

(1− α)(ξn,i − f0,i)

f0,i
.
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A useful technical detail is there exists a sequence εn → 0 such that the event

{ max
i=1...,n :Xi∈S

f0,i|x̂i,n − 1| ≤ εn}

has probability going to 1 as n → ∞. This is a consequence of (6). As we are establishing a

result in probability, we can further suppose that this event is realized.

A key step in our approach is the following inequality, reminiscent of the Taylor development

of the logarithm around 1,

log(x)− (x− 1) ≤

{
−1

4(x− 1)2 if 1/2 < x < 3/2

0 else
,

which might be derived by studying the concerned function. This kind of inequality is commonly

used for studying likelyhood methods [16, 28]. Applied to x̂i,n, it gives

L̃n(α)− (αM (p)
n + (1− α)M (np)

n ) =
n∑
i=1

(log (x̂i,n)− (x̂i,n − 1))

≤ −1

4

n∑
i=1

(x̂i,n − 1)21{|x̂i,n−1|<1/2}

≤ −1

4

n∑
i=1

(x̂i,n − 1)21{Xi∈S, |x̂i,n−1|<1/2}.

Note that whenever Xi ∈ S, because it holds f0,i|x̂i,n − 1| ≤ εn, we have (for n small enough)

that |x̂i,n − 1| < 1/2. This means that, for all i = 1, . . . , n, 1{Xi∈S} ≤ 1{|x̂i,n−1|<1/2}, and it

follows

L̃n(α)− (αM (p)
n + (1− α)M (np)

n ) ≤ −1

4

n∑
i=1

(x̂i,n − 1)21{Xi∈S}

= −1

4

{
(1− α)2Q(np)

n (S) + α2Q(p)
n (S) + 2α(1− α)Un

}
≤ −1

4
(1− α)2Q(np)

n (S)

{
1− 2α|Un|

(1− α)Q
(np)
n (S)

}
,

where

Un =
n∑
i=1

(fθ̂n,i − f0,i)(ξn,i − f0,i)

f2
0,i

1{Xi∈S}.

Bounding the right-hand side with respect to α ∈ [0, 1− ε] gives

sup
α∈[0,1−ε]

{L̃n(α)− (αM (p)
n + (1− α)M (np)

n )} ≤ −1

4
ε2Q(np)

n (S)

(
1− 2ε−1 |Un|

Q
(np)
n (S)

)
.

By assumption, we have that Q
(p)
n (S)/Q

(np)
n (S)→ 0 in probability. From the Cauchy-Schwartz
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inequality we get that |Un| ≤
√
Q

(np)
n (S)Q

(p)
n (S), leading to |Un|/Q(np)

n (S)→ 0, in probability.

Consequently, we obtain that

sup
α∈[0,1−ε]

L̃n(α) ≤ −1

4
ε2Q(np)

n (S)

(
1− 2ε−1 |Un|

Q
(np)
n (S)

− 4
|M (p)

n |+ |M (np)
n |

ε2Q
(np)
n (S)

)
.

The term between brackets goes to 1, in probability, implying that for every δ > 0, with

probability going to 1,

sup
α∈[0,1−ε]

L̃n(α, θ̂) ≤ −1

4
ε2Q(np)

n (S)(1− δ).

Hence it remains to note that, by (7), with probability going to 1, Q
(np)
n (S) > 0.

B.3.2 Proof of Theorem B.2

Note that α̂n ∈ argmaxα∈[0,1] L̃n(α) exists because ξn,i > 0 for all i, as explained in the proof of

Proposition 1. Let ε > 0. The proof requires to show that with probability going to 1, α̂n < ε.

This event is realized as soon as maxα∈[ε,1] L̃n(α) < L̃n(0). We analyse both terms separately.

First we show that

L̃n(0)→ 0,

in probability, and then that there exists δ > 0 such that, with probability going to 1,

sup
α∈[ε,1]

L̃n(α) ≤ −δ. (9)

Let η > 0, bn = (η/| log(∆n)|)1/β and cn = maxi=1,...,n |ξn,i − f0,i|. We assume further that

bn + cn < 1 and ∆n < 1. We have

|L̃n(0)|

≤

∣∣∣∣∣n−1
n∑
i=1

log

(
ξn,i
f0,i

)
1{f0,i>bn}

∣∣∣∣∣+ n−1
n∑
i=1

∣∣∣∣log

(
ξn,i
f0,i

)∣∣∣∣ 1{f0,i≤bn}

≤

∣∣∣∣∣n−1
n∑
i=1

log

(
ξn,i
f0,i

)
1{f0,i>bn}

∣∣∣∣∣+ n−1
n∑
i=1

(
|log(∆nqi)| 1{f0,i≤bn} + |log(f0,i)| 1{f0,i≤bn}

)
≤

∣∣∣∣∣n−1
n∑
i=1

log

(
ξn,i
f0,i

)
1{f0,i>bn}

∣∣∣∣∣+ |log(∆n)|n−1
n∑
i=1

1{f0,i≤bn}

+ n−1
n∑
i=1

(|log(qi)|+ |log(f0,i)|)1{f0,i≤bn}
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The expectation of the term in the middle is bounded by | log(∆n)|P(f0(X1) ≤ bn) of order

| log(∆n)|bβn = η, by assumption. The corresponding term goes to 0, as η is arbitrarily small.

The expectation of the term in the right is smaller than E[(| log(q1)| + | log(f0,1)|)1{f0,i≤bn}],

which goes to 0 because | log(q1)| and | log(f0,1)| are integrable. Hence it remains to obtain that

the term in the left goes to 0. The mean-value theorem gives∣∣∣∣∣n−1
n∑
i=1

log

(
ξn,i
f0,i

)
1{f0,i>bn}

∣∣∣∣∣ ≤ maxi=1,...,n |ξn,i − f0,i|
infi=1,...,n : f0,i>bn inft∈[0,1] tξn,i + (1− t)f0,i

≤ cn
bn − cn

→ 0.

Now we establish (9) by obtaining one-sided inequalities. Take bn = (1/| log(∆n)|)1/β, suppose

that bn + cn < 1, and use the monotonicity of the logarithm, to get that

n−1
n∑
i=1

log

(
αfθ̂n,i + (1− α)ξn,i

f0,i

)
1{f0,i≤bn} ≤ n

−1
n∑
i=1

log

(
FΘ,i + bn + cn

f0,i

)
1{f0,i≤bn}

≤ n−1
n∑
i=1

| log

(
FΘ,i + 1

f0,i

)
|1{f0,i≤bn}.

Taking the expectation, we find a bound in E[| log
(
FΘ,1+1
f0,1

)
|1{f0,1≤bn}] which goes to 0 as n→∞

in virtue of the Lebesgue dominated convergence theorem. Then, taking 0 < η < 1, it holds

that

L̃n(α) ≤ n−1
n∑
i=1

log

(
αfθ̂n,i + (1− α)ξn,i

f0,i

)
1{f0,i>bn} + op(1)

≤ n−1
n∑
i=1

log

(
α(fθ̂n,i + ηf0,i) + (1− α)ξn,i

f0,i

)
1{f0,i>bn} + op(1)

The first term in the right-hand side is decomposed according to

n−1
n∑
i=1

log

(
α(fθ̂n,i + ηf0,i) + (1− α)ξn,i

α(fθ̂n,i + ηf0,i) + (1− α)f0,i

)
1{f0,i>bn}

+ n−1
n∑
i=1

log

(
α(fθ̂n,i + ηf0,i) + (1− α)f0,i

f0,i

)
1{f0,i>bn}.

By the mean value theorem, the term on the left is bounded by

(1− α) maxi=1,...,n |ξn,i − f0,i|
(ηbn) ∧ (bn − cn)

,

which goes to 0, by assumption. For the term on the right, notice that {α(fθ+ηf0)+(1−α)f0 :

α ∈ [ε, 1], θ ∈ Θ} is Glivenko-Cantelli with envelop FΘ + 2f0. Then applying Theorem 3 in [47],

the class formed by log(α(fθ + ηf0) + (1− α)f0) is still Glivenko-Cantelli. Since for all θ ∈ Θ,
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α ∈ [ε, 1],

log(εηf0) ≤ log(α(fθ + ηf0) + (1− α)f0) ≤ log(FΘ + 2f0 + 1),

the function | log(εηf0)| + log(FΘ + 2f0 + 1) is an integrable envelop. Using again Theorem 3

in [47], the class formed by log(α(fθ + ηf0) + (1− α)f0)1{f0>b}, θ ∈ Θ, α ∈ [ε, 1], 0 < b < 1, is

still Glivenko-Cantelli with the same envelop. This implies that

sup
α∈[ε,1], θ∈Θ

∣∣∣∣∣n−1
n∑
i=1

log

(
α(fθ,i + ηf0,i) + (1− α)f0,i

f0,i

)
1{f0,i>bn}

−E
[
log

(
α(fθ,1 + ηf0,1) + (1− α)f0,1

f0,1

)
1{f0,1>bn}

]∣∣∣∣→ 0.

The integrability of the envelop and the fact that bn → 0 implies that

sup
α∈[ε,1], θ∈Θ

E
[
log

(
α(fθ,1 + ηf0,1) + (1− α)f0,1

f0,1

)
1{f0,1≤bn}

]
→ 0.

It remains to use the inequality log(x) ≤ 2(
√
x− 1) to obtain that

sup
α∈[ε,1], θ∈Θ

E
[
log

(
mθ,α,η

f0,1

)]
≤ sup

α∈[ε,1], θ∈Θ
2

∫
(
√
mθ,α,ηf0 − f0) dλ

where mθ,α,η = α(fθ + ηf0) + (1− α)f0. Since

sup
α∈[ε,1], θ∈Θ

|
∫ √

(mθ,α,η −mθ,α,0)f0 dλ| = √η,

we get, using that
√
a+ b ≤

√
a+
√
b, a ≥ 0, b ≥ 0,

sup
α∈[ε,1], θ∈Θ

E
[
log

(
mθ,α,η

f0,1

)]
≤ 2
√
η + 2 sup

α∈[ε,1], θ∈Θ

∫
(
√
mθ,α,0f0 − f0) dλ

= 2
√
η − inf

α∈[ε,1], θ∈Θ

∫
(
√
mθ,α,0 −

√
f0)2 dλ.

Using standard results about the Hellinger distance [34] (chapter 3) we obtain

sup
α∈[ε,1], θ∈Θ

E
[
log

(
mθ,α,η

f0,1

)]
≤ 2
√
η − (1/4) inf

α∈[ε,1], θ∈Θ
α2

(∫
|fθ − f0| dλ

)2

≤ 2
√
η − (ε2/4)

(
inf
θ∈Θ

∫
|fθ − f0| dλ

)2

.

Since f0 /∈ P and by the continuity assumption on fθ, it holds that infθ∈Θ

∫
|fθ − f0|dλ > 0.

Then, as η is arbitrary, the proof of (9) is complete.
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B.4 Linear and quadratic error of parametric and nonparametric estimate

Important tools for dealing with the terms involving f̂LR
n,i are coming from U -statistic theory.

We call U -statistic of order p with kernel w : Rp → R, any quantity of the kind∑
i1,...,ip∈D

w(Xi1 , . . . , Xip),

where the summation is taken over the subset D formed by the (i1, . . . , ip) ∈ {1, . . . , n}p such

that ik 6= i`, ∀k 6= `. The number of terms in the summation is then n(n−1) . . . (n−p+1). When

the kernel w is such that, for every k ∈ {1, . . . , p}, E[w(X1, . . . , Xp) | X1, . . . Xk−1, Xk+1, . . . , Xp] =

0, it is called a degenerate U -statistic. In the proofs, we shall rely on the so-called Hajek de-

composition [48, Lemma 11.11].

To establish the two following lemmas, Lemma B.3 and Lemma B.4, we are based on (H1),

(H2) and (H3). One might note that the expressions (a) or (b) in (H2) on the kernel are not

used in any of these lemmas.

Lemma B.3. Under assumptions (H1), (H2) and (H3), if nhdn∆n → 0, for any δ > 0 and any

set S ⊂ Rd such that infx∈S f0(x) > b, we have with probability going to 1,

hdn

n∑
i=1

(
f̂LRn,i − f0,i

f0,i

)2

1{Xi∈S} ≥ (1− δ)vKλ(S).

where vK =
∫
K(u)2 du.

Proof. Note that

E
[
f̂LR
n,i | Xi

]
= (n− 1)−1

n∑
j 6=i

E
[
h−dn K

(
Xi −Xj

hn

)
| Xi

]
+ ∆nqi = fhn,i + ∆nqi.

The proof follows from the decomposition

n∑
i=1

(
f̂LR
n,i − f0,i

f0,i

)2

1{Xi∈S} = An +Bn + 2Cn,

where

An =
n∑
i=1

 f̂LR
n,i − E

[
f̂LR
n,i | Xi

]
f0,i

2

1{Xi∈S},

Bn =
n∑
i=1

(
fhn,i + ∆nqi − f0,i

f0,i

)2

1{Xi∈S},

Cn =

n∑
i=1

(
f̂LR
n,i − E

[
f̂LR
n,i | Xi

])
(fhn,i + ∆nqi − f0,i)

f2
0,i

1{Xi∈S}.
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We will show that hdnAn → vKλ(S), in probability and that hdnCn → 0, in probability. This will

be enough as Bn ≥ 0, almost surely.

Proof that hdnAn → vKλ(S) in probability. Introduce the notation, for any h > 0,

ah(x, y) =
Kh(x− y)− fh(x)

f0(x)
,

uh(x, y, z) = ah(x, y)ah(x, z)1{x∈S}.

Developing, we find

An = (n− 1)−2
n∑
i=1

n∑
j 6=i

n∑
k 6=i

uhn(i, j, k),

where uhn(i, j, k) is as short-cut for uhn(Xi, Xj , Xk). We treat An relying on the Hajek pro-

jection of U -statistics. Up to a centering term, E [uhn(i, j, k) | Xj , Xk], the U -statistic An is a

degenerate U -statistic. In the following we voluntary introduce this centering term in the sum-

mation to handle separately a degenerate U-statistic and another summation with less indices.

By introducing, for any h > 0,

vh(j, k) = E [uh(i, j, k) | Xj , Xk] ,

wh(i, j, k) = uh(i, j, k)− vh(j, k),

we obtain

An = (n− 1)−2
n∑
i=1

n∑
j 6=i

n∑
k 6=i

whn(i, j, k) + (n− 1)−2
n∑
i=1

n∑
j 6=i

n∑
k 6=i

vhn(j, k)

= (n− 1)−2
n∑
i=1

n∑
j 6=i

n∑
k 6=i, k 6=j

whn(i, j, k) + (n− 1)−2
n∑
i=1

n∑
j 6=i

whn(i, j, j)

+ (n− 1)−2
n∑
i=1

n∑
j 6=i

n∑
k 6=i

vhn(j, k). (10)

Treatment of the first term in (10). Note that whn(i, j, k) defines a degenerate U -statistic, i.e.,

E[whn(i, j, k) | Xi, Xj ] = E[whn(i, j, k) | Xi, Xk] = E[whn(i, j, k) | Xj , Xk] = 0.

Note that

n∑
i=1

n∑
j 6=i

n∑
k 6=i, k 6=j

whn(i, j, k) =

n∑
i=1

n∑
j>i

n∑
k>j

whn(i, j, k),

where wh is the symmetrized version of wh, i.e., for any triplet (x1, x2, x3) of wh(x1, x2, x3) =∑
σ wh(xσ(1), xσ(2), xσ(3)) where the sum is over all the 3! possible permutations of the set
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{1, 2, 3}. Using that the U -statistic with kernel whn is degenerate, some algebra gives that

E

(n− 1)−2
n∑
i=1

n∑
j 6=i

n∑
k 6=i, k 6=j

whn(i, j, k)

2 = (n− 1)−4
n∑
i=1

n∑
j>i

n∑
k>j

E[whn(i, j, k)2]

= O(n−1)E[whn(1, 2, 3)2].

We have, using Minkowski’s inequality and the definition of the conditional expectation, that√
E[whn(1, 2, 3)2] ≤ 3!

√
E[whn(1, 2, 3)2] ≤ 3!

√
E[uhn(1, 2, 3)2].

Consequently, in virtue of (15) in Lemma B.7, we have shown that

E

(n− 1)−2
n∑
i=1

n∑
j 6=i

n∑
k 6=i, k 6=j

whn(i, j, k)

2 = O(n−1h−2d
n ).

The previous rate, multiplied by h2d
n , goes to 0, hence, this term is negligible.

Treatment of the second term in (10). We continue the study of An by considering

(n− 1)−2
n∑
i=1

n∑
j 6=i

whn(i, j, j)

= (n− 1)−2
n∑
i=1

n∑
j 6=i

(whn(i, j, j)− E[uhn(i, j, j) | Xi] + E[uhn(1, 2, 2)])

+ (n− 1)−1
n∑
i=1

(E[uhn(i, j, j) | Xi]− E[uhn(1, 2, 2)]).

The first term is a degenerate U -statistic of order 2 whose order 2 moments satisfy

E

(n− 1)−2
n∑
i=1

n∑
j 6=i

(whn(i, j, j)− E[uhn(i, j, j) | Xi] + E[uhn(1, 2, 2)])

2
= O(n−2)E[uhn(1, 2, 2)2] = O(n−2h−3d

n ).

This is obtained by following exactly the same lines as in the treatment of the U -statistic wn

and using (18) in Lemma B.7. As n−2h−3d
n × h2d

n → 0, the previous term is negligible. The

second term is a sum of centred independent random variables with variance smaller than, in

virtue of (14) in Lemma B.7,

n(n− 1)−2E
[
E[uhn(1, 2, 2) | X1]2

]
= O(n−1h−2d

n ).

This is the same rate as the rate obtained for the (negligible) U -statistic of order 3 with kernel

wn.
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Treatment of the third term in (10). The study of An continues by considering

(n− 1)−2
n∑
i=1

n∑
j 6=i

n∑
k 6=i

vhn(j, k)

= (n− 1)−2
n∑
i=1

n∑
j 6=i

vhn(j, j) + (n− 1)−2
n∑
i=1

n∑
j 6=i

n∑
k 6=i, k 6=j

vhn(j, k)

= (n− 1)−1
n∑
j=1

vhn(j, j) + (n− 1)−2(n− 2)
n∑
j=1

n∑
k 6=j

vhn(j, k).

The term associated with double summation over j and k is a degenerate U -statistic, as

E[vhn(j, k) | Xk] = E[vhn(j, k) | Xj ] = 0. Consequently, following the same lines as in the

treatment of the first term of An, and using (19) in Lemma B.7, we get

E

(n− 1)−2(n− 2)
n∑
j=1

n∑
k 6=j

vhn(j, k)

2 = O(1)E[vhn(1, 2)2] = O(h−dn )

which goes to 0, when multiplied by h2d
n . The remaining term is a sum of independent and

identically distributed random variables. We have, by computing the variance of the centred

average,

(n− 1)−1
n∑
j=1

(vhn(j, j) = OP(n−1/2)
√
Evhn(1, 1)2 + n(n− 1)−1E[vhn(1, 1)],

where the first term, using (17) in Lemma B.7, is O(n−1/2h−dn ) which goes to 0 when mul-

tiplied by hn. The dominating term is in fact the last one, as by Lemma B.8, it holds that

hdnE[vhn(1, 1)]→ vKλ(S).

Proof that hdnCn → 0 in probability. We are based on similar decompositions as for An

involving U -statistics. Let `hn(x) = (fhn(x)− f0(x) + ∆nq(x))/f0(x) and note that in virtue of

Lemma B.9, it holds

‖`hn‖S ≤ b−1

(
h2
n‖g‖Rd

∫
‖u‖22K(u) du+ ∆n‖q‖Rd

)
.

Then

Cn = (n− 1)−1
n∑
i=1

n∑
j 6=i

(ahn(i, j)`hn,i1{Xi∈S} − bhn(j)) +

n∑
i=1

bhn(i),
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with bhn(j) = E[ahn(i, j)`hn,i1{Xi∈S} | Xj ]. The term on the left is a degenerate U -statistic for

which it holds

E

(n− 1)−1
n∑
i=1

n∑
j 6=i

(ahn(i, j)`hn,i1{Xi∈S} − bhn(j))

2 = O(1)E[ahn(1, 2)2`2hn,11{X1∈S}].

Using (13) in Lemma B.7 and the previous bound for ‖`hn‖S , we find

E[ahn(1, 2)2`2hn,11{X1∈S}] = E

[(
Vhn(X1)`2hn,1

f2
0,1

)
1{X1∈S}

]
= O(h−dn (h2

n + ∆n)),

where Vh is defined in (12). The previous bound multiplied by h2d
n goes to 0. Using that

E[ahn(1, 2)`hn,11{X1∈S}] = 0 and (16), the variance of the term on the right in Cn is smaller

than

nE[E[ahn(1, 2)`hn,11{X1∈S} | X2]2] ≤ nE[E[|ahn(1, 2)| | X2]2]‖`hn‖2S = O(n(h4
n + ∆2

n))

which, multiplied by h2d
n , goes to 0 by hypothesis. Hence hdnCn → 0, in probability and the

proof is complete.

Lemma B.4. Under assumptions (H1), (H2) and (H3), if nhdn∆n → 0, we have

hdn

n∑
i=1

(
f̂LRn,i − f0,i

f0,i

)
= oP(1).

Proof. The decomposition is as follows

hdn

n∑
i=1

(
f̂LR
n,i − f0,i

f0,i

)

= hdn(n− 1)−1
n∑
i=1

n∑
j 6=i

(
Khn(i, j)− fhn,i

f0,i

)
+ hdn

n∑
i=1

(
fhn,i − f0,i

f0,i

)
+ hdn∆n

n∑
i=1

qi
f0,i

. (11)

The expectation of the last term is nhdn∆n

∫
q(x) dx which goes to 0 by assumption. We can

now focus on the first and second term of the decomposition.

Treatment of the second term in (11). Using that
∫
K(u) du = 1, the considered term is a

centred empirical sum. Using Lemma B.9, its variance is then bounded by

E

(hdn n∑
i=1

fhn,i − f0,i

f0,i

)2
 ≤ nh2d

n

∫
(fhn(x)− f0(x))2

f0(x)
dx

≤ nh2d+4
n

∫
g(x)2

f0(x)
dx

(∫
u2K(u) du

)2

,

which goes to 0.
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Treatment of the first term in (11). Using that
∫
K(u) du = 1, one can verify that it is a

degenerate U -statistic. Here the variance can not be computed directly because the leading

term E
[

(Khn (1,2)−fhn,1)2

f2
0,1

]
is not necessarily finite. Hence we decompose according to the Xi in

Sbn and the others, with bn = (ε/nhdn)1/β where β is given in (H3) and ε > 0. We introduce

k(x, y) =
Khn(x, y)

f0(x)
,

and define the linear operator QP : L2(P)→ L2(P) as

QP[w](x, y) = w(x, y)− E[w(x,X1)]− E[w(X1, y)] + E[w(X1, X2)].

Because E[k(X1, y)] = E[k(X1, X2)] = 1 for all y ∈ Rd, one sees that

n∑
i=1

n∑
j 6=i

(
Khn(i, j)− fhn,i

f0,i

)
=

n∑
i=1

n∑
j 6=i

QP(k)i,j

=

n∑
i=1

n∑
j 6=i

(
QP(k1Sbn )i,j +QP(k1Scbn

)i,j

)
.

Because the summation over QP(k1Sbn ) is a degenerate U -statistics, we get that

E

hdn(n− 1)−1
n∑
i=1

n∑
j 6=i

QP(k1Sbn )i,j

2 = O(h2d
n )E

[
(Khn(1, 2)− fhn,1)2

f2
0,1

1Sbn (X1)

]
.

Defining the kernel K̃ = K2/vK and f̃h = f0 ? K̃h, we obtain

E

[
(Khn(1, 2)− fhn,1)2

f2
0,1

1Sbn (X1)

]
≤ E

[
E[Khn(1, 2)2 | X1]

f2
0,1

1Sbn (X1)

]

= vKh
−d
n

∫
Sbn

f̃hn(x)

f0(x)
dx

= vKh
−d
n

(∫
Sbn

∫
f(x− hnu)

f0(x)
K̃(u)dudx

)

≤ vKh−dn λ(Sbn)

(
sup
x∈Sbn

sup
u∈[−1,1]d

f(x+ hnu)

f0(x)

)
.
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For the term with QP(k1Scbn
), we obtain that

E

∣∣∣∣∣∣
n∑
i=1

n∑
j 6=i

QP(k1Scbn
)i,j

∣∣∣∣∣∣
 ≤ n(n− 1)E[|QP(k1Scbn

)1,2|]

≤ 4n(n− 1)E[|k1,2|1Scbn (X1)]

= 4n(n− 1)

∫
Scbn

fh(x) dx.

From Lemma B.10, we deduce that
∫
Scbn

fh(x) dx ≤ c2b
β
n = c2ε/nh

d
n . To conclude, we have

shown that there exists a constant C̃ > 0 such that

E

∣∣∣∣∣∣hdn(n− 1)−1
n∑
i=1

n∑
j 6=i

QP(k)

∣∣∣∣∣∣
 ≤ C̃ (√hdnλ(Sbn) + nhdnb

β
n

)
= C̃

(√
hdnλ(Sbn) + ε

)
.

Invoking (H3) and because ε is arbitrarily small, the limit as n→∞ is 0.

Lemma B.5. Under (A1) and (A2), we have

n∑
i=1

(
fθ̂n,i − f0,i

f0,i

)2

1{Xi∈S} = OP(1).

Proof. Using (21), we have that, with probability going to 1,

n∑
i=1

(
fθ̂n,i − f0,i

f0,i

)2

1{Xi∈S} ≤

(
n−1

n∑
i=1

˙̀(Xi)
2 supθ∈B(θ0,δ) fθ(Xi)

2

f2
0,i

1{Xi∈S}

)
n‖θ̂n − θ0‖22

≤ ‖ ˙̀ sup
θ∈B(θ0,δ)

fθ‖2Rdb
−2n‖θ̂n − θ0‖22

which is a tight sequence in light of (22).

Lemma B.6. Under (A1) and (A2), we have

n∑
i=1

(
fθ̂n,i − f0,i

f0,i

)
= OP(1).

Proof. In virtue of (A2), the map θ 7→ log fθ(x) is differentiable at θ0, for P -almost every x ∈ Rd

with derivative ˙̀
θ0(x) (this is obtained in [48], in the proof of Theorem 5.39). Using stability

properties for the composition, the map θ 7→ fθ(x) = exp(log(fθ(x))) is differentiable at θ0, for

P -almost every x ∈ Rd with derivative ˙̀
θ0(x)f0(x). We are in position to apply Lemma 19.31

in [48], with rn =
√
n and mθ = fθ/f0. From the mentioned lemma, as

√
n(θ̂n − θ0) is tight,
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defining

Ti(θ) =

[(
fθ,i − f0,i

f0,i

)
− (θ − θ0)T ˙̀

θ0,i

]
,

t(θ) =

∫ [
fθ(x)− f0(x)− (θ − θ0)T ˙̀

θ0(x)f0(x)
]

dx,

we obtain ∣∣∣∣∣
n∑
i=1

{Ti(θ̂n)− t(θ̂n)}

∣∣∣∣∣ = oP(1).

Actually, recalling that
∫

˙̀
θ0(x)f0(x) dx = 0, we find that, for all θ ∈ Θ, t(θ) = 0. Hence, we

obtain

n∑
i=1

(
fθ̂n,i − f0,i

f0,i

)
= n1/2(θ̂n − θ0)T

[
n−1/2

n∑
i=1

˙̀
θ0,i

]
+ oP(1).

where the first term is a OP(1).

B.5 Auxiliary results

Recall some definitions, for any h > 0,

Vh(X1) = E[(Kh(1, 2)− fh,1)2 | X1], (12)

ah(x, y) =
Kh(x− y)− fh(x)

f0(x)
,

uh(x, y, z) = ah(x, y)ah(x, z)1{x∈S},

as well as the short-cut g(i, j, k) for g(Xi, Xj , Xk).

Lemma B.7. Under (H1) and (H2), if S ⊂ Rd is such that for all x ∈ S, f0(x) > b > 0, we

have, for any h > 0,

Vh(X1) ≤ hdC0 (13)

E
[
E[uh(1, 2, 2) | X1]2

]
≤ h−2dC1 (14)

E[uh(1, 2, 3)2] ≤ h−2dC1 (15)

E[|ah(1, 2)| | X2] ≤ 2 (16)

E[E[uh(1, 2, 2) | X2]2 ] ≤ h−2dC2 + C3 (17)

E[uh(1, 2, 2)2 ] ≤ h−3dC4 + C5 (18)

E
[
E[uh(1, 2, 3) | X2, X3]2

]
≤ h−dC6 + C6 (19)

where the constants Ck, k = 0, . . . , 7 depends on K and f0 only.

Proof. Remark that because K is bounded and
∫
|K(u)|du < ∞, we have

∫
|K(u)|k du < ∞,
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for any k ≥ 1. Note that, for every h > 0,

Vh(X1) ≤ E[Kh(2, 1)2 | X1] ≤ h−dvK‖f0‖Rd .

We obtain (14) by writing

E
[
E[uh(1, 2, 2) | X1]2

]
= E

[
Vh(X1)2

f4
0,1

1{X1∈S}

]
≤ h−2dv2

K‖f0‖2Rdb
−4.

To establish (15), note that

E[uh(1, 2, 3)2] = E

[
Vh(X1)2

f4
0,1

1{X1∈S}

]
= E

[
E[uh(1, 2, 2)|X1]2

]
.

For (16), write

E[|ah(1, 2)| | X2] =

∫
|Kh(x−X2)− fh(x)|dx ≤

∫
Kh(x−X2) dx+

∫
fh(x) dx = 2.

Inequality (17) follows from the lines

E[E[uh(1, 2, 2) | X2]2 ] =

∫ (∫
(Kh(x− y)− fh(x))2

f0(x)
1{x∈S} dx

)2

f0(y) dy

≤ 2

∫ (∫
Kh(x− y)2 + fh(x)2

f0(x)
1{x∈S} dx

)2

f0(y) dy

≤ 2b−2

∫ (∫
Kh(x− y)2 + fh(x)2 dx

)2

f0(y) dy

≤ 2b−2

∫ (
h−dvK + ‖fh‖Rd

)2
f0(y) dy

≤ 4b−2
(
h−2dv2

K + ‖f0‖2Rd
)
.

To show (18), write

E[uh(1, 2, 2)2] = E

[
(Kh(1, 2)− fh,1)4

f4
0,1

1{X1∈S}

]
.

Using that (a+ b)4 ≤ 8(a4 + b4), we obtain

E[uh(1, 2, 2)2] ≤ 8E

[(
Kh(1, 2)4 + f4

h,1

f4
0,1

)
1{X1∈S}

]

≤ 8b−4

(
h−3d‖f0‖Rd

∫
K(u)4 du+ ‖f0‖4Rd

)
.
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For (19), we have

E
[
E[uh(1, 2, 3) | X2, X3]2

]
= E

[
E
[(

Kh(3, 1)− fh,3
f0,3

)(
Kh(3, 2)− fh,3

f0,3

)
1{X3∈S} | X1, X2

]2
]
.

We develop and compute bounds for each term. The larger term will be the one associated with

the product of the kernels. We have, by Jensen’s inequality, for any (y, z) ∈ Rd × Rd,

ψh(y, z) :=

(∫ (
Kh(x− y)Kh(x− z)

f0(x)

)
1{x∈S} dx

)2

≤ b−2

(∫
Kh(x− y)Kh(x− z) dx

)2

= b−2h−2d

(∫
K(u)K((y − z)/h+ u) du

)2

≤ b−2h−2d

∫
K(u)K((y − z)/h+ u)2 du.

Then we obtain

E

[
E
[(

Kh(3, 1)

f0,3

)(
Kh(3, 2)

f0,3

)
1{X3∈S} | X1, X2

]2
]

=

∫ ∫
ψh(y, z)f0(y)f0(z) dydz

≤ b−2h−2d

∫ ∫ ∫
K(u)K((y − z)/h+ u)2f0(y)f0(z) dydzdu

= h−db−2

∫ ∫ ∫
K(u)K(v + u)2f0(z + hv)f0(z) dvdzdu

≤ h−db−2‖f0‖Rd
∫ ∫

K(u)K(v + u)2 dvdu

= h−db−2‖f0‖RdvK .

Moreover, as

E
[(

Kh(3, 1)

f0,3

)(
fh,3
f0,3

)
1{X3∈S} | X1, X2

]
=

∫ (
Kh(x−X1)fh(x)

f0(x)

)
1{x∈S} dx ≤ ‖f0‖Rdb−1,

and

E

[(
fh,3
f0,3

)2

1{X3∈S} | X1, X2

]
=

∫
fh(x)2

f0(x)
1{x∈S} dx ≤ ‖f0‖Rdb−1.

we finally obtain the result.

Lemma B.8. Under (H1) and (H2), if S ⊂ Rd is such that for all x ∈ S, f0(x) > b > 0, we
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have that

lim
h→0

hdE

[(
Kh(1, 2)− fh,1

f0,1

)2

1{X1∈S}

]
= vKλ(S).

Proof. Write

E

[(
Kh(1, 2)− fh,1

f0,1

)2

1{X1∈S}

]
= E

[
Vh(X1)

f2
0,1

1{X1∈S}

]

= E

[
E[Kh(1, 2)2 | X1]

f2
0,1

1{X1∈S}

]
− E

[
f2
h,1

f2
0,1

1{X1∈S}

]
.

The right-hand side is bounded by b−2‖f0‖Rd , hence its participation in the stated limit is 0.

For the left-hand side term, use K̃ = K2/vK and write

hdE

[
E[Kh(1, 2)2 | X1]

f2
0,1

1{X1∈S}

]
= hd

∫ ∫
f0(y)

f0(x)
Kh(x− y)21{x∈S} dydx

=

∫ ∫
f0(x− hu)

f0(x)
K(u)21{x∈S} dudx

= vK

∫ ∫
f0(x− hu)

f0(x)
K̃(u)1{x∈S} dudx

= vKλ(S) + vK

∫ ∫
(f0(x− hu)− f0(x))

f0(x)
K̃(u)1{x∈S} dudx.

It remains to note that the term in the right goes to 0, as h → 0, in virtue of the Lebesgue

dominated convergence theorem.

Lemma B.9. Under (H1) and (H2), we have, for every x ∈ Rd and h > 0,

|f0 ? Kh(x)− f0(x)| ≤ g(x)h2

∫
‖u‖22K(u) du.

Proof. Note that
∫
K(u) du = 1 and, by symmetry,

∫
uK(u) du = 0. Write

|f0 ? Kh(x)− f0(x)| =
∣∣∣∣∫ (f0(x− hu)− f0(x))K(u) du

∣∣∣∣
=

∣∣∣∣∫ (f0(x− hu)− f0(x)− (hu)T∇f0(x))K(u) du

∣∣∣∣
≤
∫
|f0(x− hu)− f0(x)− (hu)T∇f0(x)|K(u) du,

and use (H1) to conclude.

Lemma B.10. Under (H1), (H2) and (H3), there exists c2 > 0 such that
∫
Scbn

fhn(x) dx ≤ c2b
β
n.
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Proof. Note that∫
Scbn

fh(x) dx = P(Scbn) +

∫
Scbn

(Khn ? f0 − f0) dx

= P(Scbn) +

∫
(Khn ? 1Scbn

(x)− 1Scbn
(x))f0(x) dx.

The term in the left is bounded by cbβn as supposed in (H3). For the term in the right, define

Sbn,hn = {y + hnu : u ∈ [−1, 1]d, y ∈ Sbn}. Note that, by (H2), as soon as x /∈ Sbn,hn ,

Khn ? 1Scbn
(x) = 1, hence

|Khn ? 1Scbn
(x)− 1Scbn

(x)| ≤ 1Sbn,hn .

Moreover, for any x ∈ Sbn,hn , we have, by (H3), that

f0(x) ≤ sup
y∈Sbn

sup
u∈[−1,1]d

f0(y + hnu) ≤ bn sup
y∈Sbn

sup
u∈[−1,1]d

f0(y + hnu)

f0(y)
= bnC,

hence, 1Sbn,hn ≤ 1f0(x)≤Cbn , leading to∣∣∣∣∫ (Khn ? 1Scbn
(x)− 1Scbn

(x))f0(x) dx

∣∣∣∣ ≤ ∫ 1f0(x)≤Cbnf0(x) dx ≤ (Cbn)β.

Appendix C Parametric maximum likelihood estimator

In this section are reported some classical results on the maximum likelihood estimator of the

density. When the model is well-specified, we need the consistency and the asymptotic normality

of the estimated parameter θ0.

(A1) The set Θ ⊂ Rq is compact. The model P = {fθ : θ ∈ Θ}, a collection of densities on Rd,
is identifiable, i.e., for every θ1 6= θ2 in Θ, fθ1 6= fθ2 and the envelop FΘ(x) = supθ∈Θ fθ(x)

is such that E[log(FΘ,1)] < +∞. There exists an R+-valued measurable function ˙̀ with

E ˙̀(X1)2 <∞ for every x ∈ Rd, for every θ1 and θ2 in Θ,

| log(fθ1(x))− log(fθ2(x))| ≤ ˙̀(x)‖θ1 − θ2‖2.

There exists δ > 0 such that the function ˙̀× supθ∈B(θ0,δ) fθ is bounded.

It follows from (A1) that the class of functions P is Glivenko-Cantell [49, Theorem 2.7.11],

i.e.,

sup
θ∈Θ

∣∣∣∣∣n−1
n∑
i=1

(log(fθ(Xi)− E[log(fθ(X1)])

∣∣∣∣∣→ 0. (20)

37



Whenever f0 ∈ P, it holds that θ̂n → θ0, in probability [31, Theorem 2.1] or [48, Lemma 5.35].

For now, asking the above Lipschitz condition to guarantee the Glivenko-Cantelli might seem

a bit restrictive [31, Lemma 2.4], but this condition will also be required to derive asymptotic

normality of θ̂n as well as to obtain uniform convergence (over x ∈ Rd) of fθ̂n(x) to fθ0(x).

Indeed, we have that for any δ > 0, with probability going to 1, θ̂n ∈ B(θ0, δ). Hence, using the

mean-value theorem, we find

|fθ̂n(x)− fθ0(x)| ≤ ‖θ̂n − θ0‖2 ˙̀(x) sup
θ∈B(θ0,δ)

fθ(x) (21)

for every x ∈ Rd. Conclude using that ˙̀× supθ∈B(θ0,δ) fθ is bounded and the convergence in

probability of θ̂n to θ0.

(A2) The true parameter θ0 an interior point of Θ ⊂ Rq. The model P is differentiable in

quadratic mean at θ0, i.e., there exists a measurable vector-valued function ˙̀
θ0 , with

E[‖ ˙̀
θ0(X1)‖22], such that∫ [√

fθ −
√
fθ0 −

1

2
(θ − θ0)T ˙̀

θ0

√
fθ0

]2

dλ = o(‖θ − θ0‖22).

The matrix I = E[ ˙̀
θ0(X1) ˙̀

θ0(X1)T ] is invertible.

As a consequence of the previous set of conditions [48, Lemma 5.39], we have

n1/2(θ̂n − θ0) = I−1n−1/2
n∑
i=1

˙̀
θ0(Xi) + oP(1). (22)

where E[ ˙̀
θ0(X1)] = 0. In particular, it holds that

√
n(θ̂n − θ0) = OP(1).
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