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Abstract

With our starting point being (universal) generics appearing in both nat-
ural language and mathematical proofs, and were further conceptualized in
philosophy of language, we introduce the tau subnector that maps a formula
F to an individual term τxF such that F (τxF ) whenever ∀xF . We then in-
troduce the dual subnector ǫxF which expresses the existential quantification
F (ǫxF ) ≡ ∃xF , and describe its use w.r.t the semantics of indefinite and defi-
nite noun phrases. Some logical and linguistic properties of this intriguing way
to express quantification are discussed — but the reader is referred to the article
by Abrusci in this volume for the impact of epsilon on Hilbert’s work as regards
the logical foundations of mathematics.
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1 Presentation

This introduction to the volume presents the epsilon and tau quantifiers that Hilbert
came up with in the beginning of the XXth century. [21] Although an introduction
to these issues exists on the web, e.g. [5, 40]1 we believe that the current introduc-
tion, presenting a slightly different viewpoint, might be of interest to a number of
researchers, especially because most of the literature on the topic [22] is in German,
Russian and French — Ackermann’s seminal contribution [2] is also in German. We
say that tau and epsilon are quantifiers because one can express quantification with
them, but they map a formula to an individual term, Following Curry [11], these

1The second one was written by Hartley Slater, who is also one of the authors in this volume.
Hartley Slater unfortunately passed away before his paper was published. The reader will find an
obituary in this volume as well.
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quantifiers are called subnectors because each of them maps a formula F into an in-
dividual term ǫxF and τxF , in which x is bound. ǫxF and τxF denote the existential
and the universal generic objects w.r.t. a formula F respectively. Basically F (ǫxF )
means ∃x.F and F (τxF ) means ∀x.F and because they belong to a classical, and
not an intuitionistic, setting one can be defined from the other: τxF = ǫx¬F . The
addition of epsilon and tau to the connectives may seem harmless, but it actually
completely changes the logic, i.e. formulae of the epsilon calculus have no counter-
part in first order or even higher order predicate calculus. In particular, because
of over binding (also known as in situ binding) , those quantifiers are closer to the
syntactic behavior of quantifiers in natural language sentences. This is the reason
why the epsilon subnectors have be used in the philosophy of language and formal
linguistics to model quantifiers of natural language. [15, 16, 44, 43, 42, 45, 46, 41, 38]
Symmetrically, the subnector tau could have been used to model universal quantifi-
cation but it was not.

2 From the Ancient and Medieval view of universal

quantification to tau

A long debated question in logic and metaphysics in the Ancient and the Medieval
world (starting with Plato, Aristotle and all the way to Porphyry and the scholastics)
is the relation between a universal or generic "dog" and the set of individuals "dogs".
This is known as the problem of universals.[29, 24, 3, 13]

What is a concept like “horse"?

• a substance, that exists independently of the individuals falling under this
concept (realism)

• a name without reality, i.e. a word that stands for the class of all individuals
falling under the concept (nominalism)

• a concept, that is a mental construction having an empirical relation to the
set of individuals (conceptualism)

In order to illustrate the debate between Abélard and Roscelin (see e.g. [13]),
regarding the relation between the concept and the entities that fall under this
concept, one could say: If an illness causes the extinction of all tall dogs, would
your concept of dog be altered? Some have defended the position that each dog is as
constitutive of the concept of dog as a wall or a roof is constitutive of the concept
of a house.
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The relation between concept and universal quantification is that, in case the
generic object in a concept P enjoys the property P , so do all P . This is of course also
related to Aristotle’s proof rule of abstraction (alternatively called generalisation):
if an integer enjoys a property P , then all integers enjoy P . Ancient and Medieval
logic was not dealing with models. These only appeared with Frege at the end
of the XIXth century. Philosophers ranging from Aristotle to scholastic logicians
were mainly concerned with proofs and rules. [25] Aristotle who was aiming at
extracting the logical principles underlying mathematical reasoning, introduced the
generalization rule for universal quantification (that he called abstraction).

Using this rule, to establish F (x) for all elements x of a class C one proceeds as
follows:

Generalisation (a.k.a Abstraction) Let x be any element of C. A reasoning
shows that P (x) holds. The generalization rule asserts that the property holds
for any element in C — indeed x does not possess anything special apart from
being in C .

This is quite different from another technique used to establish F (x) for all
elements x of a known, finite class C which goes without saying (and that perfectly
matches universal quantification in a given model of (many-sorted) first order logic,
but . SC: I do not understand what you are saying here, the syntax is not
good! Please rephrase

Conjunction We can prove P (c1), then P (c2), P (c3), P (c4) and so on. Once we do
so for all elements in C, we can form a conjunction out of all these formulae.
This latter proof of a universally quantified statement is in fact, in modern
terms, a reduction of universal quantification to conjunction: ∀x ∈ CF (x) ≡
&x∈CF (x) ≡ P (c1)&P (c2)&P (c3)&P (c4)& · · ·

This dual nature of universal quantification can be observed in the various word-
ings of universal quantifications, that some words rather refer to each individual in
the collection (each), while some others rather refer to a (fictive) prototypical or
average individual (any):

(1) a. Each dog has four legs.

b. All dogs have four legs.

c. Every has four legs.

d. A dog has four legs.

e. Any dog has four legs.
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f. Dogs have four legs.

The distributive reading, obliged when using each, cannot accept exceptions, may
express a coincidence of properties that can be conjuncted, and it is not required
that there is a reason (other than probability) to this coincidence and the domain
can be complicated. The only good way to refute such a statement is to provide
a counter example, i.e. an individual for which the property does not hold (one
component of the conjunction fails).

(2) a. Each bird with both black and white feathers flies.

b. Not this wound bird.(perfect)

c. Not autruches. (not good refutation, since the relation between those
two sets is not obvious)

Generic entities rather correspond to ideal and prototypical entities whose prop-
erties are derived by reasoning. Compared to noun phrases introduced by each can
accept exceptions, and their domain cannot be complicated. The refutation of a sen-
tence involving a generic is usually performed by another generic, or by a reasoning,
i.e. one can go on at abstract level.

(3) a. Birds fly.

b. Not this wound bird. (not a refutation, since generic readings admit
exceptions)

c. Not autruches. (perfect refutation)

The usual rule called generalisation or abstraction, is abbreviated by ∀i i.e. ∀
introduction because it introduces the ∀ quantifier. This rule says that when a
property has been established for an x which does not enjoy any particular property
(i.e. is not free in any hypothesis), one can conclude that the property holds for all
individuals2

In this paper, we use sequents: H1, . . . , Hn ⊢ C simply means that under hy-
potheses H1, . . . , Hn, conclusion C holds. The ∀i (or generalisation) rule below
simply means that from (1) P (x) holds under hypotheses H1, . . . , Hn without any
free x in any of the Hi one may deduce that (2) ∀x. P (x) holds under the hypotheses
H1, . . . , Hn.

H1, . . . , Hn ⊢ P (x)
∀i − when there is no free occurrence of x in any Hi

H1, . . . , Hn ⊢ ∀x. P (x)

2As we shall discuss later on, such a rule is enough to derive that all A are B, from the fact
that B holds for an x satisfying A who has no specific property other than A.
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The rule above can be formulated with a generic element, τxP (x), a virtual
element that has no specific relation to the property P . If you think of P as being
"to drink", τxdrink(x) is the most sober individual you can think about: τxdrink(x)
drinks if and only if everyone else does:

P (τxP (x)) iff ∀x. P (x)

From this one easily defines the rules for quantification using the generic element
w.r.t. P , they simply are the usual rules for quantification:

H1, . . . , Hn ⊢ P (x)
τi − when there is no free occurrence of x in any Hi

H1, . . . , Hn ⊢ P (τxP (x))

There is another rule for quantifier, easier because without any restriction, called
the specialisation or instantiation rule, which says that of something holds for any
x then it holds for any constant or term.3

H1, . . . , Hn ⊢ ∀x. P (x)
∀e

H1, . . . , Hn ⊢ P (a)

This can be formulated with the same generic element τ a subnector i.e. an
operator that builds a term (of type individual) from a formula (Curry’s terminol-
ogy).

H1, . . . , Hn ⊢ P (τxP (x))
τe

H1, . . . , Hn ⊢ P (a)

If τxP (x) enjoys the property P (_) then any individual does, and vice-versa. So
τxP (x) is an ideal entity which is absolutely independent from the property P (_)
— that’s the reason why when it enjoys P (_) everything does.

3 Existential generics: from Russell’s iota to Hilbert’s

epsilon

As opposed to the generic τxP (x) that enjoys P if and only if every entity does,
there is also "this P", "the P", i.e. the unique individual satisfying P , if there is
exactly one such individual, denoted as ιxP (x). Russell introduced ι in [39] for

3This rule can derive its relativised version that says that if all A are B then any particular A

is B.
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definite descriptions (definite noun phrases like the queen of England). It is also,
like τ , a subnector, given that it turns a formula into some individual term. It is
the ancestor of Hilbert’s ǫ.

However, as argued by von Heusinger, there is little difference between the logical
form of definite descriptions and indefinite noun phrases. This is because uniqueness
of the noun phrase with a definite article is not always observed:

(4) Recueilli très jeune par les moines de l’abbaye de Reichenau, sur l’île du
lac de Constance, en Allemagne, qui le prennent en charge totalement;
Hermann étudie et devient l’un des savants les plus érudits du XI-ème siècle.

(5) Taken in while very young by monks of the abbey of Reichenau on the island
of the Constance lake, that fully took care of him, Hermann studied and
became one of the most erudite monk of the XIth century.

This example comes from a site dealing with first names and is really a pleasant
coincidence:4 indeed in the original paper by Egli and von Heusinger (1995, hence
before the example) takes as a fictive example the case of the islands of the Constance
lake to exemplify that someone seeing just one of the three islands of this lake could
utter "the island of the Constance lake" while there are three of them.

Given that ι is not expected to have good logical properties — its negation is
"zero or more than two entities do not enjoy the property P (_), Hilbert introduced
the existential ǫ subnector, building the existential generic ǫxF :

F (ǫxF ) ≡ ∃x. F

A term (of type individual) ǫxF associated with F , usually contains occurrences
of x: as soon as an entity enjoys F the term ǫxF enjoys F (_). The operator ǫ binds
in ǫxF the free occurrences of x in F .

We do not give the introduction and elimination rules natural deduction style
as above, because the elimination of the existential quantifier in natural deduction
would deserve some explanation. Let us just say that they simply mimic the intro-
duction and elimination rules for existential quantification.

If τxdrink(x) is the most sober individual, ǫxdrink(x) is a soak: he drinks if and
only if someone drinks.

4 Syntax of epsilon and tau first order calculus

Terms and formulae are defined by mutual recursion:

4(http://www.prenoms.com/prenom/signification-prenom-HERMANT.html .)

http://www.prenoms.com/prenom/signification-prenom-HERMANT.html
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• Any constant in L is a term.

• Any variable in L is a term.

• f(t1, . . . , tp) is a term provided each ti is a term and f is a function symbol of
L of arity p

• ǫxA is a term if A is a formula and x a variable — any free occurrence of x in
A is bound by ǫx

• τxA is a term if A is a formula and x a variable — any free occurrence of x in
A is bound by τx

• s = t is a formula whenever s and t are terms.

• R(t1, . . . , tn) is a formula provided each ti is a term and R is a relation symbol
of L of arity n

• A&B, A ∨ B, A ⇒ B, ¬A when A and B are formulae.

There is no objection to simultaneously use the usual quantifiers ∀ and ∃. This
superimposition is quite useful to have, since we can show that the epsilon/tau
calculus restricted to formulas that are equivalent to usual first order logic, is a
conservative extension of first order logic (first and second epsilon theorems, see e.g.
Abrusci’s paper in the same issue). This means that we can have quantified formulas
as well:

• ∃xA is a formula if A is a formula and x a variable — any free occurrence of
x in A is bound by ∃x

• ∀xA is a formula if A is a formula and x a variable — any free occurrence of
x in A is bound by ∀x

Quantification rules are the ones we already discussed above.

τ rules

introduction The introduction rule of the tau universal quantifier is Aristo-
tle’s rule of abstraction (also known as generalisation): from P (x) with
x generic (i.e. not present in any hypothesis) infer P (τx.P (x)).

H1, . . . , Hn ⊢ P (x)
τi − when there is no free occurrence of x in any Hi

H1, . . . , Hn ⊢ P (τxP (x))



Hilbert’s espilon and tau

elimination The elimination rule of universal quantification (also known as
instantiation or specialisation) is as usual: from P (τx.P (x)) one may infer
P (t) for any t.

H1, . . . , Hn ⊢ P (τxP (x))
τe

H1, . . . , Hn ⊢ P (t)

ǫ rules

introduction The introduction rule of the epsilon existential quantifier is the
usual one: from P (t) where t is any term, infer P (ǫxP (x)) ≡ ∃x P (x).

H1, . . . , Hn ⊢ P (t)
ǫe

H1, . . . , Hn ⊢ P (ǫxP (x))

elimination The elimination of the epsilon universal quantifier is more tricky,
as it is in natural deduction for first order logic format: assume that from
P (x) and other hypotheses Γ not involving x a conclusion C without x is
derivable and that P (ǫxP (x)) holds: then C holds under the hypotheses
Γ.

K1, . . . , Kp ⊢ P (ǫxP (x)) H1, . . . , Hn, P (x) ⊢ C
ǫe − when there is no free occurrence of

K1, . . . , Kp, H1, . . . , Hn ⊢ C

From the rules for quantification, it is clear that espilon/tau calculus is classical
(as opposed to intuitionistic), because the following are easily derived:

P (ǫxP (x)) ≡ ∃xP (x) ≡ ¬∀x¬P ≡ ¬¬P (τx¬P (x))

P (τxP (x)) ≡ ∀xP (x) ≡ ¬∃x¬P ≡ ¬¬P (ǫx¬P (x))

Hence: τxP (x) = ǫ¬P (x) and ǫxP (x) = τ¬P (x)

Therefore one of the two subnectors/quantifiers ǫ and τ is enough, but most
people have chosen ǫ, as in Bourbaki’s book on set theory for example.

The quantifier free epsilon calculus is a strict conservative extension of first order
logic.

• Strict: there are formulas that are not equivalent to any formula of first order
logic, e.g. P (ǫxQ(x)) with P, Q being distinct unary predicate symbols: if
P and Q are predicates letters with no relation, this bound formula has no
equivalent in first order logic.
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• Conservative: With regards to first order formulas, the epsilon calculus derives
the same formulas as first order logic, i.e. classical predicate calculus.

As by Claus-Peter Wirth in this issue, any first order formula can be turned
into an equivalent epsilon formula. However, one should have in mind that such a
translation yields formulas that are rather complex and hard to parse. For instance
∀x∃yP (x, y) can be written has: ∃yP (τxP (x, y), y) which itself can be written as:
P (τxP (x, ǫyP (τxP (x, y), y)), ǫyP (τxP (x, y), y))!

As mentioned in the article on epsilon and proof theory by Michele Abrusci
in this issue, a major motivation of Hilbert’s, was to establish the consistency of
arithmetic by elementary means, before Gödel’s incompleteness theorem. Following
this objective that could not be met because of Gödel’s results, Hilbert nevertheless
obtained the elimination of ǫ (1st & 2nd ǫ-theorems), yielding the first correct proof
of Herbrand’s theorem. These issues are also addressed in Abrusci’s paper.

The reader must be aware that epsilon calculus is very different from first order
logic. As we said, many formulas of the epsilon calculus are not equivalent to first
order formula. A number of published results on the epsilon calculus are known to be
wrong, like cut-elimination and models among other things (see [4, 27] as explained
in [7, 31]).5 As regards the first point, the problem is whether the complexity of the
formulas in epsilon terms ought to be taken into account, and as regards the second
point, the problem is that if there are sound and complete models for the whole
epsilon calculus, they must substantially differ from usual models. However, all
proposals so far try to provide usual models for a very unusual calculus. Nevertheless,
intuitively, epsilon terms might be viewed as a kind of Henkin witnesses, or as choice
functions that act simultaneously on all formulas, without any obligation to extend
the first order language.

The relation between epsilon and choice functions introduced by Skolemisation
is complicated. Choice functions are usually introduced when one considers a single
formula (or a clause) in prenex form and introduces a function in the language,
whose arguments are the universal variables, for each of the existential quantifiers.
Epsilon introduces all choice functions at once but without reference to a particular
formula (except the one defining the epsilon term), nor to universal variables, and the
first order language (relations, functions) does not need to be extended. Regarding
their syntax, there are no specific deduction rules for choice functions: the existential
quantifiers are taken into account when interpreting the function — on the syntactic
side they do not belong to first order logic.

5We would like to thank Michele Abrusci, Mathias Baaz and Ulrich Kohlenbach for pointing
out these problems to us.
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5 Epsilon (and tau) in linguistics

5.1 Some critics of the usual treatment of natural-language quan-
tification

Quantifiers, especially existential ones, are quite common in natural language. There
are two sorts of quantifiers w.r.t natural language syntax. The first sort only needs
the main predicate (something, someone, everyone, everything,...). The second sort
(a, some, every, all,...) first applies to a common noun (a predicate) before being
applied to the main predicate and all of its arguments but one — the verb plus its
subject and complement but one.

(6) Something happened to me yesterday.

(7) A man comes on to tell me how white my shirts can be.

(8) Some girls give me money.

(9) Keith played a Beatles song.

The usual treatment of quantifiers initiated by Montague [33] takes place into
the framework defined by Church [9] for writing first or higher order formulas of
predicate calculi in a way that follows Frege’s compositionality principle.

This treatment usually assumes a base type for propositions t (o in Church
writings) and another base type e (ι in Church writings) for entities, individuals —
usually there is just one base type for all individuals, the logic is single sorted as
opposed to many sorted logic of, e.g., [26] used for semantics in [37].

In order to express linguistic semantics one needs logical constants for connectives
and quantifiers:

• ∼ of type t → t (negation)

• ⊃, &, + of type t → (t → t)
(implication, conjunction, disjunction)

• two constants ∀ and ∃ of type (e → t) → t

Specific constants are needed to represent a first order language:

• R of type e → (e → (.... → e → t)) (n-ary predicate — n times e)

• f of type e → (e → (.... → e → e)) (n-ary function symbol — n times e)
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As said above ∀ and ∃ are constants of type (e → t) → t to quantifiers that
simply apply to the main predicate — they can interpret natural language quantifiers
without a domain. This is the case with everything, something but other natural
language quantifiers that apply to two predicates like some, every need more complex
terms:

• existential quantifier (some, a) :

λP e→tλQe→t(∃λxt.&(P x)(Q x)) : (e → t) → (e → t) → t

• universal quantifier (every, all) :

λP e→tλQe→t(∀λxt. ⊃ (P x)(Q x)) : (e → t) → (e → t) → t

This modelling suffers from some inadequacies mainly due to a difference in the
syntactic struture of the sentence and its logical form.

The standard analysis of the sentence 9 is: (a (Beatles song))(λz.Keith played z)

So:

(existential quantifier)︷ ︸︸ ︷
(λP e→tλQe→t(∃λxe.(P x)&(Q x)))

is applied to

(being a Beatles song)
︷ ︸︸ ︷
(λue.wrote(Beatles, u)&song(u))

and to

(being played by Keith)︷ ︸︸ ︷
(λz.Keith played z)

As expected, these lambda terms reduce to

(∃λxe.wrote(Beatles, x)&song(x)&(Keith played x)))

i.e. to the expected meaning:

(∃x. wrote(Beatles, x)&song(x)&((Keith played) x)))
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5.1.1 Difference between the syntactic and semantic structures

The classical treatment of natural language quantifiers infringes the correspondence
between syntax and semantics, i.e. the heart of compositionality. Indeed, observing
a sentence, its syntactic structure, and its semantic structure:

(10) a. Keith played a Beatles song.

b. syntax (Keith (played (a (Beatles song))))

c. semantics: (a (Beatles song)) (λx. Keith played x)

it is clear that the underlined predicate does not correspond to any proper phrase
(or subtree) of the sentence. A natural language quantifier is an in situ binder (as
e.g. wh-interrogatives in s Chinese): the quantified noun phrase can also be nested
deeply in the sentence parse tree, may apply to the whole parse tree.

5.1.2 Asymmetry between the domain of quantification and the main
predicate

It is easily observed in the following examples that, as opposed to the usual logical
formulas representing meaning, one cannot swap the two predicates, for instance
in Aristotle I sentences. However, even when these can be swapped, as in the last
example, the meaning is not the same, because the focus is different, and depending
on the context (in a university or in a company) only one of the two can be said,
the other one begin unnatural.

(11) a. Some politicians are crooks.

b. ?? Some crooks are politicians.

(12) a. Some students are employees.

b. Some employees are students.

5.1.3 Semantic nature of the quantified noun phrase

According to the usual treatment, a quantified noun phrase is a function that maps
a predicate to a proposition. However, intuitively, the type of a quantified noun
phrase, and especially the type of an existentially quantified noun phrase should
rather be an individual. This is confirmed by the cognitive process: when "an A" is
uttered, one actually imagines such an "A", so a quantified noun phrase may have a
reference as an individual before uttering the main predicate (if any):

(13) Cars, cars, cars,... (Blog)

(14) What a thrill — My thumb instead of an onion. (S. Plath)
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5.2 Using epsilon for indefinite noun phrases

Coming back to the linguistic motivation, some scientists have been modelling ex-
istential quantification (rather than universal quantification) by means of epsilon,
since the pioneering work of von Heusinger and Egli [15, 16] that has been further
pursued in a number of papers [43, 44, 45, 46]. The leitmotiv in these papers, is to
model existentially quantified noun phrases like "an A is B" (Aristotle’s I sentences
) by B(ǫx. A(x)). Nothing in a formula like this says that ǫx. A(x) has the property
A, i.e. that there are some As. Thus, the presupposition A(ǫx. A(x)) could (or
should) be added.

Here we should make an important remark on those sentences In general, for
instance if B and A have B(ǫx. A(x)) is not equivalent to any ordinary formula. In
particular it is not equivalent to ∃x.(B(x) ∧ A(x)), but the two formulas are related
as follows:

In general B(ǫx. A(x)) does not entail ∃x.(B(x) ∧ A(x)) Indeed, ti is possible
that ∃x.(B(x) ∧ A(x)) is false while B(ǫxA(x)) is true. Indeed, let B(x)
be (x = x) and let A(x) be (x 6= x) i.e. ¬B(x). Then B(ǫxA(x)) ≡
B(ǫx.¬B(x)) ≡ B(τx.B(x)) ≡ ∀x.B(x) ≡ ∀x.x = x which is clearly
true. But ∃x.(B(x)&A(x)) ≡ ∃x.(B(x)&¬B(x)) ≡ ∃x.(x = x & x 6= x)
which is clearly false. The argument works with any formula of one variable
that is universally true like here B(x) ≡ (x = x).

B(ǫx. A(x)) ∧ A(ǫx. A(x)) entails ∃x. B&A(x) Indeed B(ǫx. A(x))∧A(ǫx. A(x))
entails B(ǫx. B&A(x)) ∧ A(ǫx. B&A(x)) that is B&A(ǫx. (B&A(x)) which
means ∃x. B&A(x).

∃x.A(x)&∀y(A(y) ⇒ B(y)) entails B(ǫxA(x)) Indeed, ǫ-terms are usual terms, a
universal quantifier can be instantiated to an epsilon term.

In accordance with the small difference between definite and indefinite descrip-
tions, von Heusinger proposes to interpret both “a” (introducing indefinite noun
phrases) and “the” (introducing definite description) by an epsilon term. Only the
interpretation differentiates them: the “a” always refers to a new individual in the
class, while “the” refers to the most salient one in the context. This context de-
pendent interpretation lead to the indexed epsilon calculus [32] and further studied
by Hans Leiß in this volume.

(15) A student entered the lecture hall. He sat down. A student another student
left the lecture hall.
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(16) A student arrived lately. The professor looked upset. The student the same
student left.

The epsilon modeling avoids all the three aforementioned drawbacks of the stan-
dard interpretation, because ǫxF (x) is an individual term (as natural language quan-
tifiers) which allows in situ binding (as natural language quantifiers).

5.1.3 A quantified noun phrase can be interpreted as an individual without the main
predicate: indeed ǫxF (x) is an individual term.

5.1.1 The semantics P (ǫxF (x)) of an existential sentence e.g. of an I sentence "some
F is P." follows the syntactical structure: ǫxF (x) is an individual term, which is
the usual semantics of a noun phrase, that is inserted into the main predicate
P to obtain the sentence semantics — which is comparable to there exists
some x satisfying F (x) such that P (x)

5.1.2 The asymmetry between subject and predicate is restored P (ǫQ) 6≡ Q(ǫP ).

The interpretation of noun phrases with ǫ solves the so-called E-type pronouns
interpretation of Gareth Evans [17] where the semantic of the pronoun is the copy
of the semantic of its antecedent:

(17) A man came in. He sat dow.

(18) [He] = [A man] = (ǫx Man(x)).

Slater pointed out WHERE? AT LEAST DURING THE MEETING POSSI-
BLY IN HIS PAPER a possible problem with the modelling of indefinite nouns
phrases by epsilon terms. The two sentences A man enters. A man left. are re-
spectively modeled as entered(ǫxman(x)) and left(ǫxman(x)) and if you consider
them simultaneously, you may infer that entered&left(ǫxman(x)) and consequently
entered&left(ǫxentered&left(x)) so ∃x. entered(x)&left(x)! The problem is that
nothing says that the two propositions should be conjoined by a usual & and so
nothing tells us that the epsilon term that appears in both propositions should be
interpreted in the same way twice.

So Slater proposes to interpret a man entered by entered(ǫxman(x)&entered(x))
a man left by left(man(x)&left(x)). This avoids the unpleasant consequence above.
But if you allow yourself to interpret in the same way the epsilon terms that ap-
pear in different propositions, then with Slater’s approach you end up with another
problem. Consider: The professor presented first order logic. A student left. He
introduced sequent calculus. A student left. Then, the second and fourth sentences
yields exactly the same semantic representation, left(ǫxstudent(x)&left(x)), we
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have just at least one student that left, while we should have at least two. So the
semantic representation if just one step, and there after one has to be careful with
the interpretation of the epsilon terms.

This is the reason why Mints, in [32] introduced and studied indexed epsilon
calculus, where the interpretation is relative to a given context, and contexts are
indices for the calculus (see also the paper by Hans Leiß in this volume).

5.3 Tau and universally quantified noun phrases

Coming back to the subnector tau discussed at the beginning of the paper, it is
fairly natural and coherent with the treatment of existential quantification to model
universally quantified noun phrases introduced by "all", "every" and bare plurals by
tau terms, as follows:

(19) a. Every man is mortal.

b. mortal(τxman(x))

This proposal has been explored in [?]. It enables a distinction between each and
every the first one being a conjunction &x∈DP (x) over a known domain D and the
later one being the usual universal quantifier with the generic object formalised as
τxM(x). The analysis is a proof theoretical one, where statements are interpreted
as the set of their possible justification as in [1]

6 Aristotle square of opposition revisited with epsilon

and tau

With such an interpretation of quantified noun phrases, existential noun phrases
as epsilon terms and universals noun phrase as tau terms, one may reformulate
Aristotle’s I A E O sentences and revisit Aristotle’s square of opposition.
A Every S is P P (τx.S(x)) Universal Affirmative
I Some S is P P (ǫxS(x)) Particular Affirmative
E No S is P ¬P (ǫxS(x)) ≡ ¬P (τx.¬S(x)) Universal Negative
O Some S are not P ¬P (τx.S(x)) ≡ ¬P (ǫx¬S(x)) Particular negative

Aristotle showed that those formulas define a square of opposition, i.e.: A ≡ ¬O,
E ≡ ¬I A and E are contradictory (they cannot both hold), I and O cannot both
fail and are thus subcontraries, A entails I, which is said to be a subaltern of A, and
E entails O which is said to be a subaltern of E.

Using standard diagrams, in the Hilbert’s ǫ-calculus, at least one of the following
two squares is a square of opposition provided P is bivalent with respect to S this
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condition being defined as P (ǫxS(x)) ⊢ P (τxS(x)) or P (τxS(x)) ⊢ P (ǫS(x)) (see
[35] for more details.
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7 Typed Hilbert operators

7.1 Some critics of the unique universe of Frege

As discussed in [?] universal quantification there are two ways to describe univer-
sal quantification (each of these ways is expressed using a different word in most
languages, e.g. each vs. every in English):

universal quantification as a conjunction over the domain (model theo-
retical view) &x∈DP (x)

universal quantification as a property of the generic member of its class
(proof theoretical view) ∀xP (x) or better P (τxP (x))

In the model theoretic view, the domain of quantification is clear, but in the
proof theoretic view, the domain is not specified. This means that one cannot write
&x∈DP (x) and a fortiori cannot derive it. The completeness theorem for first order
logic [20] makes sure that both notions of quantification agree.

As argued by some medieval philosophers, e.g. Abu’l-Barakāt al-Baghdād̄ı, a
property is always asserted from an entity, as being a member of some particular
class and not as an entity of the class of al entities[12].6 For quantifying (universally
or existentially) a notion of class is needed as well: in proof theory the class is simply
absent, and in standard model theory, only the largest class of all entities is known.
Nevertheless quantifying over a part of the domain is quite common:

(20) All students passed.

(21) All students who passed logic passed algebra.

(22) Numbers ending in 3 have at least one multiple having all 1.

6This avoids problems like my daughter being both tall (as a girl of her age) and not tall (as a
member of the family for taking a group picture). [10]
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(23) Some student passed algebra.

(24) Some student who passed logic passed algebra.

(25) Some prime numbers are one less than a power of two.

In defining predicate calculus Frege [18, 19] used a “trick" to formalise the quan-
tification on classes. For instance: Aristotle’s A and I sentences ∀x : S. P (x) or
∃x : S. P (x) 7 can be respectively written as ∀x. Ŝ(x) ⇒ P (x) and ∃x. Ŝ(x)&P (x).
Given the classical symmetries &/∨, ∀/∃, because of the classical definition of A ⇒ B
as (¬A) ∨ B, one obtains that ¬(∀x : S. P (x)) is ∃x : S. ¬P (x) and ¬(∃x : S. P (x))
is ∀x : S. ¬P (x)

However it is clear that there is no similar trick for generalised quantifiers:

(26) a. for 1/3 of the x : S P (x) 6≡ for 1/3 of the x (S(x) ⇒ P (x))

b. for few x ∈ S P (x) 6≡ for few x (S(x)&P (x))

In these cases, specific generics could be used also introduced by subnector. This
issue has recently started to get explored. [36]

7.2 Quantifiying over a sort and typed epsilon and tau

Sorts and classes with specific quantifiers may be a good direction. It should ob-
served that one can defined a many sorted variant of first order logic, where predi-
cates and functions use sorts fo objects that possibly follow a hierarchy (the power-set
of a sort can be a sort, etc.). Such a many sorted logic has been precisely defined
and studied in the chapter 5 of [26]

Within the usual Montagovian semantic analysis, the epsilon and tau operators
for first order individuals should be of type ǫ : (e → t) → e. If we have many sorts
or types, there are two possibilities: τ∗, ǫ∗ : Πα. α and τ, ǫ : Πα. (α → t) → α,
where π is basically quantification over types. 8 The first one maps any type to an
element in the type (to be understood as the existential or universal generic element
in the type). The second one maps a predicate on α-object o and α-object.

The types for ǫ and τ yield more general subnectors than the ones of ǫ∗ and τ∗.
This is because types can be mirrored as predicates, but not the converse. It might
be useful to apply ǫ to a complicated predicate like scooter with two front wheels
for interpreting a sentence like A scooter with two front wheels just passed in the

7
x : A: is in the class Aand x is of type A. We do not want to be very precise on this, since we

have a priori no type theory, no set theory.
8No problem of consistency arises with such constants whose type in unprovable (like fix point

Y ). Any of those type entails the other: ǫ
∗ = ǫ{Λα.α}(λx

Πα.α
. x{t}) : Λα. α ǫ = ǫ

∗{Πα. (α →
t) → α}.
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street. while it would be counterintuitive to consider scooter with two front wheels
as a type.9 When there is a type T one can introduce a constant T̂ of type e → t
where e is the largest type which includes any other type.

If the predicate S, to whom the subnector is applied, is of type U → t, the
subnector yields an individual term of type U and nothing asserts that this terms
enjoys the property P . As natural language quantifiers only appear in a proposition
which holds (at least locally), one has to add the presupposition S(ǫŜ), and in case
S is a type, this can be written as ǫŜ : S.

These questions, in particular w.r.t the semantics of determiners, are further
discussed in [38]

7.3 Categorical approaches in the study of typed epsilon and tau
subnectors

The fact that the entire apparatus of logic can be recast in purely category-theoretic
terms is well known and goes back to the pioneering work of F. W. Lawvere. A
description of the History of category theory and of its brach of categorical logic
goes well beyond the purposes of this brief section and we refer curious readers to
[30] and references therein.

One of the most relevant concepts in category theory is that of elementary topos.
The definition of elementary topos as a category with finite limits and power objects
was introduced by Lawvere and Tierney as a generalization of the previous notion
of Grothendieck topos. It was immediately clear that the concept was of fundamen-
tal importance and, since its introduction, applications of elementary toposes have
been proposed for an extremely large variety of fields [23]. Focusing on logic, we can
associate a calculus, often called internal language of a category, to every category
with finite limits, and therefore to every elementary topos.

The internal language of a category with finite limits is a multi-typed language.
By multi-typed language we mean a 5-tuple (T , O, R, ω, ρ) where T , O and R are
collections whose elements are called types, operation symbols and relation symbols
respectively, while ω and ρ are arity functions. More specifically ρ sends each element
of R to a finite, possibly empty, list of types A1, A2, ..., An and ω sends each element
of O to a non-empty finite list of types A1, A2, ..., An, An+1. A context Γ is a finite
list of typed variables, i.e. Γ is of the form x1 : A1, x2 : A2, ..., xn : An. Terms and

9However, take a look at [28, 8] for an alternative view.
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formulas are written in context and the expressions

Γ | t : B Γ | φ

are used to denote that t is a well formed term of type B in the context Γ and φ is
a well formed formula in the context Γ.

The definition of Hilbert’s epsilon calculus in the framework of multi-typed lan-
guages does not presents many difficulties. What one wants is to require that for
every well formed formula Γ, x : A | φ there exists a term Γ | ǫA

φ : A such that

Γ | H1, . . . , Hn ⊢ P (t)
ǫi

Γ | H1, . . . , Hn ⊢ P (ǫA
P )

where t is a term of type A in the context Γ, i.e. Γ | t : A, and

Γ | K1, . . . , Kp ⊢ P (ǫA
P ) Γ, x : A | H1, . . . , Hn, P (x) ⊢ C

ǫe
Γ, x : A | K1, . . . , Kp, H1, . . . , Hn ⊢ C

If the underling collection of types T has some special types constructor, it might be
convenient, or even necessary, to restrict the existence of terms of the form Γ | ǫA

φ : A
to those A’s that belong to a specific class of types. This caution becomes necessary
whenever T contains the zero type 0, which can be thought of as an abstract notion
of the empty set. In this case the existence of a term Γ | ǫ0

φ : 0 makes the calculus
collapse to an inconsistent calculus. Hence, the typed Hilbert’s epsilon calculus is a
multy-typed calculus where for every well formed formula Γ, x : A | φ, where A is
not the zero type, there exists a term Γ | ǫA

φ satisfying the rules ǫi and ǫe defined
above.

The typed Hilbert’s tau calculus is defined analogously. In particular, the for-
mation rules of tau terms must obey at the constraint that tau terms has not to
be of type 0. Of course, and within the typed epsilon calculus, the law of excluded
middle implies te existence of tau terms and vice versa.

The existence of a model for the classical typed epsilon calculus is not an issue. A
standard set-based model, where a non-zero type A is interpreted as a non-empty set
JAK, works. In this model a context Γ is interpreted as the cartesian product of the
interpretations of the types in it, a term Γ | t : A as a function JtK : JΓK → JAK and
a well formed formula in the context Γ as a subset of JΓK. Entailment is inclusion
of subsets. Now suppose that φ is a well formed formula in the context Γ, x : A
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and suppose that JφK is its interpretation. For every g in JΓK let E(g) be the set
{a ∈ JAK | (g, a) ∈ JφK} and define a set G = {g ∈ JΓK | E(g) is not empty}.
By the axiom of choice there is a function which sends each g in G to an element
s(g) ∈ E(g). The interpretation of the function JǫA

φ :K : JΓK → JAK is given by the
following assignment

JǫA
φ :K(g) =

{
s(g) if g ∈ G

x if g 6∈ G

where x is any element of JAK, which certainly exists as JAK is not empty.

In the previous interpretation we made use of the axiom of choice as well as
the law of excluded middle and since toposes can be seen as universes of sets, it is
not surprising that, under some mild hypotheses, the interpretation above can be
rephrased in any elementary topos validating the axiom of choice and the law of
excluded middle. Note that in toposes, by Diaconescu’s argument [14], the axiom
of choice implies the excluded middle, so the the second requirement is redundant.

Thus, a more interesting problem is to find an interpretation of the intuitionist
typed epsilon calculus. The problem is even more interesting if one considers that
in the intuitionist epsilon calculus the axiom of choice is derivable. Therefore any
category in which one can carry out the argument of Diaconescu does not provide
the desired interpretation.

To the best of our knowledge, the first study of the typed intuitionist epsilon
calculus in categories is due to J. L. Bell [6]. In his work Bell used a special class of
elementary toposes as a model of the calculus and he called such toposes Hilbertian.
To avoid the excluded middle hold, Bell considers a calculus in which epsilon terms
exists only for those well formed formulas with at most one free variables. This is
a fragment of the full intuitionist epsilon calculus in which the axiom of choice is
no longer derivable, therefore the argument of Diaconescu is no longer valid, and
Hilbertian toposes need not collapse to classic ones.

An approach that is in some respects complementary to that of Bell’s, is to
consider categories which are weaker than toposes. In fact the full power of an
elementary topos is required to carry out Diaconescu’s argument. Therefore, if one
considers other weaker categories, such as Heyting categories, the validity of the
axiom of choice does not imply the validity of excluded middle. A study of those
categories that provides an interpretation of the intuitionistic epsilon calculus with
all epsilon terms can be found in [34].
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8 Conclusion

This partial introduction describes quantification with epsilon and tau, in particular
the most frequent cases, i.e. existentials. This avoids the drawbacks of the usual
interpretation: epsilon terms follow the syntactic structure, they refer to individuals
and they further avoid the unpleasant symmetry between CN and VP in existential
statements.

The use of epsilon suggest intriguing connections between types and properties,
type theory and first order logic. In this setting, underspecified scope is natural:
which quantifier, existential or universal, comes first in P (τx. A(x), ǫx. B(x)). It
also sheds new light on generalised quantifiers: these could be defined syntactically,
using a generic as a Hilbert subnector tau and epsilon. Some first insights for “most"
are given in [36]

If all roads lead to Rome, most segments of the transportation system
lead to Roma Termini! (Blog: Ron in Rome)
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