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A CENTER COMPACT SCHEME FOR THE SHALLOW WATER EQUATIONS ON

THE SPHERE

M. BRACHET†AND J.-P. CROISILLE‡

Abstract. We consider the Shallow Water Equations (SWE) on a rotating sphere and their approximation

by a finite difference scheme. The discrete unknowns are located at the vertices of the equiangular Cubed

Sphere grid, [11, 12]. The standard fourth order Hermitian difference derivative [24] is used along a set of
suitable great circles. No one sided difference formula is used at any point. All differential operators on the

sphere (gradient, divergence and curl) are approximated in a centered fashion. The approximation procedure

is close in spirit to the one of compact schemes used in Computational Aeroacoustics. Numerical results on
a series of numerical test cases for SWE on the sphere are presented. A particular attention is devoted to

the temporal scheme. In particular two Rosenbrock exponential time schemes are used and compared to the

RK4 scheme.
The results demonstrate the interest of the present approach in a variety of situations of interest in

numerical climatology.

Keywords: Cubed Sphere grid - Compact finite difference scheme - Hermitian derivative - Rosenbrock
time scheme - Spherical Shallow Water equations

1. Introduction

In this paper a new finite difference scheme for the Shallow Water Equations (SWE) on the rotating
sphere is considered. The SWE equations represent the basic propagation system of interest in numerical
climatology at global scale, [17, 26]. This system is routinely solved by spectral methods [23] with models
of various complexity (single or multilayer, hydrostatic or nonhydrostatic, etc.). Over the past twenty years,
many efforts have been devoted to renew numericaal schemes for Global Circulation Models (GCM) by
adapting ideas from Computational Fluid Dynamics (CFD) to Geophysical Fluid Dynamics (GFD). Solving
(SWE) in the two dimensional spherical setup was a first step in this direction. To assess the accuracy of the
numerical methods, several series of test cases have been suggested, [7, 14, 45].

Conservative approximation frameworks have been considered as a suitable platform to develop new meth-
ods fo GCM. A natural option is the finite volume method. It can be considered on various kinds of grids in
[4, 8, 35]. The Discontinuous Galerkin method is also considered in [2]. Another possibility is the spectral
element method. It is explored and analyzed in [18, 19]. Another point of view recently developed in [13, 39]
is the one of discrete differential topology and the associated Mimetic Finite Element (or Finite Volume)
framework. In all these methods, reffered to as the conservative approach, there is a primal grid supporting
discrete averages. Numerical degrees of freedom are attached to this primal grid or alternatively to a second
grid in dual position with the primal grid. In the conservative approach, discrete conservation holds ab initio,
at least for the mass.

In the present work, we do not start from a discrete flux form of (SWE). Instead we consider a direct finite
difference approximation. The equiangular Cubed Sphere is used as the sole grid. All the discrete unknowns
are located at the vertices of the Cubed Sphere in a finite difference fashion. There is no staggered nor mean
value variables in the cells of the Cubed Sphere. A center compact formula is then applied at each vertex
of the Cubed Sphere to calculate approximate derivatives. The geometric structure of the Cubed Sphere
plays a central role in our approximation. This approach is directly inspired by high order finite differencing
in Computational Aeroacoustics (CAA) [5, 24]. In CAA, the main goal is to ensure an accurate numerical
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propagation of linear waves or of weakly nonlinear waves. This is also a central objective in Geophysical
Fluid Dynamics: linear waves related to SWE must be numerically advected over long physical intervals of
time. Therefore a numerical scheme based on the same premises than compact schemes in CAA seems highly
desirable, also in the GFD context.

Our finite difference approximation follows the principles introduced in [11, 12]. The basic idea is to
use high order differencing along a set of great circles suitably associated to the structure of the equiangular
Cubed Sphere. This great circles approach permits to handle the full sphere with the same periodic treatment.
Doing so, there is no need of any one sided difference formulas to handle interpanel boundaries. This has
been proved to be of great importance to preserve the accuracy over a large number of time iterations.

Compact formulas for the derivatives are commonly centered formulas. Enhancing stability is obtained
by adding some numerical dissipation. A typical practice in CAA is to add a high frequency filtering at each
time step . In our approach, performing such a filtering step has been found efficient as well.

The objective and the summary of this paper are as follows. In Section 2, we recall the bakground of
our centered differencing along great circles on the Cubed Sphere [11, 12]. The three operators that are
approximated are gradT , divT and curlT also denoted as ∇T , ∇T · and ∇T×, respectively. In the three cases,
the approximation principle is similar.

In Section 3, the two time stepping used in our simulations are described. First, the explicit RK4 scheme
is our reference time scheme. A CFL condition must be used with this scheme. Our second time stepping
consists of two exponential schemes belonging to the Rosenbrock family. They have been compared with the
RK4 scheme.

In Section 4, numerical results for (SWE) are shown for the isolated mountain, the Rossby-Haurwitz and
the barotropic instability test cases. In each case, we show that our scheme compares favourably with high
order conservative upwind methods, such as [2, 25, 41]. The accuracy is well preserved over a large number of
time steps. In addition, all conserved quantities at the continuous level are as well remarkably well preserved
at the discrete level. This includes the mass, the total energy, and the potential enstrophy. The meaning of
this conservation is related to the quadrature formula on the Cubed Sphere in [29].

All the computations were performed in Matlab on a desktop computer.

2. A Center scheme for the Shallow Water Equations on the Cubed Sphere

Let Sa be the sphere of radius a, (a = 6371 km for the earth). The Shallow Water Equations let evolve the
height and (tangent) wind velocity (t,x) ∈ [0,+∞[×Sa 7→ (h(t,x),u(t,x)) by (g is the gravity constant),

(1) (SWE)


∂h?

∂t
(t,x) +∇T · (h?(t,x)u(t,x)) = 0

∂u

∂t
(t,x) +∇T

(
1

2
|u(t,x)|2 + gh(t,x)

)
+
(
f(x) + ζ(x,u(t,x))

)
n(x)× u(t,x) = 0

This is the vector form of the Shallow Water Equation, [45]. The three given functions in (SWE) are

(2)


x ∈ Sa 7→ n(x) ∈ TS⊥a , exterior normal

x ∈ Sa 7→ f(x) ∈ R, Coriolis force

x ∈ Sa 7→ hs(x) ∈ R+, bottom topography.

The relative vorticity ζ(x,v(x)) associated with the velocity field v(x) is the function defined by

(3) ζ(x,v(x)) = (∇T × v(x)) · n(x).

The total height of the atmosphere is

(4) h?(t,x) = h(t,x)− hs(x).

Denoting (t,x) ∈ [0,+∞[×S2
a 7→ q(t,x) = [h(t,x),u(t,x)]T ∈ R4, (1) is expressed as

(5)
∂

∂t
q(t,x) = J

(
x, q(t,x)

)
,



A CENTER COMPACT SCHEME FOR THE SHALLOW WATER EQUATIONS ON THE SPHERE 3

ξ

η

Figure 1. Frontal view of a panel of the Cubed Sphere CSa,N . The vertices are classified in
three categories: (i) (N−1)2 internal vertices displayed with circles; (ii) 4(N−1) edge vertices
displayed with squares ; (iii) 4 corner vertices displayed with pentagons. The equatorial
angles (ξ, η) (local coordinates) are such that −π/4 ≤ ξ, η ≤ π/4, with origin at the center of
the panel. The vertices in panel k are denoted ski,j . The integer i (resp. j) denotes the index

in the ξ direction (resp. η) direction. A gridfunction defined on CSa,N consists of 6N2 + 2
data located at ski,j −N/2 ≤ i, j ≤ N/2 and (I) ≤ k ≤ (V I). The spatial steps are identical
in the ξ and η directions with resolution ∆N = ∆ξ = ∆η = π

2N .

with

(6) J(x, q(x)) = −

 ∇T ·
(
(h(x)− hs(x))u(x)

)
∇T

(
1

2
|u(x)|2 + g h(t,x)

)
+
(
f(x) + ζ(x,u(x)

)
n(x)× u(x)

 .

The notation CSa,N stands for the equiangular Cubed Sphere grid with radius a and parameter N . 1 We
consider on Sa the six panels k = (I), ..., (V I) matching the faces of a cube. A typical panel is represented in
Fig. 1. The local chart of each panel is the system of angles (ξ, η) ∈ [−π/2, π/2]× [−π/2, π/2]. Each panel
contains a set of vertices defined by s = [ski,j ], −N/2 ≤ i, j ≤ N/2, (I) ≤ k ≤ (V I) with local coordinates
ξi = i∆N , ηj = j∆N . The step size is ∆N = ∆ξ = ∆η = π/2N .

Proceeding along the method of lines, (1) is first approximated in space by the semi-discrete system

(7)
d

dt
q(t) = J∆N

(s, q(t)).

The semidiscrete function q(t) 2 is q(t) = [h(t), u(t)]T where

(8) h(t) = [hki,j(t)]
T , u(t) = [uki,j(t)]

T , −N/2 ≤ i, j ≤ N/2, k ∈ {(I), ..., (V I)} .

For f, g, two given (scalar or vector) gridfunctions, the gridfunction {f • g} is defined by

(9) {f • g}ki,j = fki,jg
k
i,j , −N/2 ≤ i, j ≤ N/2, k ∈ {(I), ..., (V I)} .

In the case of vector gridfunctions, one has {f • g}ki,j = fki,j · gki,j . Similarly {f×g}ki,j = fki,j × gki,j . The
approximation of J on CSa,N is J∆N

defined by

(10) J∆N
(s, q) = −

 ∇T,∆N

(
h− {hs(s) • u}

)
∇T,∆N

(
1
2 {u • u}+ gh

)
+
{(
f(s) + ζ∆N

)
• (n(s)×u)

}


1Refer to [30] for different Cubed Sphere grids.
2We adopt the fraktur font for gridfunctions, i.e. functions defined at the vertices of CSa,N .
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The gridfunction ζ∆N
is

(11) ζ∆N
= (∇T,∆N

× u) • n(s).

In (10), the operators ∇T,∆N
, ∇T,∆N

. and ∇T,∆N
× are centerered approximations of the operators ∇T , divT

and curlT , respectively. These approximations are defined as follows. Consider for example the discrete
gradient ∇T,∆N

. Let x ∈ Sa 7→ f(x) be a given function. The value of f at the vertex ski,j is fki,j = f(ski,j).
Consider the panel (I) in Fig. 1. Fix an ”horizontal” coordinate line (iso-η line η = j0∆N ). This coordinate
line is a great circle section. Consider next the extension of this coordinate line to the full great circle around
the sphere Sa. On panel (III), opposite to panel (I), this great circle again matches an iso η coordinates line,
this time with index N − j0. On the contrary, on panels (II) and (IV), both adjacent to panel (I), this great
circle does not coincide with any coordinate line. Next, define along this great circle a one dimensional grid

associated with a set of data. On the panel (I) the grid coincides with the Cubed Sphere vertices s
(I)
i,j0

. The

data at these vertices are the values f
(I)
i,j0

. We proceed similarly on panel (III). On panel (II), the great circle
intersects each ”vertical” coordinates line ξ = ξi. This intersection defines a point to which some interpolated
value, deduced from data in panel (II) is assigned. A similar procedure is performed on panel (IV). Summing
up, this results in a grid of size 4N of the considered great circle with constant step size ∆ξ = ∆N and in a
set of 4N periodic data along this circle. Then the finite difference δHξ f

k
p , is applied to these data, using the

relations

(12)
1

6
δHξ fp−1 +

2

3
δHξ fp +

1

6
δHξ fp+1 =

fp+1 − fp−1

2∆ξ
.

where the index p = 1...4N stands for the index of the 4N periodic data along the great circle. The formal
truncation error for δHξ fp satisfies (assuming exact data at the gridpoints), [3]

(13) δHξ fp − ∂ξf(skp) = O(∆4
N ).

Remark 2.1. The data on panels (II) and (IV) only serve as ”ghost values”. They permit to apply the
periodic differencing (12) without taking care of any cut-off in panels (II) and (IV). After solving (12), only
the finite difference values δHξ f located in panels (I) and (III) are retained and the values located in panels

(II) and (IV) are discarded. We refer to [11, 12] for more details.

The computational procedure above is repeated for all the coordinate lines in the ξ direction for panels
(I), (II) and (V); and similarly in the η direction for the same panels (I), (II) and (V). Due to the spherical
symmetry, the couple of partial derivatives (∂ξf, ∂ηf) is approximated at each vertex of CSa,N . Note that
this way to proceed ensures a perfect symmetry in the calculation.

Considering effective accuracy, according to (13), one may expect fourth order accurate for the approximate
derivative. However, due to the interpolation of the data in panels (II) and (IV), the accuracy possibly could
drop to 3. In fact, the value fp assigned to point mp on the great circle satisfies

(14)

{
fp = f(mp) if m belongs to panels (I) or (III).
fp = f(mp) +O(∆4

N ) if m belongs to panels (II) or (IV ).
.

Therefore it turns out that (∆ξ = ∆N )

(15)
fp+1 − fp−1

2∆ξ
=
f(mp+1)− f(mp−1)

2∆ξ
+O(∆ξ3),

which gives at the least

(16) δHξ fp = ∂ξf(mp) +O(∆ξ3).

In practice however, fourth order accuracy has been numerically observed so far. See also Section 4.6. The
approximate gradient, divergence and curl are then calculated as follows. On the panel k, the local basis at
the vertex ski,j is (gξ,gη) given by

(17) gξ(s
k
i,j) =

∂x

∂ξ
(ski,j), gη(ski,j) =

∂x

∂η
(ski,j).
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Refer to [11, 6] for the analytic expression of (gξ,gη). Let x ∈ Sa 7→ f(x) be a given function. We denote
by f∗ the restriction of f to the Cubed Sphere vertices:

(18) (f∗)ki,j = f(ski,j).

The gradient of f(x) is expressed at ski,j in terms of the dual basis (gξ,gη) by

(19) ∇T f(ski,j) =
∂f

∂ξ
(ski,j)g

ξ(ski,j) +
∂f

∂η
(ski,j)g

η(ski,j).

The partial derivatives
∂f

∂ξ
(ski,j) and

∂f

∂η
(ski,j) are approximated by the divided differences calculated by

the above ”great circle” procedure.

(20)
∂f

∂ξ
(ski,j) ' δHξ (f∗)ki,j ,

∂f

∂η
(ski,j) ' δHη (f∗)ki,j ,

Similarly, consider a vector function v(x). The associated gridfunction is v∗ with components (v∗)ki,j = vki,j .
The divergence and curl operators are expressed in local coordinates as [36]

(21)

 ∇T · v = ∂ξv · gξ + ∂ηv · gη, (a)

∇T × v = gξ × ∂ξv + gη × ∂ηv (b).

The partial derivatives ∂ξv and ∂ηv are approximated at ski,j by

(22) ∂ξv(ski,j) ' δHξ vki,j , ∂ηv(ski,j) ' δHη vki,j .

The approximations considered in the sequel to the gradient, the divergence and the curl, are the gridfunctions
∇T,∆N

, ∇T,∆N
. and ∇T,∆N

×, with components

(23)



(
∇T,∆N

f∗
)k
i,j

= (δHξ f
∗)ki,j gξ(ski,j) + (δHη f

∗)ki,j gη(ski,j) (a),(
∇T,∆N

· v∗
)k
i,j

= (δHξ v
∗)ki,j · gξ(ski,j) + (δHη v

∗)ki,j · gη(ski,j), (b),(
∇T,∆N

× v∗
)k
i,j

= gξ(ski,j)× (δHξ v
∗)ki,j + gη(ski,j)× (δHη v

∗)ki,j (c).

Remark 2.2. As mentioned in Remark 2.1, one may wonder if the redundancy in the ”great circle” procedure
could be avoided. For example, considering a small number of ghost points beyond the limit of a panel
could give a smaller computational effort. In this spirit, the following alternative formula for the spherical
divergence was suggested in [12], to which we refer for more details.

(24) (∇Tv∗)ki,j =
1√

detG

(
∂ξ

(√
detG v∗ .gξ

)k
i,j

+ ∂η

(√
detG v∗ .gη

)k
i,j

)
.

We have adopted here (23)b in order to have an homogeneous treatment of all differential terms in (SWE).

3. Time discretisation

3.1. Basic setup. In Section 2, the spatial approximation of (1) was considered. Two kinds of time dis-
cretizations are used in Section 4. The reference time scheme is the standard RK4 scheme. The basic time
marching algorithm is given in Algorithm 1.
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Algorithm 1 : Explicit Runge-Kutta Scheme of order 4 with filter

1: q0 = q(0) given
2: for n = 0, 1, . . . itemax do
3: K(1) = J∆N

(qn),

4: K(2) = J∆N

(
qn +

∆t

2
K(1)

)
,

5: K(3) = J∆N

(
qn +

∆t

2
K(2)

)
,

6: K(4) = J∆N

(
qn + ∆tK(3)

)
,

7: qn+1 = F
(
qn +

∆t

6

(
K(1) + 2K(2) + 2K(3) +K(4)

))
.

8: end for

In line 7, at the end of each time step a filtering step is applied. The function F is the filtering function.
As already mentioned, this filtering step is commonly used in CAA3 simulations. For details, refer to [5] and
the references therein. The filter step enhances the stability of the scheme, but with accuracy preserving.
The design of the filter function F in one dimension is recalled in Section 6.3. In two dimensions, the filter
function is obtained by tensor product. In the case of the Cubed Sphere CSa,N we have used the following
symmetric filter

(25) F =
1

2

(
Fξ ◦Fη + Fη ◦Fξ

)
,

where the functions Fξ and Fη correspond to a 10-th order filter in the last line in Table 4 in Section 6.3.
This choice has been proved to be a good compromise between accuracy and stability.

Remark 3.1. The filter function Fξ operates along the great circles as a periodic difference operator in a
fashion similar to the difference operator δHξ ; and similarly for Fη.

3.2. Two Rosenbrock time schemes. Beyond the RK4 time scheme mentioned above, we also have used
two schemes of the Rosenbrock family [44, Ch. 7]. These schemes are particular examples of exponential time
schemes. Recenlty, they have received interest for stiff problems as an alternative to implicit schemes. For
flows over a sphere, refer to [9, 15]. With exponential time schemes, the stability constraint on the time step,
related to the CFL condition in our case, is relaxed as when using an implicit time schemes. The damping of
high frequency modes, which is a main goal of implicit time-stepping, is replaced with exponential schemes
by the exact integration of the linear part of the source term. The design and convergence analysis of such
schemes has been extensively documented. We refer to [22] for a recent review.

Consider the nonlinear differential system

(26)
dq

dt
= F (q), q(0) = q0.

where t ≥ 0 7→ q(t) ∈ Rn is the semidiscrete vector in (7). The function F : Rn 7→ Rn represents the spatial
discretisation in the RHS of (7). Consider the calculation of qn+1 with qn assumed to be known. The source
term F (q) is decomposed as

(27) F (q) = Ln(q) + N (q),

where Ln is the Jacobian of F at qn

(28) Ln = JacqF (qn)

The system (26) is rewritten for t ∈ [tn, tn+1] as

(29)


dq(t)

dt
= Ln(q(t)) + N (q(t))

q(tn) = qn

3Computational AeroAcoustics
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The exact solution of (27) is q(tn+1). It is expressed at time tn+1 by

(30) q(tn+1) = exp (Ln∆t) q(tn) +

∫ ∆t

0

exp(Ln(∆t− τ))N (q(tn + τ))dτ.

The integral in the right-hand side of (30) is then approximated but with integrating the exponential ”ex-
actly”. The function N is approximated in a Runge-Kutta fashion.

The two following Rosenbrock schemes are used in the sequel:

• The exponentially fitted Euler method is given by

(31) qn+1 = qn + ∆tϕ1(∆tLn)F (qn),

where the function z 7→ ϕ1(z) is

(32) ϕ1(z) = (exp(z)− 1)/z.

The scheme (31) is second order in time. It requires one matrix vector product per time iteration.
• The second Rosenbrock time scheme used in Section 4 is

(33)

 an = qn + ∆tϕ1(∆tLn)F (qn),

qn+1 = an + 2∆tϕ3(∆tLn) (N (an)−N (qn)) .

The function ϕ3(z) is

(34) ϕ3(z) =
(

exp(z)− 1− z − z2/2
)
/z3.

The scheme (33) is third order in time. Two matrix vector products are required per time step.

For (31) and (33), the filtering step takes place after each time step. In each case, the time stepping has the
following form :

Algorithm 2 : Rosenbrock time scheme of order 2 or 3 with filtering step

1: q0 = q(0) given,
2: for n = 0, 1, . . . itemax do
3: Compute q̂n+1 using (31) or (33)
4: Compute qn+1 = F

(
q̂n+1

)
.

5: end for

In the particular case of (1), the linear operator Ln is given by discretizing the continuous Jacobian of F (q)
at the gridfunction qn = [hn, un]T with perturbation q′ = [h′, u′]T . It is given by, (see (9) for the notation),

(35) Ln(q
′) = −

 ∇T,∆N ·
(
{un • h′}+ {u′ • (hn − hs(s))}

)
∇T,∆N

(
gh′ + {un • u′}

)
+
{(

f(s) + ζ∆N
(s, un)

)
• (n(s)× u′)

}
+
({

ζ∆N
(s, u′) • n(s)

}
× un

)
 .

The function (s, u) 7→ ζ∆N
(s, u) is given in (11).

Remark 3.2. The operator Ln in (35) acting on a gridfunction q′ can be equivalently defined as the lineari-
sation at qn of the discretisation F (q).

3.3. Krylov method in Rosenbrock schemes. As explained in [28], implementing a Rosenbrock scheme
such as (31) or (33) relies on efficiently evaluating matrix vector products of the form ϕl(A)b with A the
matrix ∆tLn∆t, and b a vector. The function z 7→ ϕl(z) is a complex function related to the exponential
z 7→ exp(z). Approximating ϕl(A)b is based on the Krylov method.

For A ∈MN (R) a given matrix and b ∈ RN , fix m ≤ N . The Krylov space K m = K m(A, b) is the subspace
of RN defined by

(36) K m(A, b) = Span
{
b, Ab,A2b, · · · , Am−1b

}
.

The integer m is selected as follows, [21, 40]. First m must be picked small enough to efficiently evaluate
ϕl(Hm). On the other hand it must be large enough to have an accurate approximation of Ab. Typical
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values of m are reported in Section 4. Krylov spaces are commonly used to approximate a matrix vector
product f(A)b by the Arnoldi method. This idea is the basis for the resolution of large sparse linear systems
[32, 33, 42] in the GMRES method. Here the Arnoldi algorithm [32] is used as follows

• Calculate the matrix Hm ∈ Mm(R), the projection of A on K m. The matrix Hm is expressed as

(37) Hm = V TmAVm.

where the matrix Vm ∈ MN,m(R) has orthonormal columns.
• Approximate A by

(38) A ≈ VmHmV
T
m .

• Approximate the vector ϕl(A)b by

(39) ϕl(A)b ≈ Vmϕl(Hm)V Tm b = ‖b‖2Vmϕl(Hm)e1

where e1 ∈ Rm is the first vector in the canonical basis of RN .

The evaluation of ϕl(Hm) is obtained by the method in [37]. A rational Padé approximation of ϕl(z) is used.
In addition, scaling and squaring are used to avoid errors in the case where ‖Hm‖ � 1.

4. Numerical results for the Shallow Water equation

4.1. Introduction. In this section, we report numerical results obtained for (1) using the scheme (7) and
either the time scheme RK4 or one of the two Rosenbrock scheme (31) or (33).

Four standard test cases are considered. The three first test cases are the tests 2, 5 and 6 in [45]. They are
referred to as the time-independant geostrophic flow, the isolated mountain and the Rossby-Haurwitz case.
The fourth test case is the barotropic instability in [14]. In all cases, our numerical results are compared to
the ones in the literature. The conservation properties of our scheme are numerically evaluated.

The physical constants are a = 6.37122 × 106m (earth radius), Ω = 7.292 × 10−5s−1 (earth angular
velocity), and g = 9.80616m · s−2 (gravity constant). The Coriolis force in (2) is given by f(x) = 2Ω sin θ,
where θ is the latitude angle. We call I1, I2 and I3 the following mean values, which are invariants of (1).

(40)



mass : I1 =

∫
S2
a

(h− hs)ds,

energy : I2 =

∫
S2
a

(
1

2
(h− hs)|u|2 +

1

2
g(h2 − h2

s)

)
ds,

potential enstrophy : I3 =

∫
S2
a

(ζ + f)2

2(h− hs)
ds.

The numerical error for I1, I2 and I3 is reported using the relative value

(41)
Ip(t)− Ip(0)

Ip(t)
for p = 1, 2, 3.

Since the discrete unknown is the gridfunction qn, and not discrete averages in cells, the meaning of the
discrete version of the averages must be given. All the approximate averages in (40) are calculated using the
Cubed Sphere quadrature rule Qa in [29].

4.2. Time-independent geostrophic flow. Our first test consists in calculating a particular time inde-
pendent geostrophic flow of (1) (test 2 in [45]). There is no bottom topography i.e. hs(x) = 0. The Coriolis
force is

(42) f(x) = 2Ω (− cosλ cos θ sinα+ sin θ cosα) .

The angles (λ, θ) are the lon/lat system of coordinates. The parameter angle α is the angle between the zonal
axis with the Oz axis. Picking up different values of α permits to evaluate the influence of the position of the
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Cubed Sphere with the solution. In our case, it permits to see if there is some interpanel parasitic reflection
with our scheme. The exact solution is q(x) = [h(x),u(x)]T , with u(x) = u(x)eλ(x) + v(x)eθ(x) and

(43)


h = h0 −

1

g

(
aΩu0 +

u2
0

2

)
(− cosλ cos θ sinα+ sin θ cosα)

2
,

u = u0(cos θ cosα+ cosλ sin θ sinα),
v = −u0 sinλ sinα.

The constants h0 and u0 are given by gh0 = 2.94 × 104m2s2 and u0 = 2πa/(12days) (in m · s−1). Starting
from (43) as initial data, the scheme (26) is used, integrated in time by the RK4 scheme. A calculated
asymptotic in time state is compared to the initial data. Fig. 2 shows the convergence slope for the relative
error |h− h∗|/|h∗| between the steady state h computed with the RK4 scheme and the exact value h∗(s) at
the grid vertices. Our finest grid is 64×64×6 with a time step ∆t = 300 seconds, corresponding to CFL ' 1
at the equator. The asymptotic state is observed at day 5. This approximately corresponds to 1500 iterations
in time. As seen in Fig. 2 both values α = 0 and α = π/4 give a sharp 4-th order accuracy. A very good
error level is obtained in both cases. Furthermore, there is no visible influence of the angle α.

Figure 2. Time independent geostrophic flow. The finest grid is 64 × 64 × 6, with a time
step corresponding to CFL ' 1 at the equator. The numerical solution is computed with the
RK4 scheme . It is compared to the exact solution. The convergence slope of the relative
error at day 5 in norm 1, 2 and max on the total height h is shown in each case. Left panel:
α = 0. Right panel: α = π/4. The N ×N × 6 Cubed Sphere is used with N = 8, 16, 32 and
64. A sharp 4-th order accuracy is observed in both cases. There is no visible influence of
the angle α.

4.3. Isolated mountain test case. This is the test 5 in [45]. It is a time dependant case without analytical
solution. The initial data is (43) with the parameters h0 = 5960m, u0 = 20m · s−1 and α = 0. This initial
data is perturbed by a conic mountain located at the point (λc, θc) on Sa. The bottom topography function
hs(x) is

(44)

 hs(x) = hs0

(
1− r(x)

r0

)
, hs0 = 2000m,

r = min
(
r0,
√

(λ− λc)2 + (θ − θc)2
)

, r0 = π/9, (λc, θc) = (3π/2, π/6).

Fig. 3 reports the total height h(x) at day 15. A coarse Cubed Sphere 32× 32× 6 is used. The time schemes
RK4 and the two Rosenbrock schemes (31) and (33) are used. The isolines are close to those obtained by
the conservative schemes in [8, 41]. Fig.4 shows the conservation history for the approximate values Ip,
p = 1 . . . 3. At day 15, the relative mass conservation is below 10−5 in all cases. The mass curve is increasing
for the RK4 scheme. It is slightly decreasing with the two Rosenbrock schemes whose curves are superposed.
This indicates a good mass conservation property of the spatial approximation. The energy error curves
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Figure 3. Isolated mountain test case at time of 15 days. The total height h is represented.
The coarse Cubed Sphere 32 × 32 × 6 is used. The contour line are plotted from 5050m to
5950m with interval of 50m. Top Left : solution using the Rosenbrock time scheme (31). Top
Right : Rosenbrock time scheme (33). In both case the time step is ∆t = 4h (CFL ' 20).
Bottom : solution using RK4 with ∆t = 1min (CFL ' 0.9). The results are almost identical.

present a behaviour similar to the mass error curves with the same relative error magnitude. At day 15, the
magnitude of the relative error in potential enstrophy is 10−5 (N = 32) using the Rosenbrock time scheme
(31) or (33). The RK4 curve shows a larger dissipation in the enstrophy, reaching a relative error of 10−4.
This is the same error level than with a FV scheme [8, 41], the magnitude of this error is 10−4. The curves
clearly show that the magnitude of the errors depend on the time scheme. The two Rosenbrock schemes give
better conservation results in all cases.

Finally, we report in Table 1 the numerical data used in the Arnoldi method when using the Rosenbrock
schemes (31) and (33).

Figure 4. Isolated mountain test case with a grid Cubed Sphere 32× 32× 6. Conservation
error (Iq(t)− Iq(0))/Iq(0). Left panel : mass (q = 0). Center panel : energy (q = 1). Right
panel : potential enstrophy (q = 2). Exp. Int. 3 and Exp. Int. 2 correspond to Rosenbrock
methods (33) and (31) respectively, both with ∆t = 4h (CFL ' 20). The scheme RK4 is
considered with ∆t = 1min. (CFL = 0.9).



A CENTER COMPACT SCHEME FOR THE SHALLOW WATER EQUATIONS ON THE SPHERE 11

Method Time step CFL number of Krylov vectors
Rosenbrock scheme (31) ∆t = 4h. CFL ' 20 52 (for ϕ1)
Rosenbrock scheme (33) ∆t = 4h. CFL ' 20 52 for ϕ1 and 45 (for ϕ3)

Table 1. Parameters of the two Rosenbrock schemes (31) and (33) for the isolated mountain
. The Cubed Sphere is 32×32×6 (6146 points). The final time is day 15. Maximum number
of Krylov vectors used to calculate ϕl(Ln)b. The matrix Ln is full.

4.4. Rossby-Haurwitz test case. The Rossby-Haurwitz is the test 6 in [45]. It is an analytical solution
of the nonlinear barotropic vorticity equation [27]. Although this equation is different from the equation (1),
it is used to assess the qualitative behaviour of numerical schemes for (1). The initial velocity is u(x) =
u(x)eλ(x) + v(x)eθ(x) with

(45)

{
u(x) = aω cos θ + aK cosR−1 θ(R sin2 θ − cos2 θ) cosRλ,
v(x) = −aKR cosR−1 θ sin θ sinRλ.

The initial height h(t = 0,x) is :

(46) gh(t = 0,x) = gh0 + a2A(θ) + a2B(θ) cosRλ+ a2C(θ) cos 2Rλ.

The functions A, B and C are:

(47)



A(θ) =
ω

2
(2Ω + ω) cos2 θ +

1

4
K2 cos2R θ

[
(R+ 1) cos2 θ + (2R2 −R− 2)− 2R2 cos−2 θ

]
,

B(θ) =
2(Ω + ω)K

(R+ 1)(R+ 2)
cosR θ

[
(R2 + 2R+ 2)− (R+ 1)2 cos2 θ

]
,

C(θ) =
1

4
K2 cos 2Rθ

[
(R+ 1) cos2 θ − (R+ 2)

]
.

The constants are ω = K = 7.848 × 10−6s−1, h0 = 8 × 103m and R = 4. The function h at day 14 is
reported in Fig. 5 with a Cubed Sphere 80 × 80 × 6. The time schemes RK4 ,and the two Rosenbrock
schemes (31) and (33) have been used. For this test, the minimal resolution for accurate results has been
found as 80× 80× 6. With this grid, the conservation history is reported in Fig. 6 for the first 14 days. The
mass conservation is excellent in all cases. As for the isolated mountain, the mass conservation error level is
even smaller when using any of the two Rosenbrock schemes (10−8) than with the RK4 scheme (6 × 10−8).
The energy error curves displays an oscillating behaviour for each of the two the Rosenbrock schemes. In all
cases, the magnitude of the relative energy error is below 2.5× 10−6, which is very good. This is one order
of magnitude better than 5 × 10−4, obtained in [15]. The magnitude of the relative error on the potential
enstrophy is 8×10−4 compared to 5×10−4 obtained in [15]. For the enstrophy, the RK4 scheme and the two
Rosenbrock schemes perform similarly. Table 2 reports the numerical data used when using the Rosenbrock
schemes (31) and (33).

Method Time step CFL Number of Krylov vectors
Rosenbrock scheme (31) ∆t = 2h. CFL ' 27 56 for ϕ1

Rosenbrock scheme (33) ∆t = 2h. CFL ' 27 56 for ϕ1 and 50 for ϕ3

Table 2. Rossby-Haurwitz case on a Cubed Sphere 80 × 80 × 6 (38402 points). The final
time is 14 days. Maximum number of Krylov vectors used to calculate ϕl(Ln)b. The matrix
Ln is full.

4.5. Barotropic instability. The last test is the batrotropic instability in [14]. The initial condition is
q = q̄ + q′ with the steady state q̄ = (h̄ = h∗, ū = u∗) where (h,u) is a time independent zonal solution of
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Figure 5. Numerical results of the Rossby-Haurwitz test case with the grid 80× 80× 6 at
day 14. The contour lines are plotted from 8100m to 10500m with interval of 100m. Top
Left : Rosenbrock scheme (33). Top Right : Rosenbrock scheme (31). Both with ∆t = 2h.
(CFL ' 27). Bottom : solution using RK4 with ∆t = 300sec. (CFL ' 1). The differences
between the plots are small.

Figure 6. Rossby-Haurwitz test case with the grid 80× 80× 6. Conservation error (Iq(t)−
Iq(0))/Iq(0). Left panel : mass (q = 0). Center panel : energy (q = 1). Right panel
: potential enstrophy (q = 2). Exp. Int. 3 and Exp. Int. 2 correspond to Rosenbrock
methods (33) and (31) respectively, both with ∆t = 2h (CFL ' 27). The scheme RK4 is
considered with ∆t = 300sec. (CFL ' 1). In this case, we remark difference in Rosenbrock
scheme contrary to previous case.

(1). The perturbation is q′(t = 0) = (h′, ∗, 0). The steady state q̄ = (h̄∗, ū∗) with h̄ and ū given by in terms
of (λ, θ) by

(48)

 h̄(λ, θ) = h0 −
1

g

∫ θ

−π/2
auλ(τ)

(
f +

tan τ

a
uλ(τ)

)
dτ,

u(λ, θ) = uλ(θ)eλ



A CENTER COMPACT SCHEME FOR THE SHALLOW WATER EQUATIONS ON THE SPHERE 13

with uλ(θ) = umaxψ(θ) and the function ψ(θ) given by

(49) ψ(θ) =


0 if θ ≤ θ0,
1

en
exp

(
1

(θ − θ0)(θ − θ1)

)
if θ0 ≤ θ ≤ θ1, en = exp

(
−4

(θ − θ0)(θ − θ1)

)
0 if θ1 ≤ θ.

and (θ0, θ1) = (π/7, π/2 − θ0), umax = 80m · s−1. The height h0 is such that the mean value of h over the
sphere S2

a be 104m. The perturbation h′(x) is

(50) h′(λ, θ) = ĥ cos θ exp

[
−
(
λ

α

)2

−
(
θ2 − θ
β

)2
]
,

with ĥ = 120m, α = 1/3, β = 1/15 and θ2 = π/4. As mentioned in [38], this test is challenging for a Cubed
Sphere discretization since the perturbation is located between the two panels (I) and (V), thus possibly
giving some interpanel instability. In addition, the largest magnitude of ∇Th is located near panel (V)
boundary. In Fig. 7, the contour lines of the vorticity are represented at day 6 for the grid 96 × 96 × 6.
The results are similar to those in [8, 41]. As mentionned in [41], the grid 32 × 32 × 6 is too coarse to
accurately represent the initial data. The history of the conserved quantities is reported in Fig. 8 with the
grid 96× 96× 6. Again in all cases, the relative errors are better evaluated with the two Rosenbrock schemes
than with the RK4 scheme. For the two Rosenbrock schemes, the relative errors for the mass and for the
energy are 10−8 and 10−6 respectively. As before, the relative potential enstrophy is challenging to preserve.
The relative error at day 6 has an order magnitude of 10−3. The numerical parameters when implementing
the Rosenbrock schemes (31) and (33) are given in Table 3.

Method Time step CFL Number of Krylov vectors
Rosenbrock scheme (31) ∆t = 1h. CFL ' 16 85 for ϕ1

Rosenbrock scheme (33) ∆t = 1h. CFL ' 16 85 for ϕ1 and 76 for ϕ3

Table 3. Barotropic instability case on the Cubed Sphere 96× 96× 6, (55298 points). The
final time is 6 days. Maximum number of Krylov vectors used to calculate ϕl(Ln)b. The
matrix Ln is full.

4.6. General comments on the numerical results. Two conclusions can be drawn from our numerical
results. First, the approximation in space shows a very good accuracy. This accuracy is close to 4 as shown
in Section 4.2. Furthermore this accuracy is not associated with an interpanel effect of any kind. This is
an important property of our spatial approximation. Such an interpanel effect can be present, depending
on the type of the Cubed Sphere and on the approximation procedure that are used, [31]. This good
behavior is attributed to the Hermitian derivative procedure along the full great circles presented in Section
2. Concerning the stability of the convective term in (1) we never found useful to introduce any upwinding.
The mathematical properties of this computational procedure remain to analyze in more detail. Note that an
alternative way to interpolate the data of the Cubed Sphere to the set of great circles could be considered. A
possibility could be to use some discrete Spherical Harmonics discrete basis associated to the Cubed Sphere.
So far however, the cubic spline procedure presented in 2) has been found simple and efficient.

Our second conclusion concerns the Rosenbrock schemes (31) and (33). On the one hand, the numerical
results are similar to the ones obtained with the RK4 scheme. However, the relative conservation errors are
better with the Rosenbrock schemes than with the RK4 scheme. A much larger CFL number can be used
with the Rosenbrock schemes than with the RK4 scheme. This fact is expected, according to the theory of
the exponential time schemes [22]. However this is not per se an essential issue, since the choice of the time
step also depends on the physical phenomema to be simulated. What is found in the present study is that
the test cases considered can be run using large time steps. As mentioned in [15], the real issue is to better
analyze the computational cost of the Rosenbrock approach using the Krylov procedure in Section 3.3.
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Figure 7. Numerical results of the Barotropic instability with the grid 96×96×6 at day 6.
Contour lines of vorticity are plotted. Top : Rosenbrock scheme (33). Center : Rosenbrock
scheme (31). Both with ∆t = 1h (CFL ' 16). Bottom : RK4 scheme with ∆t = 240s.
(CFL ' 1). There is no significative differences. Note the absence of interpanel instabilities.

Figure 8. Conservation error for the Barotropic instability with the grid 96× 96× 6. The
conservation error (Iq(t) − Iq(0))/Iq(0). Left panel : mass (q = 0). Center panel : energy
(q = 1). Right panel : potential enstrophy (q = 2). Exp. Int. 3 and Exp. Int. 2 correspond
to the Rosenbrock schemes (33) and (31) respectively, both with ∆t = 1h (CFL ' 16). The
time step for the RK4 scheme is ∆t = 240s. (CFL ' 1).
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5. Conclusion

The finite difference approach in GFD simulations was introduced in early works, [34, 1]. Recently, despite
of several contributions as [16], this approach has received significantly less attention than the conservative
approach steming from compressible CFD. The present contribution belongs to this category.

The main ideas of the center spatial approximation were introduced in [11, 12] and worked out in [6].
As mentioned in the introduction, this approach is closely related to the standard numerical approach to
Computational Aeroacoustics (CAA) by compact schemes. The guiding idea of the present work is that the
fluid regime in the test cases presented is closer to the linear regime or to the weakly nonlinear regime than
to a strongly nonlinear regime. This makes the GFD flow motion closer from a low Mach number flow than
from a shock wave regime. For this reason, centered differencing for the convective term, in a fashion close
to the one in CAA, seems a relevant option.

Regarding conservation, the numerical evaluation of integral quantities to be preserved did not reveal any
particular misbehaviour with our approach. The numerical results for all the cases tested so far showed sharp
fourth order accuracy and very good stability properties. This was found true independently of the particular
time stepping scheme used, RK4 or any of the two Rosenbrock schemes considered (31) or (33). These results
support the fact that focusing on accuracy in the weakly nonlinear regime is an important challenge for the
future of GCM development.

Beyond numerical analysis, many questions remain open. A first question is whether some more nonlinear
flow regime in climatology would require more advanced filtering as in [10, 46]. Parallel to this question is
which kind of flows in GFD really require upwinding in one form or another.

Another issue is how to efficiently implement the approximation suggested in this paper, as well as how
to design some grid refinement procedure. This will be considered in future work. Finally, more complex
physical modeling including several layers of shallow water to handle three-dimensional atmospheric flows
will be considered as well.

6. Appendix: Numerical analysis

In this section, we gather several numerical analysis facts related to the approximation used in this study.
The results are limited to the model problem of the linear convection equation in the periodic setting.
Although purely linear and one dimensional, these results were not found in the existing literature.

6.1. Convergence analysis. The approximation in space in Section 2 is based on the standard Hermitian
approximate derivative. Consider a regular finite difference grid with stepsize h > 0 and periodic data located
at point xj = jh, j = 0, 1, . . . , N − 1. To any gridfunction w = [w0, w1, . . . , wN−1], the Hermitian derivative
δHx w is defined by

(51) δxwj − σx(δHx w)j = 0, 0 ≤ j ≤ N − 1,

where the operators σx and δx are defined by

(52) σxvj =
1

6
wj−1 +

2

3
wj +

1

6
wj+1, δxvj =

wj+1 −wj−1

2h
, 0 ≤ j ≤ N − 1.

In it well known that δHx w is a fourth order approximation to the derivative. It is easily shown that an
uniform estimate of the truncation error τ is given by

(53) ‖τ‖∞ ≤ Ĉh4‖∂(5)
x u∗‖∞,(0,L), Ĉ = 1/60.

Next, consider the linear convection equation for the scalar function u(t, x)

(54) ∂tu+ c∂xu = 0, x ∈ Ω = (0, L), t ≥ 0, c > 0,

with periodic conditions at x = 0 and x = L. The semidiscrete compact scheme is:

(55)
d

dt
vj(t) + cδHx vj(t) = 0.

This scheme is a standard approximation for convection problems. Refer to [24, 20] and the references therein.

Note that the total mass h
∑N−1
j=0 vj(t) is constant in time, which expresses a conservation property of (55).
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An elementary convergence analysis, based on the energy method, for the scheme (55) is now carried out as
follows. We denote the norm |u|h

(56) |u|h =

hN−1∑
j=0

|uj |2
1/2

, ‖w‖h,∞ = max
0≤j≤N−1

|wj |.

The error ej(t) = u∗j (t)− vj(t) evolves along the system

(57)
d

dt
ej(t) = c

(
τj(t)− δHx ej(t)

)
, 0 ≤ j ≤ N − 1.

Taking the (., .)h scalar product of (57) with e(t) gives (the antisymmetry of δHx is used):

(58) 2

(
d

dt
e(t), e(t)

)
h

= 2c
(
τ(t), e(t)

)
h
.

Let α > 0 be a fixed parameter to be specified latter. The equation (58) implies

(59)
d

dt
|e(t)|2h ≤ c

(
α|τ(t)|2h +

1

α
|e(t)|2h

)
.

Applying the Gronwall Lemma easily gives that for t fixed, e(t) satisfies the estimate

(60) |e(t)|2h ≤ Ĉ2fminLc
2t2h8‖∂(5)

x ‖2∞,[0,T ]×[0,L], 0 ≤ t ≤ T.

where fmin = minx>0

(
x2(e1/x − 1)

)
. Is is easily shown that fmin ≤ 1.545. Defining the constant C̃ =

Ĉ
√
fmin ' 2.08 10−2, we obtain finally the following

Proposition 6.1. Let u∗j = u(t, x) be the exact solution of (54) at points xj and vj(t) be the solution of
semidiscrete scheme (55). The error ej(t) = u∗(t)− vj(t) satisfies the fourth order error estimate

(61) |ej(t)|h ≤ C(t)h4‖∂(5)
x u‖∞,[0,T ]×[0,L], 0 ≤ t ≤ T,

where C(t) = C̃
√
Lct and C̃ ' 2.08 10−2 is a universal constant.

The estimate (61) shows a linear evolution of the constant C(t) in time from t = 0 to t = T .

Remark 6.2. The estimate (61) shows fourth order accuracy in the grid dependent norm |.|h. Note that
the maximum norm estimate is more difficult to prove. Note also that the practical interest of Prop. 6.1 is
limited to the constant velocity and regular grid cases.

6.2. Matrix stability analysis of the fully discrete scheme. In this section, we show how to derive
analytically the matrix stability condition for (55) when discretized in time by the RK4 scheme. Let V (t) =
[v0(t), v1(t), . . . vN−1(t)]T . The equation (55) is equivalent to the vector equation

(62)

{
d
dtV (t) = − c

hJV (t),
V (0) = V0 = [u∗0, u

∗
1, . . . , u

∗
N−1]T ,

where J is the N × N matrix defined by (JV )j = δHx vj . Let P be the matrix of the left shift operator
uj 7→ uj−1 with N− periodic data.

(63) P =


0 1

0 1 (0)
. . .

. . .

(0) 0 1
1 0


︸ ︷︷ ︸

N×N

.

The matrix J is J = m(P ) where

(64) m(z) =
1

2

z − z−1

1
6 (z + z−1) + 2

3

.
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The matrices P and J are expressed as 4

(65) P =

N
2∑

k=−N
2 +1

ωkRk ⊗ (Rk)H ,

and

(66) J =

N
2∑

k=−N
2 +1

m(ωk)Rk ⊗ (Rk)H .

where Rk = [Rk0 , R
k
1 , . . . , R

k
N−1]T ∈ CN is the vector with components

(67) Rkj =
1√
N
ωkj , 0 ≤ j ≤ N − 1, ω = exp

(2iπ

N

)
.

Using that V (t) = exp(− cth J)V0 yields

(68) V (t) =

N
2∑

k=−N
2 +1

exp
(
− c
h
m(ωk)t

) (
(Rk)HV0

)
Rk.

Consider now the time stepping of (62) by the RK4 scheme, [44, Chap. IV.2, pp. 16-18]. Since the matrix
−cJ/h is constant, the RK4 time stepping coincides with the vector iteration

(69) V n+1 = r(−λJ)V n,

where λ = c∆t/h > 0 is the Courant number and r(z) is the truncated exponential series

(70) r(z) = 1 + z +
z2

2!
+
z3

3!
+
z4

4!
.

Using (66) gives that V n is

(71) V n =

N
2∑

k=−N
2 +1

[r(−λm(ωk))]n
(
(Rk)HV0

)
Rk.

The sequence (71) is bounded if and only if

(72)
N/2
max

k=−N/2+1
|r(−λm(ωk))| ≤ 1.

This is equivalent to

(73) λ
N/2
max

k=−N/2+1
|m(ωk)| ≤ KRK4,

where KRK4 = 2
√

2 is defined by

(74) KRK4 = max{b, where a+ ib ∈DRK4} = 2
√

2.

where DRK4 is the domain of stability of the RK4 scheme, [44, Chap. IV.2, p. 18]. The condition (73) is
rewritten as

(75) λ
N/2
max

k=−N/2+1

(
sin
(

2kπ
N

)
2
3 + 1

3 cos
(

2kπ
N

)) ≤ KRK4,

or equivalently

(76) λ ≤ 2
√

2/3.

We have proved the matrix stability analysis result:

4For X a n×m matrix, XH = X̄T
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Proposition 6.3. The sequence (V n)n≥0 is uniformly bounded under the necessary and sufficient condition

(77) λ ≤ λ∞, where λ∞ = 2
√

2/3.

6.3. Filtered time-scheme. The preceding stability condition is an indication for a bound of the CFL.
However it is only valid for the linear equation (54). In the case of a non constant velocity model, the
stability must be reinforced. This is of course not surprizing, since the basic scheme is centered. A common
treatment consists in adding at each time step a high-frequency filter. Refer to [5] and references therein.
This filtering step takes the form (see the last line in Algorithm 1 in Section 3.1):

(78) V n+1 = F
(
V n +

∆t

6

(
K(0) + 2K(1) + 2K(2) +K(3)

))
,

or equivalently

(79) V n+1 = F (r (−λJ)V n) .

The filter function F is the linear operator acting on periodic sequences defined by

(80) F (ui)i =

J∑
j=0

aj
2

(ui+j + ui−j), 0 ≤ j ≤ N − 1.

The width of the stencil is the odd integer 2J + 1. The first J + 1 coefficients a0, a1, . . . , aJ must satisfy the
J + 1 equations

(81)



J∑
j=0

aj = 1, (a)0

J∑
j=0

ajj
2k = 0, k = 1...J − 1, (a)k

J∑
j=0

aj(−1)j = 0, (b)

The J + 1 equations (a)k, with k = 0, 1, . . . , J − 1 translate the consistency with the identity of the filter

Order of accuracy a0 a1 a2 a3 a4 a5

2 1/2 1/2
4 10/16 8/16 −2/16
6 44/64 30/64 −12/64 2/64
8 186/256 112/256 −56/256 16/256 −2/256
10 772/1024 420/1024 −240/1024 90/1024 −20/1024 2/1024

Table 4. Examples of filters in the form (80) and their orders of accuracy.

function with accuracy 2J . These relations are obtained by Taylor expansions near xi. The additional
relation (81)b translates that the oscillating mode vj = (−1)j is cancelled out by the operator F . The linear
system (81) is (we drop the dependence in J for simplicity)

(82) Aa = b,
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Accuracy of F , 2J λJ

∞ (no filter) 1.6329
10 1.6883
8 1.7114
6 1.7485
4 1.8156
2 1.9749

Table 5. Maximum CFL number λJ for the vector iteration (79) in term of J , the width
of the stencil of the filter function F . The function J 7→ λJ is decreasing. The limit value is
λ∞ = 2

√
2/3 ' 1.6239. This limit value corresponds to J = +∞, i.e. the absence of

filtering.

where the a = [a0, a1, . . . , aJ ]T is the vector of coefficients in (80), b = [1, 0, . . . , 0]T ∈ RJ+1 and A is the
(J + 1)× (J + 1) matrix

(83) A =



1 1 1 1 1 1 · · ·
0 2 0 2 0 2 · · ·
0 1 22 32 42 52 · · ·
0 1 24 34 44 54 · · ·
0 1 26 36 46 56 · · ·

...
...


.

We skip the proof of the following proposition, which states existence and uniqueness of the coefficients a:

Proposition 6.4. There exists a unique set [a0, a1, . . . aJ ] satisfying the relations (81). The filter function
F in (80) operates on each periodic gridunction Rk by

(84) F (Rk)j = PJ(cos(θ))Rkj ,

where PJ is the polynomial

(85) PJ(X) = 1− 1

2J
(1−X)J .

Moreover, for all periodic gridfunction (wj)0≤j≤N−1

(86) max
0≤j≤N−1

|F (w)j | ≤ max
0≤j≤N−1

|wj |,

and the stability condition of the iteration (78) is λ ≤ λJ where λJ ≥ λ∞.

Table 4 reports the values of a series of filter coefficients aJ [43]. In adddition, a set of approximate values
of λJ is reported in Table 5. As expected, the lower J , the higher the maximal CFL number λJ .
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