
HAL Id: hal-01803727
https://hal.science/hal-01803727

Submitted on 30 May 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - ShareAlike 4.0 International
License

Stresses in non-equilibrium fluids: Exact formulation
and coarse-grained theory

Matthias Krüger, Alexandre Solon, Vincent Démery, Christian M Rohwer,
David S. Dean

To cite this version:
Matthias Krüger, Alexandre Solon, Vincent Démery, Christian M Rohwer, David S. Dean. Stresses
in non-equilibrium fluids: Exact formulation and coarse-grained theory. Journal of Chemical Physics,
2018, 148 (8), pp.084503. �10.1063/1.5019424�. �hal-01803727�

https://hal.science/hal-01803727
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
https://hal.archives-ouvertes.fr
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Starting from the stochastic equation for the density operator, we formulate the exact (instantaneous) 
stress tensor for interacting Brownian particles and show that its average value agrees with expressions 
derived previously. We analyze the relation between the stress tensor and forces due to external 
potentials and observe that, out of equilibrium, particle currents give rise to extra forces. Next, we 
derive the stress tensor for a Landau-Ginzburg theory in generic, non-equilibrium situations, finding 
an expression analogous to that of the exact microscopic stress tensor, and discuss the computation 
of out-of-equilibrium (classical) Casimir forces. Subsequently, we give a general form for the stress 
tensor which is valid for a large variety of energy functionals and which reproduces the two mentioned 
cases. We then use these relations to study the spatio-temporal correlations of the stress tensor in a 
Brownian fluid, which we compute to leading order in the interaction potential strength. We observe 
that, after integration over time, the spatial correlations generally decay as power laws in space. These 
are expected to be of importance for driven confined systems. We also show that divergence-free 
parts of the stress tensor do not contribute to the Green-Kubo relation for the viscosity. 

I. INTRODUCTION

The physics of out-of-equilibrium fluids is fascinating in
its complexity and the great variety of phenomena they exhibit.
This is in part due to the many ways a system can be forced out
of equilibrium, e.g., by a continuous external driving such as
an applied shear,1,2 or an imposed temperature gradient,3 or by
a (sudden) change of a control parameter as in a temperature
quench producing a supercooled liquid (see, e.g., Ref. 4).

In general, describing the static properties of fluids in ther-
mal equilibrium is already a formidable task due to the inherent
many-body interactions.5 In this respect, density functional
theory (DFT)6,7 has been very successful in the study of static
density profiles and correlation functions. Concerning the
dynamics (or non-equilibrium situations), insights have been
obtained in the dilute limit from exactly solvable two-body
models,1,8–10 e.g., from the Boltzmann or the Smoluchowski
equation. For multi-body dynamics, approximate treatments
include mode coupling theory11,12 or dynamical density func-
tional theory (DDFT),13–15 including power functional the-
ory.16 Non-equilibrium molecular fluids have also been studied
extensively by computer simulations.17–20

a)Current address: Institute for Theoretical Physics, Georg-August-Universität
Göttingen, 37073 Göttingen, Germany.

While the above-mentioned approaches start from the
microscopic details of the fluid (at the particle level), a very
different approach starts from effective field theories (such as
Landau-Ginzburg theory21–23), where microscopic details are
neglected in order to study only the large-scale phenomena,
notably in near-critical fluids. Non-equilibrium scenarios also
yield insights and challenges in this context: Several compu-
tations have been concerned with critical Casimir forces away
from equilibrium, i.e., for temperature quenches,24–26 mov-
ing objects,27–29 or shear in confinement.30 Non-equilibrium
fluctuations arising from conservation laws have also been
demonstrated to lead to Casimir forces in various setups.31–39

Moreover, the pressure and stresses exerted by active systems
have attracted growing attention for their unusual proper-
ties.40,41 In all these studies, the computation of forces and
stresses in out-of-equilibrium situations is non-trivial, and the
form of the applicable stress tensor has been discussed (partly
controversially).26,42,43

In this manuscript, we derive several expressions for
the stress tensor of a liquid. In particular, starting from the
microscopic dynamics of interacting Brownian particles, we
compute the exact stress tensor for any given (snapshot) den-
sity realization. Importantly, the stress tensor’s average agrees
with the form obtained from the Smoluchowski equation.44–46

Before averaging, the fluctuating form is naturally well suited
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for use in Green-Kubo fluctuation relations.47,48 As a sec-
ond step, we derive a non-equilibrium version of the stress
tensor for a Landau-Ginzburg Hamiltonian and identify the
various contributions, which we relate to those found in the
exact microscopic version. Using the (non-equilibrium) stress
tensor to compute the force on an embedded object, the results
are in agreement with the existing literature.26 We then use the
insights obtained from the analysis of Brownian particles and
Landau-Ginzburg theory and derive a form of the stress tensor
which is valid for a general energy functional, in particular
reproducing the two aforementioned cases. As an application,
we use the expression for the instantaneous stress tensor to
compute temporal and spatial stress correlations; this can be
done exactly to leading order in the interaction potential V. We
show that, after integration over time, the stress-stress corre-
lations decay as power laws in space. These correlations have
been of recent interest49 (see also Ref. 50) and are expected
to influence the flow in confinement51 or for inhomogeneous
flow velocities.52 Finally, we use the Green-Kubo formula to
deduce the viscosity of the liquid from the stress correlations.

The manuscript is organized as follows: Sec. II introduces
the system under consideration and defines several observables
of interest. Section III gives the exact instantaneous stress
tensor for the density operator, while Sec. IV analyzes the
stresses in a standard local field theory (with only zeroth and
first derivative terms). Section V derives an expression for the
stress tensor for a general energy functional. Section VI pro-
vides an application: We compute the correlations of the stress
tensor.

II. THE SYSTEM AND OBSERVABLES
A. System

To investigate non-equilibrium liquids, we choose the
well-studied and experimentally relevant model system of
over-damped spherical Brownian particles. This system has
the advantage that, even if driven far from equilibrium, the
solvent stays equilibrated in any situation and acts as a
bath at the given temperature. This way, a well-characterized
out-of-equilibrium state is obtained.

Using Brownian dynamics directly implies a canonical or
grand-canonical description, where the solvent acts as a bath
at the given temperature. We generally consider systems for
which canonical and grand-canonical descriptions are equiva-
lent due to a very large (infinite) particle number (for example,
a semi-infinite system bound by a planar surface).

The Brownian particles with positions at xµ are sub-
ject to a potential Ψ({xµ}) that includes pairwise interactions
(denoted by V ) as well as an external potential (denoted U),

Ψ({xµ}) =
∑
µ<ν

V (xµ − xν) +
∑
µ

U(xµ). (1)

Indices µ and ν run over all particles. The thermal energy
scale is denoted by kBT ≡ β�1, with Boltzmann’s constant kB

and the (solvent-imposed) temperature T. The bare diffusiv-
ity (in the absence of interactions) of the Brownian particles
is denoted by D. Each particle thus obeys the over-damped
Langevin equation

dxµ
dt
= DβFµ +

√
2Dξµ, (2)

where ξµ is a Gaussian white noise with zero mean and
with correlations 〈ξµ ,i(t)ξν ,j(t ′)〉 = δµνδijδ(t � t ′), and Fµ
= −∇xµΨ is the force acting on particle µ due to the poten-
tial Ψ. (Throughout, i and j label spatial components, while
Greek indices label particles.) If Ψ = 0, each particle performs
isotropic Brownian motion.

Equation (2) is a standard theoretical model, but it neglects
hydrodynamic interactions in comparison with the experimen-
tal situation of Brownian suspensions so that it is sometimes
referred to as the free draining limit.

B. Observables—Mean and fluctuating—In and out
of equilibrium

We summarize the important observables for this
manuscript in Table I. The basic quantity is the density
operator,5

ρ(x, t) =
∑
µ

δ(x − xµ(t)). (3)

It is the starting point for all considerations that follow. Aver-
aged over the equilibrium distribution, one obtains the mean
equilibrium density ρ̄, defined as

ρ̄(x) ≡ 〈ρ(x)〉eq =

〈∑
µ

δ(x − xµ)

〉eq

. (4)

Here we have introduced the equilibrium average 〈. . . 〉eq,
which, for the over-damped system, is exactly given by

〈. . . 〉eq =
∫ dΓ . . . e−βΨ(Γ)

∫ dΓe−βΨ(Γ)
, (5)

where Γ ≡ {xµ}. As noted above, for large systems the grand
canonical average agrees with the canonical one given here.
We introduce the density fluctuation field φ(x, t), which quan-
tifies the deviation of the density operator from its equilibrium
mean

φ(x, t) = ρ(x, t) − ρ̄(x). (6)

Fluctuations can be characterized by their two-point correla-
tion function

C(x, x′, t, t ′) =
〈
φ(x, t)φ(x′, t ′)

〉
, (7)

TABLE I. Observables relevant for this manuscript. Note that the mean den-
sity, the two-body density, and the pair correlation can be evaluated both in
and out of equilibrium.

Symbol Meaning

ρ(x, t) Density operator: ρ(x, t) =
∑

µδ(x �

xµ (t))
ρ̄(x) = 〈ρ(x)〉eq Mean density in equilibrium
φ(x, t) Fluctuation of density about its equilib-

rium value, φ(x, t) = ρ(x, t) − ρ̄(x)
〈φ(x, t)φ(x′, t′)〉 Time-dependent correlations of density

fluctuations
〈ρ(x, t)〉 Mean density
ρ(2)(x, x′) Averaged two-body density: ρ(2)(x, x′)

=
〈∑

µ,ν δ(x − xµ )δ(x′ − xν )
〉

g(r) Pair correlation function in bulk: g(r)
= 1

N〈ρ〉

〈∑
ν,µ δ(r − xν + xµ )

〉
2



where we introduced the average 〈. . . 〉 over noise realizations
given a (possibly non-equilibrium) ensemble of initial condi-
tions. The correlation function in Eq. (7) is thus well-defined
in or out of equilibrium. In stationary state, C is a function of
t � t ′ only53 and depends only on the relative coordinate x � x′

in homogeneous systems. Its spatial Fourier transform, C̃ is
the intermediate scattering function.1

Another important quantity (related to C) is the two-body
density, defined by5

ρ(2)(x, x′, t) =

〈∑
ν,µ

δ(x − xµ(t))δ(x′ − xν(t))

〉
. (8)

For bulk systems, ρ(2) depends only on one coordinate r (see
Ref. 5) and can be expressed via the pair correlation function
g,

g(r) =
1

〈ρ〉2
ρ(2)(x + r, x)

=
1

N〈ρ〉

〈∑
µ,ν

δ(r + xµ − xν)

〉
. (9)

Again, the above average for g can be evaluated in or out
of equilibrium. One example for a non-equilibrium pair cor-
relation function is found in systems under shear, where g
is distorted compared with that of the reference equilibrium
case.1

III. EXACT MICROSCOPIC STRESS TENSOR

In this section, we derive and discuss the exact micro-
scopic stress tensor (including its fluctuations) for the system
of Brownian particles.

A. Microscopic theory

The stress tensor is related to forces in the system. These
forces can be read off directly on the equation of motion, which
for the density operator ρ is given by54

∂ρ

∂t
(x, t) = ∇ ·

[
Dρ(x, t)∇

δ βE
δρ(x, t)

+
√

2Dρ(x, t)η(x, t)

]
.

(10)

Equation (10), interpreted with the Itō convention, is an exact
reformulation of Eq. (2). The term η is a vectorial Gaussian
white noise field with zero mean and correlations〈

ηi(x, t)ηj(x′, t ′)
〉
= δijδ(x − x′)δ(t − t ′). (11)

E is the (free) energy functional, which contains an ideal gas
part, a contribution from interactions via the inter-particle
potential V, and the external potential U,

E[ρ(x)] = kBT
∫

dxρ(x) ln(ρ(x))

+
1
2

∫
dxdx′ρ(x)V (x − x′)ρ(x′)

+
∫

dxρ(x)U(x). (12)

The reader should note that E is not the free energy functional
of DFT.6 Indeed, one important difference of this work with

respect to DDFT13–15 is the presence of the noise in Eq. (10).
The stress tensor for DDFT was discussed in Ref. 46.

Equation (10) may now be rewritten for identification of
the stress tensor σ: The divergence of the stress tensor appears
directly,45,46

∂ρ

∂t
(x, t) = −βD∇ · [∇ · σ(x, t) − ρ(x, t)∇U(x)]

+∇ ·
[√

2Dρ(x, t)η(x, t)
]

. (13)

Equation (13) is a force balance between external and inter-
particle forces, where the latter are expressed via the stress
tensor. The divergence of the stress tensor is thus identified by
comparing Eqs. (13) and (10). Using Eq. (12), we obtain

∇ · σ(x) = −kBT∇ρ(x) − ρ(x)∇
∫

dx′V (x − x′)ρ(x′). (14)

The divergence of the stress tensor at position x thus has a
local entropic or osmotic contribution involving the density
at x, and an interaction term which involves the potential V.
We emphasize that Eq. (14) gives the instantaneous stress ten-
sor, which is valid for any given (snapshot) configuration of
particles.

The noise-averaged form of Eq. (14) can be rewritten
using the two-body density of Eq. (8), which can also be
expressed via〈

ρ(x)ρ(x′)
〉
= 〈ρ(x)〉δ(x − x′) + ρ(2)(x, x′). (15)

Noting that the first term on the rhs of Eq. (15) does not con-
tribute to Eq. (14) (reflecting the fact that a particle cannot
exert a force on itself), we obtain the familiar form for the
divergence of σ,45

〈∇ · σ(x)〉 = −kBT∇〈ρ(x)〉

−

∫
dx′[∇V (x − x′)]ρ(2)(x, x′). (16)

This expression may, for example, be found starting from the
Smoluchowski equation.46 The expression for the stress ten-
sor itself, both instantaneous and averaged, can be obtained
from Eqs. (14) and (16), respectively. Indeed, we show in
Appendix A that for a spherical potential V (r) = V (r) with
r = |r|, the following expression of σ leads to the correct force
balance,

σ(x) = −kBT ρ(x)I +
1
2

∫ 1

0
dλ

∫
dr

×
rr
r

V ′(r)ρ(x + (1 − λ)r)ρ(x − λr). (17)

Averaging Eq. (17), we find for the mean stress tensor

〈σ(x)〉 = −kBT〈ρ(x)〉I +
1
2

∫ 1

0
dλ

∫
dr

×
rr
r

V ′(r)ρ(2)(x + (1 − λ)r, x − λr) , (18)

which is the celebrated Irving-Kirkwood formula44 for the
stress tensor; Eq. (17) extends it to individual microscopic
configurations. Note that adding a divergence-free term to the
stress tensor does not change the force balance in Eq. (13) so
that different expressions of the stress tensor are acceptable.
However, the expression of Eq. (18) can be argued to possess
the most physical symmetries.55
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B. Stress tensor for the field φ

For further use, we also give the form of the stress tensor
in terms of the fluctuating field φ, such that ρ = ρ̄ + φ. From
Eq. (17), this directly gives

σ(x) = −kBT
[
ρ̄(x) + φ(x)

]
I +

1
2

∫ 1

0
dλ

∫
dr

×
rr
r

V ′(r)
[
ρ̄ + φ

]
(x + (1 − λ)r)

[
ρ̄ + φ

]
(x − λr).

(19)

If the correlations of the field φ are known (e.g., assuming
Gaussian fluctuations56), Eq. (19) can then be used to compute
the correlations of the stress tensor and the viscosity via Green-
Kubo relations.

Equation (19) can be simplified further to a form which
displays clearly the off-diagonal components, and which will
be useful for computing shear viscosity. Up to a divergence-
free term, one gets for bulk systems, where ρ̄ is not a function
of x, that [this may be directly inferred from Eq. (14)]

σ(x) = −

(
kBTφ(x) + ρ̄

∫
dx′ V (x − x′)φ(x′)

)
I

+
1
2

∫ 1

0
dλ

∫
dr

rr
r

V ′(r)φ(x + (1 − λ)r)φ(x − λr).

(20)

The above equation shows that only the terms quadratic in φ
contribute to the off-diagonal components of the stress tensor
in bulk (and thus, as we will see later, to the viscosity). While
Eq. (20) is useful for computation of off-diagonal elements,
care should be taken for the diagonal term in this represen-
tation, because the integral over the potential may become
arbitrarily large [Eq. (20) omits diagonal terms due to ρ̄, which
are necessary to regularize the pair correlation for large V ].

C. The different terms in the force balance

The terms in Eq. (13) are interpreted physically as force
densities. There is the force (density) acting on the external
potential U (for example, the force acting on a wall which
bounds the fluid),

f (U)(x) = ρ(x)∇U(x). (21)

In equilibrium, there is no net particle current in the system
so that the external force balances on average the divergence
of σ

〈f (U)(x)〉eq = 〈∇ · σ(x)〉eq . (22)

Equation (22) reflects the well-known fact that, in equilibrium,
the stress tensor is directly related to the force acting on walls
or embedded objects. Out of equilibrium, the mismatch of f (U )

and ∇ ·σ gives rise to particle currents.
Taking the time derivative of the density operator in

Eq. (3), one obtains

∂ρ

∂t
(x, t) = −∇ ·



∑
µ

vµ(t)δ(x − xµ(t))


, (23)

where vµ = dxµ/dt. The instantaneous current is thus identified
to be

j(x, t) =
∑
µ

vµ(t)δ(x − xµ(t)). (24)

Comparing Eqs. (23) and (13), we obtain for the mean current

kBT
D
〈j〉 ≡ 〈f (j)〉 = 〈∇ · σ〉 − 〈f (U)〉. (25)

Equation (25) shows that ∇ ·σ and f (U ) balance the frictional
force f (j) of that current.1 Equation (25) has yet another impor-
tant consequence: Out of equilibrium, the stress tensor σ may
not generally be used to compute forces on walls or embedded
objects because one needs to account for the contribution of
the currents.

IV. STRESS TENSOR IN LANDAU-GINZBURG THEORY

In this section, we consider the stress tensor for field
theories obeying the Landau-Ginzburg Hamiltonian. In this
phenomenological description, no fundamental relations for
forces exist, and, indeed, the form of the stress tensor in this
context has been a subject of recent debate.26,42,43 The form
for the stress derived in this section is in close analogy to the
microscopic stress tensor of Eq. (17), and the found equation
of motion is analogous to Eq. (25). This derivation, in direct
comparison to the exact one, thus sheds light on the aforemen-
tioned debate and demonstrates how non-equilibrium forces in
Landau-Ginzburg theory can be found unambiguously. It also
demonstrates the main differences between computations of
forces in or out of equilibrium.

Phenomenological field theories are particularly well
suited to investigate large-scale generic phenomena. One may,
for example, study the universal aspects of systems near crit-
ical points21–23 or the properties of long-ranged correlations
which are present due to out-of-equilibrium initial conditions
as, e.g., in Ref. 38. In such scenarios, one seeks expressions
independent of the microscopic details (such as the interaction
potential V ). We thus investigate in this section the possibility
of expressing the stress tensor directly at the coarse-grained
level of the field theory, based purely on the Landau-Ginzburg
Hamiltonian. Let us consider the Hamiltonian for a scalar field
Φ in d dimensions,

H[Φ] =
∫

dx
[
κ

2
(∇Φ)2 + U(x)

]
≡

∫
dx H(x). (26)

Although higher orders in ∇Φ can be included based on sym-
metry arguments,23 we do not consider this case here. U
can be a general polynomial of Φ, but the simplest exam-
ple of the above field theory is the Gaussian case where
U(x) = m(x)Φ(x)2/2. Here, m(x) can be a function of position
so that it may include contributions from external potentials.
For bulk, with m constant in space, the correlation length is
then set by

√
κ/m.23

As mentioned, at the level of effective field theories such
as Eq. (26), the definition of mechanical quantities is not obvi-
ous. Indeed, one needs to define the nature of the field Φ and
specify whether it corresponds to a matter field (for instance,
a particle density, a spin density, or local charge density) or
a potential field (for instance, the local electrostatic poten-
tial or chemical potential). If the field Φ is in an arbitrary
non-equilibrium configuration, in the mechanical sense, then
there are locally unbalanced body forces in the system. We
proceed by applying a fictitious external field so that the sys-
tem is in local mechanical equilibrium. The force exerted by

4



this fictitious field on a volume therefore cancels out exactly
the local body forces generated by the internal interactions in
the system. Concretely, we apply an external field h which
shifts the overall energy (Hamiltonian) of Φ to

Hh[Φ] = H[Φ] +
∫

dx h(x)Φ(x). (27)

Next, for a given configuration ofΦ, the external field is chosen
to ensure local mechanical equilibrium of the given configu-
ration when the field is applied, i.e., δHh

δΦ(x) = 0. The required
field h is thus

h(x) = −
δH[Φ]
δΦ(x)

, (28)

from which we can extract the force density fh acting on the
sub-volume V due to the imposed field, which follows from
its fundamental definition from the Hamiltonian Hh (see e.g.,
Ref. 26),

fh(x) = −Φ(x)∇h(x) = Φ(x)∇
δH[Φ]
δΦ(x)

. (29)

If Φ is a density field, the force density may be viewed intu-
itively as the product of the density and the gradient of the
chemical potential associated with H[Φ].

Because the force due to h balances the force density that
is not due to h, we obtain for the (body) force density f (j) when
h = 0:

f (j)(x) = −Φ(x)∇
δH[Φ]
δΦ(x)

. (30)

We added the superscript j in order to emphasize the similar
nature of the forces in Eqs. (30) and (25), which will become
more apparent below.

We note that Eq. (30) is exactly the force density in
Eq. (10), when one makes the identificationΦ ≡ ρ and H = E.
It is important to note that if the field theory is written down in
terms of the fluctuations of the field Φ about its average value
Φ, as Φ = Φ + φ, and the Hamiltonian for the fluctuations is
H f [φ], the local body force is given by

f (j)(x) = −
[
Φ(x) + φ(x)

]
∇
δHf

δφ(x)
. (31)

In the limit of small fluctuations the above can be used to derive
an approximate model B dynamics for interacting particle
systems,57–60 where only linear terms in φ are kept, yielding

f (j)(x) = −Φ(x)∇



∫
dx′

δ2Hf

δφ(x)δφ(x′)

������φ=0

φ(x′)


. (32)

Next, we identify the force on the external potential, as in
Eq. (21). Here, the force density f (U ) is identified by the
change of H under a small displacement of the potential or,
equivalently, a small displacement of the object giving rise to
the potential U.26 Defining the vector X from the origin to a
randomly chosen point on the object, we have

f (U) = −∇XH. (33)

Manipulating the partial and functional derivatives as detailed
in Appendix B, we obtain the relation between the force density
in Eqs. (30) and (33),

f (j) = ∇ · T − f (U), (34)

where we have introduced the stress tensor T,

Tij(x) = δij

(
H(x) − Φ(x)

δH
δΦ(x)

)
−

∂H
∂∇jΦ(x)

∇iΦ(x). (35)

Equation (35) is the main result of this section. (In this section,
we use T instead of σ, following the usual field theory nota-
tion.) The structure of Eq. (34) is identical to that in Eq. (25)
so that the field theory stress tensor from Eq. (35) is on the
same footing as the microscopic one. As mentioned below
Eq. (25), the computation of forces on external objects, f (U ),
is non-trivial out of equilibrium because of the term involv-
ing the current in Eq. (34). This will be relevant, for example,
when computing Casimir forces between walls or objects. As
a crosscheck, we show in Appendix B that Eq. (34) gives the
same value for f (U ) as the expression previously derived in
Eq. (18) of Ref. 26. A particular case worth mentioning is
that of no-flux boundary conditions, where the surface nor-
mal component of f (j) is forced to vanish. For the geometry
of two parallel plates, the force (or pressure) acting on the
plates can then be computed by evaluating the stress tensor in
Eq. (35) at the given surface. This was used for computation
of non-equilibrium Casimir forces in Ref. 38 and tested quan-
titatively with simulations of interacting Brownian particles in
Ref. 39.

In global equilibrium, one can show26 that f (j) vanishes
on average [see Eq. (B6)], as was the case in the microscopic
theory in Eq. (25). Our formulation (and the form of T) then
agrees with the commonly accepted equilibrium definition of
the stress tensor Teq, i.e.,

〈∇ · T〉eq = 〈∇ · Teq〉eq = 〈f (U)〉eq (36)

and Teq expressed as [using Eq. (B6)]61

T eq
ij = δijH −

∂H
∂∇jΦ

∇iΦ. (37)

V. GENERAL FORMULA FOR THE STRESS TENSOR

Inspired by the similarities of the formulations in Secs. III
and IV, we now proceed to derive a form for the stress tensor
for a more general case, which encompasses energy function-
als such as Eqs. (12) and (26). To this end, we introduce a
Hamiltonian for a field Φ [which, for the case of Eq. (12),
takes the role of the density ρ],

H[Φ] =
1
2

∫
Φ(x)V (x − x′)Φ(x′)dxdx′ +

∫
U(Φ(x), x)dx.

(38)
Here, the first term incorporates non-local interactions, while
the second part describes local interactions, as well as external
potentials. U(Φ, x) can be any function of Φ(x) and x for the
following derivation to be valid. To make connections to the
previous sections, we note that the local part for Brownian
particles of [Eq. (12)] is recovered with

U(Φ, x) = kBTΦ log(Φ) + UΦ, (39)

while the non-local part of Eq. (38) already takes the form of
Eq. (12). On the other hand, the non-local part of the Landau-
Ginzburg case [Eq. (26)] is recovered for

V (x) = −κ∇2δ(x), (40)
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which, used in Eq. (38), yields κ
2 (∇Φ)2. (Note that by “non-

local” we mean any contributions giving rise to correlations of
the field Φ with a non-zero correlation length in equilibrium.)
This shows that the cases of Secs. III and IV are contained in
Eq. (38).

In order to derive the stress tensor from Eq. (38), we again
rely on the body force density of Eq. (30), which is equally
valid for the Hamiltonian of Eq. (38). This yields

f (j)(x) = −Φ(x)∇
δH[Φ]
δΦ(x)

,

= −Φ(x)∇
∫

dx′V (x − x′)Φ(x′) − Φ(x)∇
∂U
∂Φ

. (41)

We now use Eq. (B1) for U,

∇iU(Φ(x), x) = (∇iΦ)
∂U
∂Φ
−
∂U
∂Xi
= (∇iΦ)

∂U
∂Φ

+ f (U)
i , (42)

where, as before, − ∂U
∂Xi

is the force density in direction i acting
on the object described by the coordinate X. We now find the
divergence of the stress tensor,

∇ · σ(x) = f (j)(x) + f (U)(x) (43)

= −Φ(x)∇
∫

dx′V (x − x′)Φ(x′)

+∇

[
U − Φ(x)

∂U
∂Φ(x)

]
, (44)

where we could equivalently have used the symbol T for the
stress tensor, as in Sec. IV. Equation (44) shows that the local
part of H yields a diagonal contribution to the stress tensor,
while its non-local part further yields off-diagonal compo-
nents. This also demonstrates that stresses are only propagated
in the presence of a correlation length in the system. In order
to invert the divergence of the non-local part, we use the steps
of Appendix A. We arrive at

σij(x) = δij

[
U(Φ(x), x) − Φ(x)

∂U
∂Φ(x)

]

+
1
2

∫
dr

rirj

r
V ′(r)

∫ 1

0
dλΦ(x − λr)Φ(x + [1 − λ]r).

(45)

This is the main result of this section. To repeat, this form of the
stress tensor can be used for energy functionals which contain
a quadratic non-local part, and an arbitrary local part, as given
in Eq. (38). As mentioned before, this result reproduces, in
particular, the stress tensor for the exact description of Brow-
nian particles, Eq. (12), as well as for the phenomenological
Landau-Ginzburg theory. The two theories are thus solidly
linked, and the claimed validity of Eq. (35) is underpinned.
This is hopefully enlightening regarding the debate of stresses
in phenomenological theories.

In order to demonstrate the above-mentioned recovery of
Eqs. (17) and (35), we start with the Brownian case. Using
Eq. (39) in Eq. (45) yields

U(Φ(x), x) − Φ(x)
∂U

∂Φ(x)
= −kBTΦ(x), (46)

which is the correct result—see Eq. (17).

To reproduce Eq. (35), we use V (x) = �κ∇2δ(x) in
Eq. (45). After some computation steps, we find

1
2

∫
dr

rirj

r
V ′(r)

∫ 1

0
dλΦ(x − λr)Φ(x + [1 − λ]r)

= κ

[
δij

6

[
2Φ∇2

Φ − (∇Φ)2
]

+
2
3
Φ∇i∇jΦ−

1
3
∇iΦ∇jΦ

]
.

(47)

On the other hand, evaluating Eq. (35) for H = κ
2 (∇Φ)2, one

obtains

κ

[
δij

(
1
2

[∇Φ(x)]2 + Φ(x)∇2
Φ(x)

)
− ∇iΦ(x)∇jΦ(x)

]
. (48)

While Eqs. (47) and (48) are not equal, their difference

2κ
3

[
∇i(Φ∇jΦ) − δij∇k(Φ∇kΦ)

]
(49)

is divergence-free. This demonstrates that Eq. (45) indeed
reproduces Eqs. (17) and (35). The observed difference in
divergence-free terms is acceptable and has no physical con-
sequences as regards stresses and forces. Indeed, these differ-
ences are introduced when inverting the divergence of Eq. (44),
which is a not unique process.

VI. APPLICATION: STRESS CORRELATIONS
OF BROWNIAN SUSPENSIONS

In this section, we make use of the expressions derived for
the microscopic stress tensor Eq. (19) to compute the two-point
correlations of the stress at different positions and times for a
bulk equilibrium system. We provide the limit of high tem-
peratures, which corresponds to the leading-order term in the
external potential V. We also compare with the results obtained
from the Gaussian field theory, using Eq. (35) to define the
stress tensor.

Note that this two-point correlation function can be used,
via Green-Kubo relations,62 to compute the viscosity (in lin-
ear response to a flow field). Because of this, and because it
incorporates the fluctuations around equilibrium, the correla-
tion function is a quantity whose computation requires a form
for the stress tensor which is valid out of equilibrium. [For
example, the form of Eq. (37) should not be used.]

A. Diagonal components—Pressure fluctuations

We start with the diagonal part of the stress tensor in
Eq. (19), denoting δσ = σ � 〈σ〉eq. The leading term at small
V (or high T ) results from the ideal contribution in Eq. (19).
It reads (without summing repeated indices)

lim
βV→0

〈δσii(x, t)δσkk(0, 0)〉eq = (kBT )2 〈φ(x, t)φ(0, 0)〉eq .

(50)
In order to determine the leading order in V, the correlation
function in Eq. (50) should be evaluated for V = 0, which
corresponds to the ideal gas. The correlations for the ideal
gas are denoted 〈·〉id and are computed in Appendix C. The
two-point correlation reads

〈Φ(x, t)Φ(0, 0)〉id =
ρ̄

(4πDt)3/2
e−
|x|2
4Dt . (51)
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We obtain

lim
βV→0

〈δσii(x, t)δσkk(0, 0)〉eq =
(kBT )2 ρ̄

(4πDt)3/2
e−
|x|2
4Dt . (52)

We observe from Eq. (52) that the temporal correlations are
due to a diffusion process. The long-ranged character of the
correlations in space becomes more apparent after integrating
Eq. (52) over time∫ ∞

0
dt lim

βV→0
〈δσii(x, t)δσkk(0, 0)〉eq =

(kBT )2 ρ̄

4πD|x|
. (53)

This quantity decays slowly, as the inverse of the distance.
Because the time integral of such equilibrium correlations
appears typically in linear response formulae, we expect the
long-ranged form of Eq. (53) to be relevant for non-equilibrium
perturbations.

As a final note, the equal-time fluctuations of pressure
from Eq. (52) are∫

dx lim
βV→0

〈δσii(x, 0)δσkk(0, 0)〉eq = (kBT )2 ρ̄. (54)

These are the pressure fluctuations of an ideal gas, which have
a partly controversial history, starting with Gibbs.63

We note that the stress tensor of Landau-Ginzburg the-
ory, Eq. (35), together with a Gaussian Hamiltonian, Eq. (26),
yields a qualitatively different result for spatial pressure cor-
relations. The reason is that Eq. (35) yields a stress tensor
which is purely quadratic in the fluctuating field Φ, resulting
from the symmetry assumptions underlying the field theo-
retic Hamiltonian in Eq. (26).23 In contrast to that, it is the
term ∼ρ ln ρ in Eq. (12) which yields the correct ideal gas
contribution.

B. Diagonal–off-diagonal correlations

As visible in Eq. (20), the off-diagonal component of the
stress involves the potential V. The leading term of the corre-
lation between diagonal and off-diagonal components of σ is
thus linear in V. This term reads (for i , j)

lim
βV→0

〈
δσij(x, t)δσkk(0, 0)

〉eq
= kBT

∫ 1

0
dλ

∫
dr

×
rirj

r
V ′(r) 〈φ(x + (1 − λ)r), t)φ(x − λr, t)φ(0, 0)〉id ,

(55)

where, again, the correlation of φ is evaluated for the ideal
gas. Since the density of the ideal gas has Poissonian statis-
tics,64 the three-point correlator in Eq. (55) is per se non-zero.
Using Eq. (C7), we find the correlation in terms of Fourier
transforms,

〈φ̃(k, t)φ̃(k′, t)φ̃(q, 0)〉id = (2π)3ρδ(k + k′ + q)e−Dq2t , (56)

where, in this paper, Fourier transforms are defined by

f̃ (k) =
∫

dxf (x)e−ik ·x. (57)

While there is indeed a non-zero three-point correlation in
Eq. (56), its contribution to the correlation of stresses in
Eq. (55) is zero (Appendix C). The reason is that Eq. (56)
results from a single Brownian particle and its self-correlations

(as is apparent from the linearity in ρ̄), and this particle can-
not exert a force upon itself. Some relations useful to derive
this statement mathematically are given in Appendix C. We
thus note that there is no correlation between diagonal and
off-diagonal stress components at the given order in V.

C. Off-diagonal components—Shear
stress fluctuations

Here we start by computing the exact leading term in V
in the microscopic theory. We then also derive the shear stress
fluctuations in the Gaussian Landau-Ginzburg theory.

1. Exact leading order in V

To leading order, the off-diagonal component of the stress
correlator is proportional to V2. For ease of notation, we
abbreviate,

lim
βV→0

〈
δσij(x, t)δσkl(0, 0)

〉
= Σijkl(x, t). (58)

For i , j and k , l, this expression reads

Σijkl(x, t) =
1
4

∫
drdr′

∫ 1

0
dλdλ ′

rirj

r
V ′(r)

r ′kr ′l
r ′

V ′(r ′)

× 〈φ(x + r − λr, t)φ(x − λr, t)

×φ(r′ − λ ′r′, 0)φ(−λ ′r′, 0)
〉id. (59)

In Fourier space, the correlation reads (again, see Appendix C)

〈φ̃(k, t)φ̃(k′, t)φ̃(q, 0)φ̃(q′, 0)〉id

= ρ(2π)3δ(k + k′ + q + q′)C(k + k′, t)

+ (2π)6ρ2 [δ(k + k′)δ(q + q′)

+ δ(k + q)δ(k′ + q′)C(k, t)C(k′, t)

+ δ(k + q′)δ(k′ + q)C(k, t)C(k′, t)
]
, (60)

with C(k, t) = e−Dk2t . The four-point correlation function in
Eq. (60) contains a term linear in ρ̄, which, as in Eq. (56),
shows the non-Gaussian behavior of ideal particles. Again,
this term does not contribute to the stress correlator. The last
three terms in Eq. (60) are equivalent to a Gaussian decoupling,
where all pairs of functions φ appear as in Wick’s theorem.
The first of these three is time independent and does not con-
tribute to Eq. (59) by symmetry. We then find for i , j and
k , l

Σijkl(x, t) =
∫

dk
(2π)3

eik ·x
∫ 1

0
dλdλ ′

ρ2

2

∫
dp

(2π)3

× Ãij(λk − p)Ãkl(−λ
′k + p)e−D[p2+(k−p)2]t , (61)

where for i , j

Ãij(k) =
kikj

k
Ṽ ′(k). (62)

We continue by analyzing Eq. (61) in real space, which is
found easily from the Gaussian decoupling of the four-point
function in Eq. (59). We thus have, using Eq. (51) (again i , j),

Σijij(x, t) =
1
2

∫
drdr′

∫ 1

0
dλdλ ′

rirj

r
V ′(r)

r ′i r ′j
r ′

V ′(r ′)

×
ρ̄2

(4πDt)3
e
−|x+r−λr−r′+λ′r′ |2−|x−λr+λ′r′ |2

4Dt . (63)
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We now address the large distance behavior of the stress
correlations. For a short-ranged potential, the values of |r| and
|r′| that contribute to the above integral are constrained to that
range. For values of |x| much larger than the interaction range,
we may expand the exponential in Eq. (63) for |r|� |x| and |r′|
� |x|. Because of the symmetry of the integrands in Eq. (63),
we seek the leading terms of order rirjr ′i r ′j of the exponential
in Eq. (63). The integrals over λ and λ ′ can then be performed
to obtain

Σijij(x, t) = G[V ] ρ̄2
10D2t2 − Dt(x2

i + x2
j ) + x2

i x2
j

9216(Dt)7π3
e−
|x|2
2Dt , (64)

where we have defined the functional

G[V ] =
8π2

225

(∫ ∞
0

drr5V ′(r)

)2

. (65)

Here, too, we perform the time integral, which is the important
quantity in Green-Kubo relations, and obtain

∫ ∞
0

dtΣijij(x, t) = G[V ] ρ̄2
5 + 40

x2
i x2

j

|x |4 − 4
x2

i +x2
j

|x |2

48Dπ3 |x|8
. (66)

Shear stress fluctuations in Eq. (66) and pressure fluctuations in
Eq. (53) thus decay as power laws in space. These observations
should have implications for the rheology of suspensions in
confined systems.30,50,51

The long-ranged property of the shear stress correlations
has been noted in Ref. 49 via a Zwanzig-Mori approach. In
particular, a Fourier inversion of Eq. (6) from Ref. 49 with
s = 0 yields the analogue of ∫

∞
0 dtΣijij(x, t), giving contri-

butions ∼ |x|�3. These show a different power than those in
Eq. (66),∼ |x|�8, which could be due to the absence of momen-
tum conservation in our formulation. This must be investigated
in the future. While the framework of DDFT has been extended
beyond Brownian dynamics (e.g., including inertia15,65), the
approach of this work may be further developed in analogy to
“model H.”21

2. From Landau-Ginzburg theory

Next we consider the off-diagonal stress correlations from
Landau-Ginzburg theory, using the stress tensor T in Eq. (35).
This, together with a Gaussian decoupling of the four-point
correlation (again, i , j), gives〈

Tij(x, t)Tij(0, 0)
〉
≈ κ

(
[∇i∇jC(x, t)]2

+ [∇i∇iC(x, t)][∇j∇jC(x, t)]
)
. (67)

We are interested in the case where |x| is much larger than the
correlation length. In this limit, the correlation function reads
in model B dynamics23,56 (see Appendix D for the leading
order in correlation length)

C(x, t) =
kBT
m

1

(4πD̃t)3/2
e−
|x|2

4D̃t , (68)

where m is the coefficient appearing in the Gaussian Hamilto-
nian in Eq. (26) of the field theory. Explicitly, m may also be
expressed in terms of the small wave-vector limit of the direct
correlation function c(2)5,56 (see Appendix D),

m = kBT

(
1
ρ̄
− c(2)

0

)
, (69)

which may also be related to the isothermal compressibility.5

We have also introduced D̃ ≡ D/S0, with S0 = (1 − ρ̄c(2)
0 )−1

= kBT/ρ̄m being the small wave-vector limit of the structure
factor; D̃ is an approximation for the diffusion coefficient,1

which emerges when taking the small wave-vector limit of
Eq. (D4). Equation (67) yields〈

Tij(x, t)Tij(0, 0)
〉

= κ2 (kBT )2

m2

2D̃2t2 − D̃t(x2
i + x2

j ) + x2
i x2

j

512(D̃t)7π3
e−
|x|2

2Dt . (70)

Apart from prefactors, this expression is qualitatively equal to
Eq. (63): It can be shown that the dependencies on x and t
of Eqs. (70) and (63) differ only by terms which arise from
divergence-free parts of the stress tensor.

D. Viscosity

We finish with the evaluation of the shear viscosity η to
leading order in the interaction potential. Using the Green-
Kubo relation,62 the viscosity is given in terms of the stress
correlator (i , j),

η =
β

V

∫ ∞
0

dt
∫

dxdx′〈σij(x, t)σij(x′, 0)〉eq, (71)

where V is the volume of the system. Performing one spatial
integral, one obtains

η = β

∫
dx

∫ ∞
0

dt〈σij(x, t)σij(0, 0)〉eq. (72)

Importantly, one should not integrate the result of Eq. (66) over
x to obtain the result of Eq. (72), because Eq. (66) is only valid
for large x. Instead, the integration over x is straightforward
from Eq. (61), since it selects the mode k = 0 in the integral,
leading to

η =
βρ2

4D

∫
dp

(2π)3

p2
i p2

j

p4
Ṽ ′(p)2

=
βρ2

120π2D

∫ ∞
0

dpp2Ṽ ′(p)2. (73)

This is the exact result for the viscosity of Brownian suspen-
sions to leading order in the potential V, which is naturally
quadratic. This expression is also in agreement with pertur-
bation computations, where the perturbed pair distribution is
found under shear. While such results have been obtained for
hard spheres,9 we have not been able to find the result of
Eq. (73) in the literature for a direct check.

As pointed out, the stress tensor is not uniquely defined,
but only up to divergence-free terms. The viscosity in Eq. (73)
is, however, a measurable material property, which should
be computable unambiguously. We therefore demonstrate that
divergence-free terms do not contribute to Eq. (72). First we
note that for any vector (or tensor) field A(x) which decays
quicker than 1/|x|3 for large |x|, we have∫

dxAi(x) =
∫

dx(∇jxi)Aj(x) = −
∫

dxxi∇jAj(x). (74)

We have used that∇jxi = δij. In the last step, partial integration
was performed using the decay properties of A(x) at large |x|
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so that boundary terms vanish. This yields the relation∫
dxA(x) = −

∫
dxx∇ · A. (75)

Proceeding by applying this to the auto-correlator of stress in
Eq. (72), we denote A(x) = ∫

∞
0 dt〈δσ(x, t)δσij(0, 0)〉eq. If this

expression decays quickly enough, any divergence-free parts
do not contribute to the viscosity in Eq. (72). Using the form
of σ from Eq. (20) with i , j, we see that, to the considered
order, the stress correlation decays quickly enough, and that
therefore the viscosity in Eq. (73) is unambiguous.

VII. SUMMARY

The exact stochastic equation for the evolution of the den-
sity operator54 allows one to identify the (stochastic) form of
the stress tensor directly. The mean of this quantity naturally
agrees with the one found from the Smoluchowski equation.
It is interesting to note that non-equilibrium states with a finite
particle current give rise to an additional force contribution so
that the stress tensor has to be applied with care when comput-
ing forces on boundaries or objects. The non-equilibrium body
force in a general field theory, where the field Φ is associated
with a density operator, can be derived using force balance
arguments. The result of this agrees with that obtained from
the evolution of the density operator for the field theory given
by Eq. (12) with the identification Φ = ρ. This allows a sys-
tematic derivation of the field theoretic stress tensor, valid out
of equilibrium, and the associated procedure for computing
non-equilibrium forces on immersed objects/potentials.

We further computed the spatial and temporal correla-
tions of the stress tensor exactly to leading order in interaction
potential V. These correlations (or more generally forces) are
more long ranged than the equilibrium correlation length,
a fact which we attribute to the conservation of particles
in the system considered here. In contrast to Ref. 49, our
system conserves particle density, but not momentum. Off-
diagonal stress correlations from the field theory were shown
to agree qualitatively with those from the microscopic stress
tensor.

Future work can thus involve computing these correlations
for the case of particle density and momentum conservation.
The impact of such correlations on flow in confinement poses
further interesting questions.30,51
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APPENDIX A: DERIVATION OF THE STRESS TENSOR
FOR ANY REALIZATION OF THE DENSITY FIELD
[EQ. (17)]

Here we show that the divergence of Eq. (17) equals
Eq. (14) under minimal assumptions and without any

thermodynamic averaging. An alternative derivation can be
found in Ref. 66. Making the trivial decomposition into an
ideal part and the interacting term, we can write

σ = σi + σni, (A1)

where σi is the ideal gas contribution,

σi(x) = −kBT ρ(x)I. (A2)

The remaining non-ideal term due to inter-particle interactions
can be written as

∇ · σni(x) = −ρ(x)
∫

dr∇V (r)ρ(x − r)

= −
1
2
ρ(x)

∫
dr

[
∇V (r)ρ(x− r)

+∇V (−r)ρ(x + r)
]

, (A3)

where we used a translation of the integration variable, and in
the second line we have symmetrized the integral over the vari-
ables r and�r. At this point it is important to choose interaction
potentials obeying the reflection symmetry ∇V (r) = �∇V (�r)
[this is clearly satisfied by isotropic potentials with V (r)
= V (r)], for which one may write

∇V (r) =
r
r

V ′(r). (A4)

This leads to

∇ · σni(x) = −
1
2

∫
dr∇V (r)

[
ρ(x)ρ(x − r) − ρ(x)ρ(x + r)

]
.

(A5)
Denoting

f (x, r, λ) = ρ(x − λr)ρ(x + (1 − λ)r), (A6)

we can write

∇ · σni(x) = −
1
2

∫
dr∇V (r)

[
f (x, r, 1) − f (x, r, 0)

]
(A7)

= −
1
2

∫
dr∇V (r)

[∫ 1

0
dλ

∂f (x, r, λ)
∂λ

]
. (A8)

It is easy to see that

∂f (x, r, λ)
∂λ

= −r · ∇x
[
ρ(x − λr)ρ(x + (1 − λ)r)

]
, (A9)

where the gradient should be taken with respect to x. Putting
this together for isotropic potentials then yields

∇ · σni(x) = ∇ ·

[
1
2

∫
dr

rr
r

V ′(r)

×

∫ 1

0
dλρ(x − λr)ρ(x + (1 − λ)r)

]
. (A10)

The equality of the divergence of Eqs. (17) and (14) then
follows.

APPENDIX B: RELATIONS USED
FOR THE DERIVATION OF THE STRESS
TENSOR IN THE FIELD THEORY

The following relation is useful for derivation of Eq. (34)
(noting that the Hamiltonian depends on the field and its
gradients):

∇iH = (∇iΦ)
∂H
∂Φ

+ (∇i∇jΦ)
∂H
∂∇jΦ

−
∂H
∂Xi

. (B1)
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We have added a term in the Hamiltonian, which depends
explicitly on a position X, the position of the object giving
rise to the external potential U. Another explicit form is

δH
δΦ(x)

=
∂H
∂Φ
− ∇j

∂H
∂∇jΦ

. (B2)

Putting this together yields for the force in Eq. (30),

f (j)
i = −∇i

[
Φ(x)

δH
δΦ(x)

]
+ ∇iH +

∂H
∂Xi
− ∇j

[
(∇iΦ)

∂H
∂∇jΦ

]
.

(B3)

We can also identify − ∂H∂Xi
with the force density in direction i

acting on the object described by the coordinate X. This gives
Eqs. (34) and (35) in the main text.

In order to demonstrate the agreement between Eq. (34)
and Ref. 26, we use

∇i

(
Φ(x)

δH
δΦ(x)

)
= Φ(x)∇i

δH
δΦ(x)

+
δH
δΦ(x)

∇iΦ(x) (B4)

to arrive at

f (U)
i = ∇j

[
δijH − ∇iΦ

∂H
∂∇jΦ

]
−

δH
δΦ(x)

∇iΦ(x), (B5)

which is identical to Eq. (18) of Ref. 26.
In global equilibrium, one can prove26 that the body force

vanishes exactly and, furthermore, that

∇i

〈
Φ(x)

δH
δΦ(x)

〉eq

= 0 =

〈
Φ(x)∇i

δH
δΦ(x)

〉eq

. (B6)

APPENDIX C: CORRELATIONS OF AN IDEAL GAS

For the computation of the stress tensor correlations to
leading order in potential V, we require the time-dependent
correlation functions of the ideal gas, which can be computed
exactly.64 We write the Fourier transform of the density field
for N ideal particles as

ρ̃(k, t) =
N∑
µ=1

exp
(
−ik · [xµ0 + Xµ(t)]

)
, (C1)

where xµ0 denotes the position of particle µ at time t = 0 and
Xµ(t) is its subsequent displacement at time t. In this approx-
imation, all the Xµ(t) are independent Brownian motions
with diffusion constant D. Two averages are now taken.
Firstly, the average over the initial coordinate xi0 takes the
form

〈·〉 =
1
V

∫
dx·, (C2)

where V is the volume of the system. The second average is
over the Brownian motions Xµ(t). The first two correlation
functions are

〈 ρ̃(k, t)〉id = ρ(2π)3δ(k) (C3)

and

〈 ρ̃(k, t) ρ̃(q, 0)〉id = (2π)3ρδ(k + q)e−Dq2t + (2π)6ρ2δ(k)δ(q).

(C4)

From these correlations, we can get the correlations of the
fluctuations. First, we note that the decomposition ρ(x, t) = ρ̄
+ φ(x, t) reads in Fourier space ρ̃(k, t) = (2π)3 ρ̄δ(k) + φ̃(k, t).
We deduce that

〈φ̃(k, t)〉id = 0, (C5)

〈φ̃(k, t)φ̃(q, 0)〉id = (2π)3ρδ(k + q)e−Dq2t . (C6)

Equation (C6) is used to get Eq. (51) from Eq. (50) in the main
text.

The three-point function is found similarly. After a few
computation steps, we get

〈 ρ̃(k, t) ρ̃(k′, t) ρ̃(q, 0)〉id

= (2π)3ρδ(k + k′ + q) exp(−Dq2t)

+ (2π)6ρ2 [
δ(k + k′)δ(q)

+ δ(k + q)δ(k′) + δ(k′ + q)δ(k)
]

× exp(−Dq2t) + (2π)9ρ3δ(k)δ(k′)δ(q). (C7)

The three-point correlation of the fluctuations reduces to
Eq. (56) in the main text.

A useful relation is

Ãij(k) = −δijṼ (k) −
kikj

k
Ṽ ′(k) (C8)

with inverse Fourier transform

Aij(r) =
rirj

r
V ′(r). (C9)

We also note that Ãij(k) = Ãij(�k). The following relation
reflects the fact that a particle cannot exert forces on itself:∫

dp
(2π)3

Ãij(λk − p) = Aij(0) = 0. (C10)

With these relations, one may demonstrate that Eq. (56) gives
no contribution to Eq. (55).

The four-point correlation function needed for evaluation
of Eq. (59) is found to be

〈 ρ̃(k, t) ρ̃(k′, t) ρ̃(q, 0) ρ̃(q′, 0)〉id =
[
ρ(2π)3δ(k + k′ + q + q′)C(k + k′, t) + (2π)6ρ2 [δ(k + k′)δ(q + q′)

+ δ(k + q)δ(k′ + q′)C(k, t)C(k′, t) + δ(k + q′)δ(k′ + q)C(k, t)C(k′, t)
]

+ (2π)6ρ2 [δ(k + k′ + q)δ(q′)C(k + k′, t) + δ(k + k′ + q′)δ(q)C(k + k′, t)

+ δ(k + q + q′)δ(k′)C(k, t) + δ(k′ + q′ + q)δ(k)C(k′, t)
]

+ (2π)9ρ3 [δ(k + k′)δ(q)δ(q′)

+ δ(k + q)δ(k′)δ(q′)C(k, t) + δ(k + q′)δ(k′)δ(q)C(k, t) + δ(k′ + q)δ(k)δ(q′)C(k′, t)

+ δ(k′ + q′)δ(k)δ(q)C(k′, t) + δ(q + q′)δ(k′)δ(k)
]

+ (2π)12ρ4δ(k)δ(k′)δ(q)δ(q′)
]
,
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where we introduced C(k, t) = e−Dk2t . With this, Eq. (60) in the main text is found, and Eq. (61) (for i , j and k , l) via

〈σ̃ij(k, t)σ̃kl(q, 0)〉 =
1
4

∫ 1

0
dλdλ ′

∫
dpdr
(2π)6

Ãij(λk − p)Ãkl(λ
′q − r)〈φ̃(p, t)φ̃(k − p, t)φ̃(r, 0)φ̃(q − r, 0)〉. (C11)

APPENDIX D: EFFECTIVE HAMILTONIAN OF REF. 56

The effective Gaussian Hamiltonian for the system of
Brownian particles proposed in Ref. 56 (see Ref. 67 for a partly
related approach) is

H =
1
2

∫
dxdyφ(x)∆(x, y)φ(y). (D1)

This form contains a quadratic potential which plays the role
of an effective interaction potential between densities,

∆(x, y) ≡ kBT

(
1
ρ̄(x)

δ(x − y) − c(2)(x, y)

)
. (D2)

As discussed in Ref. 56, the Hamiltonian in Eq. (D1) yields
the correct result for the first two moments of the fluctuating
field φ in equilibrium, i.e., 〈φ〉eq = 0 and

〈φ(x)φ(y)〉eq =

(
1
ρ̄(x)

δ(x − y) − c(2)(x, y)

)−1

. (D3)

The right-hand side of Eq. (D3) is to be understood in the sense
of inverse operators. The non-trivial part in the Hamiltonian
in Eq. (D1) is the direct correlation function c(2), which is an
important and well-studied object in the theory of liquids.5

The corresponding Model B equation of motion reads56

∂φ

∂t
=

D
kBT
∇ ·

(
〈ρ〉∇

δH
δφ

)
+ ∇ ·

(√
2D〈ρ〉η

)
,

= R∆φ + ∇ ·
(√

2D〈ρ〉η
)

, (D4)

with noise correlations given in Eq. (11). With this, Eq. (68)
of the main text is found for small wave-vectors.
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