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ABSTRACT
The Cypher property graph query language is an evolving language,

originally designed and implemented as part of the Neo4j graph

database, and it is currently used by several commercial database

products and researchers. We describe Cypher 9, which is the first

version of the language governed by the openCypher Implementers

Group. We first introduce the language by example, and describe

its uses in industry. We then provide a formal semantic definition

of the core read-query features of Cypher, including its variant of

the property graph data model, and its “ASCII Art” graph pattern

matching mechanism for expressing subgraphs of interest to an

application. We compare the features of Cypher to other property

graph query languages, and describe extensions, at an advanced

stage of development, which will form part of Cypher 10, turning

the language into a compositional language which supports graph

projections and multiple named graphs.
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1 INTRODUCTION
In the last decade, property graph databases [34] such as Neo4j,

JanusGraph and Sparksee have become more widespread in indus-

try and academia. They have been used in multiple domains, such as

master data and knowledge management, recommendation engines,

fraud detection, IT operations and network management, authoriza-

tion and access control [52], bioinformatics [39], social networks

[17], software system analysis [25], and in investigative journal-

ism [11]. Using graph databases to manage graph-structured data
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confers many benefits such as explicit support for modeling graph

data, native indexing and storage for fast graph traversal operations,

built-in support for graph algorithms (e.g., Page Rank, subgraph

matching and so on), and the provision of graph languages, allowing

users to express complex pattern-matching operations.

In this paper we describe Cypher, a well-established language for

querying and updating property graph databases, which began life

in the Neo4j product, but has now been implemented commercially

in other products such as SAP HANA Graph, Redis Graph, Agens

Graph (over PostgreSQL) and Memgraph. Neo4j [52] is one of the

most popular property graph databases
1
that stores graphs natively

on disk and provides a framework for traversing graphs and execut-

ing graph operations. The language therefore is used in hundreds

of production applications across many industry vertical domains.

Cypher is also used in several research projects (e.g., Ingraph [41],

Gradoop [29], and Cytosm [55]) as well as in recent or incubating

open-source projects, such as Cypher for Apache Spark and Cypher

over Gremlin.

Since 2015 the openCypher project
2
has sought to enable the

use of Cypher as a standardized language capable of multiple inde-

pendent implementations, and to provide a framework for cross-

implementer collaborative evolution of new language features. The

goal is that Cypher will mature into an industry standard language

for property graph querying, playing a complementary role to that

of the SQL standard for relational data querying. Here we present

Cypher 9 [47], the first version of the language governed by open-

Cypher. We give an introduction to the language, describe its uses

in industry, provide a formal definition of its data model and the

semantics of its queries and clauses, and then describe current work

that will lead to Cypher 10, a compositional language supporting

graph projections and multiple named graphs.

The data model of Neo4j that is used by Cypher is that of property
graphs. It is the most popular graph data model in industry, and is

becoming increasingly prevalent in academia [38]. The model com-

prises nodes, representing entities (such as people, bank accounts,

departments and so on), and relationships (synonymous with edges),
representing the connections or relationships between the entities.

In the graph model, the relationships are as important as the enti-

ties themselves. Moreover, any number of attributes (henceforth

termed properties), in the form of key-value pairs, may be associated

1
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with the nodes and relationships. This allows for the modeling and

querying of complex data.

The language comes with a fully formalized semantics of its

core constructs. The need for it stems from the fact that Cypher,

in addition to being implemented in an industrial product with a

significant customer base, has been picked up by others, and several

implementations of it exist. Given the lack of a standard for the

language (which can take many years to complete, as it did for

SQL), it has become pressing to agree on the formal data model

and the meaning of the main constructs. A formal semantics has

other advantages too; for example, it allows one to reason about the

equivalence of queries, and prove correctness of existing or discover

new optimizations. The need of the formal semantics has long been

accepted in the field of programming languages [43] and for several

common languages their semantics has been fully worked out [1,

22, 42, 49]. Recently similar efforts have been made for the core

SQL constructs [12, 13, 20, 57] with the goal of proving correctness

of SQL optimizations and understanding the expressiveness of its

features. The existence of the formal semantics of Cypher makes it

possible for different implementations to agree on its core features,

and paves a way to a reference implementation against which

others will be compared. We also note that providing semantics

for an existing real-life language like Cypher that accounts for all

of its idiosyncrasies is much harder than for theoretical calculi

underlying main features of languages, as has been witnessed by

previous work on SQL [20] and on many programming languages.

Organization. We provide a high-level overview of Cypher fea-

tures in Section 2. In Section 3 we illustrate the semantics of the

major clauses by means of a step-by-step analysis of an example

query, and give further examples of queries used in industrial appli-

cations. The formal specification of the core of Cypher is given in

Section 4. The historical context of Cypher is presented in Section 5,

followed by a description of current developments in Cypher, such

as query composition and support for multiple graphs, in Section 6.

In Section 7 we cover related work on other graph data models and

graph query languages. Future work and conclusions are given in

Sections 8 and Section 9.

2 THE CYPHER LANGUAGE
Cypher is a declarative query language for property graphs. Cypher

provides capabilities for both querying and modifying data, as well

as specifying schema definitions.

Linear queries. A Cypher query takes as input a property graph

and outputs a table. These tables can be thought of as providing

bindings for parameters that witness some patterns in a graph, with

some additional processing done on them.

Cypher structures queries linearly. This allows users to think of

query processing as starting from the beginning of the query text

and then progressing linearly to the end. Each clause in a query

is a function that takes a table and outputs a table that can both

expand the number of fields and add new tuples. The whole query

is then the composition of these functions. This linear order of

clauses is understood purely declaratively – implementations are

free to re-order the execution of clauses if this does not change the

semantics of the query. Thus, rather than declaring the projection at

the beginning of the query like SQL does with SELECT, in Cypher

the projection goes at the end of the query as RETURN.
The linear flow of queries in Cypher extends to query composi-

tion. By using WITH, the query continues with the projected table

from the query part before WITH as the driving table for the query

part after WITH. The WITH clause allows the same projections as

RETURN, including aggregations. It also supports filtering based

on the projected fields, as we shall see in Section 3.

In addition to this linear way of composing queries, Cypher also

supports nested subqueries such as UNION queries.

Pattern matching. The central concept in Cypher queries is pat-

tern matching. Patterns in Cypher are expressed in a visual form as

“ASCII art”, such as (a)-[r]->(b). The MATCH clause in Cypher

uses such a pattern and introduces new rows (synonymous with

records) with bindings of the matched instances of the pattern in

the queried graph.

Cypher’s functionalitywas influenced byXPath [30] and SPARQL

[58], and its patterns express a restricted form of regular path

queries: the concatenation and disjunction of single relationship

types, as well as variable length paths (essentially, transitive clo-

sure). Cypher also supports matching and returning paths as values.

Data modification. Cypher supports a rich update language for

modifying the graph. Updating clauses re-use the visual graph-

pattern language and provide the same simple, top-down semantic

model as the rest of Cypher. The basic clauses for updates include

CREATE for creating new nodes and relationships, DELETE for

removing entities, and SET for updating properties. Additionally,

Cypher provides a clause called MERGE which tries to match the

given pattern, and creates the pattern if no match was found. An

implementation of Cypher can use database synchronization primi-

tives such as locking to ensure that patterns matched by MERGE
are unique within the database.

Pragmatic. Cypher is intentionally similar to SQL in order to help

users transition between the two languages. It follows the same

clause syntax structure and implements the established semantics

for many functions. Cypher has built-in support for query parame-

ters, making it easy to eliminate the problems of query injection.

The choice of defaults aligns with common usage. The syntax for

grouping and aggregation is simple, and the expression language

includes powerful features such as list slicing and list comprehen-

sions, existential subqueries, and working with paths.

Neo4j implementation. Query execution in Neo4j follows a con-

ventional model, outlined by the Volcano Optimizer Generator [19].

The query planning in Neo4j is based on the IDP algorithm [44, 54],

using a cost model described in [21]. The final query compilation

uses either a simple tuple-at-a-time iterator-based execution model,

or compiles the query to Java bytecode with a push-based execution

model based on [46].

An execution plan for a Cypher query in Neo4j contains largely

the same operators as in relational database engines and an addi-

tional operator called Expand. Semantically Expand is very similar

to a relational join. It finds pairs of nodes that are connected through

an edge. In terms of implementation it utilizes the fact that the data

representation of Neo4j contains direct references from each node

via its edges to the related nodes. This means that Expand never



needs to read any unnecessary data, or proceed via an indirection

such as an index in order to find related nodes.

3 CYPHER BY EXAMPLE
Figure 1 shows a data graph G consisting of researchers, students

and publications. For each researcher we show the students they

supervise, and the publications they have authored, and for each

publication, we show which other publications it cites.

The following Cypher query returns the name of each researcher

in G, the number of students they currently supervise, and the

number of times a publication they have authored has been cited –

both directly and indirectly – by other publications.

1 MATCH (r:Researcher)

2 OPTIONAL MATCH (r)-[:SUPERVISES]->(s:Student)

3 WITH r, count(s) AS studentsSupervised

4 MATCH (r)-[:AUTHORS]->(p1:Publication)

5 OPTIONAL MATCH (p1)<-[:CITES*]-(p2:Publication)

6 RETURN r.name, studentsSupervised,

7 count(DISTINCT p2) AS citedCount

The pattern given in the first MATCH clause in line 1 matches all

researchers; i.e., nodes with the label Researcher. This produces
three bindings for the variable r, namelyn1,n6, andn10 represented

as three rows in a table with a single attribute r , that correspond to
the researchers Nils, Elin and Thor.

The MATCH clause has an optional variant: OPTIONAL MATCH,
which is analogous to the outer join construct in SQL. This clause

produces rows for all matches in the same way that MATCH does,

providing the entire pattern is found in the data graph. However,

in cases where no data matching the entire pattern is found, a

single row will be produced in which the bindings for all variables

introduced in OPTIONAL MATCH will be set to null.

r s

n1 null
n6 n7

n6 n8

n10 n7

(a)

r studentsSupervised

n1 0

n6 2

n10 1

(b)

Figure 2: Variable bindings

TheOPTIONAL MATCH clause in line 2matches all the students

supervised by each researcher. This yields a binding of the newly-

introduced variable s for each value to which r was bound by the

MATCH clause in line 1, producing the table in Figure 2a. When

r is bound to n1 (Nils, who does not supervise any students), the

corresponding binding for s is null. For the researcher Elin (n6),

who supervises two students, both n7 and n8 are bound.

The WITH clause in line 3 is used both to project a subset of

the variables currently in scope and their bindings to the query

part succeeding WITH, and to compute an aggregation. The WITH
clause has two expressions, the second of which is an aggregation,

functioning in a very similar way to SQL. The first expression, r, is a
non-aggregating expression and therefore acts as an implicit group-
ing key for the aggregating function count(s). Taking the results

shown in the above table, we count all the non-null values of s for

each unique binding of r, aliasing it as studentsSupervised.
The WITH clause will project all the bindings produced for r and

studentsSupervised, as shown in Figure 2b. We note that the

variable s is no longer in scope after line 3, as it was not projected

by WITH, and may no longer be used in the remainder of the query.

This table now acts as the driving table for the MATCH clause in

line 4. Here, we define a pattern which matches all the publications

authored by the researchers. The researcher Thor has not authored
any publications, which means n10 will not be matched. As a result,

n10 is not produced as a binding for r, and therefore no row con-

taining these bindings will be added to the intermediate result table.

The variable bindings produced by line 4 include all researchers

who have authored at least one publication, the number of students

they supervise, and the publication they authored:

r studentsSupervised p1

n1 0 n2

n6 2 n5

n6 2 n9

The OPTIONAL MATCH clause in line 5 matches, for each pub-

lication authored by one of the researchers inG , all the publications
which cite it, both directly and indirectly. This is achieved through

the use of a pattern containing the variable-length relationship

CITES*, indicating that one or more CITES relationships must

be traversed. The results produced are:

r studentsSupervised p1 p2

n1 0 n2 n4

n1 0 n2 n9 †

n1 0 n2 n5

n1 0 n2 n9 †

n6 2 n5 n9

n6 2 n9 null

When p1 is bound to n9, which is not cited by any publication,

the corresponding binding for p2 is null. In addition, we note

that there are two identical rows, indicated with †. The existence

of these duplicate rows is due to the variable-length relationship

pattern: n9 is reachable from n2 through the intermediate nodes n5

and n4.

RETURN is the last clause in the query (lines 6 and 7) and, much

like the WITH clause in line 3, computes and projects expressions.

The value of the name property of each researcher is projected,

along with the value of studentsSupervised. The aggrega-
tion expression, in contrast to the one in line 3, counts the distinct

values of p2 (excluding null values) and aliases the results as

citedCount, denoting the number of publications citing a publi-

cation authored by the researcher. The table consisting of the rows

containing the result of the expressions is projected by RETURN:

r.name studentsSupervised citedCount

Nils 0 3

Elin 2 1

Examples from industry. Bioinformatics [3, 61] and pharmaceu-

ticals [45] are major areas where graph storage and analytics are



n1

Researcher

name : Nils

n2

Publication

acmid : 220

n3

Publication

acmid : 190

n4

Publication

acmid : 235
n5

Publication

acmid : 240

n6

Researcher

name : Elin

n7

Student

name : Sten

n8

Student

name : Linda

n9

Publication

acmid : 269

n10

Researcher

name : Thor

r1

authors

r3 cites

r4cites

r5

authors

r6

supervises

r7

supervises

r10authors

r9

cites

r11

cites

r8supervises

Figure 1: Example data graph showing supervision and citation data for researchers, students and publications

widely used. There is a strong overlap between graph processing

and machine learning [27]. Several specific application domains

have played a large role in the expansion of property graphs and

the use of the Cypher language: fraud detection, knowledge man-

agement, network and IT operations, real-time recommendation

engines, master data management, social networks, and identity

and access management.

A real-world query from the network management domain is

shown below. In a data center, entities such as services, firewalls,

servers, routers and network switches are modeled as nodes, with

relationships representing the dependencies between them. The

query returns the component that is depended upon – both directly

and indirectly – by the largest number of entities.

MATCH (svc:Service)<-[:DEPENDS_ON*]-(dep:Service)

RETURN svc, count(DISTINCT dep) AS dependents

ORDER BY dependents DESC
LIMIT 1

Our second example shows a query in the domain of fraud de-

tection. It returns details regarding a potential fraud ring, in which

distinct account holders share personal information, such as social

security number (SSN), telephone number and address.

MATCH (accHolder:AccountHolder)-[:HAS]->(pInfo)

WHERE pInfo:SSN OR pInfo:PhoneNumber

OR pInfo:Address

WITH pInfo,

collect(accHolder.uniqueId) AS accountHolders,

count(*) AS fraudRingCount

WHERE fraudRing > 1

RETURN accountHolders,

labels(pInfo) AS personalInformation,

fraudRingCount

The collect function returns a list containing the values re-

turned by the expression, and the labels function returns a list

containing all the labels of a node. Thus, in the query above, these

functions will return, respectively, a list containing the unique iden-

tifiers of all the account holders, and a list containing all the labels

of the nodes bound to the variable pInfo.

4 FORMAL SPECIFICATION
We now provide a formal specification of the core of Cypher. Formal

specifications of languages have multiple advantages over docu-

mentation written in natural language. They can be used to reason

about the language and prove optimizations correct, they can lead

to a reference implementation that could be used to verify whether

a particular implementation of the language adheres to its specifi-

cation, and they leave much less room for ambiguity compared to

natural language descriptions. While common in the programming

language community, formal specifications of query languages have

recently appeared in the database literature [12, 13, 20, 57].

The key elements of Cypher are as follows:

• data model, that includes values, graphs, and tables;
• query language, that includes expressions, patterns, clauses, and
queries.

Values could be simple or composite, such as lists and maps; we

have already seen property graphs, and tables that are the outputs

of queries. Expressions denote values; patterns occur in MATCH
clauses; and queries are sequences of clauses. Each clause denotes

a function from tables to tables.

To provide a formal semantics of Cypher, we need to define one

relation and two functions:

• The pattern matching relation checks if a path p in a graph G
satisfies a pattern π , under an assignment u of values to the

free variables of the pattern. This is written as (p,G,u) |= π .



Table 1: Summary of notational conventions

Concept Notation Set notation

Property keys k K

Node identifiers n N

Relationship identifiers r R

Node labels ℓ L

Relationship types t T

Names a A

Base functions f F

Values v V

Node patterns χ –

Relationship patterns ρ –

Path patterns π –

• The semantics of expressions associates an expression expr, a
graph G and an assignment u with a value [[expr]]G,u .
• The semantics of queries (resp., clauses) associates a query Q
(resp., clause C) and a graph G with a function [[Q]]G (resp.,

[[C]]G ) that takes a table and returns a table (perhaps with

more rows or with wider rows).

Note that the semantics of a queryQ is a function; thus it should
not be confused with the output of Q . The evaluation of a query

starts with the table containing one empty tuple, which is then

progressively changed by applying functions that provide the se-

mantics of Q ’s clauses. The composition of such functions, i.e., the

semantics of Q , is a function again, which defines the output as

output(Q,G ) = [[Q]]G (T() )

where T() is the table containing the single empty tuple ().
With this basic understanding of the data model and the seman-

tics of the language, we now explain it in detail. Throughout the

description of the semantics, we shall use the notational conven-

tions in Table 1 (they will be explained in the following sections;

they are summarized here for a convenient reference).

4.1 Data Model: values, graphs, tables

Values. We consider three disjoint sets K of property keys, N of

node identifiers and R of relationship identifiers (ids for short). These
sets are all assumed to be countably infinite (so we never run out

of keys and ids). For this presentation of the model, we assume

two base types: the integers Z, and the type of finite strings over a

finite alphabet Σ (this does not really affect the semantics of queries;

these two types are chosen purely for illustration purposes).

The setV of values is inductively defined as follows:

• Identifiers (i.e., elements of N and R) are values;

• Base types (elements of Z and Σ∗) are values;
• true, false and null are values;

• list() is a value (empty list), and if v1, . . . ,vm are values, for

m > 0, then list(v1, . . . ,vm ) is a value.
• map() is a value (empty map), and if k1, . . . ,km are distinct

property keys and v1, . . . ,vm are values, for m > 0, then

map((k1,v1), . . . , (km ,vm )) is a value.
• If n is a node identifier, then path(n) is a value. If n1, . . . ,nm
are node ids and r1, . . . , rm−1 are relationship ids, form > 1,

then path(n1, r1,n2, . . . ,nm−1, rm−1,nm ) is a value. We shall

use shorthands n and n1r1n2 . . .nm−1rm−1nm .

In the Cypher syntax, lists are [v1, . . . ,vm] and maps are {k1 :

v1, . . . ,km : vm }; we use explicit notation for them to make clear

the distinction between the syntax and the semantics of values.

We use the symbol “·” to denote concatenation of paths, which

is possible only if the first path ends in a node where the second

starts, i.e., if p1 = n1r1 · · · r j−1nj and p2 = njr j · · · rm−1nm then

p1 · p2 is n1r1n2 · · ·nm−1rm−1nm .

Every real-life query language will have a number of functions

defined on its values, e.g., concatenation of strings and arithmetic

operations on numbers. To model this, we assume a finite set F

of predefined functions that can be applied to values (and produce

new values). The semantics is parameterized by this set, which can

be extended whenever new types and/or basic functions are added

to the language.

Property graphs. Let L and T be countable sets of node labels

and relationship types, respectively. A property graph is a tuple

G = ⟨N ,R, src, tgt, ι, λ,τ ⟩ where:

• N is a finite subset of N , whose elements are referred to as

the nodes of G.
• R is a finite subset of R , whose elements are referred to as the

relationships of G.
• src : R → N is a function that maps each relationship to its

source node.
• tgt : R → N is a function that maps each relationship to its

target node.
• ι : (N ∪ R) × K → V is a finite partial function that maps a

(node or relationship) identifier and a property key to a value.

• λ : N → 2
L
is a function that maps each node id to a finite

(possibly empty) set of labels.

• τ : R → T is a function that maps each relationship identifier

to a relationship type.

Example 4.1. We now refer to the property graph in Figure 1 and

show how, for a sample of its nodes and relationships, it is formally

represented in this model as a graph G = (N ,R, src, tgt, ι, λ,τ ).

• N = {n1, . . . ,n10};

• R = {r1, . . . , r11};

• src =



r1 7→ n1 , r4 7→ n5 , r7 7→ n6 , r10 7→ n6

r2 7→ n2 , r5 7→ n6 , r8 7→ n10 , r11 7→ n9

r3 7→ n4 , r6 7→ n6 , r9 7→ n9



;

• tgt =



r1 7→ n2 , r4 7→ n2 , r7 7→ n8 , r10 7→ n9

r2 7→ n3 , r5 7→ n5 , r8 7→ n7 , r11 7→ n5

r3 7→ n2 , r6 7→ n7 , r9 7→ n4



;

• ι (n1, name) = Nils, ι (n2, acmid) = 220, ι (n3, acmid) = 190, . . . ,

ι (n10, name) = Thor;

• λ(n1) = λ(n6) = λ(n10) = {Student}, λ(n2) = λ(n3) =
λ(n4) = λ(n5) = λ(n9) = {Publication}, λ(n7) = λ(n8) =
{Researcher};

• τ (r ) =




authors for r ∈ {r1, r5, r10} ,

supervises for r ∈ {r6, r7, r8} ,

cites for r ∈ {r2, r3, r4, r9, r11} .

Tables. Let A be a countable set of names. A record is a partial

function from names to values, conventionally denoted as a tuple



with named fields u = (a1 : v1, . . . ,an : vn ) where a1, . . . ,an are

distinct names, and v1, . . . ,vn are values. The order in which the

fields appear is only for notation purposes. We refer to dom(u), i.e.,
the domain of u, as the set {a1, . . . ,am } of names used in u. Two
records u and u ′ are uniform if dom(u) = dom(u ′).

If u = (a1 : v1, . . . ,an : vn ) and u ′ = (a′
1

: v ′
1
, . . . ,am : v ′m )

are two records, then (u,u ′) denotes the record (a1 : v1, . . . ,an :

vn ,a
′
1

: v ′
1
, . . . ,a′m : v ′m ), assuming that all ai ,a

′
j for i ≤ n, j ≤ m

are distinct. If A = {a1, . . . ,an } is a set of names v is a value, then

(A : v ) denotes the record (a1 : v, . . . ,an : v ). We use () to denote

the empty record, i.e., the partial function from names to values

whose domain is empty.

If A is a set of names, then a table with fields A is a bag, or

multiset, of records u such that dom(u) = A. A table with no fields

is just a bag of copies of the empty record. In most cases, the set

of fields of tables will be clear from the context, and will not be

explicitly stated. Given two tablesT andT ′, we useT ⊎T ′ to denote
their bag union, in which the multiplicity of each record is the sum

of their multiplicities in T and T ′. If B = {b1, . . . ,bn } is a bag, and
Tb1
, . . . ,Tbn are tables, then

⊎
b ∈B Tb stands for Tb1

⊎ . . . ⊎ Tbn .
Finally, we use ε (T ) to denote the result of duplicate elimination

on T , i.e., each tuple of T is present just once in ε (T ).

4.2 Patterns and Pattern Matching

Syntax of patterns. It is important to remember that the Cypher

grammar is defined by mutual recursion of expressions, patterns,

clauses, and queries. Here, the description of patterns will make a

reference to expressions, which we will cover later on; all we need

to know for now is that these will denote values.

The Cypher syntax of patterns is given in Figure 3, where the

highlighted symbols denote tokens of the language. Instead of the

actual Cypher syntax, here we use an abstract mathematical nota-

tion that lends itself more naturally to a formal treatment.

A node pattern χ is a triple (a,L, P ) where:

• a ∈ A ∪ {nil} is an optional name;

• L ⊂ L is a possibly empty finite set of node labels;

• P is a possibly empty finite partial map fromK to expressions.

For example, the following node pattern in Cypher syntax:

(x:Person:Male {name: expr
1
, age: expr

2
})

is represented as (x , {Person,Male}, {name 7→ e1, age 7→ e2}), where
e1 and e2 are the representations of expressions expr1 and expr2, re-
spectively. The simplest node pattern() is represented by (nil,∅,∅).

A relationship pattern ρ is a tuple (d,a,T , P , I ) where:

• d ∈ {→,←,↔} specifies the direction of the pattern: left-to-

right (→), right-to-left (←), or undirected (↔);

• a ∈ A ∪ {nil} is an optional name,

• T ⊂ T is a possibly empty finite set of relationship types;

• P is a possibly empty finite partial map fromK to expressions;

• I is either nil or (m,n) withm,n ∈ N ∪ {nil}.

For instance, the following relationship patterns in Cypher syntax:

-[:KNOWS*1 {since: 1985}]-

-[:KNOWS*1..1 {since: 1985}]-

are both represented as (↔, nil, {knows}, {since 7→ 1985}, (1, 1)).
However, the following relationship pattern:

-[:KNOWS {since: 1985}]-

will be represented as (↔, nil, {knows}, {since 7→ 1985}, nil). As
highlighted by this example, I is nil iff the optional grammar token

len does not appear in the pattern syntax (see Figure 3). Otherwise, I
is equal to (nil, nil) if len derives to ∗, and I is equal to (d,d ), (d1, nil),
(nil,d2), (d1,d2) if other derivations rules are applied, respectively.

In general, I defines the range of the relationship pattern. The

range is [m,n] if I = (m,n) where nil is replaced by 1 and∞ in the

place of the lower and upper bounds. The range is [1, 1] if I = nil.
A relationship pattern is said rigid if its range [m,n] satisfiesm =
n ∈ N.

A path pattern is an alternating sequence of the form

χ1 ρ1 χ2 · · · ρn−1 χn

where each χi is a node pattern and each ρi is a relationship pattern.
A path pattern π can be optionally given a name a, written as π/a;
we then refer to a named pattern. A path pattern is rigid if all

relationship patterns in it are rigid, and variable length otherwise.

We shall now define the satisfaction relation for path patterns

w.r.t. a property graphG = (N ,R, src, tgt, ι, λ,τ ), a path p with node

ids from N and relationship ids from R, and an assignment u.
We consider rigid patterns first as a special case, because they –

unlike variable length patterns – uniquely define both the length

and the possible variable bindings of the paths satisfying them. The

satisfaction of variable length patterns will then be defined in terms

of a set of rigid patterns.

Satisfaction of rigid patterns. As a precondition for a path p to

satisfy any pattern, it is necessary that all relationships in p are
distinct. Then, the definition is inductive, with the base case given

by node patterns (which are rigid path patterns). Let χ be a node

pattern (a,L, P ); then (n,G,u) |= χ if all of the following hold:

• either a is nil or u (a) = n;
• L ⊆ λ(n);
• [[ι (n,k ) = P (k )]]G,u = true for each k s.t. P (k ) is defined.

Example 4.2. Consider the property graph G in Figure 4 and the

node patterns χ1 = (x , {Teacher},∅) and χ2 = (y,∅,∅). Then,

(n1,G,u) |= χ1 if u is an assignment that maps x to n1 ,

(n2,G,u) ̸ |= χ1 for any assignment u ,

(n3,G,u) |= χ1 if u is an assignment that maps x to n3 ,

(n4,G,u) |= χ1 if u is an assignment that maps x to n4 .

For i = 1, . . . , 4 we have that (ni ,G,ui ) |= χ2 whenever ui is an
assignment that maps y to ni . □

For the inductive case, let χ be a node pattern, let π be a rigid

path pattern, and let ρ be the relationship pattern (d,a,T , P , I ). First
we assume that I , nil; since ρ is rigid, I = (m,m) withm ∈ N. For
m = 0, we have that (n · p,G,u) |= χρπ if

(a) either a is nil or u (a) = list(); and
(b) (n,G,u) |= χ and (p,G,u) |= π .

Form ≥ 1, we have that (n1r1n2 · · · rmnm+1 · p,G,u) |= χρπ if all

of the following hold:

(a
′
) either a is nil or u (a) = list(r1, . . . , rm );

(b
′
) (n1,G,u) |= χ and (p,G,u) |= π ;

and, for every i ∈ {1, . . . ,m}, all of the following hold:



pattern ::= pattern◦ ��� a = pattern◦ label_list ::= :ℓ ��� :ℓ label_list

pattern◦ ::= node_pattern ��� node_pattern rel_pattern pattern◦ map ::= { prop_list}

node_pattern ::= (a? label_list? map?) prop_list ::= k:expr ��� k:expr, prop_list

rel_pattern ::= -[a? type_list? len? map?]-> type_list ::= :t ��� type_list|t
��� <-[a? type_list? len? map?]- len ::= ∗

��� ∗d
��� ∗d1..

��� ∗..d2

��� ∗d1..d2

��� -[a? type_list? len? map?]- d,d1,d2 ∈ N

Figure 3: Syntax of Cypher patterns

n1Teacher

n2Student n3 Teacher

n4 Teacher

r1knows

r2

knows

r3 knows

Figure 4: Property graph with students and teachers

(c
′
) τ (ri ) ∈ T ;

(d
′
) [[ι (ri ,k ) = P (k )]]G,u = true for every k s.t. P (k ) is defined;

(e
′
) (src(ri ), tgt(ri )) ∈




{(ni ,ni+1), (ni+1,ni )} if d is↔ ,

{(ni ,ni+1)} if d is→ ,

{(ni+1,ni )} if d is← .

The case when I = nil is treated as if I = (1, 1), except that item
(a
′
) above is replaced by: (a

′′
) either a is nil or u (a) = r1.

Example 4.3. Consider again the property graph G in Figure 4

and the following rigid pattern π in Cypher syntax:

(x:Teacher) -[:KNOWS*2]-> (y)

In our mathematical representation this amounts to:

(x , {Teacher},∅)︸               ︷︷               ︸
χ1

, (→, nil, {knows},∅, (2, 2))︸                             ︷︷                             ︸
ρ

, (y,∅,∅)︸    ︷︷    ︸
χ2

where χ1 and χ2 are the node patterns we have seen in Example 4.2.

Now, let u = {x 7→ n1,y 7→ n3}; from that example we know that

(n1,G,u) |= χ1 and (n3,G,u) |= χ2. Then, following the definition

of satisfaction given above, one can easily see that (p,G,u) |= π ,
where p = n1r1n2r2n3 and π = χ1ρχ2.

Observe that if there is another assignment u ′ s.t. (p,G,u ′) |= π ,
then u ′ maps x to n1 and y to n3. This is the intuitive reason why

rigid patterns are of interest: given a path and a rigid pattern, there

exists at most one possible assignment of the free variables (which
we shall formally define shortly) of the pattern w.r.t. which the path

satisfies the pattern. We will see that for variable length patterns

this is no longer the case. □

For named rigid patterns, we have that (p,G,u) |= π/a ifu (a) = p
and (p,G,u) |= π .

Satisfaction of variable length patterns. Informally, a variable

length pattern is a compact representation for a possibly infinite

set of rigid patterns; e.g., a pattern of length at least 1 will represent
patterns of length 1, patterns of length 2, and so on.

To make this idea precise, let ρ = (d,a,T , P , I ) be a variable

length relationship pattern, and ρ ′ = (d,a,T , P , (m′,m′)) be a rigid
relationship pattern. We say that ρ subsumes ρ ′, and write ρ ⊐
ρ ′, if m′ belongs to the range [m,n] defined by I . If ρ is rigid,

then it only subsumes itself. This subsumption relation is easily

extended to path patterns. Given a variable length pattern π =
χ1ρ1χ2 · · · ρk−1

χk and a rigid pattern π ′ = χ1ρ
′
1
χ2 · · · ρ

′
k−1

χk , we

say that π subsumes π ′ (written π ⊐ π ′) if ρi ⊐ ρ ′i for every
i ∈ {1, . . . ,k − 1}.

Then, we define the rigid extension of π as

rigid(π ) =
{
π ′ | π ′ is rigid and π ⊐ π ′

}
,

that is, the (possibly infinite) set of all rigid patterns subsumed by π .
For a named pattern, rigid(π/a) = {π ′/a | π ′ ∈ rigid(π )}. Finally,
(p,G,u) |= π if (p,G,u) |= π ′ for some π ′ ∈ rigid(π ), and similarly

for named patterns.

Example 4.4. Consider the following variable length pattern π :

(x:Teacher) -[:KNOWS*1..2]-> (z)

-[:KNOWS*1..2]-> (y:Teacher)

That is, π is the pattern χ1ρχ2ρχ3 with

χ1 = (x , {Teacher},∅) , χ3 = (y, {Teacher},∅) ,

χ2 = (z,∅,∅) , ρ = (→, nil, {knows},∅, (1, 2)) .

Then, rigid(π ) is the set
{
χ1ρ1χ2ρ1χ3︸         ︷︷         ︸

π1

, χ1ρ1χ2ρ2χ3︸         ︷︷         ︸
π2

, χ1ρ2χ1ρ1χ3︸         ︷︷         ︸
π3

, χ1ρ2χ2ρ2χ3︸         ︷︷         ︸
π4

}

where

ρ1 = (→, nil, {knows},∅, (1, 1)) , ρ2 = (→, nil, {knows},∅, (2, 2)) .

Consider again the property graph G in Figure 4. Let

p1 = n1r1n2r2n3 u1 = { x 7→ n1,y 7→ n3, z 7→ n2 }

p2 = n1r1n2r2n3r3n4 u2 = { x 7→ n1,y 7→ n4, z 7→ n2 }

Then, (p1,G,u1) |= π1 and (p2,G,u2) |= π2; therefore, π is satisfied

inG by p1 under u1 and by p2 under u2. This shows the ability of a

variable length pattern to match paths of varying length.

In addition, variable length patterns may admit several assign-

ments even for a single given path. To see this, note that p2 satisfies



π inG also under the assignment u ′
2
that agrees with u2 on x and y

but maps z to n3, because (p2,G,u
′
2
) |= π3. □

In Cypher, we want to return the “matches” for a pattern in a

graph, not simply check whether the pattern is satisfied (i.e., there

exists a match). This is captured formally next.

Pattern matching. The set of free variables of a node pattern χ =
(a,L, P ), denoted by free(χ ), is {a} whenever a is not nil, and empty

otherwise. For a relationship pattern ρ, the set free(ρ) is defined
analogously. Then, for a path pattern π we define free(π ) to be

union of all free variables of each node and relationship pattern

occurring in it. For example, for the pattern π of Example 4.4 we

have free(π ) = {x ,y, z}. For named patterns, free(π/a) = free(π ) ∪
{a}. Then, for a path pattern π (optionally named), a graph G and

an assignment u, we define

match(π ,G,u) =
⊎

p in G
π ′∈rigid(π )

{
u ′

�����
dom(u ′) = free(π ) − dom(u)
and (p,G,u · u ′) |= π ′

}
(1)

Note that, even though both u ′ and π ′ range over infinite sets, only
a finite number of values contribute to a non-empty set in the final

union. Thus match(π ,G,u) is finite.
In (1),

⊎
stands for bag union: whenever a new combination

of π ′ and p is found such that (p,G,u · u ′) |= π ′, a new occur-

rence of u ′ is added to match(π ,G,u). This is in line with the way

Cypher combines the MATCH clause and bag semantics, which is

not captured by the satisfaction relation alone.

Example 4.5. Consider once again the graph G in Figure 4, and

let π be the following variable length pattern:

(x:Teacher) -[:KNOWS*1..2]-> ()

-[:KNOWS*1..2]-> (y:Teacher)

This is similar to the pattern in Example 4.4, but the middle node pat-

tern is not given any name here: free(π ) = {x ,y}. Indeed, rigid(π )
is the same as in the previous example, with χ2 = (nil,∅,∅).

Let p = n1r1n2r2n3r3n4 and u = {x 7→ n1,y 7→ n4}; it is easy to

see that (p,G,u) |= π3 ∈ rigid(π ). However, observe that (p,G,u) |=
π2 as well (whereas π1 and π4 are not satisfied by any path of G).
This shows that there may be multiple ways for a single path to

satisfy a variable length pattern even under the same assignment.

In our example, two copies of u will be added to match(π ,G,∅). □

Matching tuples of path patterns. Cypher allows one to match

a tuple π̄ = (π1, . . . ,πn ) of path patterns, each optionally named.

We say that π̄ is rigid if all its components are rigid, and rigid(π̄ )
is defined as rigid(π1) × · · · × rigid(πn ). The set of free variables
of π̄ is defined as free(π̄ ) =

⋃
πi free(πi ). Let p̄ = (p1, . . . ,pn ) be a

tuple of paths; we write (p̄,G,u) |= π̄ if no relationship id occurs in
more than one path in p̄ and (pi ,G,u) |= πi for each i ∈ {1, . . . ,n}.
Then, for a tuple of patterns π̄ , a graph G and an assignment u,
match(π̄ ,G,u) is defined as in (1), with the difference that the bag

union is now over tuples π̄ ′ ∈ rigid(π ) and p̄ of paths.

Complexity. Graph homomorphism is the notion commonly used

in graph querying [6, 9, 16]. At first, the pattern matching mech-

anism of Cypher might seem an extension of it that accounts for

additional features such as values associated with nodes and rela-

tionships. However, on a more careful examination one may notice

that Cypher actually departs from graph homomorphism. Indeed,

in defining how rigid patterns are satisfied, we only looked at paths

in which relationship ids occur at most once. In other words, a path

cannot traverse the same relationship (i.e., edge) more than once.

Why do we have such a restriction, and how does it affect the

complexity of patternmatching? Graph patternmatching is a canon-

ical NP-complete problem: for a graph G and a pattern π , checking
whether there is a match for π inG is NP-complete. Note that this is

consistent with finding patterns in relational querying: for instance,

given a join query Q and a relational database D, checking if Q (D)
returns a tuple is NP-complete as well [2].

However, Cypher goes beyond simple matching, by returning

paths. This is where the problem occurs. Suppose we have a graph

with a single node n a single relationship r , whose source and target
are n, and let π be the pattern (x)-[*0..]->(x). What would it

return under homomorphism semantics? Since there are infinitely

many paths from n to n, it appears that such a pattern will match

infinitely many times, i.e., for eachm ≥ 0, it will produce a match

that traverses the unique edge in the graphm times.

To avoid this situation, Cypher chose to disallow repeating rela-

tionship edges while matching patterns. In the above example, two

matches will be returned: one for traversing the unique edge zero

times, one for traversing it a single time. The question now is: how

different is the complexity of this pattern matching?

By using the problem of the existence of two disjoint paths in a

graph, one can prove that checking whether there is a match for π
in G according to the Cypher semantics remains NP-complete. In

fact, differently from the case of homomorphism-based matching,

there is even a fixed path for which this is true. Nonetheless, such

fixed patterns are of rather peculiar shape and they are not, based

on many years of experience, a common occurrence in practice.

4.3 Formal Syntax and Semantics
We now present the key components of Cypher, namely expressions,
clauses, and queries, and define their formal semantics. Together

with pattern matching defined in the previous section, they will

constitute the formalization of the core of Cypher.

The syntax of Cypher patterns was given in Figure 3. The syntax

of Cypher expressions, clauses, and queries is provided in Figure 5.

Semantics of expressions. The semantics of an expression expr
is a value [[expr]]G,u inV determined by a property graph G and

an assignment u that provides bindings for the names used in expr.
The rules here are fairly straightforward and given in full detail

in [18]. Below we explain them briefly.

Values and variables. The semantics of v ∈ V is v itself, and the

semantics of a ∈ A is given by u (a).
Maps. Here expr.k is the value associated with key k ; {} is the
empty map, and every prop_list, which is of the form {k1 : e1, . . . ,

km : em } (see Section 4.2) can be seen as a map.

Lists. These expressions either test if a value is in the list, or form

a list from a sequence of values, or select elements and sublists of a

list, given by their positions.

Strings. We have some basic operations on strings such as looking

for prefix, suffix, and subword (starts-with, ends-with, contains).

Logic. Just like SQL, Cypher uses 3-value logic for dealing with

nulls. The values are true, false, and null (unknown), and the



expressions

expr ::= v ��� a
��� f (expr_list) v ∈ V, a ∈ A, f ∈ F values/variables

��� expr.k
��� {}

��� { prop_list} maps
��� []

��� [ expr_list]
��� expr IN expr ��� expr[expr]

��� expr[expr..]
��� expr[..expr]

��� expr[expr..expr] lists
��� expr STARTS WITH expr ��� expr ENDS WITH expr ��� expr CONTAINS expr strinдs
��� expr OR expr ��� expr AND expr ��� expr XOR expr ��� NOT expr ��� expr IS NULL ��� expr IS NOT NULL loдic
��� expr < expr ��� expr <= expr ��� expr >= expr ��� expr > expr ��� expr = expr ��� expr <> expr inequalities

expr_list ::= expr ��� expr, expr_list expression lists

qeries

query ::= query◦ ��� query UNION query ��� query UNION ALL query unions

query◦ ::= RETURN ret ��� clause query
◦ sequences o f clauses

ret ::= ∗
��� expr [AS a]

���
��� ret, expr [AS a] return lists

clauses

clause ::= [OPTIONAL] MATCH pattern_tuple [WHERE expr] matchinд clauses
��� WITH ret [WHERE expr] ��� UNWIND expr AS a a ∈ A relational clauses

pattern_tuple ::= pattern ��� pattern, pattern_tuple tuples o f patterns

Figure 5: Syntax of expressions, queries, and clauses of core Cypher

rules for connectives and, or, not, and xor, are exactly the same as

in SQL. Also one can test if a value is null.
Inequalities. Of course there are standard comparisons between

numerical values.

Semantics of queries. A query is either a sequence of clauses

ending with the RETURN statement, or a union (set of bag) of two

queries. The RETURN statement contains the return list, which is

either ∗, or a sequence of expressions, optionally followed by AS a,
to provide their names.

To provide the semantics of queries, we assume that there exists

an (implementation-dependent) injective function α that maps ex-

pressions to names. Recall that the semantics of both queries and

clauses, relative to a property graph G, is a function from tables to

tables, so we shall describe its value on a tableT , i.e., [[query]]G (T ).
The rules are provided in Figure 6.

In the figure we make the following assumptions. First, the

fields of T are b1, . . . ,bq . Second, if we have a return list

e1 [AS a1], . . . , em [AS am] with optional AS for some of the ex-

pressions, then a′i = ai if AS ai is present in the list, and a′i = α (ai )
otherwise, with the added requirement that all the a′i s are distinct.
In some rules for the semantics, some AS could be optional. It is

assumed that when such optional AS is present on the left side,

then it is also present on the right hand side. Finally, in Figure 6,

Q,Q1,Q2 refer to queries and C to clauses.

Semantics of clauses. The meaning of Cypher clauses is again

functions that take tables to tables. These are split into two classes.

Matching clauses are essentially pattern matching statements: they

are of the form OPTIONAL MATCH pattern_tuple WHERE expr.

Both OPTIONAL and WHERE could be omitted. The key to their se-

mantics is pattern matching, in particularmatch(π̄ ,G,u) described
in Section 4.2 (see Equation 1).

Similarly to the description of the semantics of queries in Figure 6,

we make the assumption that the fields of T are b1, . . . ,bq . Our
convention about the names a′i are exactly the same as for queries

(see above), except that a′i = α (ei ) only if ei is a name.

The MATCH clause extends the set of field names of T by adding

to it field names that correspond to names occurring in the pattern

but not inu. It also adds tuples toT , based on matches of the pattern

that are found in graphs. UNWIND is another clause that expands

the set fields, and WITH clauses can change the set of fields to any

desired one.

Example 4.6. Let G be the property graph defined in Figure 4.

consider the clause MATCH π , where π is the pattern

(x) -[:KNOWS*]-> (y)

Let T be the table {(x : n1); (x : n3)} with a single field x . We show

how to compute [[MATCH π ]]G (T ).
Note that rigid(π ) is the (infinite) set of all rigid paths πm =

(→, nil, {knows},m,m), form > 0. These can only be satisfied by

paths with exactlym distinct relationships. SinceG only contains 3

relationships, only π1, π2 and π3 can contribute to the result.

Let u = (x : n1), π
′ = π1 and p = n1r1n2. Then free(π1) −

dom(u) = {y}, and thus u ′ must be a record over the field y. One
can easily check that (n1r1n2,G, (x : n1,y : n2)) |= π1. In fact n2

is the only suitable value for y, and thus the contribution of this

specific triple u,π ′,p to the final result is precisely {(x : n1,y : n2)}.
No path p other than n1r1n2 can contribute a record in the case

whereu = (x : n1) and π
′ = π1. Indeed, π1 requiresp to be of length



[[RETURN ∗]]G (T ) = T if T has a least one field

[[RETURN e1 [AS a1], . . . , em [AS am]]]G (T ) =
⊎
u ∈T
{(a′

1
: [[e1]]G,u , . . . ,a

′
m : [[em]]G,u )}

[[RETURN ∗, e1 [AS a1], . . . , em [AS am]]]G (T ) = [[RETURN b1 AS b1, . . . ,bq AS bq , e1 [AS a1], . . . , em [AS am]]]G (T )

[[Q1 UNION ALL Q2]]G (T ) = [[Q1]]G (T ) ∪ [[Q2]]G (T )

[[Q1 UNION Q2]]G (T ) = ε
(
[[Q1]]G (T ) ∪ [[Q2]]G (T )

)
[[C Q]]G (T ) = [[Q]]G

(
[[C]]G (T )

)
Figure 6: Semantics of Cypher queries

[[MATCH π̄ ]]G (T ) =
⊎
u ∈T
{u · u ′ | u ′ ∈ match(π̄ ,G,u)}

[[MATCH π̄ WHERE expr]]G (T ) = [[WHERE expr]]
(
[[MATCH π̄ ]]G (T )

)
[[OPTIONAL MATCH π̄ WHERE expr]]G (T ) =

⊎
u ∈T

{
[[MATCH π̄ WHERE expr]]G ({u}) if [[MATCH π̄ WHERE expr]]G ({u}) , ∅
(u, (free(u, π̄ ) : null)) otherwise

[[OPTIONAL MATCH π̄ ]]G (T ) = [[OPTIONAL MATCH π̄ WHERE true]]G (T )

[[WITH ∗]]G (T ) = T if T has a least one field

[[WHERE expr]]G (T ) = {u ∈ T | [[expr]]G,u = true}

[[WITH e1 [AS a1], . . . , em [AS am]]]G (T ) =
⊎
u ∈T
{(a′

1
: [[e1]]G,u , . . . ,a

′
m : [[em]]G,u )}

[[WITH ∗, e1 [AS a1], . . . , em [AS am]]]G (T ) = [[WITH b1 AS b1, . . . ,bq AS bq , e1 [AS a1], . . . , em [AS am]]]G (T )

[[WITH ret WHERE expr]]G (T ) = [[WHERE expr]]G
(
[[WITH ret]]G (T )

)
[[UNWIND expr AS a]]G (T ) =

⊎
u ∈T

⊎
v ∈Eu

{(u,a : v )}, where Eu =



⊎
0≤i<m {vi } if [[expr]]G,u = list(v0, . . . ,vm−1)
{} if [[expr]]G,u = list()
{[[expr]]G,u } otherwise

Figure 7: Semantics of Cypher clauses

1, and start at x , which u evaluates to be n1. By a similar reasoning,

we can compute the contribution of the following triples:

• (x : n1,y : n3), π2, n1r1n2r2n3 yields (x : n1,y : n3);
• (x : n1,y : n4), π3, n1r1n2r2n3r3n4 yields (x : n1,y : n4);
• (x : n3,y : n4), π1, n3r3n4 yields (x : n3,y : n4);

and show that the contributions of all other possible combina-

tions of records, paths and patterns are empty. This tells us that

[[MATCH π ]]G (T ) is the table with the rows (x : n1,y : n2),
(x : n1,y : n3), (x : n1,y : n4), and (x : n3,y : n4).

5 HISTORICAL REMARKS
The Cypher query language emerged from the evolution of the

Neo4j graph database, which in turn originated from a data model

that was first conceived of in 2000 by the founders of Neo4j in the

course of building a media asset management system. The system’s

data model changed frequently, and had complex data structures

and access control views which inspired the idea of tagging network

elements with ‘captions’ or property sets. The high emphasis on

relationship information (modeled as graph edges) coupled with

the need to support variable-length path traversals led away from

the schema-rigid relational database initially used, to the creation

of a native property graph database system.

From 2007 onwards this technology began to be provided for gen-

eral use as an open-source database management system. Initially

Neo4j was embedded as a Java library: the Tinkerpop Blueprints

and Gremlin APIs, now part of the Apache project, originated in the

early incarnations of Neo4j. Increased usage led to the inception

of a property graph query language which would occupy the same

ecological niche as SQL. The development of this language went

hand in hand with changes in the database implementation that

increasingly automated search optimizations through indexing of

node data, which in turn drove the addition of node labels to the

original scheme of relationship types.

From these influences emerged the current Cypher data model

and the predominance of the Cypher language, which became the

primary way of interacting with the graph. Cypher was largely an



invention by Andrés Taylor, engineer at Neo4j and co-author of this

paper, in early 2011, and is at a syntactic and feature level inspired by

SQL, and also incorporates concepts from functional programming,

Python and SPARQL. There is a strong family relationship to the

feature set of Gremlin, including the concept of a linear flow of

successive data operations, which gives Cypher a form of functional

composition which is quite different in feel to the nesting structure

of subqueries in SQL.

In late 2015 Neo4j announced the openCypher project, providing

an open platform to drive the standardization of Cypher as the prop-
erty graph query language. The openCypher project has published

a number of artefacts under the Apache 2.0 license, including EBNF

and ANTLR4 grammars and a Technology Compatibility Kit (TCK),

designed using a language neutral framework (Cucumber).

Proposals for language change are open, allowing anyone to

participate in the design of Cypher, and during 2017 a series of

public meetings between Cypher implementers has provided a

forum for discussing language changes and agreeing on language

extensions. It was recently agreed that the current state of the

Cypher language should be referred to as Cypher 9, which we have

presented thus far in this paper.

6 CURRENT DEVELOPMENTS
A consensus-driven openCypher Implementers Group (oCIG) now

governs the evolution of the Cypher language. For most of 2017

it has been working on the definition of Cypher 10, which will be

described in a complete natural language specification, combined

with an extension of the formal semantics presented here. Three

new features are being added to this next version of the language:

multiple graphs, query composition, and temporal data types (e.g.

date-time). These reflect industrial usage experience of Cypher,

particularly in Neo4j and SAP HANA Graph [50].

Multiple graphs.Cypher 9 assumes an implicit single global graph

that is used both for querying and for updating operations. Applica-

tions sometimes work with multiple disconnected subcomponents

of this global graph. Such components may be understood as dis-

tinct property graphs themselves. However, Cypher does not yet

include a mechanism for referencing such graphs explicitly and

therefore the language does not easily allow operations to be ap-

plied to specific graphs.

The Cypher 10 proposal for multiple graphs introduces named

graph references, which represent externally located graphs, graphs

created by the query, or graphs created by a previous query in a

composition of queries. Graph references may be passed as argu-

ments to, and returned as results from, Cypher 10 queries, and can

be used in set operations. These capabilities broadly match com-

parable functionality already present in SPARQL 1.1 [58]. Named

graphs contribute to natural partitioning and graph transformations

(which in turn enable graph-compositional queries).

Query composition. Passing multiple graph references requires

extending the existing tabular composition mechanism in Cypher 9,

where the WITH projection clause turns the output of a query into

an input driving table for a following query. The Cypher 10 proposal

for multiple graphs adds the ability to instead pass a "table-graphs"

construct, consisting of a single table and multiple named graphs as

query arguments. A table-graphs may additionally pass information

relating to which of these graphs is being used for reading (source

graph) and updating operations (target graph). Similarly a query

result is a table-graphs. This enables Cypher queries to be composed

as a chain of elementary queries. With the addition of subqueries

such query chains can also be formed into a tree.

This parallels the advocacy of a similar feature by the LDBC

Query Language Task Force in their description of the G-CORE

research language [5]. The two proposals differ in that G-CORE

describes queries that output only a single graph. In Cypher the

projection of tabular results is recognized as necessary for appli-

cations to access property values, and consequently Cypher 10 is

closed under table-graphs.

As part of these new query composition features, Cypher 10 also

introduces named queries. Named queries simplify the creation of

libraries of re-usable queries which can be composed in different

query trees. They also form the basis for offering graph views.

Example 6.1. The following graph transformation query first

finds all pairs of persons that have at least a single friend in common

and then returns a new graph where they are connected directly:

FROM GRAPH soc_net AT "hdfs://.../soc_network"

MATCH (a)-[r1:FRIEND]-()-[r2:FRIEND]-(b)

WHERE abs(r2.since-r1.since) < $duration

WITH DISTINCT a, b

RETURN GRAPH friends OF (a)-[:SHARE_FRIEND]->(b)

The result of this query may then be composed with a follow-up

query, e.g. for further filtering for friend-sharing-friends that live

in the same city:

QUERY GRAPH friends

MATCH (a)-[:SHARE_FRIEND]-(b)

FROM GRAPH register AT "bolt://.../citizens"

MATCH (a)-[:IN]->(c:City)<-[:IN]-(b)
RETURN *

Drafts of the Cypher 10 proposal for compositional graph queries

have already been implemented in Cypher for Apache Spark.

Temporal types. A detailed proposal
3
specifies support for tem-

poral instant types (DateTime, LocalDateTime, Date, Time, and

LocalTime) and a duration type.

7 RELATEDWORK

Graph data models. These in general have been a topic of re-

search since the 1990s. We provide here a summary and refer the

reader to the surveys [6, 7] for further reading.

Variations of simple directed labeled graphs are presented in [4,

23, 24, 26], and work undertaken on the hypergraph data model

is detailed in [28, 35–37, 51]. Semi-structured data models closely

related to graph data models include XML [10] and OEM [48].

RDF [59], a W3C recommendation, models resources using a

graph model, and forms the foundation of the Semantic Web. Its

basic building block is a triple, consisting of a subject, which de-

scribes the resource and is modeled as a node; a predicate which is

a property of the resource and is modeled as an edge; and an object,

3
https://github.com/thobe/openCypher/blob/date-time/cip/CIP2015-08-06-date-

time.adoc



which is the value of the property. A triple is therefore a statement

of the relationship between the subject and the object, and a set of

triples forms a graph. In contrast to the property graph model, RDF

only supports a single value on a node or edge.

Graph query languages. Some graph navigation can be expressed

in SQL using recursive queries. Basic properties such as reachability

in a graph can be expressed fairly easily, but complex graph patterns

that involve both data and navigation become very cumbersome

using SQL’s recursion. In addition, some features of Cypher, such as

non-repeatability of edges in pattern matching, cannot in general

be expressed in SQL. Deficiencies of SQL as a graph query language

led to a large body of research on proper graph query languages.

We briefly summarize the main contributions here and refer the

reader to comprehensive surveys [6–8, 60].

Regular path queries (RPQs) – the ability to express a path be-

tween any two nodes as a regular expression over the edge labels –

were first proposed by in 1987 in [16], and extended to conjunctive

RPQs by means of taking joins in [14]; these classes of queries form

the basis of languages studied in the theoretical literature [8, 60].

RPQs and related languages were extended to a theoretical model

of data graphs that resemble property graphs in [38], which also

described GXPath, a graph extension of XPath with node tests.

SPARQL [58] is the standard language used for querying RDF

data [59], and support for RPQs was added in SPARQL 1.1 through

the introduction of property paths [33].
There are other industrial property graph query languages. Ora-

cle’s PGQL [56] uses the SELECT-FROM-WHERE form from SQL

and the graph pattern syntax from Cypher. It allows for RPQs

through the use of the PATH clause defining a regular path pattern.

It does not support data insertion or updating. Gremlin [53] is a

property graph dataflow language designed by Apache Tinkerpop,

which supports procedural pattern matching and traversals embed-

ded in general purpose languages, but does not allow independent

statement of a declarative query in the style of SQL and Cypher. The

U.S. standards body INCITS recently created a working group to ex-

amine potential extensions to the SQL standard to allow relational

data to be viewed and queried as property graph data.

8 FUTUREWORK
Major topics under discussion for language changes beyond the cur-

rent developments around Cypher 10 include: richer path patterns,

allowing selection of additional semantics of pattern matching (ho-

momorphism, node isomorphism, edge isomorphism), enlarging the

schemamodel, expanding the underlying data model, and clarifying

theoretical vs real-life complexity of Cypher queries.

Path patterns. Cypher 9 supports a more limited form of regular

path queries than for example SPARQL [58] and does not support

full regular expression composition. A future version of Cypher

will add an extended form of regular path patterns that allows

data tests on nodes and relationships and path cost declarations. In

addition, it will be possible to define named path patterns which

can be referenced in other path patterns. This latter change was

first proposed in PGQL [56].

Configurable morphisms. Cypher 9 matches patterns using rela-

tionship (edge) isomorphism, i.e. each matched instance of a given

pattern never binds the same relationship from the underlying data

graph to more than one relationship variable or path variable. This

restriction reduces the number of pattern matches and ensures that

variable length relationship patterns never produce infinite result

sets. In some applications this rule is insufficient: it is envisioned

that Cypher will also allow the writer of a query to specify the use of

homomorphism or node isomorphism pattern matching semantics.

Schema model. Cypher was originally conceived in a dynamically

typed, schema-less context. Neo4j nowadays is schema-optional, i.e.

it supports an additional schema constraint language (e.g. for requir-

ing nodes with a given label to have certain properties). Other im-

plementations of Cypher assume a more strict schema (e.g., Cypher

for Apache Spark, or SAP HANA Graph). Standardizing a schema

model will improve data modeling capabilities and help portabil-

ity of queries while also enabling implementations to type check

queries more rigidly up-front as well as optimize them better.

Data model.Current industry trends indicate the need for support-
ing both spatial and temporal (time-evolving) graph data as well

as stream processing applications. These trends point towards fu-

ture evolutions of the core data model and underlying type system

together with other related language changes.

Theoretical vs real-life complexity.We have seen that pattern

matching under the Cypher semantics can be np-complete, even for

a fixed pattern, and thus unlikely to be tractable in general. Theo-

retically, this could be viewed as a reason to look for an alternative

semantics. However, in practice this works well: people do not

write queries that look like reductions from np-complete problems.

While in databases, high theoretical complexity has usually been

seen as a show stopper, in other fields this is not so: very fast indus-

trial strength SAT solvers routinely solve np-complete problems

of large size [40], typechecking in some popular languages could

provably take exponential time in the worst case [31], and prob-

lems of astronomical complexity or even undecidable ones have

been successfully tackled [15, 32]. The reason is the same as in the

case of Cypher queries: examples from the worst case analysis very

rarely arise in practice. This observation leads to a new research

program on analyzing real-life practical complexity of queries and

its differences with the theoretical complexity of languages.

9 CONCLUSION
The property graph data model is increasingly prevalent across

a wide variety of application domains, where data is represented

naturally as a graph structure and there is a requirement for the

query language to allow for graph-oriented operations (e.g., tran-

sitive closure) to be expressed directly. This has also fueled the

use of native graph data structures to optimize storage and query

processing for such operations.

Cypher is a solidly-established declarative query language for

the property graph model, with increasing adoption in multiple

products and projects. The language is evolving with new features –

saliently support for multiple graphs and query composition. Under

the aegis of the openCypher Implementers Group it is now being

documented as a fully-specified standard that can be independently

implemented using different architectures, and varying storage and

query optimization strategies.



All this work – including the formal semantics described in this

paper – will contribute towards the goal of establishing Cypher

alongside SQL as complementary languages, enabling integrated

use of the graph and relational data models.
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