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NUMERICAL SIMULATION OF PROPAGATION PROBLEMS ON THE SPHERE

WITH A COMPACT SCHEME

M. BRACHET AND J.-P. CROISILLE†‡

Abstract. We consider propagation problems on the sphere and their approximation by a compact finite
difference scheme. The scheme used in this study uses the Cubed Sphere, a particular spherical grid with

logically Cartesian structure. A central role is played by the standard one dimensional Hermitian derivative

[22]. This compact scheme operates along great circles, thus avoiding any one sided compact scheme. [10,
11]. The scheme is centered. A simple high frequency filter is added to reinforce the stability. The final

scheme is reminiscent of compact schemes in Computational Aeroacoustics or in turbulence Direct Numerical
Simulation. Numerical results on a broad series of numerical test cases in climatology are presented, including

linear convection problems, the linearized shallow water equations and the non linear shallow water equations.

The results demonstrate the interest of the present approach in a variety of situations arising in numerical
climatology.

Keywords: Cubed-Sphere grid - Compact finite difference scheme - Hermitian derivative - Vortex propa-
gation

1. Introduction

In this paper we consider propagation equations on the sphere which are of interest in climatology. The
considered partial differential equations are related to the spherical Shallow Water equations (SWE). The
SWE model represents a reference hyperbolic system to be solved in spherical geometry [15]. A second
problem (LSWE) consists of the linearized SWE around an atmosphere at rest. This problem represents a
fundamental wave model on the sphere. It is of great importance in climatology and oceanography. On this
topic, refer to the recent monograph [25].

In the past twenty years, the SWE and LSWE equation have been the source of many efforts to adapt
to numerical climatology the conservative methods commonly used in numerical gas dynamics. This is in
particular the case of the finite volume method [7, 35], or the Discontinuous Galerkin method [3]. In this
paper, we address anotyher approach, namely the particular finite difference scheme introduced in [10, 11].
This scheme is compact in the sense of [8, 22]. Among the classical methods for fluid flows, it is strongly
related to the difference schemes in Computational Aeroacoustics [37, 33, 6] and in turbulence simulation [21].
The novelty lies in the fact that the approximation procedure operates on the Cubed Sphere at the global
level. Since the scheme is compact, there is the non locality problem related to the Hermitian derivative.
This problem is traditionally handled by mean of a one-sided scheme at near boundary grid points. Here
boundary points are avoided by using a particular set of great circles as the geometric basis for the compact
scheme. The scheme is centered with one value per gridpoint. Finally, a linear high frequency filter is added
for stabilization. Note that our approach is different from other works which use FD schemes in numerical
climatology as [2, 14].

Three convective models are considered in this paper:

• The advection equation [38]:

(1)
∂h(t,x)

∂t
+ c(t,x) · ∇Th(t,x) = 0

The velocity c(t,x) is a prescribed tangential vector field representing the wind. The scalar func-
tion h(t, x) typically represents the density of a pollutant convected by a wind with velocity c. The

Date: May, 10 2018.

1



NUMERICAL SIMULATION OF PROPAGATION PROBLEMS ON THE SPHERE WITH A COMPACT SCHEME 2

numerical solution is compared to the analytical solution, which is available by the method of char-
acteristics in particular cases. This permits to evaluate, not only the dissipation and the dispersion,
but also the long time behaviour of the scheme.

• The Shallow Water model (LSWE) [25, 26] linearized around the constant state of an atmosphere at
rest q0 = [H,v = 0] is

(2) (LSWE)


∂η(t,x)

∂t
+H∇T · v(t,x) = Sη(t,x),

∂v(t,x)

∂t
+ g∇T η(t,x) + f(x)n(x)× v(t,x) = Sv(t,x).

This system is sometitimes referred to as the Laplace Tidal Equation (LTE). The small perturbations
are the height η and the velocity v. The source terms Sη and Sv stand for forcing functions.
The vector function f(x)n(x) × v represents the Coriolis force. This problem still offers many
mathematical open questions [25]. Accurate numerical simulations are important to have insight in
spherical fluid flows in the linear and nonlinear regime.

• The full SWE system [26] in vector form is

(3) (SWE)


∂h?

∂t
(t,x) +∇T · (h?(t,x)v(t,x)) = 0

∂v

∂t
(t,x) +∇T

(
1

2
|v(t,x)|2 + gh(t,x)

)
+ (f(x) + ζ(t,x)) n(x)× v(t,x) = 0

where ζ = (∇T × v) · n is the relative vorticity and h? = h − hs with hs the bottom topography
function.

For these three models, and for the numerical cases considered, we show that our centered compact scheme
compares favourably with conservative upwind methods, such as the finite volume method [35] or the Discon-
tinuous Galerkin method [23, 3]. Our scheme is a priori not conservative, so we carefully evaluate how evolve
the integral values that are preserved at the continuous level. Conserved quantities are of two kinds. There
are first the primary conservative quantities, which are by construction preserved by conservative methods.
In (3) the primary conserved quantities are the mass and the total energy. However derived quantities such as
the relative vorticity or the potential enstrophy are important to conserve as well. There is no guarantee that
conservative methods actually preserve such quantities. In fact, it is well known that finite volume methods
can excessively dissipate vorticity for large times. This is why the conservation properties of our scheme are
numerically analyzed as a whole, without distinction between primary and derived quantities. As we shall
see, our scheme performs well regarding conservation for all conserved integral quantities.

Regarding numerical diffusion, we rely on a linear filtering, which aims to remove the +1/-1 mode attached
to the grid. It was found that the test cases considered in Sec. 3 do not require more advanced numerical
viscosity. In particular, hyperviscosity models, [9] were found not necessary. Similarly, advanced nonlinear
filtering such as [39] are not used as well.

The outline of the paper is as follows. In Sec. 2, we recall the background of our approach along the lines
of [10, 11]. In particular we give the details of the centered approximation of the gradient, the divergence
and the vorticity. In Sec. 3, numerical results on a broad series of test cases involving (1), (2) and (3) are
presented. Finally, in Sec. 4 a numerical analysis of the basic compact scheme is carried out on the model
of the linear advection equation with periodic setting. This includes a convergence analysis of the standard
fourth order compact scheme and a stability matrix analysis of the fully discrete scheme, including filtering.
This short section aims to bring some support for the compact scheme on the sphere that is used.

All the computations were perfomed in matlab on a desktop computer.

2. Central compact differencing on the Cubed Sphere

In this section, we review the basics of our compact scheme, which uses the Cubed Sphere grid as geometric
primitive. This scheme uses a particular property of the Cubed Sphere, the fact that coordinate lines are great
circles sections. These great circles are used to operate the compact differentiation. Here we use the standard
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Figure 1. The Cubed Sphere with resolution parameter N = 16. The number of gridpoints
is 6N2 + 2, (1538 in this case). The four panels (I), (II), (III) and (IV ) are located around
the equatorial plane z = 0. The labels of the north and south panels are (V ) and (V I)
respectively.

fourth order Hermitian scheme. This provides accurate approximations to the gradient, the divergence and
the vorticity. Higher order schemes were found unnecessary to obatain better numerical results.

2.1. The Cubed Sphere. The Cubed Sphere [30] is a spherical grid widely used in numerical climatology. A
modern presentation was given in [29]. It is composed of six panels labeled with k = (I), (II), (III), (IV ), (V )
and (V I). Each panel matches the face of a cube and supports a Cartesian grid of size (N+1)×(N+1). The
coordinate system on a panel is called (ξ, η). The angle ξ (resp. η) represents the angle along the ”horizontal”
(resp. ”vertical”) equator. The Cubed Sphere is represented in Fig. 1 and a typical panel is shown in Fig.
2. The gridpoints in panel k are denoted ski,j . The integer i (resp. j) denotes the index in the ξ direction

(resp. η) direction. The points ski,j −N/2 ≤ i, j ≤ N/2 and (I) ≤ k ≤ (V I) are where the discrete data are
located. The spatial steps are identical in the ξ and η directions with resolution

(4) ∆ξ = ∆η =
π

2N
= ∆.

The Cubed Sphere has the symmetries of a Cube [29].
We refer to [19, 12] for works where the Cubed Sphere is used in frameworks different from climatology.

2.2. Great circles on the Cubed Sphere. The spatial approximation used in this paper is based on the
standard Hermitian derivative. Consider a function f(x) on the sphere Sa with radius a. Consider the data
fki,j = f(ski,j). For j0 fixed, the Hermitian derivative δHξ f

k
i,j0

is obtained by

(5)
1

6
δHξ fi−1,j0 +

2

3
δHξ fi,j0 +

1

6
δHξ fi+1,j0 =

fi+1,j0 − fi−1,j0

2∆ξ
.
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ξ

η

Figure 2. Frontal view of a panel. The points of a typical panel of the Cubed-Sphere
are classified in three categories: (i) (N − 1)2 circles correspond to the internal points; (ii)
4(N − 1) squares correspond to the edge points ; (iii) 4 pentagons correspond to the corner
points. The equatorial angles (ξ, η) are such that −π/4 ≤ ξ, η ≤ π/4, with origin at the
center of the panel.
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Figure 3. Two typical great circles associated to coordinate lines along the Cubed Sphere.
Compact differencing is carried out along each circle, giving one-dimensional approximate
derivatives. Points marked with circles correspond to gridpoints where discrete values are
located. In the contrary, values must be interpolated at points marked with squares.

The truncation error for δHξ fi,j0 satisfies

(6) δHξ fi,j0 − ∂ξf(ski,j0) = − 1

180
∆ξ4∂

(5)
ξ f(ski,j0) +O(∆ξ6).

The main point is that the formula (5) is used along a full great circle. This means that the ξ− coordinate
attached to panel (I) is extended to the full sphere. Therefore there is no one sided compact formula involved
at any point. Consider for example in Fig. 3 the great circle marked with points. This circle crosses panels
(I), (II), (III) and (IV ). It coincides with coordinate lines in panels (I) and (III). In panels (II) and
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Panel (II)

Figure 4. Frontal view of panel (II) with the great circle in Fig. 3. The points marked
with squares are located on panel (II). They do not belong to the grid (except several of
them). The value assigned to each point is deduced by a cubic spline interpolation along
each vertical line. This gives a 4th. order approximation at each of these points. Doing
the same on panel (IV), each point on the circle carries a value, either exact or 4th. order
accurate. Applying the Hermitian derivative (5) at these points gives an ”almost” 4th. order
derivative at points on panels (I) and (III). This procedure is repeated along a set of great
circles covering the Cubed Sphere.

(IV ) it does not coincide with coordinate lines. Based on the data on the Cubed Sphere fki,j , one calculates
Hermitian derivatives along this circle. This is operated as follows. First a suitable set of points mp is defined
on this circle. Second, values fp deduced from fki,j are assigned to these points. And third, δH∆fp is calculated
by (5). The same calculation is performed in the η− direction. These calculations are repeated in the six
panels. At this point, we have at hand approximations δHξ f

k
i,j and δHη f

k
i,j at each point ski,j of the grid. The

approximate gradient of the function f is then deduced as follows. On the panel k, the local basis (gξ,gη) is

(7) gξ(x) =
∂x

∂ξ
, gη(x) =

∂x

∂η
.

Let f(x) be a function defined on Sa. We denote by f∗ the restriction of f to the grid points:

(8) (f∗)ki,j = f(ski,j).

The gradient of f(x) is expressed in terms of the dual basis (gξ,gη) by

(9) ∇T f(x) =
∂f

∂ξ
(x)gξ(x) +

∂f

∂η
(x)gη(x).

Using the two approximate values

(10)
∂f

∂ξ
(ski,j) ' δHξ fki,j ,

∂f

∂η
(ski,j) ' δHη fki,j ,

a natural approximate gradient ∇T,∆(f∗)ki,j is defined by (we note ∆ = ∆ξ = ∆η):

(11) ∇T,∆(f∗)ki,j = δHξ (f∗)ki,jg
ξ(ski,j) + δHη (f∗)ki,jg

η(ski,j).

The precise computational procedure proceeds in four steps described in the Algorithm 1 hereafter. Consider
again in Fig. 3 the circle marked with points. This circle corresponds to some iso-η line η = η0 in panel (I).
The main point is the extension of the ξ coordinate from the panel (I) to the full circle. This is detailed in
the steps 1 and 2 of Algorithm 1. As already said there is a calculation in the ξ direction and a calculation in
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the η direction for the six panels, thus 12 calculation in all. However, due to the spherical symmetry, there is
in fact only 6 calculations so that Algorithm 1 is applied to the ξ and η coordinate lines only in panels (I),
(II) and (V ). Overall, a set of 6N great circles, covering the Cubed Sphere, are used. Finally, the values
δHξ (f∗)ki,j and of δHη (f∗)ki,j are obtained on the six panels and the approximation of the gradient is deduced

by (11).

Algorithm 1 : Hermitian derivative along the great circle in the ξ− direction
in Fig. 3.

1: Defining the grid on the great circle. Consider a coordinate great circle
based on a coordinate line in panel (I). We set up as follows 4N points on
this circle (see Fig. 3) mp, p = 0, . . . , 4N . The periodicity on this circle is
expressed by m0 = m4N .

(1) The first N points mp = s
(I)
p−N/2,j0 , p = 0, ..., N − 1 are located in

panel (I). They belong to the Cubed Sphere and they carry values

f
(I)

p−N
2 ,j0

. They are represented by black circles in Fig. 3.

(2) The next N points mp, p = N...2N − 1 belong to panel (II). They
do not belong to the Cubed Sphere. Interpolated data of f must be
calculated at these points. They are represented by black squares in
Fig. 3. These points play the role of auxiliary points.

(3) The next N points mp = s
(III)
p−N/2,j0 , p = 2N, ..., 3N−1 belong to panel

(III). They belong to the Cubed Sphere and they carry values f
(III)
i,j0

.
They are represented by black circles in Fig. 3.

(4) The last N points mp, p = 3N...4N − 1 belong to panel (IV). They
do not belong to the Cubed Sphere. Interpolated data of f must be
calculated at these points. They are represented by black squares in
Fig. 3. As in the panel (II), these points are auxiliary points.

2: Interpolation step. In this step data are interpolated from the Cubed-
sphere to the points mp:
(1) In panels (I) and (III), the points marked with black circles belong

to the Cubed Sphere. Data f
(I)
p−N/2,j0 are just copied from the Cubed

Sphere to the circle. There is no need of interpolation.
(2) In panels (II) and (IV ), a spline interpolation is performed as follows

(see [10]). The circle crosses vertical iso−ξ lines. A cubic spline in-
terpolation maps the data from the vertical iso−ξ line to the points
marked with black squares. This gives a 4th order interpolation for f
at these points.

3: Evaluating the Hermitian derivative on the circle. All the points mp, 0 ≤
p ≤ 4N now carry values. The discrete derivative δHξ fp is evaluated with

(5). This provides 4N (periodic) values called δHξ fp, 0 ≤ p ≤ 4N . The
differentiation is operated with respect to the equatorial angle. This angle
coincides with the ξ-coordinate in the panel (I) or (III).

4: Restricting the approximate derivative to coordinate lines. This step con-
sists in retaining the components δHξ fp located on panels (I) and (III)
only. These components are stored. They correspond to indices 0 ≤ p ≤ N ,
(panel (I)) and 2N ≤ p ≤ 3N , (panel (III)). The values of the derivatives
in the panels (II) and (IV ) are also an outcome of the calculation. But
they are useles since the points there do not belong to the Cubed Sphere.
Therefore, they are not stored.
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2.3. Approximation of differential operators. In Section 2.2 we have shown how to approximate the
spherical gradient by (11). Using the same principle, the divergence and the vorticity are approximated.
Consider a tangential vector field v(x). The divergence and curl operators are expressed in local coordinates
as [31]

(12)

{
∇T · v = ∂ξv · gξ + ∂ηv · gη, (a)
∇T × v = gξ × ∂ξv + gη × ∂ηv (b).

Consider the data vki,j on the Cubed Sphere. The discrete divergence and vorticity are defined by

(13)

{
∇T,∆ · vki,j = δHξ vki,j · (gξ)ki,j + δHη vki,j · (gη)ki,j , (a),

∇T,∆ × (v)ki,j = (gξ)ki,j × δHξ vki,j + (gη)ki,j × δHη vki,j (b).

According to (6), we expect the discrete derivatives to be fourth order accurate. However, due to the
interpolation of the data in Step 2 of Algorithm 1, one may wonder if the accuracy could drop to 3. In fact,
the value fp assigned to point mp on the circle satisfies

(14)

{
fp = f(mp) if m belongs to panels (I) or (III).
fp = f(mp) +O(∆4) if m belongs to panels (II) or (IV ).

Therefore it turns out that

(15) (fp+1 − fp−1)/(2∆ξ) = (f(mp+1)− f(mp−1))/(2∆ξ) +O(∆3),

which gives

(16) δHξ fp = ∂ξf(mp) +O(∆3).

As a consequence the approximations (11) and (12)a,b are at least O(∆3). In practice however, fourth order
accuracy has been numerically observed so far.

Remark 2.1. There is some redundancy in the computation. This is due to the fact that in Algorithm 1,
the Hermitian derivative in panel (II) and (IV) are not retained. They just serve as auxiliary variables (or
”ghost” values).0

2.4. Method of lines. Consider for exemple the SWE system (3). It is rewritten as

(17) ∂tq(t,x) = J(q(t,x)),

where the function J(q) is

(18) J(q) =

 −∇T · (h?v)

−∇T
(

1

2
|v|2 + gh

)
− (f + ζ) n× v

 .
According to the method of lines, J(q) is first approximated. Then a time stepping scheme is applied. The
function J(q) is approximated using the discrete operators (9) and (13)a,b. The semi discrete scheme is

(19)
dq(t)

dt
= J∆(q(t)),

where q = [qki,j ]
T and −N/2 ≤ i, j ≤ N/2, (I) ≤ k ≤ (V I). The discrete in sapce function J∆(q) is

(20) J∆(q) = J∆(hki,j ,v
k
i,j) =

 −∇T,∆ ·
(
h?ki,jv

k
i,j

)
−∇T,∆

(
1

2
|vki,j |2 + ghki,j

)
−
(
fki,j + ζki,j

)
nki,j × vki,j

 ,
where ζki,j =

(
∇T,∆ × vki,j

)
· nki,j is the semi discrete relative vorticity. Note that (19-20) is a non linear

dynamical system. It is expected to be fourth order accurate in ∆ = ∆ξ = ∆η. There is no upwinding in the
spatial approximation. As a consequence, the accuracy of the discrete equilibrium solutions are 4-th order as
well. In particular, the discrete equilibrium is not perturbed by the upwinding of the flux function as in finite
volume methods1. Refer to Section 3.5.1 for a numerical example with the SW equations. As we shall see in

1This perturbation requires the so-called well-balanced correction
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the numerical results, there is no need for any additional numerical viscosity in space. In fact, the intrinsic
numerical viscosity of the RK4 scheme in Algorithm 2 presented in Section 2.5 is sufficient for stability in
most situations.

2.5. Time stepping scheme with filtering. The time discretization is based on the classical Runge-Kutta
order 4 scheme to which a filtering operation is added at each time iteration. The time discretization is given
by the Algorithm 2.

Algorithm 2 : Explicit Runge-Kutta Scheme of order 4 with filter

1: q0 = q(0) given
2: for n = 0, 1, . . . do
3: K(1) = J∆ (qn),

4: K(2) = J∆

(
qn +

∆t

2
K(1)

)
,

5: K(3) = J∆

(
qn +

∆t

2
K(2)

)
,

6: K(4) = J∆

(
qn + ∆tK(3)

)
,

7: qn+1 = F
(
qn +

∆t

6

(
K(1) + 2K(2) + 2K(3) +K(4)

))
.

8: end for

In line 7 of Algorithm 2, F denotes the so-called filtering function. This filtering step eliminates the +1/-1
mode attached to the grid and improves the stability properties (see Section 4). On the Cubed-Sphere, we
use a filter of the form

(21) F =
1

2
(Fξ ◦ Fη + Fη ◦ Fξ) .

The functions Fξ and Fη correspond to a 10-th order filter in the directions ξ and η respectively. We refer
to (95), (96) and the last line in Table 2 for the 10-th order filter function which is used. We let operate
the filter function Fξ along the great circles in a fashion similar to the operator δHξ . The same steps than
in Algorithm 1 are used. As in Algorithm 1, the data are completed by an interpolation procedure in the
panels (II) and (IV). The difference between F and δHξ is that the operator Fξ is explicit with a non compact
stencil.

Several variants of compact formulas, of filter functions and of interpolation in the interpolation step of
Algorithm 1 have been tested. There is no evidence of better behaviour or accuracy with alternative choices.
Furthermore, the 10th order filter function in the last line of Table 2 is a good compromise between accuracy
and stability.

3. Numerical results

In this section, we present numerical results obtained with our centered compact scheme. We begin by
showing results on the accuracy of the discrete divergence and vorticity (13) on particular exemples. Refer
also to [10, 11].

From Section 3.3 on, we consider the hyperbolic problems (1), (2) and (3). In the three cases, the basic
scheme relies on the same principle. First the equations are discretized in space. This gives a system of the
form (19) by applying the discrete space operators pointwise. Second, the semi-discrete system is discretized
in time by the Algorithm 2.

Consider a non zero function f(x) defined on Sa with restriction to the grid (f∗)ki,j = f(ski,j). The error

ep, p = 1, 2,∞ between f∗ and some approximant f̂ki,j is defined by

(22) ep =
‖(f∗)ki,j − f̂ki,j‖p
‖(f∗)ki,j‖p

.



NUMERICAL SIMULATION OF PROPAGATION PROBLEMS ON THE SPHERE WITH A COMPACT SCHEME 9

In (22), the norm ‖.‖p stands for

(23) ‖fki,j‖p = QN (|f |p)1/p,

where QN (f) denotes a quadrature rule on the Cubed Sphere with parameter N . We have used the rule (20)
in [27], which is of the form

(24) QN (f) = a2

(V I)∑
k=(I)

N/2∑
i,j=−N/2

αi,j(f
∗)ki,j ,

We refer to [27]. for the definition of the weights αi,j .
Finally, note that the convergence analysis is performed by evaluating the least squares fit for several grids.

3.1. Steady state in a spherical cap. This test was suggested in [5]. Consider the scalar conservation
law:

(25)
∂u

∂t
+ divT F (x, u) = 0.

The sphere is Sa with a = 1. The tangential field F (x, u) has the form

(26) F (x, u) =

 x
y
z

×
 f1(u)
f2(u)
f3(u)

 .
with

(27) f1(u) = f2(u) = f3(u) =
1

2
u2.

The function

(28) u0(x, y, z) = (x+ y + z)/
√

3

is a time independent solution of (25). Thus it can be compared at any time to the numerical solution. This
enables to assess the accuracy of the approximate divergence in a nonlinear context. Fig. 5 reports at time
T = 6 the relative errors ep, p = 1, 2,∞ and the integral of u on the sphere, which must remain constant as
time evolves. Fig. 6 reports the same quantities but at time T = 600. In both cases, a coarse grid 32×32×6,
is used with ∆t = 0.96

π ∆ξ. The growth remains bounded by small values in both cases, even at T = 600.
Finally, Fig 7 reports the convergence rate at time T = 6 using several grids. A convergence rate close to 4
is observed in all norms.

Figure 5. Spherical cap test case: comparison between the time independent exact solution
u0(x, y, z) = (x + y + z)/

√
3 and the approximate solution uki,j(t) for the conservation law

(25). Left panel: error history ep(t) = ‖(u∗0)ki,j − uki,j(t)‖p/‖(u∗0)ki,j‖p with p = 1, 2,∞ for
0 ≤ t ≤ T = 6. Right panel: conservation of the integral of u(t,x) on the sphere.



NUMERICAL SIMULATION OF PROPAGATION PROBLEMS ON THE SPHERE WITH A COMPACT SCHEME 10

Figure 6. Same as Fig. 5 but on the time interval 0 ≤ t ≤ T = 600.

Figure 7. Spherical cap test case: convergence for the steady state of (25). The error at
time T = 6 is reported. The convergence rate is close to 4 in all norms.

3.2. Accuracy of the approximate relative vorticity. Consider a tangential vector field v. The relative
vorticity is the scalar defined by

(29) curlT (v) = (∇T × v) · n.

A natural approximation is

(30) curlT,∆(vki,j) =
(
∇T,∆ × vki,j

)
· n(xki,j),

where the operator ∇T,∆ × vki,j is defined in (13)b. The accuracy of (30) is assessed with the two following

tests, performed using functions defined on the spherical earth Sa, wit a = 6.37122× 106m (earth radius).

(1) The first test consists in assessing numerically the identity

(31) curlT (∇Th) = 0.

We consider the particular case of the function h(x) defined on Sa by

(32) h(λ, θ) = cos5(θ) sin(30λ),

with (λ, θ) the longitudinal and latitudinal coordinates. The observed convergence rate in the norm
‖ .‖p/|Sa|1/p reported in Fig. 8 is close to 4.

(2) The second case represents a zonal wind with velocity

(33) v(x) = cosα(θ)eλ(x).
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Figure 8. Accuracy of the iden-
tity curlT (∇Th) = 0., with
test case (31) and the func-
tion h(λ, θ) = cos5(θ) sin(30λ).
The errors ‖.‖p (normalized with

|Sa|1/p) are reported with p = 1, 2
and ∞. The grid N = 8 is too
coarse to represent the function h.

Figure 9. Accuracy of the rel-
ative vorticity (30) for the tan-
gential field v(x) = cos3(θ)eλ(x).
Convergence rate of the approxi-
mate relative vorticity of (33) for
ep with p = 1, 2 and ∞ with the
same grid parameter than in Fig.
8.

The relative vorticity is

(34) curlT (v)(x) =
α+ 1

a
cosα−1(θ) sin(θ).

Picking the parameter α ≥ 2 ensures that the field and the relative vorticity are regular near the
poles. We have choosen in our test α = 3. The relative error (22) is reported in Table 1 and in Fig.
9. A sharp 4th. order accuracy is observed in all norms.

N e1 e2 e∞

8 2.9158(−4) 3.3039(−4) 6.7103(−4)
16 1.7719(−5) 1.9906(−5) 4.0648(−5)
32 1.1025(−6) 1.2416(−6) 2.5207(−5)
64 6.9056(−8) 7.7821(−8) 1.6433(−7)
128 4.3244(−9) 4.8755(−9) 1.0822(−8)
256 2.7061(−10) 3.0522(−10) 6.9474(−10)

Rate 4.01 4.01 3.97

Table 1. Accuracy of the relative vorticity curlT,∆(v) for the tangential field v(x) =
cosα(θ)eλ(x). The relative error ep given in (22) with p = 1, 2, ∞. A sharp 4-th order
accuracy is observed in all norms.

3.3. Deformational flow with vortices. We consider the convection equation

(35)
∂h

∂t
(t,x) + c(t,x) · ∇Th(t,x) = 0

The velocity c(t,x) is prescribed to let evolve the initial condition with two constant states on a half sphere
into a rollup structure. This structure consists of two vortices localised at two diametraly opposite points C
and C ′. As time evolves, filaments spiral around the two vortex centers. This behaviour is well known in
point vortex flows. This test was introduced in [24, 28] as a sequel of the solid body test case (test 1) in [38].
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Here the analytical solution is available by the characteristics method. This case is challenging to evaluate
the spatial accuracy, since the filaments go below the resolution of the grid at some time. The time stepping
accuracy is also evaluated. Two variants were introduced in [24, 28]. In the first variant, the velocity c is
time independent. It is given in the coordinate system (λ′, θ′) attached to the axis (CC ′) by

(36) c(x) = acλ′(x)eλ′(x),

where

(37) cλ′ = cos(θ′)ωr(θ
′), ωr(θ

′) =

{
V (θ′)/(aρ(θ′)) if ρ 6= 0,
0 if ρ = 0.

and

(38)

 ρ(θ′) = ρ0 cos(θ′),

V (θ′) = u0
3
√

3

2
sech2(ρ(θ′)) tanh(ρ(θ′)).

with parameters T > 0, ρ0 > 0 and u0 = 2πa/T . The solution h(t,x) is given in coordinates (λ′, θ′) by

(39) h(t, λ′, θ′) = 1− tanh
(ρ(θ′)

γ
sin(λ′ − ωr(θ′)t)

)
,

The values ρ0 = 3, γ = 5, T = 12 days (in seconds) and earth radius a = 6.37122 × 106m. Fig. 10 reports
the error history when the point C is at (λC , θC) = (π/4, π/4). It corresponds to a location of the vortices
at the intersection of three panels. This test permits to assess the accuracy of the approximate gradient with
Algorithm 1. The grid is fixed 36× 36× 6. It is a coarse grid, with equatorial resolution ∆λ = 2.5 deg. Two
time steps were used to reach T = 12 days. In both cases, the scheme was found stable with a smoothly
growing error. When performing 2880 iterations, the error is dominated by the spatial approximation. The
observed error levels are comparable to the ones obtained with the Discontinuous Galerkin method in [28].
With 288 iterations, space and time errors are observed simultaneously. and the error level is slightly better
in that case. Fig. 11 reports the convergence rate in the norms p = 1, p = 2 and p =∞ with 205 iterations.
The error convergence is of order greater than 4, which is better than expected.

Figure 10. Deformational test case, time independent velocity, [24, 28]. The axis (CC ′)
is such that (λC , θC) = (π/4, π/4). Grid 36 × 36 × 6. Left panel: error history with 2880
iterations. Right panel: error history with 288 iterations.

The second variant [28] consists in superposing to the preceding velocity a solid body rotation at constant
speed. As a result, the rollup behaviour of the two antipodal vortices is now superposed to the traveling
wave effect at constant speed. This makes the test more difficult for large time than the previous one. The
velocity c(t,x) in (35) is c(t,x) = cs(x) + cr(t,x) where cr is the ”static” velocity in (36) and cs is the solid
rotation velocity defined by

(40) cs(x) = cλ,s(x)eλ(x) + cθ,s(x)eθ(x)
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Figure 11. Deformational test case, time independent velocity (36). Convergence analysis
at day 12. (λC , θC) = (π/4, π/4). With the grid N × N × 6, the time step is such that
2πu0∆t
N = 0.9. The accuracy is close to 5.

with

(41)

{
cλ,s = u0(cos θ cosα+ sin θ cosλ sinα),
cθ,s = −u0 sinλ sinα.

The parameters are the rotation angle α and u0 = 2πa/(12days). In (39) the point C is now moving along
solid body rotation. Its coordinates (λ′C(t), θ′C(t)) are

(42) (λ′C(t), θ′C(t)) = (λ0 + ωst, θ0),

where (λ0, θ0) = (3π/2, 0) is the initial position of the vortex. The ”static” velocity cs(t,x) is

(43) cr(t,x) = cλ,r(t,x)eλ(x) + cθ,r(x)eθ(x)

with

(44)

{
cλ,r(t) = aωr

[
sin θC(t) cos θ − cos θC(t) cos(λ− λC(t)) sin θ

]
,

cθ,r(t) = −aωr cos θC(t) sin(λ− λC(t)).

where ωr = u0/a = 2π/(12days) and (λC(t), θC(t)) is the coordinates of the moving point C.
At T = 12 days, the error level is comparable to the Discontinous Galerkin approximation in [28]. We also

compare the results using two upwind finite volume schemes with high order reconstruction [20]. These two
schemes are referred to as WENO5 and KL4 respectively. We have used the parameter α = π/4. The grid
is 80 × 80 × 6 and 750 times iterations are performed (at T = 12 days). Typical results reported [20] with
the WENO5 scheme give errors of e1 = 0.0021, e2 = 0.0042 and e∞ = 0.0191. Using the KL4 scheme, errors
are reported as e1 = 0.0021, e2 = 0.0043 and e∞ = 0.0194. With the present scheme, using the parameters
above, the observed errors are e1 = 1.67(−4), e2 = 7.23(−4) and e∞ = 5.75(−3) which is slightly better. In
Fig. 12 a slice of the vortex after 12 days is represented with resolution N = 30 and N = 60, respectively.
With a resolution N = 60, an excellent match with the exact solution is observed. Table 13 reports fourth
order at final time.

Finally, we report in Fig. 14 the relative error history during a larger time of T = 24 days. This permits
to observe the potential of the scheme at a time where a lack of accuracy is expected. We have used first a
coarse grid 40× 40× 6 with 457 time iterations and second a fine grid 80× 80× 6 with 914 time iterations.
With the coarse grid, the error level after 24 days is 15.93% in the maximum norm and 3.67% in the L2

norms. With the fine grid, the errors is below 9.63% for the maximum norm and 1.69% with the L2 norms.
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Figure 12. Deformational test case, time dependent velocity (43). Slice of the vortex after
12 days: the value of h in (35) is displayed in function of the longitude angle (in radians).
Solid line: exact solution. Circles: approximate solution with the grid 30× 30× 6. Crosses:
approximate solution with the grid 60× 60× 6.

Figure 13. Deformational test case, time dependent velocity (43). The time step is given
by 2πu0∆t/N = 0.7 with u0 = 2πa/1212days, the earth radius a and α = π/4. Convergence
slope at final time in the three norms ep, p = 1, 2,∞.

3.4. Linearized shallow water equation. We consider the shallow water equation (2) linearized around
an atmosphere at rest. We consider two cases designed using hand manufactured solutions. The source terms
Sη and Sv are adjusted to these solutions. The numerical scheme uses the approximation (9 - 13) with the
filtered RK4 scheme (Algorithm 2). As before, the approximation in space is centered.

The first test case serves to assess the accuracy of the approximate gradient and divergence (9) and (13)
when used in the LSWE system (2). Consider the two exponentially in time damped functions

(45)


η̃(t,x) = ϕ(θ)e−σt,

ṽ(t,x) =

√
gH

10
ϕ(θ)e−σteλ(x).
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Figure 14. Deformational test case, time independent velocity [28]. The angle parameter
is α = π/4. The error history of the relative error is reported for 24 days. Left panel: grid
40 × 40 × 6 and 457 time iterations. The relative error levels are after 24 days: L1 norm:
1.36%, L2 norm: 3.67%, L∞ norm: 15.93%, Right panel: grid resolution 80 × 80 × 6 and
914 time iterations. The relative error levels are after 24 days: L1 norm: 0.45%, L2 norm:
1.69%, L∞ norm: 9.63%,

with

(46) ϕ(θ) =


0 if θ ≤ θ0, [10pt]
1

en
exp

[
1

(θ − θ0)(θ − θ1)

]
if θ0 ≤ θ ≤ θ1, [10pt]

0 if θ1 ≤ θ.

The normalization constant en = exp

[
−4

(θ0 − θ1)2

]
gives ϕ(θ0) = ϕ(θ1) = 1.

We have picked σ = 10−5, θ0 = −π/3, θ1 = π/3. The system to be solved is (2) where the source terms
Sη and Sv are defined such that (η̃(t,x), ṽ(t,x))T is solution. In Fig. 15, left panel, the least squares slope
is reported using three grids.

Figure 15. Convergence of the compact scheme in the case of the LSWE equations (2).
Left panel: the Hermitian scheme applied to the exponential decaying solution (45) of the
LSWE. The source term Sη and Sv are adjusted to the decaying solution (45). The final
time is 1.5 hour and H = 105 meters. Right panel: time independent zonal solution (47)
and (48) of the LSWE system. The slope is very close in the two cases. The observed error
level is better in the time independent case.
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The second case is a time independent zonal solution. To a parameter function ϕ(θ) given by (46)
corresponds the velocity v(x) defined by

(47) v(x) = u0ϕ(θ)eλ(θ).

Integrating the momentum equation (2)2 gives

(48) η(x) = ηeq −
a · u0

g

∫ θ

0

f(s)ϕ(s)ds.

The functions (47) and (48) are a zonal divergence free solution of (LSWE). This test case serves to assess
the accuracy of the approximation in space. In particular, the accuracy of the zero divergence preserving for
large time. The numerical results are reported in the right panel in Fig. 15.

3.5. Shallow Water equations. Numerical results are displayed on four standard test cases involving the
(SW) system (3). As in Sections 3.3 and 3.4 we use the scheme (19). The differential operators gradient,
divergence and vorticity are discretized directly without any upwinding by (9-13). The time scheme is given
in Algorithm 2. First, the cases 2, 5 and 6 from the standard suite [38] are considered. They are refered to as
the geostrophic steady-state flow, the isolated mountain case and the Rossby-Haurwitz case. The fourth case
is the barotropic instability case of Galewsky et al. [13]. In all cases the results are compared to the literature.
As we shall see, the compact scheme behaves very well in all cases. The conservation properties of the scheme
are also numerically analyzed. The constants are a = 6.37122 × 106m (earth radius), Ω = 7.292 × 10−5s−1

(earth angular velocity), and g = 9.80616m s−2 (gravity constant). The Coriolis force is f(x) = 2Ω sin θ.
The following averaged values are preserved at the continuous level.

• mass : I1 =

∫
S2a
h?ds,

• energy : I2 =

∫
S2a

1

2
h?v2 +

1

2
g
(
h2 − h2

s

)
ds,

• potential enstrophy : I3 =

∫
S2a

(ζ + f)
2

2h?
ds with ζ the relative vorticity,

• divergence : I4 = 1
|Sa|

∫
S2a
∇T · vds,

• relative vorticity: I5 = 1
|Sa|

∫
S2a

(∇T × v) · nds.

The numerical error for I1, I2 and I3 is reported using the relative (algebraic) value

(49)
Ip(t)− Ip(0)

Ip(0)
, p = 1, 2, 3.

In the two last cases, the value of I4 and I5 is reported. In all cases, the numerical integrals are calculated
by (24).

3.5.1. Time-independent geostrophic flow. The test case 2 in [38] consists in assessing the accuracy in space
of the scheme for a zonal time independent solution of (3). The angle α is a parameter representing the angle
of an axis with the Oz direction. This parameter serves to observe the influence of the position of the grid
with respect to the zonal equilibrium solution. In our case, it permits to evaluate how the Cubed Sphere
operates with an oblique orientation. The Coriolis force is expressed as

(50) f(x) = 2Ω (− cosλ cos θ sinα+ sin θ cosα) .

The exact solution is (h,v), with v = ueλ + veθ:

(51)


h = h0 −

1

g

(
aΩu0 +

u2
0

2

)
(− cosλ cos θ sinα+ sin θ cosα)

2
,

u = u0 (cos θ cosα+ cosλ sin θ sinα) ,

v = −u0 sinλ sinα.
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The constants gh0 is gh0 = 2.94 × 104m2 s2 and u0 = 2πa/(12days) ( in m s−1). Fig. 16 shows the history
of the relative error on h in the case α = π/4. Error growths are monotonic and very slow. Fig. 17 reports
the convergence slope for h. In both cases (α = 0 and α = 45), a sharp 4-th order accuracy is obtained. The
error e∞ at day 5 is close to 2.78 10−6 to be compared with 5.86 10−6 in [7] (Table 5), where a fourth order
finite volume scheme is used. In [35], the reported error is 1.47 10−6 (extrapolated for N=32) also with a
fourth order finite volume scheme using the AUSM+ numerical flux function. The numerical evaluation of

Figure 16. Steady state geostrophic flow with α = π/4 on a Cubed Sphere with N = 32
after 5 days. The relative error ep with p = 1, 2,∞ is plotted. The time step is 605.85s for
the grid 32× 32× 6, 302.93s for the grid 64× 64× 6 and 151.46s for the grid 128× 128× 6.
The error e∞ at day 5 is 2. 10−6.

Figure 17. Steady state geostrophic flow at day 5. The time step is 605.85 s. Convergence
slope of the relative error ep on the total height h. Left panel: α = 0. Right panel: α = π/4.
A sharp 4-th order accuracy is observed. There is no visible influence of the angle α.

the conservation relations is shown on Fig. 18. As can be observed, the level of conservation error for Iq(t),
q = 1, . . . , 5 is very good.

3.5.2. Isolated mountain test case. The test case 5 in [38] is time dependent without analytical solution. The
initial data consists of the time independent solution (51) with h0 = 5960m, u0 = 20m · s−1 and α = 0. The
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Figure 18. Steady state geostrophic flow with α = π/4 with a grid 32×32×6 after 5 days.
The relative error (Ip(t)−Ip(0))/Ip(0) is represented for the mass (p = 1), the energy (p = 2)
and the potential enstrophy (p = 3). The time step is 605.85s with the grid 32 × 32 × 6,
302.92s with the grid 64× 64× 6 and 151.46s with the grid 128× 128× 6. The value Ip(t)
is represented for the divergence (p = 4) and the relative vorticity (p = 5). In all cases, the
error level shows very good numerical conservation.

function h? in (3) is h? = h− hs where h is the total height and hs is the bottom topography. The function
hs (the ”isolated mountain”) is defined by

(52)


hs = hs0

(
1− r

r0

)
, hs0 = 2000m,

r = min

(
r0,

√
(λ− λc)2

+ (θ − θc)2

)
, r0 = π/9, (λc, θc) = (3π/2, π/6).

The total height h is reported at days 5, 10 and 15 in Fig. 19 using a coarse Cubed Sphere with N = 32. The
islolines are visually similar to the ones obtained with the fourth order finite volume schemes in [35, 7]. The
conservation history for the approximate values Ip, p = 1 . . . 5 is represented in Fig. 20. At day 15, the error
difference in potential enstrophy is around −0.9 10−4 (N=32), similar to −1.0 10−4 in [7]. This is slightly
better than −3.3 10−4 (N=40) with the FV4 scheme (and AUSM+ flux) in [35]. Also, the behavior of the
error history is similar to the one in [7]. In [35], the error behavior is more irregular.

3.5.3. Rossby-Haurwitz test case. The Rossby-Haurwitz case is considered, (test 6 in [38]). This test consists
of the Rossby-Haurwitz case. This test consists in an analytical solution of the nonlinear barotropic vorticity
equation [26] and not of the (SW) equations 3. However, it is of great importance for assessing the qualitative
behaviour of any numerical method for the shallow water model on the sphere. The initial velocity is
v = u · eλ + v · eθ with:

(53)

{
u = aω cos θ + aK cosR−1 θ

(
R sin2 θ − cos2 θ

)
cosRλ,

v = −aKR cosR−1 θ sin θ sinRλ.

The initial total height h is :

(54) gh = gh0 + a2A(θ) + a2B(θ) cosRλ+ a2C(θ) cos 2Rλ.
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Figure 19. Isolated mountain test case at times of 5, 10 and 15 days. The total height h is
represented. The Cubed Sphere 32× 32× 6 is used. The contour line are plotted from 5050
m to 5950 m with interval of 50 m. The time step is 605.85 s. The results are similar to the
literature.

Figure 20. Isolated mountain test case with a grid 32 × 32 × 6. The time step is 605.85
s. Left panel: History of the relative values (Iq(t) − Iq(0))/Iq(0) for the mass (q = 1),
total energy (q = 2) and potential enstrophy (q = 3). Right panel: Values of Iq(t) for the
divergence (q = 4) and the vorticity (q = 5).

with

(55)


A(θ) =

ω

2
(2Ω + ω) cos2 θ +

1

4
K2 cos2R θ

[
(R+ 1) cos2 θ + (2R2 −R− 2)− 2R2 cos−2 θ

]
,

B(θ) =
2(Ω + ω)K

(R+ 1)(R+ 2)
cosR θ

[
(R2 + 2R+ 2)− (R+ 1)2 cos2 θ

]
,

C(θ) =
1

4
K2 cos2R θ

[
(R+ 1) cos2 θ − (R+ 2)

]
.
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and with the constants ω = 7.848×10−6s−1, K = 7.848×10−6s−1, h0 = 8×103m and R = 4. We report the
total height h at days 7 and 14 in Fig. 21 and with a grid 80×80×6. According to numerical experiments, a
lower resolution is not sufficient with our scheme. This initial condition is well known to lead to an instable
behaviour, associated to a turbulent pattern [34]. For this reason it is interesting to push in time the numerical
scheme to observe the transition time. As reported in [35], the transition time is very sensitive to numerical
parameters of the employed scheme, in particular to the amount of numerical dissipation. In [36], transition
times are reported to vary from day 30 to beyond day 90. In our case, the approximation does not have
parameters. The behaviour of the solution is reported in Fig. 22 with a 128× 128× 6 grid at day 14, 28, 42
and 56. At that last time, the transition has already appeared.

Conservation history with the grid 128×128×6 is reported in Fig. 23 for the first 14 days. Mass and energy
relative errors are close to 10−9. The level of the relative error on the enstrophy is around 10−3. The error
level on the divergence and the vorticity is observed to be around 10−13. Finally, we report for completeness
in Fig. 24 the same conservation history up to 80 days. A numerical breakdown can be indentified around
day 50 on the divergence.

Figure 21. Numerical results of the Rossby-Haurwitz test case with the grid 80 × 80 × 6.
Left panel: day 7. Right panel: day 14. The time step is 242.34 s. Contour line are plotted
from 8100 m to 10500 m with interval of 100 m.

3.5.4. Barotropic instability. Our last test is the barotropic instability test in [13]. The initial condition has
the form (h+ h′,v) where (h,v) is a steady state zonal solution of (3). This steady state is given by :

(56)

 h(λ, θ) = h0 −
1

g

∫ θ

−π/2
auλ(τ)

(
f +

tan(τ)

a
uλ(τ)

)
dτ,

v = umaxϕ(θ)eλ.

where ϕ(θ) is given in (46) with ϑ0 = π/7, ϑ1 = π/2− ϑ0. In addition, umax = 80m s−1, and h0 is such that
the mean value of h over Sa be h0 = 104 m. The perturbation h′ added to h is

(57) h′(λ, θ) = ĥ cos(θ) exp

[
−
(
λ

α

)2

−
(
θ2 − θ
β

)2
]
,

with ĥ = 120m, α = 1/3, β = 1/15 and θ2 = π/4. This test is reported as challenging for the Cubed-Sphere
[32] due to the fact that the perturbation is located between panels (I) and (V), thus possibly giving rise to
interpanel instabilities. In addition, the largest magnitude of ∇h is located near the boundary of panel (V).

In Fig. 25, contour lines of the vorticity are represented at day 6 for grids 64 × 64 × 6, 96 × 96 × 6
and 128 × 128 × 6 respectively. The results are similar to those in [35, 7]. As mentionned in [35], the grid
32×32×6 does not have enough spatial resolution to represent the initial data. The history of the conserved
quantities is reported in Fig. 26 with the grid 128× 128× 6. Again the relative potential vorticity is difficult
to preserve, with a relative error at day 6 reaching −2.5 10−3. Note finally that even in this case, there is
apparently no need of any upwinding to deal with the nonlinearity. The linear filtering combined with the
inherent viscosity of the RK4 scheme is sufficient once again to obtain accurate results.
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Figure 22. Numerical results of Rossby-Haurwitz wave test case with the Cubed Sphere
128× 128× 6. From top right to bottom left: day 14, 28, 42 and 56. The time step is 151.46
s (31945 time iterations for 56 days). Contour lines are plotted from 8100 m to 10500 m
with an interval of 100 m.

Figure 23. History of the conserved integrals Iq(t) for the Rossby-Haurwitz wave test case
with the grid 80× 80× 6 (preferably 80× 80× 6) with 14 days. The time step is 242.34 sec.
Top left panel: mass and total energy. Top right panel: potential enstrophy. Bottom panel:
divergence and vorticity. The relative error for the potential vorticity reaches 0.1%.
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Figure 24. Rossby-Haurwitz test case, (test 6 in [38]). History of the conserved quantities
during 80 days. Top left panel: mass and total energy. Top right panel: potential enstrophy.
Bottom: divergence and vorticity. The grid is 128× 128× 6 with 80 days. The time step is
151.46 sec. The relative error for the potential vorticity reaches 3.5%. A transition time can
be observed on the divergence is around the threshold of 45/50 days.

Figure 25. Barotropic instability test case. The numerical vorticity is represented at day
6 with the grids 64× 64× 6, ∆t = 302.93 s(top left), 96× 96× 6, ∆t = 201.95 s(top right),
128×128×6, ∆t = 151.46 s (bottom). The results show good consistency with the literature.
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Figure 26. Barotropic instability test case with the grid 128×128×6. History of conserved
quantities during 6 days. Top left panel: mass and total energy. The time step is 151.46 sec.
Top right panel: potential enstrophy. Bottom: divergence and vorticity.

4. Numerical analysis

In this section, we gather several numerical analysis facts related to the approximation used in this study.
The results are limited to the model problem of the linear convection equation in the periodic setting.
Although purely linear and one dimensional, these results were hardly found in existing literature.

4.1. Convergence analysis. The approximation in space in Sections 2.3 and 2.4 is based on the standard
Hermitian approximate derivative. Consider a regular finite difference grid with stepsize h > 0 and periodic
data located at point xj = jh, j = 0, 1, . . . , N−1. To any gridfunction w = [w0, w1, . . . , wN−1], the Hermitian
derivative δHx w is defined by

(58) δxwj − σx(δHx w)j = 0, 0 ≤ j ≤ N − 1,

where the operators σx and δx are defined by

(59) σxvj =
1

6
wj−1 +

2

3
wj +

1

6
wj+1, δxvj =

wj+1 −wj−1

2h
, 0 ≤ j ≤ N − 1.

In it well known that δHx w is a fourth order approximation to the derivative. A proof proceeds as follows.
Suppose given a periodic function u(x) with u∗ the associated gridfunction defined by u∗j = u(xj). For

w = u∗, δHx u
∗ satisfies

(60) δxu
∗
j − σx(δHx u

∗)j = 0, 0 ≤ j ≤ N − 1.

The truncation error for δHx is evaluated using the Kernel Peano theorem for the Simpson quadrature formula
[18, Chap. 7, pp. 282 sqq] as follows. Any regular function u(x) satisfies

(61) δxu
∗
j − σx(∂xu)∗j = − 1

180
h4(∂(5)

x u)(ξj),
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for some ξj ∈]xj−1, xj+1[. The truncation error is

(62) τj = δHx u
∗
j − (∂xu)∗j .

Subtracting (58) from (61) gives that

(63) σxτj = − 1

180
h4(∂(5)

x u)(ξj).

The inverse of σx, considered as a bounded operator in the space of bounded periodic sequences equipped
with the norm ‖w|∞ = maxj |wj | satisfies the estimate [4]

(64) ‖σ−1
x ‖∞ ≤ 3.

Applying σ−1
x to the gridfunction (63) gives the estimate of the truncation error τ :

(65) ‖τ‖∞ ≤ Ĉh4‖∂(5)
x u∗‖∞,(0,L), Ĉ = 1/60.

Next, consider the linear convection equation for the scalar function u(t, x):

(66) ∂tu+ c∂xu = 0, x ∈ Ω = (0, L), t ≥ 0, c > 0,

with periodic conditions at x = 0 and x = L. The semidiscrete compact scheme is:

(67)
d

dt
vj(t) + cδHx vj(t) = 0.

This scheme is a standard approximation for convection problems. Refer to [22, 16] and the references therein.

Note that the total mass h
∑N−1
j=0 vj(t) is constant in time, which expresses a conservation property of (67).

An elementary convergence analysis, based on the energy method, for the scheme (67) is now carried out as
follows. We denote the norm |u|h

(68) |u|h =

hN−1∑
j=0

|uj |2
1/2

, ‖w‖h,∞ = max
0≤j≤N−1

|wj |.

The error ej(t) = u∗j (t)− vj(t) evolves along the system

(69)
d

dt
ej(t) = c

(
τj(t)− δHx ej(t)

)
, 0 ≤ j ≤ N − 1.

Taking the (., .)h scalar product of (69) with e(t) gives (the antisymmetry of δHx is used):

(70) 2

(
d

dt
e(t), e(t)

)
h

= 2c
(
τ(t), e(t)

)
h
.

Let α > 0 be a fixed parameter to be specified latter. The equation (70) implies

(71)
d

dt
|e(t)|2h ≤ c

(
α|τ(t)|2h +

1

α
|e(t)|2h

)
.

Consider a positive regular function f(t) defined on [0, T ]. Gronwall’s lemma states that assuming f ′(t) ≤
Af(t) +B and f(0) = 0 with A,B > 0, then f(t) ≤ (B/A)(exp(At)− 1) for 0 ≤ t ≤ T . Using f(t) = |e(t)|2h,
A = c/α and B = c α max0≤t≤T |τ(t)|2h yields the estimate

(72) |e(t)|2h ≤ α2(ect/α − 1) max
0≤t≤T

|τ(t)|2h, 0 ≤ t ≤ T.

On the other hand, the estimate (65) gives

(73) max
0≤t≤T

|τ(t)|2h ≤ LĈ2h8‖∂(5)
x u‖2∞,[0,T ]×[0,L].

This gives in (72)

(74) |e(t)|2h ≤ α2(ect/α − 1)LĈ2h8‖∂(5)
x ‖2∞,[0,T ]×[0,L], 0 ≤ t ≤ T.

For t fixed, taking the minimum of the function α 7→ α2(ect/α − 1) in (74) gives

(75) |e(t)|2h ≤ Ĉ2fminLc
2t2h8‖∂(5)

x ‖2∞,[0,T ]×[0,L], 0 ≤ t ≤ T.
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where fmin = minx>0

(
x2(e1/x − 1)

)
. Is is easily shown that fmin ≤ 1.545. Defining the constant C̃ =

Ĉ
√
fmin ' 2.08 10−2, we obtain finally the following

Proposition 4.1. Let u∗j = u(t, x) be the exact solution of (66) at points xj and vj(t) be the solution of
semidiscrete scheme (67). The error ej(t) = u∗(t)− vj(t) satisfies the fourth order error estimate

(76) |ej(t)|h ≤ C(t)‖∂(5)
x u‖∞,[0,T ]×[0,L], 0 ≤ t ≤ T,

where C(t) = C̃
√
Lct and C̃ ' 2.08 10−2 is a universal constant.

The estimate (76) shows a linear evolution of the constant C(t) in time from t = 0 to t = T .

Remark 4.2. The estimate (76) shows fourth order accuracy in the grid dependent norm |.|h. Note that
the maximum norm estimate is more difficult to prove. Note also that the practical interest of Prop. 4.1 is
limited to the constant velocity and regular grid cases.

4.2. Matrix stability analysis of the fully discrete scheme. In this section, we show how to derive
analytically the matrix stability condition for (67) when discretized in time by the RK4 scheme. Let V (t) =
[v0(t), v1(t), . . . vN−1(t)]T . The equation (67) is equivalent to the vector equation

(77)

{
d
dtV (t) = − c

hJV (t),
V (0) = V0 = [u∗0, u

∗
1, . . . , u

∗
N−1]T ,

where J is the N × N matrix defined by (JV )j = δHx vj . Let P be the matrix of the left shift operator
uj 7→ uj−1 with N− periodic data.

(78) P =


0 1

0 1 (0)
. . .

. . .

(0) 0 1
1 0


︸ ︷︷ ︸

N×N

.

The matrix J is J = m(P ) where

(79) m(z) =
1

2

z − z−1

1
6 (z + z−1) + 2

3

.

The matrices P and J are expressed as 2

(80) P =

N
2∑

k=−N
2 +1

ωkRk ⊗ (Rk)H ,

and

(81) J =

N
2∑

k=−N
2 +1

m(ωk)Rk ⊗ (Rk)H .

where Rk = [Rk0 , R
k
1 , . . . , R

k
N−1]T ∈ CN is the vector with components

(82) Rkj =
1√
N
ωkj , 0 ≤ j ≤ N − 1, ω = exp

(2iπ

N

)
.

Using that V (t) = exp(− cth J)V0 yields

(83) V (t) =

N
2∑

k=−N
2 +1

exp
(
− c
h
m(ωk)t

) (
(Rk)HV0

)
Rk.

2For X a n×m matrix, XH = X̄T
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Consider now the time stepping of (77) by the RK4 scheme, [17, Chap. IV.2, pp. 16-18]. Since the matrix
−cJ/h is constant, the RK4 time stepping coincides with the vector iteration

(84) V n+1 = r(−λJ)V n,

where λ = c∆t/h > 0 is the Courant number and r(z) is the truncated exponential series

(85) r(z) = 1 + z +
z2

2!
+
z3

3!
+
z4

4!
.

Using (81) yields that V n is

(86) V n =

N
2∑

k=−N
2 +1

[r(−λm(ωk))]n
(
(Rk)HV0

)
Rk.

The sequence (86) is bounded if and only if

(87)
N/2
max

k=−N/2+1
|r(−λm(ωk))| ≤ 1.

This is equivalent to

(88) λ
N/2
max

k=−N/2+1
|m(ωk)| ≤ KRK4,

where KRK4 = 2
√

2 is defined by

(89) KRK4 = max{b, where a+ ib ∈ DRK4} = 2
√

2.

where DRK4 is the domain of stability of the RK4 scheme, [17, Chap. IV.2, p. 18]. The condition (88) is
rewritten as

(90) λ
N/2
max

k=−N/2+1

(
sin
(

2kπ
N

)
2
3 + 1

3 cos
(

2kπ
N

)) ≤ KRK4,

or equivalently

(91) λ ≤ 2
√

2/3.

We have proved the matrix stability analysis result:

Proposition 4.3. The sequence (V n)n≥0 is uniformly bounded under the necessary and sufficient condition

(92) λ ≤ λ∞, where λ∞ = 2
√

2/3.

4.3. Filtered time-scheme. The preceding stability condition is an indication for a bound of the CFL.
However it is only valid for the linear equation (66). In the case of a non constant velocity model, the
stability must be reinforced. This is of course not surprizing, since the basic scheme is centered. A common
treatment consists in adding at each time step a so-called high-frequency filter. Refer to [1, 37, 33, 6] and
references therein. This filtering step takes the form (see the last line in Algorithm 2 in Section 2.5.

(93) V n+1 = F

(
V n +

∆t

6

(
K(0) + 2K(1) + 2K(2) +K(3)

))
,

or equivalently

(94) V n+1 = F (r (−λJ)V n) .

The so-called filter function F is the linear operator acting on periodic sequences defined by

(95) F(ui)i =

J∑
j=0

aj
2

(ui+j + ui−j), 0 ≤ j ≤ N − 1.
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The width of the stencil is the odd integer 2J + 1. The first J + 1 coefficients a0, a1, . . . , aJ must satisfy the
J + 1 equations

(96)



J∑
j=0

aj = 1, (a)0

J∑
j=0

ajj
2k = 0, k = 1...J − 1, (a)k

J∑
j=0

aj(−1)j = 0, (b)

The J + 1 equations (a)k, with k = 0, 1, . . . , J − 1 translate the consistency with the identity of the filter

Order of accuracy a0 a1 a2 a3 a4 a5

2 1/2 1/2
4 10/16 8/16 −2/16
6 44/64 30/64 −12/64 2/64
8 186/256 112/256 −56/256 16/256 −2/256
10 772/1024 420/1024 −240/1024 90/1024 −20/1024 2/1024

Table 2. Examples of filters in the form (95) and their orders of accuracy.

function with accuracy 2J . These relations are obtained by Taylor expansions near xi. The additional
relation 96)b translates that the oscillating mode vj = (−1)j is cancelled out by the operator F . The linear
system (96) is (we drop the dependence in J for simplicity)

(97) Aa = b,

where the a = [a0, a1, . . . , aJ ]T is the vector of coefficients in (95), b = [1, 0, . . . , 0]T ∈ RJ+1 and A is the
(J + 1)× (J + 1) matrix

(98) A =



1 1 1 1 1 1 · · ·
0 2 0 2 0 2 · · ·
0 1 22 32 42 52 · · ·
0 1 24 34 44 54 · · ·
0 1 26 36 46 56 · · ·

...
...


.

In the following propostion, existence and uniqueness of the coefficients a is proved.

Proposition 4.4. There exists a unique set [a0, a1, . . . aJ ] satisfying the relations (96). The filter function
F in (95) operates on each periodic gridunction Rk by

(99) F(Rk)j = PJ(cos(θ))Rkj ,

where PJ is the polynomial

(100) PJ(X) = 1− 1

2J
(1−X)J .

Moreover, for all periodic gridfunction (wj)0≤j≤N−1

(101) max
0≤j≤N−1

|F(w)j | ≤ max
0≤j≤N−1

|wj |,

and the stability condition of the iteration (93) is λ ≤ λJ where λJ ≥ λ∞.
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Proof. Existence and uniqueness of a solution of (97) is equivalent to det(A) 6= 0, Expanding det(A) along
the first column leads to

(102) det(A) = 2

b J−1
2 c∑
l=1

∆2l+1,

where ∆l is

∆l =

∣∣∣∣∣∣∣∣∣
1 22 · · · (l − 1)2 (l + 1)2 · · ·
1 24 · · · (l − 1)4 (l + 1)4 · · ·
1 26 · · · (l − 1)6 (l + 1)6 · · ·

...
...

∣∣∣∣∣∣∣∣∣ =
((J − 1)!)2

l2

∣∣∣∣∣∣∣∣∣
1 1 · · · 1 1 · · ·
1 (22)1 · · · ((l − 1)2)1 ((l + 1)2)1 · · ·
1 (22)2 · · · ((l − 1)2)2 ((l + 1)2)2 · · ·

...
...

∣∣∣∣∣∣∣∣∣ .
This is equivalent to

(103) ∆l =
((J − 1)!)2

l2
VDMJ−1(1, 22, 32, . . . , (l − 1)2, (l + 1)2, . . . , J2).

where VDMp(x1, x2, . . . , xp) denotes the Vandermonde determinant

(104) VDMp(x1, x2, . . . , xp) =
∏

1≤l1<l2≤p

(xl2 − xl1)

Each Vandermonde determinant is positive and therefore in (20), det(A) > 0, whence the uniqueness of a,
solution of (97).

Consider now the function z ∈ C 7→ βJ(z) defined by

(105) β(z) =

J∑
l=0

al
2

(zl + z−l),

where a = [a0, . . . aJ ]T is the solution of (97). Denoting Tl the l−th Tchebycheff polynomial, it turns out
that

(106) β
(
eiθ
)

=

J∑
l=0

al cos(jθ) =

J∑
l=0

alTl(cos θ) = PJ(cos θ),

with

(107) PJ(X) = 1− 1

2J
(1−X)J .

Clearly we have

(108) 0 ≤ PJ(cos θ) ≤ 1, 0 ≤ θ < π,

so that

(109) |β(eiθ)| ≤ 1, 0 ≤ θ < π.

The stability condition is obtained by substituting in (87) the term PJ(cos θ)r(−λm(eiθ)) to the term
r(−λm(eiθ)). This gives

(110) λ ≤ λJ ,

where

(111) λJ = max

{
λ ∈ R+ s.t. max

θ∈[0,π)

(
|β(eiθ)||r(−λm(eiθ))|

)
≤ 1

}
.

The relation (111) clearly implies λ∞ ≤ λJ . �

Table 2 reports the values of a series of filter coefficients aJ [37]. In adddition, a set of approximate values
of λJ is reported in Table 3. As expected, the lower J , the higher the maximal CFL number λJ .
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Accuracy of F , 2J λJ

∞ (no filter) 1.6329
10 1.6883
8 1.7114
6 1.7485
4 1.8156
2 1.9749

Table 3. Maximum CFL number λJ for the vector iteration (94) in term of J , the width
of the stencil of the filter function F . The function J 7→ λJ is decreasing. The limit value is
λ∞ = 2

√
2/3 ' 1.6239. This limit value corresponds to J = +∞, i.e. the absence of

filtering.

5. Conclusion

In this paper, we have considered the centered scheme introduced in [10, 11] to approximate convective
problems of interest in climatology. The scheme is strongly related to mumerical procedure in Computational
Aeroacoustics by compact schemes. On the one hand the scheme is centered and a linear filtering is added at
each time step, thus making the numerical diffusion minimal. On the other hand, the evaluation of integral
quantities to be preserved did not reveal any particular misbehaviour regarding conservation. Overall the
numerical results for all the cases tested revealed a sharp fourth order accuracy and very good stability
properties. This raises the question to know for which nonlinear flow regime in climatology more advanced
filtering such as the ones considered in [9, 39] is mandatory. This important topic is deferred to future work.
In gas dynamics simulations, this topics also arises, when considering low Mach number flows. Extension to
the ideas presented here to three-dimensional atmospheric flows is a natural perspective.
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