Proposition for a Goldbach's conjecture demonstration Denise Vella-Chemla June 30, 2018

One tries to demonstrate Goldbach's conjecture. One defines 4 variables : X a (n) = #{p + q = n such that p and q odd, 3 p n/2, p and q primes} X b (n) = #{p + q = n such that p and q odd, 3 p n/2, p compound and q prime} X c (n) = #{p + q = n such that p and q odd, 3 p n/2, p prime and q compound} X d (n) = #{p + q = n such that p and q odd, 3 p n/2, p and q compound}

In the following, one notes E(x) the integer part of x (i.e. ⌊x⌋) and π(x) the number of prime numbers lesser than or equal to x. We have the equality above : it follows from recurrence demonstrations that can be found in [DV] a note written in octobre 2014 * .

X d (n) -X a (n) = E(n/4) -π(n) + δ(n) (1)
δ(n) takes values 0,1 or 2. 1) results from the very general fact on any subsets and intersection and union cardinalities :

Simplification of note [DV] propositions provided by Alain Connes in may 2018 : [(

#(P ∪ Q) + #(P ∩ Q) = #(P ) + #(Q) (2)
Here neglecting limit cases that contribute to δ(n)), one sees that (a)

#(P ∩ Q) corresponds to X a (n). (b) #(P ∪ Q) corresponds to E(n/4) -X d (n). (c) #(P ) + #(Q) corresponds to π(n).
Then we have a very simple proof of (1) as a consequence of ( 2).]

Let us see now a property concerning X a (n).

We decide to represent compound numbers by gray color and prime numbers by white color.

We represent odd numbers between 3 and n/2 by rectangles in the bottom of the drawing above and odd numbers between n/2 and n, complementary to n of numbers from the bottom of the drawing by rectangles in the top of the drawing. Rectangles represent contiguous columns associated to decompositions as two odds'sum, and containing x in their bottom part and n-x their complementary in their top part. Columns are contiguously positioned according to the nature of decompositions they contain (according to their type a, b, c or d).

We use those colors :

-green for #(P ∩ Q) ; -red for #(P ∪ Q) ; -blue for #(P ) + #(Q) = π(n). 

(P ) + #(Q) -#(P ∪ Q) = #(P ∩ Q).
and let's replace cardinals by associated variables, we obtain

π(n) -E(n/4) + X d (n) -δ(n) = X a (n)
and we wish to have the insurance that X a (n) is always strictly positive since it counts Goldbach's n's decompositions (as sum of two primes).

Although, if we demonstrated that

X a (n) = X d (n) -E(n/4) + π(n) -δ(n) is a relation always verified,
this relation doesn't guarantee that above a certain integer range, X a (n) is always strictly positive.

We note

Credit(n) = 3 x n/2 (BooleanP rime(x) ∧ ¬BooleanP rime(n -x) ∧ BooleanP rime(n + 2 -x)) Debit(n) = 3 x n/2 (BooleanP rime(x) ∧ BooleanP rime(n -x) ∧ ¬BooleanP rime(n + 2 -x))
We find the following recurrence relation for X a (n), very accounting :

X a (n + 2) = X a (n) + Credit(n) -Debit(n) + BooleanP rime( n+2 2 )
Adding the boolean BooleanP rime( n+2 2 ) ensure X a (n)'s positivity for all 2p with p prime, 2p verifying trivially Goldbach's conjecture.

Except those trivial cases of Goldbach's conjecture verification, we wish to demonstrate that X a (n) is always greater than Debit(n). We know that X a (n) is always strictly positive below 4.10 18 (by computer calculations from Oliveira e Silva in 2014).

First we explain what ensure X a (n) positivity for numbers n = 6k + 2.

Variables values arrays in annex show that for nearly all n = 6k + 2 (notably in the second array), we have

X a (n) = Debit(n) + ǫ(n).
ǫ(n) has either value 1 (when 3 is a Goldbach's decomponent of n, 1 being compound, 3 + (n -3) decomposition is not counted by Debit(n)) or value 0.

We see studying Credit(n) and Debit(n) definitions that among prime numbers lesser than n/2, ones are counted by Credit(n) while the others are counted by Debit(n), because all prime numbers lesser than n can't be simultaneously Goldbach's decomponents of n. This argument ensure the strict positivity of Credit(n).

Let us see now why, in the case in which n is of the form 6k + 2, Debit(n) = X a (n) -ǫ(n) : in such a case, prime numbers of the form 6k ′ -1 can't be Goldbach's decomponent of n because if it were the case, n -x = (6k + 2) -(6k ′ -1) = 6(k -k ′ ) + 3 would be divisible by 3. Prime numbers x that can be Goldbach's decomponents of n are thus of the form 6k ′ + 1 ; this fact has as consequance that n + 2 -x = (6k + 4) -(6k ′ + 1) = 6(k -k ′ ) + 3 is divisible by 3 and is thus countable as a debit. We have X a (n) = Debit(n) + ǫ(n), that could implies X a (n)'s vanishing but the Credit(n) addition, Credit(n) being strictly positive permits to avoid such a vanishing.

In the case where n is of the form 6k or 6k +4, one sees that X a (n) is always strictly greater than Debit(n), what guarantees its strict positivity when one substracts Debit(n) to it. Let us try to explain why this is the case : by its definition, Debit(n) is the cardinality of a subset of the set of cardinal X a (n) (indeed, Debit(n) counts Goldbach's decompositions of n = x + (n -x) such that n + 2 -x is not prime) ; if X a (n) were equal to Debit(n), we would have, from the definition of Debit(n), for all Goldbach's decomposition of n, at the same time n -x prime and n + 2 -x prime, implying that x + (n + 2 -x) would be a Goldbach's decomposition of n + 2 (i.e. that all Goldbach's decompositions p1 + p2 of n would be inherited as Goldbach's decompositions p1 + (p2 + 2) by n + 2). But we know by congruences study † that x is a Goldbach's decomponent of n if and only if x ≡ n (mod p) for every p lesser than √ n. All those incongruences couldn't be verified all at the same time, on one side by x and n, and on the other side by x and n + 2. This has as consequence that for even numbers n of the forms 6k and 6k + 4, Debit(n) < X a (n) and it implies, by inheritance from n to n + 2, that X a (n) is strictly positive for all n 6. †. see for instance a october 2007 note, Changer l'ordre sur les entiers pour comprendre le partage des décomposants de Goldbach that can be downloaded at http://denisevellachemla.eu.

Annex 1a : variables values array for even numbers between 6 and 100 

n X a (n) Credit Debit BooleanP rime( n+2 2 ) 6 1 0 0 8 1 0 0 1 10 2 0 1 12 1 1 1 1 14 2 1 1 16 2 1 1 18 2 1 1 20 2 1 1 1 22 3 1 1 24 3 1 2 1 26 3 2 3 28 2 2 1 30 3 1 2 32 2 2
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 1 Figure 1 : n'decompositions contiguously positionned according to their nature