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ON MINIMAL DECOMPOSITIONS OF LOW RANK SYMMETRIC TENSOR

BERNARD MOURRAIN AND ALESSANDRO ONETO

ABSTRACT. We use an algebraic approach to construct minimal decompositions of symmetric tensors with low
rank. This is done by using Apolarity Theory and by studying minimal sets of reduced points apolar to a given
symmetric tensor, namely, whose ideal is contained in the apolar ideal associated to the tensor. In particular,
we focus on the structure of the Hilbert function of these ideals of points. We give a procedure which produces
a minimal set of points apolar to any symmetric tensor of rank at most 5. This procedure is also implemented
in the algebra software Macaulay2.

1. INTRODUCTION

Tensors are multi-dimensional arrays that can be used to encode large data sets. For applications, it is
useful to find convenient ways to represent them and, in the last decades, a lot of research has been focused
on additive decompositions. For a more extensive survey on the relations between theoretical and applied
aspects of tensor decompositions, we refer to the book of J. M. Landsberg [Lan12].

In the space of tensors Cn1+1 ⊗ . . .⊗Cnd+1, we call decomposable or rank-1 tensors the elements of the
type v1 ⊗ . . .⊗ vd , where vi ∈ Cni+1. Given a tensor T ∈ Cn1+1 ⊗ . . .⊗Cnd+1, we call tensor decomposition
an expression of T as sum of decomposable tensors, i.e.,

T =
r
∑

i=1

vi,1 ⊗ . . .⊗ vi,d , where vi, j ∈ Cn j+1,

and the smallest length of such a decomposition is called tensor rank of T . We call rank of T the smallest
possible length of such an expression. Note that this definition generalizes the notion of rank of a matrix
which may be defined as the smallest number of rank-1 matrices needed to write the matrix as their sum.

An important family of tensors is the one of symmetric tensors, i.e., the tensors invariant under the action
of the permutation group on d objects Sd on the space of tensors Cn1+1 ⊗ . . .⊗Cnd+1 by permutation of
the factors. In this case, we consider additive decompositions as sums of rank-1 symmetric tensors.

If we consider the case n1 = . . . = nd = n, symmetric tensors can be naturally identified with homoge-
neous polynomials of degree d in n+1 variables. For example, if {x0, . . . , xn} is a basis forCn+1, a monomial
x i1 · · · x id is identified with the symmetric tensor

∑

σ∈Sd
x iσ(1) ⊗ . . .⊗ x iσ(d) . Since rank-1 symmetric tensors

are the ones of the type v⊗d = v⊗ . . .⊗ v, with the previous identification, they corresponds to dth powers
of homogeneous polynomials of degree 1. Therefore, in the case of symmetric tensors, we rephrase the
aforementioned problem on additive decomposition as follows.

Let S = C[x0, . . . , xn] =
⊕

d≥0 Sd be the standard graded ring of polynomials in n+1 variables and with
complex coefficients. Here, Sd denotes the vector space of degree d homogeneous polynomials, or forms.
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2 B. MOURRAIN AND A. ONETO

Definition 1.1. Let f ∈ Sd be a form of degree d. A Waring decomposition of f is an expression as

f = `d
1 + . . .+ `d

s , where the `i ’s are linear forms.

The minimal length of such a decomposition is called the Waring rank, or rank, of f . We denote it rk( f ).

Hence, our general question is the following.

Question 1.2. Given f ∈ Sd , what is the rank of f ? Can we provide a minimal Waring decomposition?

For general forms of fixed degree and fixed number of variables, the value of the rank is known due to the
result of J. Alexander and A. Hirschowitz [AH95]. In the case of specific polynomials, the question is much
more difficult. The case of binary forms (two variables) is very classical and due to J. J. Sylvester [Syl51].
In the case of monomials, E. Carlini, M. V. Catalisano and A. V. Geramita gave a very explicit formula just
in terms of the exponents of the monomial [CCG12]. In general, several algorithms have been described,
but they efficiently work under certain constrains on the given polynomial [BCMT10, BGI11, OO13].

Our approach to computing Waring decomposition is algebraic. By Apolarity Theory, minimal Waring
decompositions of a given polynomial correspond to sets of reduced points in projective space apolar to the
polynomial, i.e., sets of points whose ideal is contained in the so-called apolar ideal of the polynomial. This
theory is explained in details in the book of A. Iarrobino and V. Kanev [IK06]. Under such a correspondence,
the coordinates of the points are the coefficients of the linear forms that can be used to provide a Waring
decomposition of the polynomial. In particular, the minimal cardinality of such a set of points coincides
with the Waring rank of the polynomial. In this paper, we focus on invariants of ideals of sets of points
apolar to a given polynomial as their Hilbert function and their regularity.

Although this algebraic approach to Waring decompositions is very classical and it basically goes back to
the work of J. J. Sylvester on binary forms, we use a new tool which we believe have potential for further
investigation. This is the concept of Waring locus of a polynomial which is defined as the locus of linear
forms that may appear in a minimal Waring decomposition [CCO17]. The idea behind this construction
is to find a way to decompose a given polynomial by adding one power at the time, namely by taking
step-by-step a linear form in the Waring locus of the polynomial. In particular, this idea has a twofold use.

If the Waring locus is as big as possible, i.e., it is dense in the space of linear forms, it means that we
can actually pick a random linear form to start our decomposition. This is what happen for form with
rank higher than the generic rank, i.e., the rank of the general form. On the other hand, if the Waring is
(contained in) a proper subvariety of the space of linear forms, we have conditions on the coefficients of
the linear form we need to start our decomposition. In this case, with some further analysis on algebraic
and geometric properties of the Waring locus, we may find a way to reduce the rank of our polynomial.

By using these ideas, we describe how to find a minimal Waring decomposition of homogeneous poly-
nomials of low rank, for any number of variables and any degree; see Theorem 4.1. These methods can
be extended to forms of higher rank, but, since the cases to study grows very quickly and they might need
some ad hoc argument, we applied them to completely describe all cases up to rank 5.

We think it is worth mentioning that our computations left us with an intriguing algebraic question that
should be investigated further. We can consider all the minimal sets of points apolar to a given polynomial
and we might look at which algebraic and geometric properties they share. As far as we know, the only
results in this direction regard: binary forms, where they obviosuly share the same Hilbert function since
they are defined by principal ideals with the generator equal to the rank of the binary form; and monomials,
where we know that they are complete intersections with the generators in the same degrees [BBT13].
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Structure of the paper. In Section 2, we introduced the necessary background and the tools we use in our
computations. These include Apolarity Theory (Section 2.1), regularity of ideals of reduced points (e.g.,
see Theorem 2.17), essential number of variables (Section 2.2) and Waring loci (Section 2.3). In Section
3, we use these tools to study minimal sets of points apolar to polynomial of low rank (e.g., see Proposition
3.7 and Proposition 3.14). In Section 4, we give our main Theorem 4.1 where we describe a procedure
to find a minimal set of points apolar to any polynomial of rank at most 5. In Section 5, we implement
our computations with the algebra software Macaulay2 [GS02]. The code of the package ApolarLowRank
can be found as ancillary material accompanying the arXiv and the HAL versions of the paper or on the
personal webpage of the second author.

Acknowledgements. The second author acknowledges a postdoctoral research fellowship at INRIA - Sophia
Antipolis Méditerranée (France) in the team AROMATH, during which this project started. The second au-
thor also acknowledges financial support from the Spanish Ministry of Economy and Competitiveness,
through the María de Maeztu Programme for Units of Excellence in R&D (MDM-2014-0445).

2. BASIC DEFINITIONS AND BACKGROUND

We start by recalling some basic definitions and construction.

2.1. Apolarity Theory. One of the most important algebraic tools for studying Waring decompositions of
homogeneous polynomials is Apolarity Theory, which relates Waring decompositions of a polynomial f to
ideals of reduced points contained in the so-called apolar ideal of f . For more details, we refer to [IK06].

Let T = C[y0, . . . , yn] =
⊕

d≥0 Td be a standard graded polynomial ring. We define the apolar action
of T over S by identifying the polynomials in T with partial differentials over S; namely,

◦ : T × S −→ S, (G, f ) 7→ G ◦ f := G(∂0, . . . ,∂n) · f .

Definition 2.1. Let f ∈ Sd . We define the apolar ideal of f as

f ⊥ := {G ∈ T | G ◦ f = 0}.

We denote by A f the quotient ring T/ f ⊥.

Remark 2.2. An important and useful property of apolar ideals is that, for any f ∈ Sd , the algebra A f is
Artinian Gorenstein with socle degree d. Actually, also the viceversa is true, i.e., any artinian Gorenstein
algebra is isomorphic to A f , for some f . This characterization is referred as Macaulay’s duality [Mac94].

The following lemma is the key of our algebraic approach to Waring decompositions.

Lemma 2.3 (Apolarity Lemma, [IK06, Lemma 1.15]). Let f ∈ Sd . Then, the following are equivalent:

(1) f = c1`
d
1 + . . .+ cs`

d
s , for some ci ∈ C \ {0}, `i ∈ S1 \ {0};

(2) IX ⊂ f ⊥, where IX is the defining ideal of s reduced points in Pn.

In particular, if X= {ξ1, . . . ,ξs} ⊂ Pn, with ξi = (ξi,0 : . . . : ξi,n), then `i = `ξi
:= ξi,0 x0 + . . .+ ξi,n xn ∈ S1.

Definition 2.4. Given f ∈ Sd , a set of points X such that IX ⊂ f ⊥ is said to be apolar to f .

Example 2.5 (Binary forms: Sylvester algorithm). We describe here how to compute the Waring rank of
a binary form. The idea behind these computations goes back to J. J. Sylvester [Syl51]. For a modern
exposition, we refer to [CS11]. Let f ∈ C[x0, x1]. By Macaulay’s duality, we know that f ⊥ is artinian
Gorenstein and, since we are in codimension 2, it is also a complete intersection, say f ⊥ = (G1, G2), with
deg(Gi) = di , i = 1,2, and d1 + d2 = d + 2. Since ideals of reduced points in P1 are principal, we look for
square-free polynomials in f ⊥. In particular, we get the following (we assume d1 ≤ d2):
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(1) if G1 is square-free, then rk( f ) = d1;
(2) otherwise, the general element H ·G1+αG2, with H ∈ Td2−d1

, α ∈ C, is square-free and rk( f ) = d2.

Another classical tool useful to analyse these ideals are Hilbert functions.

Definition 2.6. Given a homogeneous ideal I ⊂ S, the Hilbert function in degree i of the quotient ring S/I
is the dimension of Si/Ii as C-vector space, i.e.,

hS/I(i) := dimC(S/I)i = dimC Si − dimC Ii , for i ∈ N.

Remark 2.7. Given a set of reduced pointsX, we denote the Hilbert function of the quotient ring S/IX simply
by hX. A well-known fact is that this Hilbert function is strictly increasing until it reaches the cardinality of
the set of points and then it gets constant [IK06, Theorem 1.69].

Remark 2.8. Since the apolar algebra A f of a homogeneous polynomial f ∈ Sd is artinian Gorenstein with
socle degree d, we know that the Hilbert function of A f is symmetric and equal to 0 from degree d + 1.

Given a polynomial f ∈ Sd , the computation of the apolar ideal is a linear algebra exercise. For any
i = 0, . . . , d, we construct the i-th catalecticant matrix of f as

Cati( f ) : Ti −→ Sd−i , G 7→ G ◦ f .

Then, we have that, f ⊥i = ker Cati( f ).

Remark 2.9. For any degree d, we consider the standard monomial basis

Bd =

¨

xα := xα0
0 · · · x

αn
n | α ∈ N

n+1, |α|=
∑

i

αi = d

«

of Sd , and the dual basis

B∨d =

¨

y(α) :=
1
α!

yα =
1
α!

yα0
0 · · · y

αn
n | α ∈ N

n+1, |α|=
∑

i

αi = d

«

.

Note that y(α) ◦ xβ = xβ−α. Therefore, with respect to these basis, we have that,

Cati( f ) = (cα+β) |α|=i
|β |=d−i

, where f =
∑

α∈Nn+1, |α|=d

cαxα ∈ Sd .

By Apolarity Lemma, for any set of points X apolar to f , we have that hX(i)≥ hA f
(i) = codim kerCati( f )

= rkCati( f ). Moreover, for any i ∈ N, |X| ≥ hX(i). Therefore, if we denote by `( f ) := maxi{hA f
(i)} =

maxi{rk Cati( f )} the differential length of f , we have that

rk( f )≥ `( f ).

Remark 2.10. If f is a binary form, then f ⊥ = (G1, G2) with deg(G1) = d1, deg(G2) = d2, d1 ≤ d2 and
d1+d2 = d+2. Then h f (i) = i+1 for i = 0, . . . , d1−1, h f (i) = d1 for i = d1, . . . , d2−1 and h f (i) = d+1−i for
i = d2, . . . , d. In particular, l( f ) = d1 and rk( f ) = l( f ) if G1 is square-free. Otherwise, rk( f ) = d+2− l( f ).

Lemma 2.11. If for some k ≤ d, ( f ⊥k ) = IX is defining a set X of r reduced points, then rk( f )≤ r = h f (k).

Proof. As f ⊥k is defining a set X of r reduced points, IX = ( f ⊥k ) ⊂ ( f
⊥) and by the apolarity Lemma 2.3, X

is apolar to f and rk( f )≤ |X|= r. Moreover, hX(k) = r = dim(Sk/(IX)k) = dim(Sk/ f ⊥k ) = h f (k). �

This leads to the following possible algorithm to find the Waring rank of a given polynomial f ∈ Sd :

(1) consider the largest catalecticant Catm( f ), for m=
� d

2

�

and the ideal I generated by its kernel;
(2) if I does not define a set of reduced points, then we fail;



ON MINIMAL DECOMPOSITIONS OF LOW RANK SYMMETRIC TENSOR 5

(3) otherwise, if the zero set of I is a set of reduced points Z(I) = {[L1], . . . , [Lr]}, then we solve the
linear system f =

∑r
i=1 ci`

d
i to find a Waring decomposition of f . Moreover, in this case, this is

minimal and unique.

Numerical conditions to ensure that this catalecticant method works have been presented in [IK06, OO13].

In [IK06], A. Iarrobino and V. Kanev analysed the Hilbert function of ideals of sets of reduced points
apolar to a given polynomial in order to use Apolarity Lemma and deduce its rank. We want to continue
in this direction and, in the next section, we will classify polynomials with low rank.

Definition 2.12 (Regularity). For a family X= {ξ1, . . . ,ξr} of points in Pn, we define the regularity of X as

ρ(X) =min{k ∈ N | ∃U1, . . . , Ur ∈ Sk s.t. Ui(ξ j) = δi, j}.

Remark 2.13. This regularity is also called the interpolation degree of the points X. Let vank(X) denotes the
Vandermonde matrix of degree k associated to X, i.e., if X= {ξ1, . . . ,ξr}, with ξi = (ξi,0 : . . . : ξi,n) ∈ Pn,

vank(X) =
�

ξαj

�

j=1,...,r
|α|=k

,

where ξαj := ξα0
j,0 · · ·ξ

αn
j,n. The regularity ρ(X) is also the minimal k for which, van(X)k is of rank |X|.

This regularity coincides with the so-called regularity index, i.e., the smallest integer in which the Hilbert
function of the ideal of points gets constant. Also, ρ(X) is the Castelnuovo-Mumford regularity of S/IX which
is defined as mini{di, j− i} where di, j ’s are the degrees of generators of the i-th syzygy module in a minimal
free resolution of S/IX; see [Eis05, Chapter 4]: ρ(X) = reg(S/IX) = reg(IX)− 1.

Question 2.14. LetX,X′ be minimal set of points apolar to a polynomial f ∈ Sd . Is it true thatρ(X) = ρ(X′)?
More generally, is it true that hX = hX′?

The latter question has a positive answer for:

(1) binary forms, as described by Sylvester’s algorithm;
(2) monomials, since any minimal apolar set of points to a monomial xd0

0 · · · x
dn
n , where the exponents

are ordered increasingly, is a complete intersection with n generators of degrees d1+1, . . . , dn+1,
respectively; see [BBT13],

We now prove that it has an affirmative answer also if the regularity of a minimal set of points is large
enough with respect to the degree of the polynomial. In particular, in this case, we have that the catalecti-
cant method works and gives us a minimal apolar set of points.

Lemma 2.15. Let f ∈ Sd and let X be a minimal set of points apolar to f . Assume that d ≥ ρ(X). Then,

(IX)k = f ⊥k for 0≤ k ≤ d −ρ(X).

Proof. Let X = {ξ1, . . . ,ξr}, where ξi = (ξi,0 : . . . : ξi,n) ∈ Pn. We denote by `ξi
= ξ0 x0 + . . .+ ξn xn ∈ S1.

By Apolarity Lemma, we know that f =
∑s

i=1 ai`
d
ξi

, for some coefficients ai ∈ C. Now, for any y(α) ∈ Tk,
we have that

y(α) ◦ f =
s
∑

i=1

aiy
(α) ◦ `d

ξi
=

s
∑

i=1

�

ai
d!

(d − k)!

�

ξαi `
d−k
ξi
=

=
∑

β∈Nn+1

|β |=d−k

s
∑

i=1

�

ai
d!

β0! · · ·βn!

�

ξ
α+β
i xβ =

∑

β∈Nn+1

|β |=d−k

s
∑

i=1

aiξ
α+β
i xβ .
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Therefore,

Cati( f ) =

� s
∑

i=1

aiξ
α+β
i

�

|α|=k
|β |=d−k

= vand−k(X)T · D · vank(X),

where D is the diagonal matrix D = diag(a1, . . . , as).
Since d − k ≥ ρ, vand−k(X)T is injective. Therefore, we have that the kernel of Catk( f ), which is f ⊥k , is

equal to the kernel of vank(X), which is (IX)k. �

Remark 2.16. In [IK06, Theorem 5.3(E-ii)], the authors proved a similar statement under a stronger as-
sumption, namely, by assuming that the polynomial admits a tight apolar set of points, i.e., a set of points
X apolar to f such that hA f

(i) = |X|, in some degree i.

Theorem 2.17. Let f ∈ Sd and let X be a minimal set of points apolar to f . If d ≥ 2ρ(X) + 1, then
IX = ( f ⊥≤ρ(X)+1). Moreover, X is the unique minimal set of points apolar to f .

Proof. By Lemma 2.15, for 0≤ k ≤ ρ(X)+1, we have (IX)k = f ⊥k . Since ρ(X)+1= reg(IX) is greater than
the degree of a minimal set of generators of IX, ( f ⊥≤ρ(X)+1) = IX. �

2.2. Essential number of variables. In [Car06], E. Carlini introduced the concept of essential number of
variables of a polynomial as the smallest number of variables needed to write it.

Definition 2.18. Given a homogeneous polynomial f ∈ S, the essential number of variables of f is the
smallest number N such that there exists linear forms `1, . . . ,`N ∈ S, such that f ∈ C[`1, . . . ,`N ]. In this
case, we call the `i ’s the essential variables of f . In the literature, a form f ∈ C[x0, . . . , xn] with n+ 1
essential variables is also called concise.

Lemma 2.19. Let f ∈ Sd . Then:

(1) [Car06, Proposition 1] the number of essential variables is the rank of Cat1( f ), that is h f (1);
(2) [CCO17, Proposition 2.3] any minimal Waring decomposition of f involves only linear forms in the

essential variables.

For this reason, the first thing we do when we look for a Waring decomposition is to compute the first
catalecticant matrix and then working modulo its kernel.

Example 2.20 (Rank 1 polynomials). If f has only one essential variable, i.e., the first catalecticant matrix
has rank 1, then we have that f is a pure d-th power of a linear form. Indeed, if we consider the kernel
of the first catalecticant matrix we obtain n linear forms which define a simple points ξ ∈ Pn. Then, by
Apolarity Lemma, for a suitable choice of a scalar c ∈ C, f = c`d

ξ
.

2.3. Waring loci and forms of high rank. In [CCO17], the second author together with E. Carlini and
M.V. Catalisano defined the concept of Waring locus of a homogeneous polynomial.

Notation 2.21. Given a subset W of elements in a vector space, we denote by 〈W 〉 their linear span. Simi-
larly, if we consider a subset of points in a projective space, it will denote their projective linear span.

Definition 2.22. Let f ∈ Sd . Then, the Waring locus of f is the locus of linear forms that can appear in a
minimal Waring decomposition of f , i.e.,

W f :=
�

[`] ∈ P(S1) | ∃`2, . . . ,`r , r = rk( f ), s.t. f ∈



`d ,`d
2 , . . . ,`d

r

�	

;

analogously, by Apolarity Lemma,

W f :=
�

P ∈ Pn | ∃P2, . . . , Pr , r = rk( f ), s.t. IX ⊂ f ⊥, X= {P, P2, . . . , Pr}
	

.

The complement is called forbidden locus of f and denote F f := Pn \W f .
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Remark 2.23. The Waring locus (hence, the forbidden locus) is not necessary open or closed, e.g., in the
case of planar cubic cusps it is given by the union of a point and a Zariski open subset of a line; see [CCO17,
Theorem 5.1]. We only know that it is constructible since it can be described as a linear projection of (the
open part of) the classical Variety of Sums of Powers (VSP) defined by K. Ranestad and F.-O. Schreyer [RS00],

i.e., VSP( f , rk( f )) :=
�

([`1], . . . , [`r]) ∈ Hilbs(P(S1)) | f ∈



`d
1 , . . . ,`d

r

�	

.

The motivation that inspired the definition of Waring loci is to look for a recursive way to construct Waring
decompositions, by adding, step-by-step, one power at the time. In [CCO17], Waring loci of quadrics,
binary forms, monomials, plane cubics have been computed.

Example 2.24 (Recursive decomposition of binary forms). In [CCO17, Theorem 3.5], the Waring locus of
binary forms has been computed. By Sylvester’s algorithm, if the rank r = rk( f ) is less than the generic,
i.e., r <

� d+1
2

�

, or r =
� d+1

2

�

and d is odd, then, we have a unique decomposition and, in particular, the
Waring locus is closed and consists of r distinct points. If r >

� d+1
2

�

or r =
� d+1

2

�

and d is even, then, the
Waring locus is dense. This means that, in the latter cases, for a general form ` ∈ S1, there exists a minimal
Waring decomposition of f involving `d , up to some scalar. Actually, by [CCO17, Proposition 3.8], we
know that for a general choice of `1, . . . ,`s ∈ S1, where s = r−

� d+1
2

�

, there exist scalars c1, . . . , cs such that
f −
∑s

i=1 ci`
d
i has rank r−s. At this point, we cannot continue with generic linear forms because, depending

on the parity of the degree, the remaining part of the decomposition might be uniquely determined.

Our first result is a generalization of the fact explained in the latter example in a more general setting.

Definition 2.25. For any projective variety X ⊂ PN , we say that X spans PN if every point of PN is in the
linear span of points in X .

Given a point P ∈ PN , the X -rank of P is the smallest number of points on X whose linear span contains
P. We denote it rkX (P). By convention, if P is not in any linear span of points of X , rkX (P) = +∞.

Remark 2.26. From this definition, the Waring rank is simply the X -rank inside the space of homogeneous
polynomials of P(Sd) with respect to the Veronese variety of d-th powers. Other relevant varieties that have
been considered in relation to tensor decompositions are Segre and Segre-Veronese varieties.

Definition 2.27. Given a point P ∈ PN , we define the X -decomposition locus of P as

WX ,P = {Q ∈ X | ∃Q2 ∈ X , . . . ,Qr ∈ X , r = rkX (P), P ∈ 〈Q,Q1, . . . ,Qr〉} .

The X -forbidden locus is FX ,P = X \WX ,P .

Remark 2.28. If X is the Veronese variety of d-th powers of linear forms, the X -decomposition locus of
a poin [ f ] ∈ P(Sd) corresponds to the image of the Waring locus of f via the d-th Veronese embedding.
Analogously for the forbidden locus.

In the following, we prove that the X -decomposition locus of a point with rank higher than the generic
is dense in X . The proof follows an idea used in [BHMT17] to study the loci of points with high rank.

Theorem 2.29. Let X ⊂ PN be an irreducible projective variety, which spans PN and let g be the generic
X -rank. Let P ∈ PN with r = rkX (P). If r > g, then WX ,P is dense in X .

Proof. We proceed by induction on r. Assume that P has X -rank r > g + 1. Then it lies on a line 〈P1, P2〉,
where P1 has X -rank g +1 and P2 has X -rank r − g −1. Now, if we assume that the claim holds for P1, we
have that, for a general point Q ∈ X , we have a point Q′ ∈ 〈P1,Q〉 of X -rank g. Now, let P ′ be the point of
intersection 〈P,Q〉∩〈Q′, P2〉. Since P ′ ∈ 〈Q′, P2〉, then rkX (P ′) = r−1. Hence, P ∈ 〈P ′,Q〉 with P ′ of X -rank
r − 1 and Q ∈ X so that Q ∈WX ,P .
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Hence, we just need to prove the claim in the case rkX (P) = g +1. Let σ◦g be the set of points of X -rank
equal to g. By definition of the generic rank, we know that σ◦g is a dense subset of PN . For any P ∈ PN of
rank g + 1, let CP = 〈P, X 〉 be the union of all lines passing through P and a point on X . As P is of X -rank
g + 1, it is on a line 〈P ′,Q〉 with P ′ ∈ σ◦g of X -rank g and Q ∈ X . Thus CP ∩σ◦g is non-empty. As X and
CP are irreducible and σ◦g is dense in PN , the Zariski closure of CP ∩σ◦g is CP and CP ∩σ◦g is dense in CP .
Therefore, for a generic point Q ∈ X , there is a point P ′ ∈ σ◦g with X -rank equal to g on the line 〈P,Q〉. By
definition of WX ,P , it implies that Q ∈WX ,P . This concludes the proof. �

Corollary 2.30. Let g be the generic rank of forms of degree d in n+ 1 variables. Let f ∈ Sd with r = rk( f ).
If r > g, then for any general choice of `1, . . . ,`s ∈ S1, with s = r − g, there exists a minimal Waring
decomposition involving the `i ’s.

Proof. It directly follows by applying r − g times Theorem 2.29 on Veronese varieties. �

Remark 2.31. A big challenge when we want to use Waring loci to construct minimal Waring decompo-
sitions is that, fixed a linear form ` in the Waring locus of f , there exists a suitable coefficient such that
rk( f + c`d) = rk( f )−1, but computing the scalar c is not trivial. In the case of forms of high rank, we have
seen that ` can be chosen generically, but this also implies that the scalar c can be chosen generically.

Indeed, let f be of rank r higher than the generic and let ` be a general linear form. Since the (closure
of the) locus of forms of rank bigger than r is a proper subvariety of forms of rank r − 1, we have that
on the line 〈 f ,`d〉 the condition of having rank r − 1 is an open condition. Therefore, since it is also non
empty because ` is in the Waring locus of f , the general point of the line has rank r − 1.

Remark 2.32. In the proof of Theorem 2.29, the fact that the point has rank strictly larger than the generic
rank is crucial. Indeed, if we consider forms of smaller rank, anything can happen. For example:

(1) The Waring locus can be open: if we consider a general plane cubic of rank 4, we know that the
apolar ideal is generated by three conics which define a linear base-point-free linear system; hence,
by Bertini’s Theorem, if we impose the passage through a point P of the plane, we obtain a pencil
of conics. These conics define a set of four reduced points, for P outside a discriminant curve of
P2. The Waring locus is the complementary of this discriminant curve and is open (see for more
details [CCO17, Section 3]);

(2) The Waring locus can be closed and 0-dimensional: a general cubic of P3 has rank 5 and, by Sylvester
Pentahedral Theorem [Cle61], we have that it is identifiable, i.e., has a unique decomposition.
Therefore, the Waring locus is the unique minimal apolar set of points. It is classically known that
also the general binary form of odd degree and the general plane quintic are identifiable. Recently,
Galuppi and Mella proved that this are the only cases [GM16]. An algorithm to find such a unique
decomposition is presented in [OO13, Theorem 3.9].

(3) The Waring locus can be neither closed nor open: consider a plane cuspidal cubic which has rank 4
and, up to a change of variables, it can be written in the form x3

0+ x2
1 x2. The Waring locus is given

by the union of the point (1 : 0 : 0) and the pinched line P1
x1,x2
\ (0 : 1) (see [CCO17, Section 3]).

In the following lemma, we generalize the latter case to a more general setting.

Lemma 2.33. Let f = xd
0 + g(x1, . . . , xn) ∈ Sd of rank n+ 2, with n ≥ 2, and degree d ≥ 4. Assume that

g⊥2 = [(y0, G1, . . . , GN )]2, where the Gi ’s are quadrics and N =
�n

2

�

− 1. Then, W f = (1 : 0 : . . . : 0)∪Wg . In
other words, any minimal Waring decomposition of f is given by xd

0 plus a minimal decomposition of g.
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Proof. By [BBKT15, Lemma 1.12], we know that f ⊥i = ((y
d
0 )
⊥)i ∩ g⊥i , for i ≤ d − 1. In particular, since

d ≥ 4, we get f ⊥2 = (y0 y1, . . . , y0 yn, G1, . . . , GN ). Hence, we have that

hA f
(2) =

�

n+ 2
2

�

− n−
��

n
2

�

− 1
�

= n+ 2.

Therefore, since any minimal set X of points apolar to f has rank n + 2, we obtain (IX)2 = f ⊥2 . Hence,
X is contained in the variety defined by ( f ⊥2 ) which is (1 : 0 : . . . : 0) ∪ Pn−1

x1,...,xn
. Hence, any minimal

decomposition is of the type xd
0 +

∑r
i=1 `

d
i (x1, . . . , xn), where r = rk(g). By restricting on {x0 = 0}, we get

a minimal decomposition of g and the claim follows. �

3. DECOMPOSITIONS OF LOW RANK POLYNOMIALS

From the previous section, we noticed that if the degree of the polynomial is sufficiently large with
respect to the regularity of the points of a minimal decomposition, then there is a unique Waring decompo-
sition which can be found directly from the generators of the apolar ideal (Theorem 2.17). Also, we noticed
that if the rank is sufficiently large, then we can choose some elements of a minimal Waring decomposition
generically and reduce the rank to be equal to the general rank (Theorem 2.29).

In this section, we use these tools to construct minimal Waring decompositions of polynomials of small
rank, for any number of variables and any degree.

Remark 3.1. Any quadric q(x) can be represented by a symmetric matrix Q, i.e., q(x) = xQxT . Then, it is
well known that the Waring rank of q coincides with the rank of Q and a minimal Waring decomposition
is obtained by finding a diagonal form of Q. Therefore, we will always assume d ≥ 3.

Example 3.2 (Rank 1 and 2). The rank 1 case can be easily explained in terms of essential variables, see
Example 2.20. The rank 2 case can be explained using the Sylvester algorithm, see Example 2.5. In
particular, if the Hilbert function of A f is 1 2 2 · · · 2 1 −, then it means that f has two essential
variables and the apolar ideal is given by

f ⊥ = (L1, . . . , Ln−1, G1, G2), where deg(Li) = 1, deg(G1) = 2, deg(G2) = d,

where G1 is square-free.

Lemma 3.3. Let f ∈ C[x0, . . . , xn] be a concise form of degree d. Then, rk( f ) = n+1 if and only if `( f ) = n+1
and f ⊥2 defines a set of reduced points. In this case, there is a unique minimal apolar set of points.

Proof. If f has n+ 1 essential variables and the rank is equal to n+ 1, then, up to a change of coordinate,
we can write it as f = xd

0 + . . .+ xd
n . In this case, we know that

hA f
: 1 n+ 1 n+ 1 . . . n+ 1 1 − .

Hence, any minimal set of points is such that (IX)2 = ( f ⊥2 ) =



yi y j | i, j = 0, . . . , n
�

. These quadrics define
a set of n+ 1 reduced coordinate points; therefore, also uniqueness follows.

Viceversa, if IX = ( f ⊥2 ) is a set of reduced points and `( f ) = n+ 1, since f is concise, we have that

hS/IX : 1 n+ 1 n+ 1 n+ 1 · · · .

Therefore, |X|= n+ 1 and, by Apolarity Lemma, we have rk( f ) = n+ 1. �

Now, we can start our analysis of minimal decompositions of low rank polynomials.
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3.1. Polynomials of rank 3. If the rank of f is equal to 3, then we have that f has at most three essential
variables. Hence, we only have two possible configurations of points:

(3a) three collinear points;
(3b) three general points.

Proposition 3.4. Let f ∈ Sd be a form of rank 3.

(3a) If f has two essential variables, then f ⊥ = (L1, . . . , Ln−1, G1, G2), where we set di := deg(Gi) and
d1 ≤ d2. In particular,
(i) for d = 3, 4, minimal apolar sets of points are given by IX = (L1, . . . , Ln−1, HG1 + αG2), for a

general choice of H ∈ Td2−d1
and α ∈ C;

(ii) if d ≥ 5, there is a unique minimal apolar set of points given by IX = (L1, . . . , Ln−1, G1).
(3b) If f has three essential variables, there is a unique minimal apolar set of points given by IX = ( f ⊥2 ).

Proof. Case (3a) follows from Sylvester algorithm (Example 2.5) and case (3b) from Lemma 3.3. �

Remark 3.5. By Lemma 2.19, we obtain a stratification of the locus of rank 3 polynomials in the sense that,
given a polynomial of rank 3, all minimal apolar sets of points are either of type (3a) or of type (3b). In
this way, we have that Question 2.14 has positive answer for rank 3 polynomials. In particular, we obtain
that: if f is of type (3a), then any minimal apolar set of points have Hilbert function 1 2 3 3 · · · ; while,
if f is of type (3b) then any minimal apolar set of points have Hilbert function 1 3 3 3 · · · .

Remark 3.6. The Zariski closure of the space of plane cubics of rank 3 is an hypersurface defined by the
Aronhold invariant; e.g. see [LO13]. In [Ott09], G. Ottaviani describes how to compute such invariant in
terms of Pfaffians of particular skew-symmetric matrices called Koszul flattenings. We refer also to [OO13]
for a description of Koszul flattenings of homogeneous polynomials and their use to compute decomposi-
tions of symmetric tensors.

3.2. Polynomials of rank 4. The possible configurations of 4 points in projective spaces are in Figure 1.

(4a) Collinear (4b) Coplanar, with 3 collinear. (4c) General coplanar. (4d) General points.

FIGURE 1. Configurations of 4 points in projective space.

Theorem 3.7. Let f ∈ Sd be a form of rank 4.

(4a) If f has two essential variables (h f (1) = 2), then f ⊥ = (L1, . . . , Ln−1, G1, G2), where deg(Gi) = di

and d1 ≤ d2. In particular, it has to be d ≥ 4 and:
(i) if d = 4,5, 6, then d2 = 4, and minimal apolar sets of points are defined by ideals IX =
(L1, . . . , Ln−1, HG1 +αG2), for a general choice of H ∈ T6−d and α ∈ C;

(ii) if d ≥ 7, then d1 = 4 and the unique minimal apolar set of points is given by IX = (L1, . . . , Ln−1, G1).
(4b) If f has three essential variables (h f (1) = 3) and a minimal apolar set X of type (4b), then:
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(i) if d = 3, then ( f ⊥2 ) defines a 0-dimensional scheme P + D, where P is a reduced point and D is
connected scheme of length 2 whose linear span is a line LD; moreover, any minimal apolar set
is of the type P ∪X′, with X′ ⊂ LD;

(ii) if d = 4, then h f (2) = 4, ( f ⊥2 ) defines a disjoint union P ∪ L, where P is a reduced point and
L is a line not passing through P; moreover, any minimal apolar set is of the type P ∪X′, where
X′ ⊂ L.

(iii) if d ≥ 5, then h f (2) = 4, ( f ⊥2 ) defines a disjoint union P ∪ L, where P is a reduced point and L
is a line not passing through P and ( f ⊥3 ) defines the unique minimal apolar set.

(4c) If f has three essential variables (h f (1) = 3) and a minimal apolar set X of type (4c) then:
(i) if d = 3, then Z( f ⊥2 ) = ; and W f is dense in the plane of essential variables;

(ii) if d ≥ 4, there is a unique minimal apolar set of points given by IX = ( f ⊥2 ).
(4d) If f has four essential variables, there is a unique minimal apolar set of points given by IX = ( f ⊥2 ).

Proof. Case (4a). It follows from Sylvester algorithm, Example 2.5.
Case (4b). We may assume that f = xd

0 + g(x1, x2), where g is a binary form of rank 3. Then, since
d ≥ 3, by [BBKT15, Lemma 1.12], we have that f ⊥2 = (y1, y2)2 ∩ g⊥2 . If d = 3, the claim follows from
[CCO17, Section 3]. If d ≥ 4, since g is a binary quartic of rank 3, we have g⊥ = (y0, G1, G2), where the
Gi ’s are cubics, and, therefore, f ⊥2 = (y0 y1, y0 y2) and h f (2) = 4. Observe that, any set X of 4 points,
non-collinear in P2, has ρ(X) = 2. Hence, by Lemma 2.15, we have that (IX)2 = f ⊥2 and the claim follows.
In the case d ≥ 5, the claim follows from Theorem 2.17.

Case (4c). If d = 3, it follows from [CCO17, Section 3]. If d = 4, by Lemma 2.15, for any minimal set
of points X apolar to f , we have that f ⊥2 = (IX)2. Since by assumption there exists a minimal set of points
X which is a complete intersection of two conics, ( f ⊥)2 defines the unique minimal apolar set of points of
f . If d ≥ 5, then the claim follows from Theorem 2.17.

Case (4d). It follows from Lemma 3.3. �

Remark 3.8. From this result, we have that, given a polynomial of rank 4, all minimal apolar set of points fall
within the same configuration. In other words, we obtain a stratification of the space of rank 4 polynomials
accordingly to the configuration of minimal apolar sets of points. Moreover, we obtain that Question 2.14
has a positive answer for polynomials of rank 4. In particular, any minimal apolar set of points of a given
rank 4 polynomial have one of the following Hilbert functions:

(4a) : 1 2 3 4 4 · · · ; (4b), (4c) : 1 3 4 4 · · · ; (4d) : 1 4 4 · · · .

Note that, as explained in [Eis05, Section 3B.2], the cases (4b) and (4c) can be distinguished by looking at
finer numerical invariants related to their resolution as their graded Betti numbers. In particular, we have:

(4b) :
1 · ·
· 2 1
· 1 1

(4c) :
1 · ·
· 2 ·
· · 1

Remark 3.9. As we said, we want to do that step-by-step, but it is not enough to pick a point in the Waring
locus because, in order to construct the decomposition, we should also find the suitable coefficient to put
in front of the power of the corresponding linear form.

In the case (4b), for d = 3,4, we have seen that the scheme defined by the degree 2 part of the apolar
ideal of f has a unique reduced point P and then a non-reduced part (for d = 3) or a 1-dimensional part
(for d = 4). In both cases, we consider the linear form `P having the coordinates of P as coefficients and
we reduce the rank of f by finding the suitable coefficient c such that f − c`d

P has two essential variables,
i.e., such that the 1st catalecticant matrix has rank 2.
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In the case (4c), for d = 3, we can chose a random point P in P2. Then, we need to find a suitable
coefficient such that f − c`3

P has rank 3. In order to do so, we need to use equations for the space of (the
closure of) rank 3 polynomials. These equations are very difficult to find and, in general, are not always
known. A list of known cases is nicely explained in [LO13]. In the case of plane cubics of rank 3, we know
that this is a hypersurface given by the so-called Aronhold invariant. We explain this in Section 5.3.

3.3. Polynomials of rank 5. Possible configurations of 5 points in projective space are in Figure 2.

(5a) Collinear (5b) Coplanar, with 4 collinear. (5c) Coplanar, on a unique conic (5d) 4 coplanar.

(5e) 5 general in P3. (5f) 5 general in P4.

FIGURE 2. Configurations of 5 points in projective space.

Since we have several cases to consider, we start with some preliminary lemma. In the first one, we
study case (5b) in a more generality, by considering a set of r points P2 with r − 1 collinear points.

Lemma 3.10. Let f = xd
0 + g(x1, x2) ∈ Sd of rank ≥ 4. Then, rk( f ) = rk(g) + 1 and we have that W f =

(1 : 0 : 0) ∪ Wg . In other words, any minimal Waring decomposition of f is given by the sum of xd
0 and a

minimal Waring decomposition of g, i.e., it is xd
0 +

∑r
i=1 `

d
i (x1, x2), where r = rk(g).

Proof. Since binary forms of degree d have rank at most d, we have that r = rk(g)≤ d.
Now, by [BBKT15, Lemma 1.12], we have f ⊥i = (y1, y2)i ∩ g⊥i , for i ≤ d − 1. If d = r, we have that g

is a binary form of maximal rank r which, up to a change of variables, can be written in the form x1 x r−1
2 .

Hence, the claim follows from [CCO17, Theorem 5.1]. If d ≥ r + 1, then g⊥ = (y0, G1, G2) where G1 has
degree r and G2 has degree d + 2− r. Since r ≥ 3 and d ≥ r + 1, we have that the Gi ’s have degree at
least 3. In particular, f ⊥2 = (y0 y1, y0 y2). Now, observe that any set of r + 1 points in P2 with a subset
of r collinear points, have ρ(X) ≤ r − 1. Hence, by Lemma 2.15, for any minimal set of points X apolar
to f , we have (IX)i = f ⊥i , for i ≤ d − ρ(X). In particular, since d − ρ(X) ≥ d − r + 1 ≥ 2, we have
(IX)2 = f ⊥2 = (y0 y1, y0 y2). This concludes the proof. �

In the next lemma, we consider the case (5c) in the case of plane quartics.

Lemma 3.11. Assume that f is a plane quartic such that rk( f ) = 5 and f ⊥2 = 〈C〉. Then:

(1) if C is irreducible, then W f is dense in the conic Z(C);
(2) if C is reducible, say C = L1 ∪ L2, let Q = L1 ∩ L2 = Z(`1)∩ Z(`2); then:
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(a) if Q is not a forbidden point for f , then W f is dense in Z(C);
(b) if Q is forbidden point for f , then, for either i = 1 or i = 2, W f ∩ Z(`i) is dense in Z(`i).

Proof. For any minimal set of points X apolar to f , since by assumption we have that h f (2) = 5, we have
that (IX)2 = f ⊥2 = 〈C〉. Hence, we have that W f ⊂ Z(C).

Let {U1, . . . , U5} be interpolation polynomials of X. Then, with respect to the basis 〈U1, . . . , U5, C〉 of T2,

Cat2( f ) =

�

I5 0
∗ 0

�

.

For any point P ∈ Z(C), the catalecticant matrix Cat2(`d
P), with respect to the same basis as above, has the

last column equal to 0. We write

Cat2(`
4
P) =

�

M f 0
∗ 0

�

.

Now, since M f is a rank 1 symmetric matrix, there exists a (unique) non-zero eigenvalue λ such that
det(Id− λM f ) = 0. In particular, for such a λ, we have that Cat2( f + λ`d

P) has rank 4. Hence, we have
a second conic C ′ such that ( f + λ`d

P)
⊥
2 = 〈C , C ′〉. Moreover, since the coefficients of C ′ are rational

polynomial functions in the coordinates of P, there exists a Zariski open subset U in Z(C), for which the
conics C and C ′ meet transversally. We need to show when (and where) this open set is non-empty.

(1) If C is irreducible, then U is non-empty. We know that there exists at least one minimal apolar set of
points X for f . This is a set of 5 points lying on the irreducible conic Z(C). In particular, if we assume P to
be one of these points, we have that X \ {P} is a complete intersection of two conics. In particular, P ∈ U .

(2-a) Let C = L1 ∪ L2, Q = L1 ∩ L2 = Z(`1)∩ Z(`2) and Q is not a forbidden point for f . By assumption,
there exists a minimal apolar set of points X for f which includes the point Q. By using this set of points,
we can write f = f1 + f2 + `

4
Q, where f ′1 = f1 + `

4
Q is a rank 3 quartic in the two essential variables of the

line Z(`1). By [CCO17, Theorem 3.5], we know that W f ′1
is dense in Z(`1). Since W f ′1

⊂W f , we conclude

that W f is dense in Z(`1). By proceeding in the same way with f ′2 = f2 + `
4
Q, we conclude.

(2-b) Let C = `1`2, Q = Z(`1) ∩ Z(`2) and Q is a forbidden point for f . By assumption, there exists a
minimal apolar set of points X which, since C is reducible, splits as the union of three point on a line, say
Z(`1), and two points on the other. Following a similar idea as above, we can write f = f1 + f2 where f1
is a quartic in the two essential variables of the line Z(`1) of rank 3. By [CCO17, Theorem 3.5], we know
that W f1 is dense in Z(`1) and this concludes the proof. �

Now, we consider the case of cubics and quartics with four essential variables.

Lemma 3.12. Let f be a cubic of rank 5 with four essential variables, i.e., h f (1) = 4, and let X be a minimal
set of points apolar to f . Then:

(1) if all but one point of X are coplanar, no three of them colinear, then there exists a unique ternary
cubic f ′ and c 6= 0 such that f = c x3

0 + f ′(x1, x2, x3), rk( f ′) = rk( f )− 1, and any minimal Waring
decomposition of f is obtained from a minimal decomposition of f ′, i.e., W f = (1 : 0 : 0 : 0)∪W f ′;

(2) if all but two points of X are collinear then f = x3
0 + x3

1 + g(x2, x3), where g is a binary cubic of rank
3, and any minimal Waring decomposition of f is obtained from a minimal decomposition of g, i.e.,
W f = (1 : 0 : 0 : 0)∪ (0 : 1 : 0 : 0)∪Wg ;

(3) otherwise, f has a unique decomposition.

Proof. Let X be a minimal set of apolar points of f (with |X|= 5).
If X has not a subset of four coplanar points, point (3) follows from the classical Sylvester’s Pentahedral

Theorem. We refer to [Dol12, Theorem 9.4.1] for a modern proof.
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If all but one point of X are coplanar points, then we can write f = x3
0+g(x1, x2, x3)where g is a ternary

cubic with 4≤ rk(g)≤ 5.
Then f ⊥2 = (y0 y1, y0 y2, y0 y3)2 + (g⊥2 ∩C[y1, y2, y3])2. As rk(g) ≥ 4, we have Z(g⊥2 ) = ; and Z( f ⊥2 ) =

{P} ∪H where P = (1 : 0 : 0 : 0) ∈ X is one of the apolar point and H is the plane defined by the equation
x0 = 0 containing the other apolar points.

By Sylvester’s Pentahedral Theorem ([Dol12, Theorem 9.4.1]) any minimal apolar set of points contains
four coplanar points. Then the non-coplanar point and the plane containing the other points are uniquely
determined by f ⊥2 .

Let ` be the linear form corresponding to the non-coplanar point P (or the isolated point of the zero
locus of f ⊥2 ). In a suitable basis of T1, we can write

Cat1( f − c`3) = Cat1( f )− cCat1(`
3) =

�

c − c 0
0 Cat1( f ′)

�

.

Therefore, there exists a unique value c = c for which Cat1( f − c`3) has rank 3 and a unique ternary cubic
f ′ such that f = c x3

0 + f ′(x1, x2, x3). Consequently, W f = (1 : 0 : 0 : 0)∪W f ′ . This proves (1).
If X has three collinear points, then we can write f = x3

0 + x3
1 + g(x2, x3) where g is a binary cubic of

rank 3. In this case, we have that the zero locus of f ⊥2 consists of two points (1 : 0 : 0 : 0) and (0 : 1 : 0 : 0).
Similarly as above, we conclude that the points and the line where the three collinear points lie is uniquely
determined by f ⊥2 . This proves (2). �

Lemma 3.13. Let f be a quaternary quartic of rank 5 with h f (1) = 4 and let X be a minimal set of points
apolar to f .

(1) if X contains four coplanar points, then we may assume that f = x3
0 + g(x1, x2, x3), where g is a

plane quartic of rank 4 and we have that W f = (1 : 0 : 0 : 0)∪Wg ;
(2) otherwise, f has a unique decomposition given by IX = ( f ⊥2 ).

Proof. If any 4 of points X are not coplanar, then X has a regularity ρ(X) = 2 and is defined by 5 quadrics.
Then by Lemma 2.15, (IX)2 = f ⊥2 and f has a unique decomposition. This proves (2).

If the set X contains four coplanar points, we may assume f = xd
0 + g(x1, x2, x3), where g is a ternary

quartic of rank 4. Therefore, we know f ⊥2 = (y1, y2, y3)2∩ g⊥2 = (y0 y1, y0 y2, y0 y3)2+(g⊥2 ∩C[y1, y2, y3]).
By Theorem 3.7(4b-ii & 4c-ii), hg(2) = 4, (g⊥2 ∩C[y1, y2, y3]) is generated by two elements G1, G2 defining
either the 4 points apolar to g or a point P apolar to g and a line L containing the 3 other points apolar to
g.

This shows that (1 : 0 : 0 : 0) is a point of any minimal set of points apolar to f and that W f = (1 : 0 :
0 : 0)∪Wg , which proves (1). �

Now, we can give the complete description of rank 5 polynomials.

Theorem 3.14. Let f ∈ Sd be a form of rank 5.

(5a) If f has two essential variables, then f ⊥ = (L1, . . . , Ln−1, G1, G2), where deg(Gi) = di and d1 ≤ d2.
In particular, it has to be d ≥ 5 and:

(i) if d = 5, . . . , 8, then d2 = 5, and minimal apolar sets of points are defined by ideals IX =
(L1, . . . , Ln−1, HG1 +αG2), for a general choice of H ∈ T8−d and α ∈ C;

(ii) if d ≥ 9, there is a unique minimal apolar set of points given by IX = (L1, . . . , Ln−1, G1).
(5b) If f has three essential variables and a minimal apolar set X of type (5b), then, d ≥ 4 and:

(i) if d = 4,5, 6, then any minimal apolar set is of the type P ∪X′, where X′ are collinear points;
(ii) if d ≥ 7, then ( f ⊥4 ) defines the unique minimal apolar set of points.



ON MINIMAL DECOMPOSITIONS OF LOW RANK SYMMETRIC TENSOR 15

(5c) If f has three essential variables and a minimal apolar set X of type (5c), then:
(i) if d = 3, then the Waring locus is dense in all P2;

(ii) if d = 4, then, if f ⊥2 = 〈C〉, we have:
(a) if C is irreducible, then W f is dense in the conic Z(C);
(b) if C is reducible, say C = `1`2, let Q = Z(`1)∩ Z(`2); then:

(b1) if Q is not a forbidden point for f , then W f is dense in Z(C);
(b2) otherwise, for either i = 1 or i = 2, W f ∩ Z(`i) is dense in Z(`i).

(iii) if d ≥ 5, then we have a unique minimal apolar set of points.
(5d) If f has four essential variables and a minimal apolar set X of type (5d), then it can be written as

f = xd
0 + g(x1, x2, x3), where g is a ternary form of rank four; then:

(i) if d = 3, then W f = (1 : 0 : 0 : 0)∪Wg ;
(ii) if d ≥ 4, then there is unique minimal apolar set given by IX = ( f ⊥2 ).

(5e) If f has four essential variables and a minimal apolar set X of type (5e), then:
(i) if d = 3, it is Sylvester Pentahedral Theorem and we have a unique decomposition in f ⊥2 ;

(ii) if d ≥ 4, then there is a unique decomposition given by IX = ( f ⊥2 ).
(5f) If f has five essential variables, there is a unique minimal apolar set given by IX = ( f ⊥2 ).

Proof. Case (5a). It follows from Sylvester algorithm, Example 2.5.
Case (5b). Up to a change of coordinates, we may assume f = xd

0 + g(x1, x2), where g is a binary form
of rank 4 then, since binary forms have maximal rank equal to the degree, it has to be d ≥ 4. The claim
follows from Lemma 3.10, in the special case r = 4, and by Theorem 3.7(4a).

Case (5c). If d = 3, it follows from [CCO17, Section 3.4]. If d = 4, it follows from Lemma 3.11. Since 5
general points in P2 have regularity 2, it follows from Theorem 2.17 in the cases with d ≥ 5.

Case (5d). It follows from Lemma 3.12 and Lemma 3.13.
Case (5e). If d = 3, this is the classical Sylvester Penthaedral Theorem [OO13, Theorem 3.9]. Since the

regularity of 5 points in P3 is equal to 2, by Lemma 2.15, if d ≥ 4, we have that (IX)2 = f ⊥2 . Since five
general points in P3 are generated by quadrics, the claim follows.

Case (5f). It follows from Lemma 3.3. �

Remark 3.15. Similarly as in the previous cases, this result gives us a stratification of polynomials of rank
5. In particular, we obtain a positive answer to Question 2.14. Again, we want to underline that some of
the cases cannot be distinguished just by looking at the Hilbert function of the set of points, but we should
look at the entire resolution and, in particular, to the graded Betti numbers.

4. LOW RANK SYMMETRIC TENSOR DECOMPOSITION ALGORITHM

In this section, we summarize the low rank cases and give a procedure, which determines the rank of
the tensor when it is ≤ 5 and computes its decomposition. The analysis depends on the Hilbert sequence
h f = [h f (0), h f (1), . . . , h f (d)] of S/ f ⊥ and the locus of f ⊥i = kerCati( f ). We have h f (0) = h f (d) = 1 and
the sequence h f is symmetric (h f (d− i) = h f (i)) of length d+1 where d = deg( f ). The rank r of f is such
that r ≥ l( f ) =maxi{h f (i)}. Hereafter, we denote by ∗ a finite sequence of values of length at least 1 and
by k∗ a finite sequence of constant terms k of length at least 1.

We consider here symmetric tensors of degree d ≥ 3, since the decomposition of quadrics can be done
by rank decomposition of symmetric matrices. We implemente the procedure described in the following
theorem in the algebra software Macaulay2 [GS02]; see Section 5.

Theorem 4.1 (and low rank decomposition algorithm). Let f be a symmetric tensor of degree d ≥ 3.
Then, either one the following points is satisfied or rk( f )> 5:
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HILBERT

SEQUENCE

EXTRA

CONDITION
ALGORITHM TO FIND A MINIMAL APOLAR SET

(1) [1∗] rk( f ) = 1 and ( f ⊥1 ) defines the point apolar to f
(2) [1,2,∗, 2, 1] f has two essential variables and Sylvester algorithm is applied:

(i) if f ⊥l( f ) defines a set of l( f ) reduced points, then rk( f ) = l( f );
(ii) otherwise, rk( f ) = d + 2− l( f ) and a minimal apolar set

is given by the principal ideal generated by
a generic form g ∈ f ⊥d+2−l( f )

(3) [1,3, 3,1] Z( f ⊥2 ) = ; a generic pair of conics q1, q2 of f ⊥2 defines 4 points and rk( f ) = 4

(4) [1,3, 3,1] Z( f ⊥2 ) = P ∪ D,
P is simple point

D connected, 0-dim
deg(D) = 2

rk( f ) = 4 and P is a point of any minimal apolar set; then, we find
the scalar c such that f ′ = f − c`3

P has two essential variables
and we apply Sylvester algorithm to f ′ as in (2)

(5) [1,3, 3,1] Z( f ⊥2 ) = D rk( f ) = 5 and, for a generic P and a generic c 6= 0 such that
D connected, 0-dim f ′ = f + c`3

P is a ternary cubic of rank 4 and we apply (4) to f ′

deg(D) = 3

(6) [1,3, 3∗, 3, 1] Z( f ⊥2 ) = {P1, P2, P3}
Pi ’s are simple points

rk( f ) = 3 and the unique minimal apolar set is Z( f ⊥2 )

(7) [1,3,∗, 3, 1] Z( f ⊥2 ) = P ∪ L
P is simple point
L is line, P 6∈ L

P is a point of any minimal apolar set; then, we find
the scalar c such that f ′ = f − c`d

P has two essential variables
and we apply Sylvester algorithm to f ′ as in (2)

(8) [1,3, 4∗, 3, 1] Z( f ⊥2 ) = {P1, . . . , P4} rk( f ) = 4 and the unique minimal apolar set is Z( f ⊥2 )
Pi ’s are simple points

(9) [1,3, 5,3, 1] Z( f ⊥2 ) = C let P be a generic point on C and c be a scalar such that
C is irreducible quadric f ′ = f − c`4

P has h f ′(2) = 4.
(i) if Z(( f ′)⊥2 ) = {P1, . . . , P4} is a set of 4 reduced points, then,

rk( f ) = 5, and a minimal set apolar to f is {P, P1, . . . , P4};
(ii) otherwise, rk( f )> 5

(10) [1,3, 5,3, 1] Z( f ⊥2 ) = L1 ∪ L2 let Pi be a generic point on Li , for i = 1,2, respectively, and
Li ’are distinct lines ci be a scalar such that fi = f − ci`

4
Pi

has h fi
(2) = 4, for i = 1, 2.

(i) if Z(( f ⊥i )2) = {P1, . . . , P4}, for either i = 1 or i = 2, then,
rk( f ) = 5, and a minimal apolar set of f is {P, P1, . . . , P4};

(ii) otherwise, rk( f )> 5

(11) [1,3, 5,5∗, 3, 1] Z( f ⊥3 ) = {P1, . . . , P5} rk( f ) = 5 and the unique minimal apolar set is Z( f ⊥3 )
Pi ’s are reduced points

(12) [1,4, 4,1] Z( f ⊥2 ) = P ∪H P is a point of any minimal apolar set; then, we find
P is a reduced point the scalar c such that f ′ = f − c`3

P has three essential variables
H is a plane, P 6∈ H and we apply (3) or (4) to f ′

(13) [1,4, 5∗, 4, 1] Z( f ⊥2 ) = {P1, . . . , P5} rk( f ) = 5 and the unique minimal apolar set is Z( f ⊥2 )
(14) [1,5, 5∗, 5, 1] Z( f ⊥2 ) = {P1, . . . , P5} rk( f ) = 5 and the unique minimal apolar set is Z( f ⊥2 )

Proof. By the analysis of the previous sections, a symmetric tensor of rank ≤ 5 satisfies one of these cases.
Let us prove conversely that if one of these cases is satisfied then the rank is determined.
Case (1). f has one essential variable and thus rk( f ) = 1.
Case (2). f has two essential variables and can be decomposed by Sylvester algorithm; see Example 2.5.
Case (3), (4) and (5). We have rk( f ) ≥ h f (1) = 3. If rk( f ) = 3, then by Proposition 3.4, f ⊥2 should

define 3 reduced points, which is not the case. Hence, since the maximal rank of plane cubics is 5, we have
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4 ≤ rk( f ) ≤ 5. Considering the classification of plane cubics (see [LT10]), it is possible to check that we
have three possibilities for Z( f ⊥2 ).

If Z( f ⊥2 ) = ;, we know that the Waring locus is dense in the projective plane. If rk( f ) = 4, for a generic
point P, there exists P1, P2, P3 such that X= {P, P1, P2, P3} is a minimal set of points apolar to f . Moreover,
they are of type (4c). Then, (IX)2 ⊂ f ⊥2 is spanned by two quadrics q1, q2 ∈ f ⊥2 . Thus (IX)2 is the linear
space of quadrics in f ⊥2 containing P. Conversely, a generic subset of f ⊥2 of dimension 2 is the space of
quadrics in f ⊥2 containing a generic point P. It coincides with (IX)2 for a minimal set of points X apolar to
f . This proves the point (3).

If Z( f ⊥2 ) = P ∪ D, where P is a simple point and D is a degree 2 connected 0-dimensional scheme. As f
has three essential variables, we can assume that f is a ternary form in the variables x0, x1, x2. By a change
of coordinates, P = (1 : 0 : 0) and D lies on the line y0 = 0, e.g., D is defined by the ideal (y0, y2

1 ). Then,
f = x3

0 + f ′(x1, x2). Since binary cubics have rank at most 3, we have rk( f ) = 4. By Theorem 3.7(4b-i), P
is in any minimal set apolar to f . The other three (collinear) points to get a minimal set of points apolar
to f are found by applying (2) to the form f ′ = f − c`3

P , where c is a suitable scalar such that f ′ has two
essential variables, i.e., such that rk(Cat1( f )− cCat1(`3

P)) = 2. This proves the point (4).
If Z( f ⊥2 ) = D, where D is a degree 3 connected 0-dimensional scheme lying on a plane conic. Since the

rank 4 cases have Z( f ⊥2 ) which is either empty or the union of a simple point and a degree 2 scheme, we
have that rk( f ) = 5. Then, by Theorem 2.29, for any generic point P and any non-zero c ∈ C, f ′ = f + c`3

P
is of rank 4 and the previous decomposition applies. This proves the point (5).

Cases (6), (8), (11), (13) and (14). They are consequences of Lemma 2.11.
Case (7). As f has 3 essential variables, we can assume that it is a ternary form in the variables x0, x1, x2.

By a change of coordinates, we can also assume that f ⊥2 defines P = (1 : 0 : 0) and the line L of equation
y0 = 0. Then, f can be written (up to scalar) as f = xd

0 + f ′(x1, x2) and f ⊥2 ⊃ 〈y0 y1, y0 y2〉.
If rk( f ) = 3, then by f ⊥2 should define the apolar points, which is not the case. Hence, rk( f ) ≥ 4

and we deduce the result from Lemma 3.10. In particular, P is in any minimal set of points apolar to f .
The other (collinear) points to get a minimal set of points apolar to f are found by applying (2) to the
form f ′ = f − c`3

P , where c is a suitable scalar such that f ′ has two essential variables, i.e., such that
rk(Cat1( f )− cCat1(`3

P)) = 2.
Cases (9) and (10). We have rk( f ) ≥ h f (2) = 5. If rk( f ) = 5, we deduce the decomposition of f

by applying Lemma 3.11. In particular, choosing one of the intersections between a generic line and the
irreducible conic Q, in the case (8), or the reducible conic L1 L2, in the case (9), we can find a scalar c such
that f ′ = f − c`4

P has rank 4, i.e., such that rk(Cat2( f )− cCat2(`
4
P)) = 4. Then, we apply (7) to f ′.

Case (12). As f has 4 essential variables, we can assume it is a quaternary cubic in the variables
x0, x1, x2, x3. By a change of coordinates, we can assume that the zero locus of f ⊥2 is P = (1 : 0 : 0 : 0)
and the plane H defined by y0 = 0. Then, f can be written (up to a scalar) as f = xd

0 + f ′(x1, x2, x3) and
f ⊥2 ⊃ 〈y0 y1, y0 y2, y0 y3〉. Since ternary cubics have rank at most 5, we have 4 = h f (1) ≤ rk( f ) ≤ 6. If
rk( f ) = 4, by Theorem 3.7(5d), f ⊥2 should define 4 reduced points, which is not the case. Thus rk( f )≥ 5.

If rk( f ) = 5, by Lemma 3.12, P is a point of any minimal apolar set of points of X , rk( f ) = rk( f ′) + 1
and the other points form a minimal set of points apolar to f ′.

If rk( f ) = 6, then rk( f ′) = 5, P is one of the apolar points to f and the other are the apolar points to f ′.
These points can be computed by finding the scalar c such that f ′ = f − c`d

P has 3 essential variables,
i.e., by imposing rank (Cat1( f )− c Cat1(`d

P)) = 3, and by applying (3) and (4) to the cubic f ′. �
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5. A Macaulay2 PACKAGE

The procedure explained in the previous section can be implemented by using computational algebra
or computer algebra softwares. We chose to use the algebra software Macaulay2 [GS02]. The package
ApolarLowRank.m2 here described can be found on the personal webpage of the second author or in the
ancillary files of the arXiv and HAL versions of the article and can be loaded as

i1 : loadPackage "ApolarLowRank"
o1 = ApolarLowRank
o1 : Package

For more details, we refer to the documentation

i2 : viewHelp ApolarLowRank

In the following, we explain some of the main functions and we show how it works in a few examples.

5.1. Essential variables. As we have explained in Section 2.2, given a homogeneous polynomial f ∈ S, the
essential number of variables of f is the smallest number N such that there exists linear forms `1, . . . ,`N ∈ S
such that f ∈ C[`1, . . . ,`N ]. In our packege, we have implemented the functions:

• essVar, which returns the number of variables of f and a list of linear forms generating f ⊥1 ;

i3 : S = QQ[x,y,z,t];
i4 : F = (x+y)^5 + (z-t)^5;
i5 : essVar(F)
o5 = (2, {- x + y, z + t})
o5 : Sequence

• simplifyPoly, which returns a simplified version of the polynomial in a set of essential variables
and a ring map describing the linear change of coordinates needed.

i6 : simplifyPoly(symbol Y, F)
5 5

o6 = (Y - Y , map(S,QQ[Y , Y ],{x + y, - z + t}))
0 1 0 1

o6 : Sequence

Note that as input in the function simplifyPoly it is required also a Symbol so that the user can chose
a name for the indexed variables for the output.

5.2. Two essential variables: Sylvester’s algorithm. In the case of two essential variables, Sylvester’s
algorithm tells us how to find a minimal set of points apolar to a given form; see Example 2.5.

In our package, we implemented the function sylvesterApolar that returns a minimal set of points
apolar to a given form with two essential variables.

Note that, as input, it is required also a Symbol so that the user can chose a name for the indexed
variables for the output, which is expressed in a set of essential variables of the polynomial. The output
is a ApolarScheme which is new type of HashTable that we have introduced within the package. In
particular, an ApolarScheme has four attributes:

(1) hPoly, which is a homogeneous polynomial;
(2) idX, which is the ideal defining a 0-dimensional scheme apolar to the polynomial given by hPoly;
(3) Xdeg, which is an integer giving the degree of the 0-dimensional scheme;
(4) Xred, which is a boolean saying if the 0-dimensional scheme is whether reduced or not.

Hence, the function sylvesterApolar works as follows.
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i7 : sylvesterApolar(symbol Y, F)
5 5

o7 = (ApolarScheme{hPoly => Y - Y }, map(S,QQ[Y , Y ],{x + y, - z + t}))
0 1 0 1

idX => ideal(Y Y )
0 1

Xdeg => 2
Xred => true

o7 : Sequence

5.3. Ternary cubics. The cases of homogeneous polynomials with three essential variables are dealt with
the function planar5Apolar. Here, we want to explain how we implemented the cases of ternary cubics,
i.e., the cases (3), (4) and (5). As we have seen, the distinction between these cases is given by the
vanishing locus of f ⊥2 .

i8 : S = QQ[x,y,z];
i9 : F = random(3,S); -- case (3)
i10 : G = random(QQ)*x^3 + y*z^2; -- case (4)
i11 : H = x*y^2 + y*z^2; -- case (5)
-- Consider the degree 2 part of the apolar ideal
i12 : Fperp2 = ideal(select(first entries gens perpId(F), i->degree(i)=={2}));
o12 : Ideal of S
i13 : Gperp2 = ideal(select(first entries gens perpId(G), i->degree(i)=={2}));
o13 : Ideal of S
i14 : Hperp2 = ideal(select(first entries gens perpId(H), i->degree(i)=={2}));
o14 : Ideal of S
-- Check the properties of the corresponding vanishing locus
i15 : dim Fperp2
o15 = 0
i16 : primaryDecomposition Gperp2

2
o16 = {ideal (x, y ), ideal (y, z)}
o16 : List
i17 : primaryDecomposition Hperp2, radical Hperp2

2 2
o17 = ({ideal (x*z, x*y - z , x )}, ideal (z, x))
o17 : Sequence

First, we consider the case (3). The general plane cubic has rank 4 and, as explained in [CCO17, Section
3.4], we know that the Waring locus is dense in the whole plane of ternary linear forms. In other words,
given a random ternary cubic F and a random ternary linear form L, there exists a coefficient c such that the
cubic F′ defined as F− c ∗ L3 has rank 3. Then, F′ has a unique decomposition which is easy to compute.
In order to compute the suitable value of c, we need to intersect the line spanned by F and the third power
of L with the (Zariski closure) of the space of plane cubics of rank 3 (see Remark 3.6).

This is a function to compute the Aronhold invariant of a given cubic with three essential variables.

aronhold = method();
aronhold (RingElement) := F -> (

R := ring F; V := (entries vars R)_0;
K := matrix{{0,-V_2,V_1},{V_2,0,-V_0},{-V_1,V_0,0}};
C := diff(basis(1,R), transpose diff(basis(1,R),F));
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KF := diff(K,C);
Pf := pfaffians(8,KF);
if Pf != sub(ideal (),R) then return Pf_0 else return 0_R

)

Now, we can find the suitable coefficient to reduce the rank of the general cubic F in S = QQ[x,y,z].
i19 : L = random(1,S)

2 7 7
o19 = -x + --y + -z

7 10 9
o19 : S
i20 : R = QQ[c][x,y,z];
i21 : F’ = sub(F,R) - c*(sub(L,R))^3;
i22 : Ic = ideal aronhold F’

1217672402543 305183
o22 = ideal(- -------------c + ------)

2083725000 125
o22 : Ideal of R
i23 : F’ = sub(sub(F’,R/Ic),S);

Hence, F′ has rank 3 and a unique decomposition, which is given by Z(( f ′)⊥2 ). By adding the point
corresponding to the form L, we conclude and find the ideal IX of a minimal set of points apolar to F.

i24 : IP = ideal(basis(1,S) * gens kernel transpose (coefficients(L))_1)
o24 = ideal (- 49x + 20y, - 49x + 18z)
o24 : Ideal of S
i25 : IX’ = ideal(select(first entries gens perpId(F’), i->degree(i)=={2}));
o25 : Ideal of S
i26 : IX = intersect(IX’,IP);
o26 : Ideal of S
-- Check if IX given a minimal set of points apolar to F
i27 : dim IX, degree IX, IX == radical IX, isSubset(IX,perpId(F))
o27 = (1, 4, true, true)
o27 : Sequence

Now, we consider the case (4).

i28 : G = random(QQ)*x^3+y*z^2
5 3 2

o28 = -x + y*z
8

o28 : S
i29 : R = QQ[c][x,y,z];
i30 : G’ = sub(G,R) - c*x^3;
i31 : Ic = trim minors(3,cat(1,G’))
o31 = ideal(8c - 5)
o31 : Ideal of R
i32 : G’ = sub(sub(G’,R/Ic),S);
i33 : perpId G’

2 3
o33 = ideal (x, y , z )
o33 : Ideal of S
-- Use Sylvester’s Algorithm to find a minimal set apolar to G’
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i34 : IX’ = ideal(x,z^3 - (random(QQ)*y+random(QQ)*z)*y^2);
o34 : Ideal of S
-- Adding the point (1:0:0) corresponding to the linear form ‘x’, we conclude
i35 : IX = intersect(IX’,ideal(y,z));
o35 : Ideal of S
-- Check if IX given a minimal set of points apolar to G
i36 : dim IX, degree IX, IX == radical IX, isSubset(IX,perpId(G))
o36 = (1, 4, true, true)
o36 : Sequence

As regards the case (5), if we consider a ternary cubic H of maximal rank 5, as explained in [CCO17,
Section 3.4], we can use a random linear form L to reduce the rank. Then, we apply the previous cases. We
can check that the rank of H-Lˆ3 drops by looking at the degree 2 part of the apolar ideal, as explained.

i37 : H = x*y^2 - y*z^2
2 2

o37 = x*y - y*z
i38 : H’ = H - L^3;
i39 : Hperp2’ = ideal(

select(first entries gens perpId(H’), i->degree(i)=={2})
)
2 2 2 2

o39 = ideal (24y + 5x*z - 12y*z - 6z , x*y - x*z + z , x - 2x*z)
o39 : Ideal of S
i40 : dim Hperp2’
o40 = 0

5.4. Rank 5 plane quartics. Here, we want to comment the cases (9) and (10) of plane quartics f having
h f (2) = 5. If the unique apolar conic C is irreducible (case (9)), then we can reduce the rank of f by taking
a generic point on the conic; see Lemma 3.11(a). In our implementation, this is done by considering the
intersections of a generic line and the conic C . Since this involves solving a quadratic equation which
might not have solution of QQ, in this case, the output of our main function minimalApolar5 depends on
a parameter satisfying that quadratic equation and, for this reason, the ideal idX has degree 10 instead of
5.

i41 : S = QQ[x,y,z];
i42 : F = sum for i to 4 list (random(1,S))^4;
i43 : first minimalApolar5(symbol Y, F)

4 3 2 2
o43 = ApolarScheme{hPoly =>14000508577Y +118257495840Y Y +394649884800Y Y ...

0 0 1 0 1
idX => ideal (42277476088772685406212514432670091701648...
Xdeg => 10
Xred => true

o43 : ApolarScheme
i44 : ring X#idX

QQ[a][Y , Y , Y ]
0 1 2

o44 = ----------------------------
2

a - 31293683294493204311665
o44 : QuotientRing
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When the unique apolar conic is reducible C = L1 L2 (case (10)), we proceed in a similar way as in the
previous case. However, it is not enough to consider a generic point on C because, as we said in Lemma
3.11(2), if the intersection point Q = L1∩L2 is forbidden for the form f , then the Waring locus is dense only
in one of the two lines. We see that in an example which also shows how we implemented the procedures
explained in Theorem 4.1(9-10) to find a minimal set of points apolar to f .

We consider an example where f ⊥2 = (xz).

i56 : G = x^2*y^2;
i57 : L1 = random(QQ)*y + random(QQ)*z;
i58 : L2 = random(QQ)*y + random(QQ)*z;
i59 : F = L1^4 + L2^4 + G;
i60 : perpId F

2 2 3 3 2
o60 = ideal (x*z, 648y z - 1467y*z + 560z , 46656y - 198801y*z + ...
o60 : Ideal of S

Now, we consider a random point on the line {x = 0}.

i61 : L = random(QQ)*y + random(QQ)*z
3

o61 = -y + 10z
8

o61 : S
i62 : R = QQ[c][x,y,z];
i63 : F1 = sub(F,R) - c*sub(L^4,R);
i64 : Ic = radical minors(5,cat(2,F1))
o64 = ideal(- 10368345145825c + 717382656)
o64 : Ideal of R
i65 : F1 = sub(sub(F1,R/Ic),S);
i66 : F1perp2 = ideal select(first entries gens perpId F1,i->degree(i)=={2})

2 2
o66 = ideal (x*z, 84009951144x - 26206863345y*z + 26903620240z )
o66 : Ideal of S
i67 : dim F1perp2, degree F1perp2
o67 = (1, 4)
o67 : Sequence
i68 : netList primaryDecomposition F1perp2

+---------------------------------------------+
o68 = |ideal (5241372669y - 5380724048z, x) |

+---------------------------------------------+
| 2 2 |
|ideal (z , x*z, 9334439016x - 2911873705y*z)|
+---------------------------------------------+

Since F1 has the vanishing locus of the homogeneous part of degree 2 which is not among the cases
listed in Theorem 4.1, we conclude that it has rank 6. Hence, the random point on the line {x = 0} is not
in the Waring locus of F. Now, we proceed by considering a random point on the line {z = 0}.

i69 : L = random(QQ)*x + random(QQ)*y
9 1

o69 = -x + -y
2 3
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o69 : S
i70 : R = QQ[c][x,y,z];
i71 : F2 = sub(F,R) - c*sub(L^4,R);
i72 : Ic = radical minors(5,cat(2,F2))
o72 = ideal(- 81c + 2)
o72 : Ideal of R
i73 : F2 = sub(sub(F2,R/Ic),S);
i74 : F2perp2 = ideal select(first entries gens perpId F2,i->degree(i)=={2})

2 2 2
o74 = ideal (x*z, 32x + 432x*y + 5832y - 13203y*z + 5040z )
o74 : Ideal of S
i74 : dim F2perp2, degree F2perp2, F2perp2 == radical F2perp2
o74 = (1, 4, true)

Hence, F2 is a quartic of rank 4 whose apolar ideal in degree 2 defines a minimal apolar set of points.
Hence, we we can find a minimal set of 5 points apolar to F.

i75 : IP = ideal(basis(1,S) * gens kernel (diff(vars S,L)))
o75 = ideal (- 2x + 27y, z)
o75 : Ideal of S
i76 : IX = intersect(IP,F2perp2)

2 2 3 3 3
o76 = ideal (x*z, 648y z - 1467y*z + 560z , 512x - 1259712y + ...
o76 : Ideal of S
i77 : dim IX, degree IX, IX == radical IX, isSubset(IX,perpId(F))
o77 = (1, 5, true, true)
o77 : Sequence

5.5. Main function. All procedures listed in Theorem 4.1 have been collected in the function minimalApolar5
that produces a minimal set of points apolar to a given polynomial of rank at most 5 in any number of variables and
any degree by using the suitable algorithm, as explained in Theorem 4.1. Here, we want to present some tests we
made by using a personal computer with processor Intel Core i7 with 2,2 GHz.

We first tested the efficiency of the main function in relation to the number of essential variables. In particular,
we considered five different cases of minimal apolar set:

(1) 5 generic points in a P4;
(2) 5 generic points in a P3;
(3) 4 generic coplanar points plus a generic point;
(4) 3 collinear points plus two generic points;
(5) 5 generic points in a P2.

Here is the code used:

-- fix: d = degree; n = number of variables
S = QQ[x_0..x_n];
-- fix the "essential variables"
L = for i to 4 list random(1,S);
-- A) five generic points in P^4
F = sum for i to 4 list L_i^d;
-- B) five generic points in P^3
G = sum for i to 4 list (L_0 + random(QQ)*L_1 + random(QQ)*L_2 + random(QQ)*L_3)^d;
-- C) four generic points in P^2 + 1 generic point
H = L_0^d + sum for i to 3 list (L_1 + random(QQ)*L_2 + random(QQ)*L_3)^d;



24 B. MOURRAIN AND A. ONETO

-- D) three collinear points in P^1 + 2 generic points
K = L_0^d + L_1^d + sum for i to 2 list (random(QQ)*L_2 + random(QQ)*L_3)^d;
-------- if d = 3: K = L_0^3 + L_1^3 + L_2*L_3^2;
-- E) five generic points in P^2
M = sum for i to 4 list (random(QQ)*L_0 + random(QQ)*L_1 + random(QQ)*L_2)^d;
-------- if d = 3: M = L_0*L_1^2 + L_1*L_2^2;
time minimalApolar5(symbol Y, F)
time minimalApolar5(symbol Y, G)
time minimalApolar5(symbol Y, H)
time minimalApolar5(symbol Y, K)
time minimalApolar5(symbol Y, M)

After fixing the degree d = 3, 4,5, we let the number of essential variables grow. The tables in Figure 3, 4 and 5
describe the time needed for our computations.
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FIGURE 3. Tests with fixed degree equal to 3.
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FIGURE 4. Tests with fixed degree equal to 4.
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FIGURE 5. Tests with fixed degree equal to 5.

We want to underline that the first step of the function minimalApolar5 is to reduce the polynomial in a minimal
set of variables. This is the reason why the the function works quite efficiently also in a large set of variables. It seems
that the complexity of our function minimalApolar5 depends more on the degree of the polynomial: we tested
the same cases as before by fixing the number of variables (n = 5) and by letting the degree grow. Here is the table
describing the time needed for our computations; see Figure 6.
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5 generic points in P4 5 generic points in P3 4 generic coplanar + 1 generic points 3 collinear + 2 generic points 5 generic points in P2

FIGURE 6. Tests with fixed number of variables equal to 6. Note that, in the case of three
collinear and two generic points, the degree 5 is special because it requires a procedure
different than the cases with larger degree; it follows from Theorem 4.1(12).
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