Deep Learning Techniques for Automatic MRI Cardiac Multi-structures Segmentation and Diagnosis: Is the Problem Solved? - Archive ouverte HAL
Article Dans Une Revue IEEE Transactions on Medical Imaging Année : 2018

Deep Learning Techniques for Automatic MRI Cardiac Multi-structures Segmentation and Diagnosis: Is the Problem Solved?

Olivier Bernard
Clement Zotti
Xin Yang
  • Fonction : Auteur
  • PersonId : 1012361
Gerard Sanroma
  • Fonction : Auteur
  • PersonId : 1021931
Georgios Tziritas
  • Fonction : Auteur
  • PersonId : 885011
Yeonggul Jang
  • Fonction : Auteur
Yoonmi Hong
  • Fonction : Auteur
Jay Patravali
  • Fonction : Auteur
Shubham Jain
  • Fonction : Auteur
Pierre-Marc Jodoin
  • Fonction : Auteur
  • PersonId : 884870

Résumé

Delineation of the left ventricular cavity, myocardium, and right ventricle from cardiac magnetic resonance images (multi-slice 2-D cine MRI) is a common clinical task to establish diagnosis. The automation of the corresponding tasks has thus been the subject of intense research over the past decades. In this paper, we introduce the “Automatic Cardiac Diagnosis Challenge” dataset (ACDC), the largest publicly available and fully annotated dataset for the purpose of cardiac MRI (CMR) assessment. The dataset contains data from 150 multi-equipments CMRI recordings with reference measurements and classification from two medical experts. The overarching objective of this paper is to measure how far state-of-the-art deep learning methods can go at assessing CMRI, i.e., segmenting the myocardium and the two ventricles as well as classifying pathologies. In the wake of the 2017 MICCAI-ACDC challenge, we report results from deep learning methods provided by nine research groups for the segmentation task and four groups for the classificationtask. Results show that the best methods faithfully reproduce the expert analysis, leading to a mean value of 0.97 correlation score for the automatic extraction of clinical indices and an accuracy of 0.96 for automatic diagnosis. These results clearly open the door to highly accurate and fully automatic analysis of cardiac CMRI. We also identify scenarios for which deep learning methods are still failing. Both the dataset and detailed results are publicly available online, while the platform will remain open for new submissions.

Dates et versions

hal-01803621 , version 1 (30-05-2018)

Identifiants

Citer

Olivier Bernard, Alain Lalande, Clement Zotti, Frederic Cervenansky, Xin Yang, et al.. Deep Learning Techniques for Automatic MRI Cardiac Multi-structures Segmentation and Diagnosis: Is the Problem Solved?. IEEE Transactions on Medical Imaging, 2018, 37 (11), pp.2514-2525. ⟨10.1109/TMI.2018.2837502⟩. ⟨hal-01803621⟩
1083 Consultations
0 Téléchargements

Altmetric

Partager

More