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Abstract

This paper shows how to model thin layers and interfaces potic techniques.
Some behaviors are treated: visco-elasticity (MaxwellykeVoigt, Norton), Mohr-
Coulomb non-associated elasto-plasticity, non-monotetetionship in the strain-
stress diagram and contact conditions between the adhasivéhe adherents. Nu-
merical validations and algorithms are proposed and pteden

Keywords: Interface laws, asymptotic study, elasto-plasticity, imoonotone behav-
ior, finite elements.



1 Introduction

Contact and interface mechanics intervenes more and mtee wf computational
structures. To have reliable tools to size more and more tagystems, it is in-
dispensable to take into account in a precise way the coiensdietween the various
solids of the structure. This consideration can be very deripecause of the strongly
non-linear character and possibly imperfect and very Ipedlof these connections.
For examples, in the modelling of the processes of metalifgnzonsideration of the
friction is necessary because it pilots the whole procéssntodelling of the mortar
in the case of masonry structures is necessary to estimataractise way the mechan-
ical characteristics of the structures, their risks of ramal collapse, . .

The purpose of this lecture is to show how it is possible taimbfamilies of inter-
face laws from the mechanical behaviour of thin layers. Toves@leration of bonded
joints in real structures can lead from a numerical pointiefwto problems of too
large sizes, especially if these joints have a non-lineaabeur [1]. From a general
way, one is going to consider joints of weak thickness andkwiggdity with regard
to those of the substrata. One has then to deal with problaknsgtinto account at
least two small parameters (the thickness, the rigidity) a8ymptotic study (a micro-
macro passage), completed by numerical calculationss leasio-called "asymptotic
contact laws” who allow describing the (macroscopic) meate behaviour of the
interfaces (see references in [1]).

We consider in this lecture various kinds of non-linear v for the thin layers:

e visco-elasticity (Maxwell, Kervin-Voigt or Norton typepne explicits the re-
sults expressed in [2];

e contact conditions of Coulomb and Signorini type betweeratthhesive and the
adherents [3];

e non-associated elasto-plastic (Mohr-Coulomb type);

e non-monotone relationship in the strain-stress diagram.

One can show in the first and third cases, that the interfaceddtained are of Tresca
or Coulomb kind. The second case permits to show how it isiples® add various
behaviour laws. The last case can model instabilities oonéact boundary.

2 Themechanical problem

The aim of this section is to present the mechanical probledrt@give the notations
used in the paper. We consider a body occupying an open bdwseté) of R?,
with smooth boundarys?, the three dimensional space is referred to the orthonormal



Figure 1. Geometry of the problem

frame (O, x1, 29, x3). This body is supposed to have a non-empty interseiaith
the plane{z; = 0}. Lete > 0, a parameter intended to tend to zero, we denote

B* = {z = (x1,79,23) € Q such that |z3] < 5},
QO = {z=(21,29,23) € Qsuchthat |x3] > 5},
QL = {z=(21,22,73) € Qsuchthat +x3 > 5},
S. = {z = (21,29,73) € Q such that + x3 = 5}, (1)
Qy = {2 = (71,29, 73) € Q such that £+ x3 > 0},
S = {z = (r1,19,73) € Q such that x3 = 0},

Q = Q,UQ_.

In the following, we suppose thd® is the domain occupied by the joint afid by

the deformable bodies (see fig. 1)? being the geometrical limit of)*. S° is the
interface between the adhesive and the adherentsyasdhe surface to which the
adhesive tends geometrically. On the structure is applieoldy force densityy and

a surface force density onI'; a part of the boundary; denotes the external unit
normal vector td). The partl’y of the boundary is supposed to be embedded. The
two bodies are supposed to be elastic and the joint will besidened successively
as elastic, visco-elastic, elasto-plastic and pseudsiieldVe denote by* the stress
tensor and:® the displacement field. Under the small perturbations hygms, the
strain tensor is written

1,0u;  Ouj
In the following, interface laws will be introduced betwettre bodies and the joint.

We denote by, the elasticity parameters of the adherents. Thus, we haselte
the following problem

(@)

eij(u®) =

( Find (u®, 0%) such that :
af“ —©; in Q
Uzy == al]khekh(ug) in F
(P.) ] + behaviour laws in B*
ut =0 onT
o'n=yg on T’y
|+ inter face laws on S5




If ¢ is a function, we define by (x{) (resp. v (z,)) the limit of «)(z) whenz tends

to xg, x > g (resp.z < xp). In order to define the interface laws between bodies
and the joint, that is perfect adhesion, Signorini’s law @uadilomb’s law, we have to
introduce some notations. We define the local frame () wheren® is the external
normal vector td7.. In the same way, we define,(t), wheren is external normal to
Q.. In these local basis, a vectois decomposed as

U(%l,i%) = UN(:El,:l:%)ni—l-UT(fEl,:i:%), (3)
v(z,0F) = wyn+vr.
In the same way, the stress tensaron S, or onS is decomposed as
o(z1, £5)n = onn® + oy, (4)
o(x1,05)n = oyn+ or.
We define the relative displacements
[ov]le = wn(zy jE2)+UN(331: ;):
[vr]ls = wvr(zy, i7) +vr (21, £5%), (5)
[on] = wn(21,07) +on(z1,07),
[vr] = wvr(x1,0%) + vp(zy,07).

In sections 4, 6 and 7, a perfect adhesion is supposed attédréace between the thin
layer and the substrata

[u]l =0 onST. (6)

In section 5, we consider that there is contact with dryifsitconditions between the
bodies and the thin layer. The Signorini’s law of unilaterahtact and the Coulomb’s
law of dry friction are written in the case of monotone qustsitic loadings

oy <0 on S%,

[ujy]e <0 on S5,
oyluyle =0 on ST, 7)

07| < flox|  on S,

If |o5| < flok] then [u5]: =0
If |o5] < flox| then [uf]e = —Cor with ¢ > 0,

wheref is the friction coefficient.

3 Mathematical background

The idea of matched asymptotic expansions [4] (other teglas are given in [2, 5,
6, 7]) is to find two expansions of the displacementaind to the stress® in powers
of ¢, that is, an external one in the bodies and an internal indime, jand to connect



these two expansions in order to obtain the same limit. Ifdhewing, we have con-
sidered a problem in dimension 2 in order to simplify the camapions. The external
expansion is a classical expansion in powers of

ug(xlal‘Q) = uo(xl,l'Q)+€U1($1,l‘2)+...,
o5 (T1,m2) = of(w1,22) +e0l;(21,22) + ..y
ey (u®)(z1,29) = 6% + eeilj + ..., (8)
;o 10ul | Bub
e = 3(am + o)

In the internal expansion, we proceed to a blow-up of thersééwariable. Ley, = *2.
The internal expansion gives

u® (71, 29) = V(21 yo) + vt (1, 42) + oo
ij($1;y2) = 5717'1';1@1:192) —|—7’%($1,y2) —|—87i1]-(l'1,y2) + ceey
eij(u®) (21, y2) = 8_16;]-1 + egj + se}j + ..
6111 = 6—1’11 el = 3v12+1 el = l(a_vl? Bvll+1)
dxy? 722 dys 0 “12 7 2\ag Y2

9)

The third step of the method consists in the connection oftwleeexpansions. In
particular, we observe that whertends to zerog, tends to0* andy, tends totoo.
The connection of the two expansions gives

v0(zy, £oc) = u®(zq,0F),
7z, £00) = 0, (21, £oc) = 0%(zy, 0%).

(10)

The equilibrium equation at order2 gives

67'-_21 _
e = 0. (11)

Thus,7,," does not depends ap. Due to the limit ofr,' in +oc, that is zero, we
have

5 = 0. (12)
The equilibrium equation at order1 gives

0
7,y

0ya

= 0. (13)
Thus,
Ty = op(r,0%). (14)

4 Visco-elasticity

4.1 Kelvin-Voigt visco-elasticity

We consider that the thin layer is visco-elastic and obeyheoKelvin-\Voigt's law
of linear visco-elasticity. We consider a perfect adhe&ietween the bodies and the



glue. The deformation tensor is splitted in two parts: astedgart and an non-elastic
one. The symbo() characterizes the time derivative. The behaviour law inthiire
layer is given by

o5 = Aerk + Oxéxr)0ij + 2p(eij + 0,€45), (15)

where) andy are the Lamé’s coefficients, andé,, are two characteristic times.
The asymptotic expansion gives:

Me M epe + Onégp) + €dy + 0xé,
e(exy + 9Af11fk) o )0ij
2M(s—1(e;j_ + 0,65 ) + €+ 0,€];
e(ej; + 0uél;) + ...

—1,.—1 0 1.1
€Ty +Ti]~+€ Tij—f-...

(16)

+ 4+

In the internal expansion, we observe that the importanhtifies are the ratio be-
tween the Lamé’s coefficients (resp. the characteristies) and the thickness of the
thin layer. In order to simplify, we suppose that the twooatssociated to the Lamé’s
coefficients have a finite limit not equal to zero and that #iteos associated to the
characteristic times have infinite limits. The other caseslze deduced easily by the
techniques presented in the following. We denote\by the limits associated to the
Lamé’s coefficients. We obtain

7,0 =0, 7S = Meg, +0xé0)0i5 + 2(e;" + 046, (17)
Thus, by integration in the interval 1/2, 1/2] and using Equations (9), (10) and (14),
we obtain

oy = Alud] + Al 03, = (A + 2)[u3] + (A0 + 276,,) [ig]. (18)
To summarize, the interface law is given by
on = Kiu]+ Kylu]. (19)

The diagonal matrice&;, and K, are deduced easily from (18). We observe that this
interface law is valid for all the cases of coefficients vaoias. Particularly, if the
limits of the ratios are infinite, the jumps in the former fardas are equal to zero
(perfect adhesion). Conversely, if the coefficients areaktpuzero, the stress tensor is
equal to zero (perfect sliding).

4.2 Maxwell visco-elasticity

The thin layer is supposed to obey to the Maxwell’s law of sigtasticity. We con-
sider a perfect adhesion between the bodies and the glueb&iaviour law in the
thin layer is given by

€

e(u) = “E (o5 + ‘1_1]) — £ (00 + )0y (20)

to



E is the Young’s modulus andis the Poisson’s ratia; andt, are two characteristic
times. We use the same techniques that in the previous se@tie assume thdt =
ts. The important value in the expansion is the ratio betweenYtiung’s modulus
and the thickness of the thin layer. We denatéhe limit of this ratio. We obtain

[U(ﬂ = 1%(6?2 + 0?2/751)7 [Ug] = _%—:(@)2 + J32/751) (21)

The interface law is written
u] = Kyon+ Kion. (22)

The matriced(y andK; are deduced easily from Equation (21).

4.3 Norton visco-elasticity

The thin layer obeys to the non-linear Norton’s law of visdasticity. We consider a
perfect adhesion between the bodies and the glue. The loeindaiv in the thin layer
is given by

Ufj = )\ekkéij + 2/1617' + n‘é|p72é¢j (23)
where A and i are the Lamé’s coefficients angdis the viscosity coefficientp is a
scalar parameter. We use the same techniques that in pseseéations. The charac-
teristic coefficients in the expansions are the ratios betwtbe Lamé’s coefficients
and the thickness of the thin layer and the ratio betweenigwsity coefficient and
the thickness at the powgr— 1. We denote\, 7 and7 the limits of these ratios. We

obtain

1
_ _ 2 L 5890
oty = Rl +7/2 [ [P 25, dys,
_1
’ (24)
0l = (2@l +7 [ |efr-222

|é‘ B dys.

o= HNIH

We have to solve two differential equations. The stres$gands), depend only on
T, thusg—zg andg—zg do not depend og,. The displacements’ and:) depend linearly
ony,. We deduce by integration

oty = i) +7/2|[4] ® nP~?[u]],

% = O+ 27) ) + 7l[i] @, nP i), (29)

where the symbok, denotes the symmetric tensorial product. To summarize the
interface law is written

on = Ki[u] + K,|[i] ®, n|P~2[i). (26)

The matriced{;, and K, are deduced easily from Equation (26).



4.4 Incompressibility

We consider a perfect adhesion between the bodies and theTdie incompressibil-
ity condition is written in the quasi-static case

divu = 0. (27)
The former equation becomes
—10us ou1 _
516_y;+8_x1+"' = 0. (28)
Thus,
dus
o = 0, (29)
and
us] = 0. (30)

We obtain the law of bilateral contact

[un] = 0. (31)

5 Frictional contact at theinterfacethin layer-substrata

5.1 Mathematical results

In this section, we consider that the contact obeys to the td@ignorini and Coulomb.

The thin layer is supposed to be elastic. We examine only #se X = 0 and

0 < 71 < oo. The other cases can be deduced by the same arguments. tadkis

™ = 0,7, = ﬁg—;’f,fg? = Zﬁg—;"g. Thus, by integration and due to the continuity
conditions, we have

0?2(371: O) = ﬁ(v?(xla %_) - v?(xla _%+>>:
08y (21,0) = 2E(vY(x1,5) = o8(z1,—5")).

First, we examine the normal components. The contact lawdacess:,. gives

(32)

U(Q)(I17%+)_vg($la%7) > Oa
0 1— 0 1+ (33)
U2($1’_§ )_UQ(x1’_§ ) > 0.

If 09,(x1,0) = 0 (6% = 0) then Equations (32) and (33) give
[Ws] < 0. (34)
If 695 (z1,0) < 0 (6% < 0) then the contact law and (32) give

oh(e1,0) = (e 4") — (e, —L ). (35)



a=87mn§
b =65 mm
c=43mm
d =148 mm
e=72mm

- - = f=40mm

e f g =103 mm

Figure 2: A dovetail assembly

Then, we examine the tangential componentsalf| < f|o%| (|o%| < f|o%]) then
the friction law and (32) give

oh(21,0) = A EY) — of(ar, ~37)). (36)

If |0%| = flod| (Jo%] = f|o%]|) then the friction law and (32) give

U?(»’Ul:_{r) o} (1, %;) C1075(21,0),
U(l)(xh _%-l-) - U(l)(xh _%_) = CQU?Q(xli 0)7 (37)
U(l)(xlaé )_U(l)(xla_% ) = (%+CI+CQ)U?2(:EI:O):
[u7] = —(5 + ot (z1,0).
To summarize, we obtain the following compliance contaet la
O-(?V = —Zﬁo[u?\,ﬁ,
lop| < floyl,
1f (0] < flod| then of = —7lus], (39)

If log| = flox| then [uz] = —Cop, ¢ > 0.

5.2 Numerical validations

In this part, we proceed as in former papers [1]. The examipdedovetail assembly

is treated (figure 2). The idea of the numerical study is tafywénat the numerical
results are coherent with the theory (validation) and tewheine the thickness of the
layer for which the limit interface law could be consideredvalid (quantization).
Thus, we solve numerically the initial problem with a thiryéa having decreasing
values of the thickness and stiffness.

The coefficients, A and . are chosen smaller and smaller. After that, numerical
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Figure 3: Tangential rate (stress-displacement) for aedsong thickness

results are compared with theoretical results. In ordeimpkfy the computations,
we suppose that Lamé’s coefficients of the joint are giver\by "),y > 0 and
p =10 < 3§ < 2. We solve the problem with decreasing values of will be
equal t01.1072, 5.1073, 1.1073, 5.10~%, 1.10~*. In order to study the results, we
compute the displacement fieldsx(ur) and the stress vectos, o7) on ST for
the initial problem (resp. orb for the limit problem) for the nine couplegs\, x).
After that, we compare theoretical curves and numericatesufor stick or sliding
nodes. We obtain the same kind of results. The limit law carsiciered as valid for a
thickness of the thin layer smaller thag—? mm.

5.3 Numerical algorithm

The previous contact problem is writt&ind p fixed point of the applicatiop —
flon(u(p))|, whereu = u(p) is solution of

Findu € 'V such that :
J(u) < J(v), Yo eV,

with J(v) = LA(v,v) — L(v) + [, ¢(vn) ds + [ p(vr) ds., ¢ is given by

_f0 if vy <0,
plow) = { B (on)? if oy 2 0.
Y is given by
—pur — J(T if vr < ;(—5,,
1/)('UT) = %KT-('UT)Q Zf "UT‘ S KLT’

>

— ; b
pUT = S if vp > o

The Problem is discretized by a finite element method fortedlan displacements.
Usually, we useP1 finite elements (triangles with three nodes and six degrées o
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freedom) o1 (quadrangles with four nodes and eight degrees of freeddfmhave
to minimize a functional still noted in R*¥”. We denote: NP the total number
of nodes, NC the number of contact nodég, the indices of normal components
of contact nodes/; the indices of tangential components of contact nodeshe
stiffness matrix with coefficient;; and B the stiffness matrix to the surface terms
with coefficientb;;. The relaxation method consists in finding the solution obpgm

2 solving a sequence of minimization problemgit'

{ Findu; "® such that Vv € R*NP

1
n+1 nt+l ,"t3 p n unt! n+1 n
Jui™ul Ty 2ud e ubyp) < J(uy T ul T v ul L ubyp)

We denote by the relaxation coefficient. In the first time, we are intezddby the
normal components.

o) €y

The algorithm is written

( . 1 i—1 INP
n+y o n+1, n+1 __ n., n
up = n—l—%((pl Zdij uj Z d” J>
g J=1 j=i+1
with
aij +(u )bw if j€In
dis = q aij + n(u )b” if j € Ir
% jj otherwise
0 ifu<o

YW =91 ifu>o0
0 if |ul > &
“"d”(“):{1 z'f|u|§ﬁ

L ul T = (1 — w)u? + wu?+5

For tangential components, we have
o, € Ip
First, the fixed point problem is considergd’ = f|on(u(p))| and we write

¢ INP
l n
Zd"“ P =Y di = 00, f)
d“ J=t+1
with
-1 ifu< gt
Ou)y=< 1 ifu> KLT
0 if jul <& T
[t = (1= w)ul? + wu;

5.4 An academic test

In this paragraph the algorithm is tested and validated. 8ve lchosen a benchmark
studied by the group "Validation of computer codes” of FiefiResearch Groupment

11
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Figure 4: The example of a long bar
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Figure 5: Tangential contact force for various coeffici&int = A + 271, Kr = i

"Large Deformations and Damage” ([9], figure 4). We work i strains and we
consider a long bar with square section with Young’s modwlus- 130 Gpa and
Poisson’s ratiar = 0.2. The contact zone (interface law) corresponds to the part
with a friction coefficient equal tg = 1. u; = 0 on DE andu; = uy = 0 at pointD.
We impose a loading'l = 10 daN/mm? on AG andF2 = —5 daN/mm? onGE.

In the finite element method, the contact zone is discretiyed® nodes. For different
values offi and\ the variations of contact status are studied (figure 5). Wepzoe
the results with [9] (Signorini-Coulomb laws). We obserkattfor A = 4.510*% and
71 = 5.410™®, we find the same results that in [9]. These coefficients spoed to the
limit case (Signorini-Coulomb). The decreasingiotorresponds to the increasing
of the stick zone (13, 15 and 32 nodes). Nevertheless, tHéaerts have a strong
influence on the tangential displacements. A low value ofcthefficient K7 implies
an increasing of the tangential displacement. The nodeslidiag without reaching
the value of the Coulomb’s sliding limit.

12



6 Mohr-Coulomb elasto-plasticity

6.1 Mathematical results

We consider a perfect adhesion between the bodies and tee Ghe deformation
is decomposed in an elastic part and in a plastic one. Theldger obeys to the
Mohr-Coulomb’s law of elasto-plasticity, that is

e(u®) = e°+ep,
o] < C —tanQ|o,|,
39
Oij = Aerdij + 2peij, (39)
& = km®,l

where(? is the friction angle(' is the cohesion strength,, ando; are respectively
the normal and the tangential stresses; we denotednd: the normal and tangential
directions of the face corresponding to the plastic yigld, a non-negative parameter
which is equal to zero in the elastic zone. We proceed as ifotinger sections. We
consider the same case than in section 3. The internal expegises

Ty = ﬂ(g—;‘; —ely),  TH=(+ Zﬁ)(g—;‘j — €)). (40)

Before the beginning of the plastification, we find the elagtdic case.
on = Kilul. (41)

When the plastic yield is reached, we obtain

iy = Al[ul] = [w]), 75 = (A +20) ([uf] — [u5)). (42)

The plastic flow is given by

[@?] = ki, (43)
1/2
with [i?] = [ ¢é;,""dy,. The limit problem is quite different in this non-linear eas
—1/2

The plastic yield and the plastic flow depend on a local proldbecause they do not
depend on the stress vector but on the total stress tensodénto determine the limit
and the direction of sliding, we have to solve the followihgsto-plastic problem in
S x[-1/2,1/2]

ol _
a0
el = e* 4¢P,
] < C—tan Q7] (44)
™ = )\e,;kléii+ e,
el = kn®t.

Due to the fact that the solution does not depend on the tagsnve have to solve
only a "one-dimensional problem”.

13



Figure 6: Ratio tangential force-tangential displacenmenthe contact zone : begin-
ning of the plastification in the left part of the boundary.

Remarks a) If the direction of flow is equal ta,, we find the Coulomb’s friction
law; b) In order to suppress the local problem, the unknowection can be approx-
imated by the tangential directian; c) If the Mohr-Coulomb’s law is replaced by a
simplified law, that is the direction is given, the local plerh is easier to solve.

6.2 Numerical validations

The example presented in section 5.4 is treated with anoefdastic thin layer. The
results are shown in figure 6. We observe that the theordtieals verified with a
good agreement. The ratio thickness of the thin layer - dgioemnof the body is equal
to 1/100.

7 Someremarkson non-monotone behavior

7.1 Mathematical resultsand limitations

We consider a perfect adhesion between the bodies and theTgie behaviour of the
material is non-monotone, that is

O'Z'j = )\Ekk(si]‘ + 2M€Z‘j + Oé(T)XZ‘]‘, |f Q(T)Xijeij S —C(T)
)\ekkéij + 2/16@', if ‘Oz(T)XijeiH S C(T) (45)
Oi5 = )\ekkéij + 2/16@' — Oé(T)XZ'j, if OL(T)XZ'J'GZ']' Z C(T),

S
.
|

whereT is the temperature;(T') anda(T) are n the non-negative parameters of the
law, andy is a given orientation tensor. Using the same techniquesttEmdame
notations than in the previous sections, the internal exipanin the case

a(T)xijei; > C(T) (46)

14



leads to
_ou? — 5 — oul _
Ty = ,Uaiy; —axi, Tep=(A+ N)a_Z; — QX22, (47)

wherea is the limit of the ratio between the coefficient7’) and the thickness at the
powern < 1. In the following,C will denote the ratio betwee'(T") and the same
power of the thickness. By integration, we obtain

oly = alul] — @x1a, 09 = (A + )[ul] — Axae. (48)

Thus, we obtain an interface law written

If @xiz[u;] > C then on= Ki[u] —ax.s. (49)

7.2 A 1D example

The previous computations are not totally true becausertbidgm does not have an
unique solution. In fact, in the asymptotic expansion aipaldr solution is chosen. In
this paragraph we treat the example of a bar of lehgtttupying the intervdD, [[. In
the intervall0, 1[, the material has a behavior as in the previous section withdity
k'; in the intervallel, I[, the material is elastic with a rigidit. We suppose that a
given displacement > 0 is applied at the extremity = [. The bar is embedded at
the extremityz = 0. The adhesion is perfect far= /. In this case, it is possible to
show (after long computations !) that a global minimizerto# energy verifies

g () = gx if 0 <z <eb,
Ug () = ?(z—eS) if eS <z <el,
up() = z@—=l)+difel <z <,
eS = el(1+ L - By Ep),
E - I < 5 < by, (50)
E = E, =K< —2)if 6 <6 <4y,
E = B+ 2byif 6> 6y,

o= oml K, b= b+l K= (B ),

€ Y

u, (resp.uy) is the displacement field in the interval c/[ (resp.]zl, [[). Thus, using
the usual notations, the asymptotic law is given by

on = Eul,if 0 <6 <6,
on = _%1(6 — [ﬁ}) if 60 <06 < 41, 51)
on = k'lu] —a,if 6 > 6],

B=oulK ', 8=+ K =(L+2).

We observe that this law is quite different that the law alediin subsection 7.1.
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8 Conclusion: Rheological interpretation

If one observes the mechanical model obtained in section 5, one can give a rheological
interpretation to this model. The normal part of the model (contact law) can be inter-
preted as the sequence between a spring and a stop. At the limit the behavior of the
thin layer is conserved, a spring corresponds to the elastic part of the model, and the
stop corresponds to the non-linear part of the model. In fact, the sequence elasticity-
unilateral contact becomes at the limit the sequence spring-stop. This result is quite
general. As an example, a thin layer made by two thin layers with different stiffnesses
becomes a sequence of two springs with different rigidities. In the same way, the tan-
gential part of the model can be seen as a sequence between a spring corresponding
to the elasticity of the thin layer and a skidding block corresponding to the friction on
the surface between the adherents and the adhesive.
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