
HAL Id: hal-01803448
https://hal.science/hal-01803448v1

Submitted on 30 May 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Schema Mappings for Data Graphs
Nadime Francis, Leonid Libkin

To cite this version:
Nadime Francis, Leonid Libkin. Schema Mappings for Data Graphs. the 36th ACM SIGMOD-
SIGACT-SIGAI Symposium, May 2017, Chicago, United States. �10.1145/3034786.3056113�. �hal-
01803448�

https://hal.science/hal-01803448v1
https://hal.archives-ouvertes.fr

Schema Mappings for Data Graphs

Nadime Francis
School of Informatics

University of Edinburgh
nfranci2@inf.ed.ac.uk

Leonid Libkin
School of Informatics

University of Edinburgh
libkin@inf.ed.ac.uk

ABSTRACT
Schema mappings are a fundamental concept in data inte-
gration and exchange, and they have been thoroughly stud-
ied in different data models. For graph data, however, map-
pings have been studied in a restricted context that, un-
like real-life graph databases, completely disregards the data
they store. Our main goal is to understand query answering
under graph schema mappings – in particular, in exchange
and integration of graph data – for graph databases that
mix graph structure with data. We show that adding data
querying alters the picture in a significant way.

As the model, we use data graphs: a theoretical abstrac-
tion of property graphs employed by graph database imple-
mentations. We start by showing a very strong negative re-
sult: using the simplest form of nontrivial navigation in map-
pings makes answering even simple queries that mix navi-
gation and data undecidable. This result suggests that for
the purposes of integration and exchange, schema mappings
ought to exclude recursively defined navigation over target
data. For such mappings and analogs of regular path queries
that take data into account, query answering becomes de-
cidable, although intractable. To restore tractability with-
out imposing further restrictions on queries, we propose a
new approach based on the use of null values that resemble
usual nulls of relational DBMSs, as opposed to marked nulls
one typically uses in integration and exchange tasks. If one
moves away from path queries and considers more complex
patterns, query answering becomes undecidable again, even
for the simplest possible mappings.

1. INTRODUCTION
Schema mappings are a fundamental notion in data in-

teroperability tasks such as data integration and exchange.
They prescribe a virtual or physical transformation of one
database into another, and guide notions of query answering
over integrated or exchanged data. They have been thor-
oughly investigated over relational data (see recent books
[5, 9, 19] reporting on the developments of the last two

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

PODS’17, May 14 - 19, 2017, Chicago, IL, USA
c© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4198-1/17/05. . . $15.00

DOI: http://dx.doi.org/10.1145/3034786.3056113

decades). Schema mappings are specified by queries over
source and target schemas and some relationship between
them, typically containment. For relational mappings, we
understand how to build database instances based on them,
how to query such instances, and where tractability bound-
aries lie.

While relational data continues to dominate, there are
many other models around, and it is thus natural that efforts
have been made to understand schema mappings for other
data formats. Notably there were both theoretical investi-
gations and practical implementations of schema mappings
for XML, see, e.g., [4,23,33]. While they addressed the same
questions as in the relational world, the techniques involved
were quite different, as one had to reconcile navigational
queries and querying data stored in XML documents.

Another popular data model is graph data. It shows up
in many modern applications such as social networks and
the Semantic Web, that are naturally modeled as graphs,
and where querying graph topology is important. Several
industrial strength implementations of graph databases are
available, such as Neo4j, Virtuoso, AllegroGraph and others.
We refer to [2,3] for surveys of graph data models, languages
for them, and implementations. Typical queries for graph
data are based on paths or patterns in graphs. In database
theory, the most commonly studied classes of queries are
based on regular path queries, or (RPQs) [16].

When it comes to schema mappings on graph databases,
we have much less knowledge compared to relational or XML
mappings. Mappings based on containment of path queries
were studied in [8, 12–14]. These papers looked into both
static analysis questions and answering RPQs and their ex-
tensions under such mappings, but the setting as described
there falls short of modeling graph databases that occur in
practice.

Real-world graph databases mix graph structure with data
that resides in nodes and edges. These are referred to as
property graphs [36]; they form the basic data model of Neo4j
and are now advocated by LDBC [27] as the standard model
to be adopted by graph database implementations. A the-
oretical abstraction of property graphs is data graphs [30],
an analog of data trees that have been actively studied as a
similar abstraction of XML documents, cf. [10,37]. In prop-
erty graphs, each node and each edge can carry a record
of values, while in a data graph, just as in data trees, each
node contains a single data value. From the point of view
of theoretical investigation whose goal is to understand the
complexity of the main computational tasks associated with
a data model, this abstraction suffices, as property graphs

can be modeled by data graphs, by pushing data from edges
to nodes and by creating additional nodes to store multiple
data values.

Our main goal is to understand the behavior of schema
mappings on data graphs where both navigation and data
are taken into account, much as was done for relational and
XML data in the past, and to go beyond [8, 12–14] where
only navigational aspects have been considered. In doing
so, we discover that adding data alters the picture dramat-
ically: some basic tasks quickly become undecidable, and
recovering decidability, and especially tractability, requires
new techniques that do not mimic those for other data mod-
els.

As in [8,12–14], our schema mappings are based on RPQs,
but RPQs are applied to data graphs. For such mappings
and purely navigational queries based on RPQs and some
extensions, query answering is decidable, with coNP data
complexity [8,12]; to achieve tractability, regular expressions
need to be severely restricted [8]. Answering queries refers
to finding certain answers that are true in all instances sat-
isfying the conditions of a schema mapping for given source
data. This is the standard approach in data exchange and
virtual data integration [5, 28].

If graphs contain data, the ability to query it makes a
strong impact. For very simple mappings based on RPQs,
and very simple queries that combine navigation and data
querying, the query answering problem becomes undecid-
able. Even if RPQs used in mappings do not allow any re-
cursion (in essence, we deal with the usual relational schema
mappings), answering queries that combine navigation and
data is intractable, although decidable.

The undecidability result is rather strong and leaves es-
sentially no hope of having any kind of navigation in map-
pings except what can be expressed by standard relational
schema mappings. It applies to schema mappings whose
rules are very simple: they are both local-as-view (LAV)
and global-as-view [28] at the same time, except just one
rule which involves the simplest unconstrained reachability
query. Moreover the query to be answered is given by a reg-
ular expression with equality, which is the simplest kind of
regular expressions on paths with data [31].

Thus, either in graph data exchange, or in virtual inte-
gration of graph databases, answering queries that refer to
data stored in graph nodes is impossible without a dramatic
restriction on schema mappings. Such a restriction tells us
to forget that we are dealing with a graph database (at least
on the target side) and treat it as a relational database in-
stead; then many queries can be answered, albeit with a
high complexity.

Having shown these negative results, we need to see what
can be recovered. It turns out that we can have efficient
query answering for a large class of queries (e.g., all RPQs
based on the strongest known class of regular expressions
that use data [31]), and do it using the standard route: find a
universal solution (cf. [5]) and evaluate the query on it. This
works for relational mappings under the additional assump-
tion that the domain of data values contains a special null
value that behaves as in SQL [17]: no comparison involving
a null can be true. This differs from the more common as-
sumption of labeled or marked nulls [5, 19] but is actually
more in line with storing graphs in a relational DBMS and
uses it for querying.

For the last question addressed in the paper, we look at

query languages for graphs that combine navigation and
data querying, but are not path-based. In particular, we
look at the adaptation of XML language XPath [38] to
graphs, as was investigated in [15,30]. Here we show a strong
negative result: even if mappings treat graph databases as
relational, query answering for graph XPath queries under
such mappings is undecidable.

To summarize, our results have the following implications.

1. For the model underlying real-life graph database ap-
plications, such as property graphs of Neo4j, schema
mappings have to treat graphs as if they were rela-
tional databases, i.e., no recursively defined naviga-
tional properties are allowed in mappings.

2. Even under such mappings, to achieve tractability of
answering path queries in exchange/integration sce-
narios, one has to populate target instances with null
values interpreted as SQL nulls, when it comes to
querying them.

3. Moving from RPQs that use data to more general pat-
terns is problematic even for the simplest mappings,
as query answering becomes undecidable already for
simple fragments of Graph XPath.

Organization Section 2 defines data graph and naviga-
tional queries; in Section 3 we describe queries that com-
bine navigation and data querying. Section 4 defines graph
schema mappings and querying under them. In Section 5
we prove the main undecidability result for querying under
graph schema mappings. Section 6 looks at the restriction of
schema mappings that does not allow recursion over targets,
and proves decidability and intractability of query answer-
ing. Section 7 shows how to restore tractability via null val-
ues. Section 8 looks at queries with restricted comparisons,
and Section 9 shows undecidability of query answering for
Graph XPath. Conclusions are in Section 10. Due to space
limitations, we are only able to give sketches and ideas of
the proofs.

2. PRELIMINARIES
Graph databases and data graphs For the purposes
of navigational querying, graph databases are usually ab-
stracted as labeled directed graphs, i.e., their edges are of
the form (v, a, v′), where v, v′ are two nodes and a is a label.
For data graphs, we follow exactly the same approach except
that a node now consists of a node id and a data value.

More precisely, let Σ be a finite set of edge labels, N a
countably infinite set of node ids, and D be a countably
infinite set of data values. A pair v = (n, d) where n ∈ N
and d ∈ D is a node. A data graph is G = 〈V,E〉 where V
is a finite set of nodes (i.e., V ⊂ N × D) such that no two
nodes have the same node id, and E ⊆ V × Σ × V is a set
of labeled edges. For a node v = (n, d), we let δ(v) refer to
the data value d.

A data graph G can also be seen as a relational structure
〈V, (Ea)a∈Σ〉 where each Ea is the binary relation {(v, v′) ∈
V | (v, a, v′) ∈ E}. We will freely move back and forth
between these two representations of data graphs.

A path π in a data graph G from a node v1 to a node vn+1

is a finite sequence π = v1a1v2 . . . vnanvn+1, where each vi is
a node of G, each ai is a symbol of Σ, and (vi, ai, vi+1) is an
edge of G for each i ≤ n. We use λ(π) to refer to the word
a1 . . . an, called the label of π. The length of π, denoted by

|π|, is the length of the word λ(π) = a1 . . . an, in this case
n. To denote the fact that π is a path from v1 to vn+1, we

will write v1
π→ vn+1. Similarly, for a word w ∈ Σ∗, we will

write v1
w→ vn+1 to say that there exists a path going from

v1 to vn+1 of label w.
A data path is a sequence d1a1d2 . . . dnandn+1 where all

the dis are elements of D and all the ajs are labels from
Σ. Given a path π = v1a1v2 . . . vnanvn+1 in a data graph
G = 〈V,E〉, the corresponding data path is defined as δ(π) =
δ(v1)a1δ(v2) . . . δ(xn)anδ(vn+1). That is, each node in π is
replaced by its data value. Note that data paths are very
similar to data words [10, 37] which are words over Σ × D;
data paths are data words with one extra data value.

Navigational queries A k-ary query q (over Σ) is a map-
ping that associates with each Σ-labeled data graph G =
〈V,E〉 a set of k-tuples of nodes q(G) ⊆ V k. We refer to k
as the arity of q. We mainly deal with binary queries, i.e.,
k = 2.

The basic queries we consider are regular path queries
(RPQs). An RPQ over Σ is just a regular expression e
over Σ. Over a (data) graph G, it outputs pairs of nodes
connected by a path whose label is in e:

e(G) = {(v, v′) | ∃π : v
π→ v′ and λ(π) ∈ e}

A word RPQ is an RPQ where e is a word w ∈ Σ∗. A
reachability RPQ is simply e = Σ∗.

A special case of a word RPQ is an atomic RPQ a, where
a ∈ Σ. Such a query returns the binary relation Ea =
{(v, v′) | (v, a, v′) ∈ E}.

3. DATA RPQSSS ON DATA GRAPHS
In this section we review queries on data graphs that com-

bine navigation and data querying. In general, there are
three main approaches to such queries. Data RPQs are ex-
tensions of RPQs with regular expressions that mix alpha-
bet letters and data values [30,31]; these are the queries we
mainly concentrate on as they are natural analogs of naviga-
tional queries most commonly studied in graph databases.
A different approach is that of walk logic [24], initially de-
fined for a slightly different model and then extended to
data graphs in [7]. The language is elegant and very expres-
sive, but it was shown to have non-elementary complexity,
ruling out its practical applications [7]. Finally, one can
have pattern-based languages, like Cypher of Neo4j [36] or
analogs of XPath for graphs [15,30,36]. We look at those in
Section 9.

We now define data RPQs that mix navigation and data.
They work on data paths, which are essentially data words;
thus, data RPQs will be based on regular languages for
data words/paths. The most common automata model that
provides the notion of regularity for them is register au-
tomata [25]. Of course queries are not specified by automata
but rather by more declarative regular expressions. While
register automata have been around for a while, the study
of regular expressions for them is more recent [31], and we
shall look at two types of them: expressions with memory,
that capture register automata, and weaker expressions with
equality that have attractive computational properties. We
now define those, specifically for data paths. In all defini-
tions below, we assume a countably infinite set X of variables
(registers).

Regular expressions with memory [30]. These expres-
sions use conditions on variables from X defined by

c := x= | x6= | c ∧ c | c ∨ c

with x ranging over X . Their satisfaction is defined with
respect to a pair (σ, d), where σ is a partial map from X to
D with finite support (i.e., σ : X → D∪{⊥} where ⊥ stands
for undefined, and σ(x) 6= ⊥ only for finitely many x ∈ X),
and d ∈ D. The rules are:

• σ, d |= x= iff σ(x) = d;

• σ, d |= x 6= iff σ(x) 6= d.

and we use the standard rules for ∧ and ∨. Note that con-
ditions are closed under negation; in order to express ¬c,
we can propagate ¬ through ∧ and ∨ all the way to basic
comparisons and then swap x= with x6=.

The class REM(Σ,X) of regular expressions with memory
over alphabet Σ and variables X is defined by the grammar:

e := ε | a | e+ e | e · e | e+ | e[c] | ↓ x̄.e

where a ranges over Σ, c over conditions, and x̄ over tuples
of variables from X . They extend the usual regular expres-
sions with two features: e[c] checks if condition c is satisfied
after matching e, and ↓ x̄.e assigns the current data value to
variables in x̄ before matching e. To give a couple of exam-
ples, the expression ↓x.(a[x6=])+ defines data paths labeled
a along which all data values are different from the first one,
i.e., data paths of the form dad1a · · · adn−1adn where di 6= d
for every i ≤ n. It binds the first data value d, and then
checks after reading each letter that the letter was a, and the
following data value was different from d. As another exam-
ple, the expression Σ∗ · ↓x.Σ+[x=] ·Σ∗ defines data paths in
which the same data value occurs more than once: it skips
up to that data value, binds it to x, moves one or more la-
bels forward, and checks if the same data value occurs. As
usual, Σ∗ is ε+ Σ+.

The semantics is defined by means of a relation (e, w, σ) `
σ′, where e ∈ REM(Σ,X), w is a data path, and σ, σ′ are
variable assignments. Intuitively, it says that if one starts
with assignment σ and parses w according to e, then one
ends up with σ′. The language of e is then defined as:

L(e) = {w | ∃σ : (e, w,⊥⊥⊥) ` σ}

where ⊥⊥⊥ is the initial empty assignment (i.e., each variable
is undefined). That is, L(e) gives all the data paths that can
be parsed according to e without any prior variable binding.

Relation ` is defined inductively on the structure of ex-
pressions. It uses the notion of concatenation of two data
paths w = d1a1 . . . an−1dn and w′ = dnan . . . am−1dm that
share the last and the first data value, defined as w · w′ =
d1a1 . . . an−1dnan . . . am−1dm.

• (ε, w, σ) ` σ′ iff w = d for some d ∈ D and σ′ = σ.

• (a,w, σ) ` σ′ iff w = d1ad2 and σ′ = σ.

• (e1 · e2, w, σ) ` σ′ iff w = w1 · w2 for some data paths
and there exists σ′′ such that (e1, w1, σ) ` σ′′ and
(e2, w2, σ

′′) ` σ′.
• (e1 + e2, w, σ) ` σ′ iff (e1, w, σ) ` σ′ or (e2, w, σ) ` σ′.
• (e+, w, σ) ` σ′ iff w = w1 · · ·wm for some w1, . . . , wm

and there exist σ = σ0, σ1, . . . , σm = σ′ such that
(w,wi, σi−1) ` σi for all i ≤ m.

• (↓ x̄.e, w, σ) ` σ′ iff (e, w, σx̄=d) ` σ′, where d is the
first data value of w and σx̄=d modifies σ by assigning
value d to all variables in x̄.

• (e[c], w, σ) ` σ′ iff (e, w, σ) ` σ′ and σ′, d |= c, where d
is the last data value of w.

Regular expressions with memory have the same expres-
siveness as register automata and share many computational
properties with them: for example, their nonemptiness prob-
lem is Pspace-complete, and membership problem is NP-
complete [18,31]. They are closed under union, intersection,
concatenation, Kleene star, but not under complement.

Remark The definition of REM needs to exclude pathological
cases e[c] where either c uses a variable that has not been
bound to a value, or e is equivalent to ε. This is a small
technicality that does not affect us at all as we shall never
encounter such expressions. We refer to [30] for details.

Regular expressions with equality This particularly
simple class of expressions allows us to capture many use-
ful properties expressed by register automata. The class
REE(Σ) of regular expressions with equality is defined by:

e := ε | a | e+ e | e · e | e+ | e= | e 6=

where a ranges over alphabet letters. The language L(e) of
data paths denoted e is given as follows:

• L(ε) = {d | d ∈ D}.

• L(a) = {dad′ | d, d′ ∈ D}.

• L(e · e′) = L(e) · L(e′).

• L(e+ e′) = L(e) ∪ L(e′).

• L(e+) = {w1 · · ·wk | k ≥ 1 and each wi ∈ L(e)}.

• L(e=) = {d1a1 . . . an−1dn ∈ L(e) | d1 = dn}.

• L(e6=) = {d1a1 . . . an−1dn ∈ L(e) | d1 6= dn}.

For example, the language of data paths on which the
same data value occurs more than once is given by Σ∗ ·
(Σ+)= · Σ∗.

While these expressions are strictly weaker than register
automata, they have attractive computational properties:
for example, both nonemptiness and membership are solv-
able in Ptime. They have the same closure properties as
expressions with memory except they are not closed under
intersection [30,31].

We shall also look at particularly simple expressions,
called path with tests, defined by e := a | e · e | e= | e6=.
These are just words, where some subwords carry an annota-
tion indicating whether data values at the beginning and the
end of the subword are the same. For example, (a(bc)=) 6=
matches data paths d1ad2bd3cd2 with d1 6= d2.

Queries. As queries, we consider RPQs given by regular
expressions of one of the above classes. The output e(G) is
the set of pairs (v, v′) of nodes such that there is a path π
in G going from v to v′ and with δ(π) ∈ L(e).

If it is not important which class the expression comes
from (with memory or with equality), we use a generic term
data RPQs. When we want to be more specific, for REMs
we refer to memory RPQs, for REEs to equality RPQ, and
for paths with tests, to data path queries.

4. SCHEMA MAPPINGS AND QUERY AN-
SWERING

We now define schema mappings for graph databases,
query answering based on them, and explain how standard
data exchange and virtual data integration scenarios for
graph data are captured.

From now on, we adopt the convention that queries used
in mappings will be denoted by lower case letters q, q′ etc.,
and queries that one needs to answer will be denoted by
upper case letters Q,Q′ etc.

Schema mappings for data graphs As in [8, 12, 14, 21],
we define mappings based on RPQs. Assume that we are
given two sets of edge labels Σs and Σt, called source and
target alphabets respectively.

Definition 1. A graph schema mapping (GSM) M is a
set of pairs of RPQs (q, q′), where q is an RPQ over Σs and
q′ is an RPQ over Σt.

If Gs = 〈Vs, Es〉 and Gt = 〈Vt, Et〉 are data graphs over
Σs and Σt respectively, we write (Gs, Gt) |= M if q(Gs) ⊆
q′(Gt) for every (q, q′) ∈ M, and call Gt a solution for Gs
under M.

This looks just like the standard definition of schema map-
pings for graph databases [8, 14]; the difference is that now
we deal with data graphs, whose nodes are pairs v = (n, d) ∈
N × D. Thus, if

(
(n, d), (n′, d′)

)
∈ q(Gs), we require that(

(n, d), (n′, d′)
)
∈ q(Gt). Hence it is not just node ids that

must appear in the target graph but also data values that
they carry.

A GSM M is called LAV, or local-as-view, if for every
pair (q, q′) ∈M, query q is atomic, i.e., just a letter a ∈ Σs.
These mappings are most commonly used in virtual data
integration, and we shall see that most negative results are
already true under the LAV restriction. When we say that
a LAV mapping is defined using a certain query language,
it means that it consists of pairs (a, q′) where a ∈ Σs and
q′ belongs to this language. Similarly, a GSM M is called
GAV, or global-as-view, if for every pair (q, q′) ∈ M, query
q′ is atomic.

Query answering As is standard [5,28], we shall adopt the
certain answers semantics for query answering under schema
mappings.

Definition 2. Given a data graph Gs over Σs, a GSM
M over Σs,Σt, and a query Q over Σt, the set of certain
answers to Q on Gs under M is defined as:

2M(Q,Gs) =
⋂
{Q(Gt) | (Gs, Gt) |=M}

In other words, we look at answers true in all Σt data
graphs Gt that, together with the source Gs, satisfy condi-
tions of mapping M.

This gives us the main computational problem we study,
query answering under graph schema mappings. We look
primarily at data complexity of the problem when the map-
ping M and the query Q are fixed.

Problem : QueryAnswering GSM(M, Q)
Input : A data graph Gs over Σs

a tuple v̄ of nodes of Gs.
Question : Is v̄ in 2M(Q,Gs)?

When M and Q are clear from the context or
not important, we simply refer to data complexity of
QueryAnswering GSM. When we speak of combined
complexity, we assume that Q and M are part of the in-
put.

Data exchange and virtual data integration We now
explain how the setting described earlier subsumes graph
data exchange and virtual data integration.

In relational data exchange, one has source and target
schemas σ and τ , and schema mappings M are typically
specified by source-to-target tgds (st-tgds) ∀x̄ (ϕσ(x̄) →
∃z̄ ψτ (x̄, z̄)), where ϕσ(x̄) is a query over σ and ψτ (x̄, z̄)
is a query over τ (usually both are conjunctive). In this
case if q is given by ϕσ and q′ by ∃z̄ ψτ (x̄, z̄), the above st-
tgd just says that for source and target instances S and T
satisfying the mapping we must have q(S) ⊆ q′(T). For an-
swering queries Q over the target for a given source database
Ds, one defines certain answers as 2M(Q,Ds) =

⋂
{Q(Dt) |

(Ds, Dt) |=M}, cf. [5]. Thus, for graph schema mappings,
we mimic the relational case: graph databases are viewed as
relational structures, but we use RPQs instead of conjunc-
tive queries.

Under LAV, the setting also subsumes virtual data in-
tegration of graph databases [13, 14, 21]. In general, in
data integration, we have sources S1, . . . , Sn, and a global
schema γ; the mapping M is given by queries q1, . . . , qn
over γ which is satisfied by an instance D of γ, written as
((S1, . . . , Sn), D) |= M, if Si ⊆ qi(D) for all i ≤ n. For
a query Q posed against a database of schema γ, virtual
data integration defines answers as 2M(Q, (S1, . . . , Sn)) =⋂
{Q(D) | ((S1, . . . , Sn), D) |=M}, see [28].
Query answering over LAV GSMs corresponds precisely to

virtual integration of several graph databases. Indeed, we
can view these source graphs as relations Ea for a virtual
graph database G. Then our setting – that is, the notions
of LAV schema mappings and query answering – is precisely
the same as the virtual data integration scenario described
above.

5. UNDECIDABILITY OF DATA RPQSSS

The problem of query answering under graph schema map-
pings has been studied for purely navigational queries. For
mappings given by RPQs, finding 2M(Q,G) can be done
in coNP if Q is an RPQ, or belongs to one of several nav-
igational languages that extend RPQs (conjunctive RPQs,
nested regular expressions, or conjunctive nested regular ex-
pressions); the problem is coNP-hard even when Q is an
RPQ [8,12].

We show here that the situation is completely different for
queries that combine data and navigation: query answer-
ing under schema mappings becomes undecidable for data
RPQs. In fact we show that undecidability holds under three
strong restrictions:

• queries are equality RPQs, i.e., are based on the sim-
plest class of data RPQs;

• mappings are local-as-view; and

• queries in mappings are either atomic or the simplest
reachability queries Σ∗t .

We start by introducing a new concept that will help us
describe the class of mappings for which the query answering

answering problem is undecidable, and will also be will be
important for restrictions that let us regain decidability.

Definition 3. We call a mapping M relational if for
each (q, q′) ∈ M, the query q′ is a word RPQ, i.e., is given
by a word wt ∈ Σ∗t .

The reason for the name is that queries over Σt in these
mappings are relational conjunctive queries. A LAV rela-
tional mapping consists of pairs (a,wt) with a ∈ Σs and
wt ∈ Σ∗t .

LAV relational mappings eliminate all recursion in queries
that define them, and for such mappings, based on what we
know from relational data exchange [5], we would expect
many query answering tasks to be decidable (more on that
in the next section). So what is the smallest addition to
such mappings that cannot be expressed with first-order re-
lational queries? Such an addition is the simplest form of
reachability, namely reachability by an arbitrary path, in
which we do not impose any restriction at all on label use.

To capture this, we define relational/reachability map-
pings M as those where in all pairs (q, q′) ∈ M, either
q′ is a word RPQ, as in relational mappings, or the sim-
plest reachability query Σ∗t . In particular, in a LAV re-
lational/reachability mapping, pairs of queries are of two
kinds: either (a,wt), with a ∈ Σs and wt ∈ Σ∗t , or (a,Σ∗t).

We can make it even simpler and impose the restriction
that every rule in a mapping, except for reachability, be both
LAV and GAV (global-as-view [28]). In such a LAV/GAV
relational/reachability mappings, pairs of queries are of two
kinds:

• (a, b) with a ∈ Σs and b ∈ Σt, and

• (a,Σ∗t) with a ∈ Σs.

Already for these very simple mappings, answering the sim-
plest data RPQs is undecidable.

Theorem 1. QueryAnswering GSM is undecidable in
data complexity for data RPQs.

In fact, there exists a LAV/GAV relational/reachability
mapping M, and an equality RPQ Q such that
QueryAnswering GSM(M, Q) is undecidable.

Proof idea. The proof is rather involved; we now explain
the key idea of the encoding and illustrate the main gadgets
used in the proof. We reduce from the Post Correspondence
Problem (PCP), by building a GSMM and a query Q from
the alphabet such that for each PCP instance, there exist
a source database Gs and a pair of nodes (start, end) of
Gs such that (start, end) /∈ 2M(Q,Gs) if and only if the
PCP instance is satisfiable. We assume that PCP instances
are sets of n pairs of nonempty words (referred to as tiles)
(ur, vr)1≤r≤n over Σ = {a, b}. Both alphabets Σs and Σt
are {a, b, i, t,m, m̄, id, s, v,↔,#}. Symbols other than a and
b are separators: i, s and v mark what we call the input,
solution and verification parts of the encoding; t marks the
start of the encoding of a tile and ↔ marks the separation
between words ur and vr of a given tile (ur, vr); m and m̄
designate a specific tile in a list of tiles; id will be used to
insert additional data values along paths; and # marks the
end of the encoding.

The source database Gs built from the PCP instance is
shown below.

start input
i

c01

t

c11
u1

1 . . .
u2

1
ci11

ui11

d0
1

↔
d1

1

v1
1 . . .

v2
1

dj11
vj11

. . .
t

. . .

c0n

t
c1n

u1
n . . .

u2
n

cinn
uinn

d0
n

↔
d1
n

v1
n . . .

v2
n

djnn
vjnn

end

s #

In the figure, the uji s and vji s are letters of ui, vi, and all

data values cji and dji are distinct.
The mapping M has rules (`, `) for ` = a, b, t, i, s,↔ and

(#,Σ∗t). Under this mapping, Gs will be copied into a target
graph Gt, but some path can be inserted in place of the #
edge of the input. Now our query will ensure that this path is
of a special shape. It will start with an s-edge and then have
an encoding of the paths πr1 , . . . , πrm corresponding to the
solution of the PCP instance, i.e., a sequence r1, . . . , rm of
indexes from {1, . . . , n} (if a solution exists). Then, after a v
separator, there is a verification section with labels forming
the path ur1 . . . urm (which is the same as vr1 . . . vrm).

For each r among r1, . . . , rm, the path πr looks as follows.

c0n
t

c0n−1

t . . .t
c0r+1

t

djrr

m
γid

d
jr−1
r

vjrr
δ

id . . .
v
jr−1
r ηid

d0
r

v0
r

cirr

↔
ζ

id
c
ir−1
r

uirr
ι

id . . .
u
ir−1
r

κ
id

c0r
u0
r

c0r−1

m̄
c0r−2

t . . .t
c01

t s

The path πr starts and ends with the encoding of r split
into paths of n−r and r nodes carrying distinct data values,
and connected with t-edges. In between, we have encodings
of vr and ur in reverse order, with extra nodes inserted as
additional ids for the purpose of verifying that the solution
is correct. These are the nodes connected with id edges, and
whose data values are shown as Greek letters in the picture.
These four sections of the encoding of πr are separated with
m,↔, and m̄ letters.

The intuition behind the query Q is that it works on a
target instance described above and checks for errors, that
is, properties that tell us that it is not a correct encoding of
a PCP instance and its solution. Then having (start, end)
6∈ 2M(Q,Gs) implies that there exists a target instance in
which none of the errors occur, and thus implies satisfiability
of the PCP instance.

There are several kinds of errors, and to ensure that we do
have an encoding of PCP, we need to eliminate all of them.

For this, the query Q will be a disjunction of several expres-
sions. One of them, that does not have any references to
data values (and thus is an ordinary regular expression) en-
sures that the path from start to end is shaped as explained
above (rather, it needs to check for errors, i.e., that the path
is not shaped as described above, but in this case we have a
usual regular expression and can take complement).

Next one can show how to write REE expressions whose
negation ensures the following. First, each subpath between
two s labels is the encoding of some pair (ui, vi) from the
input. Thus, the subpath between the first and last s labels
is the encoding of a sequence of tiles of the PCP instance.

Next, we use REE expressions to deduce that the subpath
that starts after label v only contains pairwise distinct data
values, and that the sequence of data values that occur after
each label id in the encoding of the solution on the left-hand
(resp. right-hand) side of each tile is a copy, in the reverse
order, of the sequence of data values in the verification path.

Finally, we use another REE expression whose negation
ensures that these data values correspond to the same let-
ter, i.e. it is satisfied if it can find a mismatch. Thus, the
sequence of letters on the right-hand side of the tiles in the
solution path is the same as the sequence of letters on the
left-hand side of the tiles. Thus, the subpath between the
first and last s labels is indeed the encoding of a solution to
the PCP instance, from which we deduce that it is satisfiable
if (start, end) 6∈ 2M(Q,Gs).

For the other direction, if there is a PCP solution, we build
a single-path instance Gt as described above, and then it is
a simple matter of checking that (start, end) 6∈ Q(Gs).

Since LAV/GAV relational/reachability mappings repre-
sent the simplest possible non-relational addition to the
simplest imaginable mappings, this result strongly suggests
that for data exchange and integration tasks, target graph
databases ought to be viewed as relational databases, and
mappings ought to exclude any form of recursive navigation
over target data.

6. RELATIONAL MAPPINGS FOR DATA
GRAPHS

Given the conclusion of the previous section, we now re-
strict our attention to relational graph schema mappings in
which no recursion over the target schema is allowed. These
are GSMsM (see Definition 3) in which for all (q, q′) ∈M,
the query q′ is a word RPQ.

One might be tempted to think that these can be cast as
the usual relational mappings over relational representations
of graphs, and then results about them can be obtained from
what we know in the relational case. While the premise is
true, the conclusion is not: we cannot obtain results for
such mappings simply by appealing to the relational case.
We first explain why this is so, and then present our results
about relational GSMs.

Do relational results suffice? Relational GSMs can be
easily modeled by the usual relational mappings on graphs
viewed as relational databases. A standard representation
of a data graph G over Σs as a relational database DG uses
binary relations Ns and Esa for each a ∈ Σs (and likewise N t

and Eta for Σt). Each node (n, d) is a tuple in Ns, and for
each edge

(
(n, d), a, (n′, d′)

)
, we have the pair (n, n′) in Esa.

Note that since such databases are over disjoint domains

N and D, we assume that in addition predicates N (x) and
D(x) are available to distinguish them.

A relational GSM M between Σs and Σt data graph can
be expressed by means of the relational schema mapping
Mrel defined as shown below.

• For each pair (q, w) ∈M with w ∈ Σt, we have an st-
tgds ∀x, y q(x, y) → qw(x, y), where, for a word w =
a1 . . . an, the query qw(x, y) is the conjunctive query
∃x1 . . . xn−1 E

t
a1(x, x1)∧Eta2(x1, x2) · · ·∧Etan(xn−1, y).

Note that query q itself need not be conjunctive or even
first-order, as in relational st-tgds.

• For each (q, q′) ∈ M, add an st-tgd ∀x, y Ns(x, y) ∧
∃z q(x, z) → N t(x, y) and symmetrically with
∃z q(z, x). They say that every node that occurs in
the result of a source query must be moved to the tar-
get.

• Add a key constraint ∀x, y, y′ (N t(x, y) ∧N t(x, y′)→
y = y′) (i.e., each node id has one data value), and
target tgds ∀x, y N t(x, y) → N (x) ∧ D(y) as well as
∀x, y Eta(x, y) → ∃z, z′ (N t(x, z) ∧ N t(y, z′)) for each
a ∈ Σt, saying that every node in the target graph
must have a data value.

Such a mapping Mrel precisely describes the action of
M on relational representations of graphs, as the following
straightforward result shows.

Proposition 1. IfM is a relational GSM and Gs is a Σs
data graph, then solutions for DGs under Mrel are exactly
the structures of the form DGt where Gt is a solution for Gs
under M.

Despite this close connection, we cannot directly derive
the complexity of query answering from known relational re-
sults. To start with, relational mappings can contain pairs
(q, w) where q is a complex reachability query, and thus rela-
tional results do not apply to it. Even when all such queries
q are conjunctive, we still cannot easily apply known results
to Mrel. The reason is that answering first-order relational
queries under mappings of relational databases, even with-
out target constraints, is already undecidable, cf. [5]. Data
RPQs, on the other hand, go beyond first-order queries. Try-
ing to encode data RPQs in a language for which the com-
plexity of query answering in data exchange is known is also
problematic, given the scarcity of such languages. For exam-
ple, [6] looked at a well behaved (in data exchange) fragment
of datalog with negation, but the natural coding of equality
RPQs in datalog with inequalities over databases DG does
not fall into that fragment. And for memory RPQs, it is not
even clear what fragment of a natural relational language
they correspond to (e.g., coding of regular expressions into
datalog breaks for them).

When it comes to lower bounds, we cannot directly take
advantage of existing techniques such as [20,32] as they use
queries that cannot be expressed with RPQs.

Upper and lower bounds for relational mappings De-
spite the difficulties with the naive approach to reducing to
relational results, we can establish both upper and lower
bounds on the complexity of query answering. We start
with the upper bound.

Theorem 2. For relational GSMs, data complexity of
QueryAnswering GSM for data RPQs is in coNP, and
its combined complexity is in Pspace.

In fact this follows from a more general result. A ho-
momorphism between two data graphs G = 〈V,E〉 and
G′ = 〈V ′, E′〉 is a map h : N → N such that for each edge
(v1, a, v2) in E, the edge (h(v1), a, h(v2)) is in E′, where h
is extended to nodes by h

(
(n, d)

)
=
(
h(n), d

)
. A query Q is

closed under homomorphisms if, whenever we have a homo-
morphism h : G→ G′ and v̄ ∈ Q(G), then h(v̄) ∈ Q(G′). It
can be readily checked that under this definition, data RPQs
are closed under homomorphisms (in fact, a more general re-
sult will be shown in Section 7, Proposition 6). The result
then follows from the proposition below.

Proposition 2. Let C be a class of queries on data
graphs that has Ptime data complexity and Pspace com-
bined complexity. Assume that every query q ∈ C is closed
under homomorphisms. Then, for relational GSMs and
queries in C, the problem QueryAnswering GSM is in
coNP in data complexity and in Pspace in combined com-
plexity.

Proof sketch. We first prove an auxiliary result. Assume
that M is a GSM and Gs is a source graph database such
that there exists a number k > 0 such that, for every rule
(q, q′) ∈ M, the language L(q′) is contained in Σkt . If Gt is
a solution for Gs, we can show that there is another solution
G′t ⊆ Gt whose size is bounded by (2k + 1) · |M| · |Gs|2.

With this, the proposition follows, since deciding whether
(x, y) ∈ 2M(Q,Gs) can be done with the following non-
deterministic algorithm: first nondeterministically guess a
target database G′t of size at most (2|M|2 + |M|) · |Gs|2,
then check whether (Gs, G

′
t) |=M and (x, y) /∈ Q(G′t). Cor-

rectness follows from the fact that the mapping is relational,
and thus words in L(q′) for each (q, q′) ∈ M have bounded
length, which is≤ |M|. It is easy to check that the algorithm
has the required complexity under the assumptions.

In fact, the proof shows a slightly stronger result: the
right-hand side queries in mappings need not be single words
but could also be regular expressions of the form w1 + · · ·+
wm, where each wi ∈ Σ∗t for i ≤ m.

For query answering under mappings of relational
databases, coNP-hardness is already known for unions of
conjunctive queries with inequalities [20, 32]. However, as
we noticed earlier, reductions used queries that do not cor-
respond to data path queries (non-recursive data RPQs).
Nonetheless, it is not hard to come up with a direct reduc-
tion to show the following.

Proposition 3. There exists a data path query Q and
a LAV relational mapping M such that the problem
QueryAnswering GSM(M, Q) is coNP-complete.

For the proof, we use a reduction from 3-colorability; there
are some technicalities involved, compared to the relational
case, due to a very restricted type of query Q.

The query in Proposition 3 uses three inequalities. A sim-
ilar relational result in [20] uses three inequalities as well, al-
though it also showed that for unions of conjunctive queries
with at most one inequality per disjunct, query answering
under mappings based on st-tgds is in Ptime. We can adapt
the proof and further lower the complexity guarantee for
data path queries.

Proposition 4. For relational GSMs M and data path
queries that have at most one subexpression of the form
e 6=, data complexity of QueryAnswering GSM is in
NLogspace.

As a final remark, we note that for data path queries,
query answering is decidable for arbitrary GSMs, not just
relational mappings.

Proposition 5. If Q is a data path query
and M is an arbitrary GSM, then the problem
QueryAnswering GSM(M, Q) is in coNP.

The idea of the proof is that mapping rules that can pro-
duce words of length greater than the length of Q are of no
use in detecting whether a tuple is a certain answer, and thus
one can cut the mapping to a simpler one that essentially
resembles the relational case.

7. TRACTABLE QUERY ANSWERING
VIA SQL NULLS

Our next question is how to achieve tractability of query
answering under graph schema mappings. A standard solu-
tion in the case of relations and XML documents is to find
a universal solution such that running a query over it gives
us certain answers, cf. [5]. The coNP-hardness result of the
previous section shows that this approach cannot be used
directly even with simple equality RPQs. Nonetheless, we
show that under some assumptions on data values in target
graphs, it can be recovered.

To explain this approach, we recall that when target
instances are built in relational data exchange, they are
populated either by constants or marked nulls [5]. For
instance, if we have a relational st-tgd ∀x, y S(x, y) →
∃z T (x, z) ∧ T (z, y), and a source {S(a, b), S(c, d)}, then
the common way is to construct a target instance with
tuples T (a,nnn1), T (nnn1, b), T (c,nnn2), T (nnn2, d), where nnn1,nnn2 are
marked nulls. That is, for each tuple satisfying S(x, y), a
new marked null z is invented, and tuples (x, z), (z, y) are
put in T .

Such marked nulls are really nothing but constants that
did not occur in the source instance: they are new values for
which equality is purely syntactic, i.e., nnn1 = nnn1 but nnn1 6= nnn2,
nnn1 6= a, etc. Thus we can simply view them as elements of
the set D of data values.

In real-life implementations of SQL relational databases,
nulls behave differently: there is just one null value nnn, and
no comparison involving nnn can evaluate to true. We now
show that with nulls behaving like SQL nulls, tractability of
query answering can be restored using universal solutions.

Formally, we expand the domain D of data values with a
single null value nnn, writing Dnnn for D∪{nnn}. A node v = (n,nnn)
is called a null node. Following SQL’s rule for nulls, we
do not let any comparisons involving nulls evaluate to true.
That is, we modify the evaluation of conditions of memory
RPQs over Dnnn by:

• σ, d |= x= iff σ(x) = d and σ(x), d 6= nnn;

• σ, d |= x6= iff σ(x) 6= d and σ(x), d 6= nnn,

and for equality RPQs, we allow equalities and inequalities
to be true only when both arguments are different from nnn.
Note that we do not use SQL’s three-valued logic; at the

end of the section we explain why we can use the simpler
approach without any loss of generality.

With this, for a GSM M and a Σs data graph Gs with
data values in D, we define certain answers over graphs with
null nodes as:

2
nnn
M(Q,Gs) =

⋂{
Q(Gt)

∣∣∣∣ (Gs, Gt) |=M
and Gt over Dnnn

}
This corresponds to the standard data exchange setting
[5, 20]: source instances do not have nulls, while nulls can
appear in the targets.

How does this notion relate to certain answers
2M(Q,Gs)? Since we increase the domain of values, it is
immediate that

2
nnn
M(Q,Gs) ⊆ 2M(Q,Gs) .

Thus, our approach can be seen as providing an underap-
proximation of query answering in the general case. What
makes it attractive is that such an underapproximation can
be found efficiently for data RPQs.

Theorem 3. If the domain of data values contains the
null value nnn, then data complexity of answering data RPQs
under relational graph schema mappings (i.e., checking if
v̄ ∈ 2nnn

M(Q,Gs)) is in NLogspace. Its combined complexity
is in Pspace for memory RPQs and in Ptime for equality
RPQs.

One has matching NLogspace and Pspace lower bounds
as well, as evaluation of data RPQs is NLogspace-hard in
data complexity and Pspace-hard in combined complexity.
This theorem will follow from a more general result that
provides an algorithm for query answering, even for a larger
class of queries.

Recall that a relational GSM M over Σs and Σt consists
of pairs (q, w) where q is an RPQ over Σs and w ∈ Σ∗t . Given
such a mapping and a Σs data graph Gs, a Σt data graph
Gt is a universal solution for Gs underM if it is constructed
by the following procedure:

1. compute dom(M, Gs) which is the set of all nodes ap-
pearing in query results q(Gs), for (q, w) ∈ M, and
add all nodes of dom(M, Gs) to Gt;

2. then, for each pair (q, a1 . . . , ak) inM, and each pair of
nodes (v, v′) ∈ q(Gs), create fresh null nodes v1, . . . , vk
and add the path va1v1a2 . . . vk−1akv to Gt.

Note that all universal solutions are actually unique up to
a renaming of node ids. Indeed, the only source of nonde-
terminism in the procedure is the choice of node ids for the
newly created null nodes.

Just like the usual universal solutions in relational or
XML data exchange, these solutions have homomorphisms
into all other solutions. To show this, we first need to ex-
tend homomorphisms to data graphs with null nodes. Re-
call that a homomorphism between data graphs G and G′

without null nodes was defined as a map h : N → N
such that for each edge

(
(n1, d1), a, (n2, d2)

)
of G, the edge(

(h(n1), d1), a, (h(n2), d2)
)

is in G′. We now say that a map
h : N → N is a homomorphism between graphs with nulls
nodes if for each edge

(
(n1, d1), a, (n2, d2)

)
of G, there is

an edge
(
(h(n1), d′1), a, (h(n2), d′2)

)
in G′ such that either

di = d′i or di = nnn, for i = 1, 2. That is, non-null data values

are preserved, but a homomorphism has the freedom to re-
place nnn with another data value. The lemma below justifies
the name universal.

Lemma 1. If M is a relational mapping, Gs is a Σs data
graph, Gt is a universal solution for Gs under M and G′t is
an arbitrary solution over Dnnn for Gs under M, then there
is a homomorphism from Gt to G′t that is the identity on
dom(M, Gs).

Our goal is to compute certain answers 2nnn
M(Q,Gs) by

evaluating a query Q over a universal solution Gt. This
strategy works for queries that are preserved under homo-
morphisms. As before, Q is preserved under homomor-
phisms if, whenever we have two data graphs G and G′

with null nodes and a homomorphism h from G to G′, then
for a tuple

(
(n1, d1), . . . , (nk, dk)

)
∈ Q(G), there is a tuple(

(h(n1), d′1), . . . , (h(nk), d′k)
)
∈ Q(G′), where di = d′i when-

ever di 6= nnn.
The following is a standard observation that is often made

in data exchange scenarios to enable efficient computation
of certain answers.

Theorem 4. Let M be a relational GSM, Gs a Σs data
graph over D, and let Gt be a universal solution for it under
M. If Q is a query preserved under homomorphisms, then
2nnn
M(Q,Gs) is the restriction of Q(Gt) to tuples that do not

contain any null nodes.

Proof. If (x, y) is a pair of constant nodes such that (x, y) ∈
Q(Gt), then the definition of Gt implies that x and y are
nodes of Gs. If G′t is an arbitrary solution for Gs under
M, by Lemma 1, there is a homomorphism from Gt to G′t
such that h(x) = x and h(y) = y. Since Q is closed under
homomorphism, this implies that (x, y) ∈ Q(G′t). Thus,
(x, y) ∈ 2nnn

M(Q,Gs).
Conversely, if (x, y) ∈ 2nnn

M(Q,Gs), then x and y are nodes
of Gs, and thus are constant nodes. Furthermore, since Gt is
a solution, we conclude that (x, y) ∈ Q(Gt), by the definition
of certain answers.

Theorem 4 gives us an algorithm for finding answers
to queries preserved under homomorphism. First we con-
struct a universal solution; for relational mappings, this can
be done in NLogspace. Then we evaluate Q on it, and
then again in NLogspace eliminate null nodes from the re-
sult. Thus, it is the data complexity of Q (as long as it is
above NLogspace) that determines the complexity of find-
ing certain answers; for instance, if data complexity of Q is
NLogspace (or Ptime), then so is the data complexity of
QueryAnswering GSM over data domains containing null
value nnn.

Since the data complexity of data RPQs is in NLogspace
[30], the last bit that we need to finish the proof of Theorem
3 is the proposition below.

Proposition 6. Data RPQs are closed under homomor-
phisms on data graphs with null nodes.

Proof sketch. It suffices to show that for a REM e, if we have
a data path π and its homomorphic image π′ = h(π), then
if δ(π) is in L(e), then so is δ(π′). This is done by induction
on the clauses of the definition of L(e), using the following
claim. For any two data paths w = d0a1d1 . . . dn−1andn
and w′ = d′0a1d

′
1 . . . d

′
n−1and

′
n such that di = d′i whenever

di 6= nnn, for all REMs e′, and for all valuations σ0, σ
′
0, σ such

that σ0(x) = σ′0(x) whenever σ0(x) 6= nnn and (e, w, σ0) ` σ,
there exists a valuation σ′ such that (e, w′, σ′0) ` σ′ and
σ(x) = σ′(x) whenever σ(x) 6= nnn.

Remark 1. We know that 2nnn
M(Q,Gs) provides an ap-

proximation to 2M(Q,Gs), i.e., 2nnn
M(Q,Gs) ⊆ 2M(Q,Gs).

But how good is such an approximation? The question is
akin to those asked about approximations of certain an-
swers over incomplete databases [22, 29] and, just like in
those cases, precise theoretical answers are hard to ob-
tain. For example, in the case of Boolean queries, whenever
2nnn
M(Q,Gs) 6= 2M(Q,Gs) – which is bound to happen due

to the complexity mismatch – the approximation misses all
the correct answers (since false is represented as ∅ and true
as the singleton empty tuple {()}). To see how well such
schemes actually perform the best one can do is an experi-
mental study, as for instance was done in [22]. For now we
have only studied theoretical aspects of such mappings, but
the hope is for good quality approximations, given the fact
that we have a minimal extension of the domain of values,
with just one element.

Remark 2. SQL nulls use three-valued logic, with truth
values true, false, and unknown, and conditions d = nnn and
d 6= nnn evaluate to unknown. Here we did not use the three-
valued logic and instead made them evaluate to false. While
this modification could make difference for some queries, for
the language of data RPQs there is no change; this is why
we chose the simpler way of handling nulls.

Indeed, let eval(c, σ) be the evaluation of condition c as
we defined it (i.e., with both d = nnn and d 6= nnn being false).
Let evalsql(c, σ) be the three-valued SQL evaluation of con-
ditions. Under this evaluation, both d = nnn and d 6= nnn are
unknown, and then unknown is propagated through ∧ and ∨
by unknown ∧ true = unknown ∨ false = unknown; unknown
∨ true = true; unknown ∧ false = false. Then it is straight-
forward to see that eval(c, σ) = true iff evalsql(c, σ) = true.

8. QUERIES WITHOUT INEQUALITIES
We now look at the behavior of two different languages

for data graphs. First, in this section we look at restric-
tion of data RPQs that forbids inequalities, and show that
for them, query answering behaves better, at least for rela-
tional GSMs. In the next section we show that in contrast,
the language that permits non-path patterns behaves rather
badly with respect to query answering.

By REM= and REE= we mean restrictions of data RPQs
based on regular expressions with memory and equality that
only use equality comparisons and disallow inequality com-
parisons. That is, REM= queries are the same as mem-
ory RPQs, but x 6= is not allowed in conditions, and REE=

queries are the same as equality RPQs, but expressions e6=
are not allowed.

Results of Section 6 tell us that data complexity of answer-
ing REM= and REE= queries under relational GSMs is in
coNP. A better NLogspace bound was given for data path
queries in REE= (see Proposition 4), but not for queries out-
side this narrow class. We now show that tractable bounds
can be obtained for all queries in REM= and REE= under
relational mappings.

The idea here follows along the lines of the ideas of Sec-
tion 7. We define a new kind of canonical solutions, which

bear close resemblance to the universal solutions of Section 7
and play a very similar role. Formally, given a relational
GSMM over Σs and Σt and a Σs data graph Gs, a Σt data
graph Gt is a least informative solution for Gs under M if
it is constructed by the following procedure:

1. compute dom(M, Gs) and add all nodes of
dom(M, Gs) to Gt;

2. then, for each pair (q, a1 . . . , ak) in M, and each pair
of nodes (v, v′) ∈ q(Gs), create fresh nodes v1, . . . , vk,
with respective fresh data values d1, . . . , dk and add
the path va1v1a2 . . . vk−1akv to Gt.

The main point of this definition is that the new nodes
that are created during the procedure are populated with
fresh and distinct data values instead of nulls as in the case
for the universal solutions. Then we can prove an analog of
Theorem 4:

Theorem 5. Let M be a relational GSM, Gs a Σs data
graph and let Gt be a least informative solution for Gs un-
der M. Let Q be an REM= or an REE= query. Then
2M(Q,Gs) is the restriction of Q(Gt) to tuples with values
in dom(M, Gs).

As before, this leads to an algorithm for computing certain
answers. We first construct a least informative solution,
which can be done in NLogspace for relational mappings.
Then we run the query on it, and remove from the output the
tuples that use values outside of dom(M, Gs). This yields
the following corollary:

Corollary 1. For relational GSMs, data complexity of
QueryAnswering GSM is in NLogspace for both REM=

and REE= queries, and its combined complexity is in
Pspace for REM= queries and in Ptime for REE= queries.

For arbitrary mappings, query answering of RPQs could
be coNP-hard even without data values [12], so eliminating
inequality would not give us tractability as in Theorem 1.
It is still a valid question whether such restriction gives us
decidability, in contrast with Theorem 1. This question ap-
pears to be quite hard, and we only have a result for REE=.

Proposition 7. For arbitrary graph schema mappings,
the problem QueryAnswering GSM for REE= queries is
in coNP for data complexity, and has elementary combined
complexity.

This result already requires an involved proof which es-
tablishes a small model property based on Ramsey theorem.
This in particular accounts for the high combined complex-
ity bound (which is quadruple exponential, due to Ramsey
bounds). Full details are omitted here due to space con-
straints.

9. GRAPH XPATH
We now look at a different language for expressing queries

on data graphs, that is not restricted to path patterns such
as data RPQs. In fact languages for graph data such as
Cypher of Neo4j [36] or navigational SPARQL [35] do allow
non-path patterns.

As a concrete language to work with, we take Graph
XPath (GXPath), that adapts the standard XML path lan-
guage XPath [38] to work on graphs. This language is rather
natural for expressing navigational properties that go be-
yond path patterns, and we have a good understanding of
the expressive power of its fragments [30] and their static
analysis [26]. GXPath has also been implemented and tested
in a distributed environment [34].

There are several variations of GXPath, and we use a min-
imalistic one, as we prove an undecidability result: a frag-
ment of core GXPath with data value comparisons, denoted
by GXPathcore

∼ (following the convention in the literature on
data trees, we use ∼ to denote data value comparisons).

In defining the language, we assume that for every la-
bel a ∈ Σ, the alphabet also contains a label a− which
defines the inverse: Ea− = {(v, v′) | (v′, v) ∈ Ea}. That
is, each edge can be traversed in either direction. As usual
for XPath, expressions include node expressions (denoted
by ϕ,ψ) that select nodes, and path expressions (denoted
by α, β) that select pairs of nodes. These are given by mu-
tually recursive definitions below:

α, β := ε | a | a∗ | α · β | α ∪ β | α= | α6= | [ϕ]
ϕ,ψ := ¬ϕ | ϕ ∧ ψ | ϕ ∨ ψ | 〈α〉

Given a data graph G = 〈V,E〉, the semantics of a path
expression is [[α]]G ⊆ V × V , and the semantics of a node
expression expression is [[ϕ]]G ⊆ V . Precise definitions of
those are in Figure 1. Intuitively, ε defines the set of pairs
(v, v), while a defines Ea and a∗ defines its transitive clo-
sure. Expressions α · β and α ∪ β define composition and
union, and α= (or α6=) gives pairs of nodes defined by α
that carry the same (or different) data value. Two types
of expressions connect path and node expressions: 〈α〉 is
the first projection of the semantics of α (i.e., nodes from
which a path satisfying α can start), and [ϕ] gives pairs of
nodes (v, v) satisfying ϕ. Node expressions are closed under
Boolean operations.

Note that this fragment excludes many features of full
GXPath, such as negation of path expressions ¬α, arbi-
trary transitive closure α∗, and even simpler features such
as checking for a constant data value and intersection of
paths. But even for this simple fragment of GXPath, query
answering is undecidable in data complexity for the simplest
possible mappings.

Theorem 6. There is a relational GSM M that is both
LAV and GAV and a GXPathcore

∼ node expression ϕ so that
the problem QueryAnswering GSM(M, ϕ) is undecidable.

The problem is undecidable for path expressions as well,
since v ∈ 2M(ϕ,G) iff (v, v) ∈ 2M([ϕ], G). The proof of
Theorem 6 is based on the following.

Lemma 2. There is a fixed labeling alphabet Σ and a
GXPathcore

∼ node expression ϕ such that the following prob-
lem is undecidable: given a data graph G over Σ and a node
v, is there a data graph G′ ⊇ G such that v 6∈ [[ϕ]]G′ .

Theorem 6 is an immediate consequence of Lemma 2: take
M to be {(a, a) | a ∈ Σ} (i.e., the source and target alpha-
bets are the same). Then v 6∈ 2M(ϕ,G) iff v 6∈ [[ϕ]]G′ for
some G′ ⊇ G.

Proof idea (Lemma 2). We prove a stronger statement. A
labeled tree is said to have the non-repeating property if no

Path expressions Node expression

[[ε]]G = {(v, v) | v ∈ V }
[[a]]G = {(v, v′) | (v, a, v′) ∈ E}

[[a∗]]G = {(v, v′) | ∃ v π→ v′ with λ(π) ∈ a∗}
[[α · β]]G = [[α]]G ◦ [[β]]G

[[α ∪ β]]G = [[α]]G ∪ [[β]]G
[[[ϕ]]]G = {(v, v) ∈ G | v ∈ [[ϕ]]G}
[[α=]]G = {(v, v′) ∈ [[α]]G | δ(v) = δ(v′)}
[[α6=]]G = {(v, v′) ∈ [[α]]G | δ(v) 6= δ(v′)}

[[〈α〉]]G = {v | ∃v′ (v, v′) ∈ [[α]]G}
[[¬ϕ]]G = V − [[ϕ]]G

[[ϕ ∧ ψ]]G = [[ϕ]]G ∩ [[ψ]]G
[[ϕ ∨ ψ]]G = [[ϕ]]G ∪ [[ψ]]G

Figure 1: Semantics of GXPathcore
∼ with respect to G = 〈V,E〉

alphabet letter can label two different children of the same
node. Then Lemma 2 is true under the following assump-
tions: G is a tree with the non-repeating property, v is its
root, all data values in G are distinct, and if there exists
G′ ⊇ G satisfying v 6∈ [[ϕ]]G′ , then such a G′ can be chosen
to be a tree with the non-repeating property and the same
root v.

To show this, as in Theorem 1, we use reduction from
PCP. We assume that PCP instances {(ur, vr) | 1 ≤ r ≤
n} are over the alphabet {a, b}, and in the encoding we
use additional separator labels t, t#, s, v, #, ←, →, ←#,
→#, m, id. Some of them have the same meaning as in
the proof of Theorem 1, but new ones are needed to encode
the instance in a tree structure: t# marks the end of the
encoding of a list of pairs from the instance;← and→ mark
tree branches that encode uis and vis, and ←# and →#

respectively terminate these branches. The PCP instance is
encoded as a source tree:

start

I1
t

I2
t . . .t

In
t t#

where each Ir encodes the pair (ur, vr) as follows:

↔r

c1r

←

c2r

←

...

←

cirr

←

←#

d1
r

→

d2
r

→

...

→

djrr

→

→#

u1
r

u2
r

uirr

v1
r

v2
r

vjrr

In the encoding of the entire PCP instance, the “horizontal”
path from the start node goes via roots of trees Ir. Addi-
tionally, data values of all the nodes are pairwise distinct.

The idea is then to construct a node expression ϕ such
that the PCP instance is satisfiable iff there exists a data
tree G′ ⊇ G rooted at start with the non-repeating prop-
erty satisfying start /∈ [[ϕ]]G′ . The construction uses the
idea of attaching the solution and the verification sections
to G: the solution section codes a possible solution to the
PCP instance and the verification section verifies that it is
a solution. The query ϕ essentially looks for “errors” in the
construction of these additional sections. If start /∈ [[ϕ]]G′ ,
it means there are no errors, and thus a solution was found.
The construction is somewhat lengthy and involved, and is
given in the appendix.

Static analysis of GXPath In addition to applications
in query answering under GSMs, we can use Lemma 2 to
answer some open questions on static analysis of GXPath
expressions. Typical static analysis problems are:

• satisfiability: given an expression ϕ, is there a data
graph G such that [[ϕ]]G 6= ∅?, and

• containment: given two expressions ϕ and ψ, is it true
that [[ϕ]]G ⊆ [[ψ]]G for every G?

These problems have been studied in depth for XPath on
trees, and more recently they were looked at in the context
of GXPath, with [26] showing several undecidability results
for regular GXPath. This more expressive language allows
path expressions α∗, i.e., transitive closure of arbitrary path
expressions. In our case of core GXPath, transitive closure
only applies to alphabet labels. For core GXPath, decidabil-
ity of containment and satisfiability was not known.

We can now use techniques of Lemma 2 to strengthen
results of [26] and prove undecidability of static analysis of
core GXPath with data value comparisons.

Theorem 7. Both satisfiability and containment prob-
lems are undecidable for GXPathcore

∼ .

Proof sketch. We give a proof for the satisfiability problem;
undecidability of containment easily follows from it. We use
the strong version of Lemma 2 described in the sketch of the
proof of Theorem 6. Let Σ and ϕ be the schema and query
fixed by the statement of the lemma. Let G be a data tree
with the non-repeating property, all distinct data values,
and root v such that if there exists a data graph G′ ⊇ G
such that v /∈ [[ϕ]]G′ , then such a G′ can be chosen to be a
tree with the non-repeating property whose root is also v.
To prove the theorem, we define a new GXPathcore

∼ formula
ϕ′ that depends on ϕ and G such that ϕ′ is satisfiable iff
there exists a data graph G′ ⊇ G such that v /∈ [[ϕ]]G′ .

For this, we define two queries, ϕG and ϕδ, that will ensure
that any witness for ϕ′ is a data graph that contains G. The
goal for ϕG is to ensure that any data graph satisfying it
contains the topological structure of G. The formula ϕG is
defined inductively: for a single-node tree it is 〈ε〉, and for a
tree with children of the root labeled a1, . . . , an and having
subtrees G1, . . . , Gn, we define ϕG as 〈a1 · [ϕG1]〉∧ . . .∧〈an ·
[ϕGn]〉.

For ϕδ, let wx, for a node x of G, be the label of the unique
path from the root to x in G. We define ϕδ =

∧
{¬〈wy ·

(w−y · wz)=〉 | y, z nodes of G and y 6= z}. Then one can
show that G embeds homomorphically into any graph G′

that satisfies ϕG and, if ϕδ in addition holds in G′, then
G is contained in G′, up to a renaming of data values and
nodes ids.

With this, we define ϕ′ as ϕG∧ϕδ∧¬ϕ. It is then routine
to verify that ϕ′ is satisfiable iff there exists a data graph
G′ ⊇ G such that v /∈ [[ϕ]]G′ .

10. CONCLUSIONS
Our main conclusion is that under graph schema map-

pings, answering queries that combine navigation and data
is very different from answering purely navigational queries.
Undecidability arises very easily; even under strong restric-
tions one has intractability of query answering; and achiev-
ing tractability requires new techniques that do not mirror
those known for relational and XML data.

There are several directions in which we would like to ex-
tend this work. First of all, now that we understand what
is needed to achieve tractability for the abstraction of data
graph, we would like to see how these restrictions look in the
case of property graphs of Neo4j [36] and language and con-
straint formalisms advocated by LDBC [27]. The eventual
goal of such a project is to build an integration/exchange
system on top of a commercial graph database.

Our results suggest viewing target databases as relational,
at least from the point of view of mappings. An alternative
of going from relations to graphs has been explored in [11],
although mainly intractability results were shown. It would
be interesting to see if useful restrictions on relational-to-
graph mappings can be found, perhaps using techniques de-
veloped here.

We would also like to investigate the use of SQL nulls, as
exploited here, in relational data exchange systems. Such
systems normally use marked nulls, which need to be im-
plemented on top of relational DBMSs. The advantage of
using SQL nulls is that no additional implementation of rela-
tional database features is needed, and they appear to allow
efficient answering of a rather large class of queries in inte-
gration and exchange scenarios.

Acknowledgments We thank referees for their comments.
This work was supported by EPSRC grants M025268 and
N023056.

11. REFERENCES
[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of

Databases. Addison-Wesley, 1995.

[2] R. Angles, C. Gutiérrez. Survey of graph database
models. ACM Comput. Surv. 40(1): (2008).

[3] R. Angles, M. Arenas, P. Barcelo, A. Hogan, J.
Reutter, D. Vrgoč. Foundations of modern graph
query languages. arXiv preprint 1610.06264, 2016.

[4] S. Amano, C. David, L. Libkin, F. Murlak. XML
schema mappings: data exchange and metadata
management. J. ACM 61(2): 12:1-12:48 (2014).

[5] M. Arenas, P. Barceló, L. Libkin, F. Murlak.
Foundations of Data Exchange. Cambridge
Univ. Press, 2014.

[6] M. Arenas, P. Barceló, J. Reutter. Query languages for
data exchange: beyond unions of conjunctive queries.
Theory of Computing Systems 49(2):489–564 (2011).

[7] P. Barceló, G. Fontaine, A. W. Lin. Expressive path
queries on graphs with data. LMCS, 11(4:1) 2015.

[8] P. Barceló, J. Pérez, J. Reutter. Schema mappings and
data exchange for graph databases. In ICDT 2013,
pages 189-200.

[9] Z. Bellahsene, A. Bonifati, E. Rahm, eds. Schema
Matching and Mapping. Springer, 2011.

[10] M. Bojanczyk. Automata for data words and data
trees. In RTA 2010, pages 1-4.

[11] I. Boneva, A. Bonifati, R. Ciucanu. Graph data
exchange with target constraints. In EDBT/ICDT
Workshop GraphQ, 2015, pages 171–176.

[12] D. Calvanese, G. De Giacomo, M. Lenzerini, M. Vardi.
View-based query processing and constraint
satisfaction. LICS 2000, pages 361–371.

[13] D. Calvanese, G. De Giacomo, M. Lenzerini, M. Vardi.
Rewriting of regular expressions and regular path
queries. J. Comput. Syst. Sci. 64(3): 443-465 (2002).

[14] D. Calvanese, G. De Giacomo, M. Lenzerini, M. Vardi.
On simplification of schema mappings. J. Comput.
Syst. Sci. 79(6): 816-834 (2013).

[15] S. Cassidy. Generalizing XPath for directed graphs. In
Extreme Markup Languages, 2003.

[16] I. Cruz, A. Mendelzon, P. Wood. A graphical query
language supporting recursion. In SIGMOD’87, pages
323–330.

[17] C. J. Date and H. Darwen. A Guide to the SQL
Standard. Addison-Wesley, 1996.

[18] S. Demri, R. Lazic. LTL with the freeze quantifier and
register automata. ACM TOCL 10(3): (2009).

[19] A. Doan, A. Halevy, Z. Ives. Principles of Data
Integration. Morgan Kaufmann, 2012.

[20] R. Fagin, P. Kolaitis, R. Miller, and L. Popa. Data
exchange: semantics and query answering. Theoretical
Computer Science, 336(1):89–124, 2005.

[21] N. Francis, L. Segoufin, C. Sirangelo. Datalog
rewritings of regular path queries using views. In
ICDT 2014, pages 107-118.

[22] P. Guagliardo and L. Libkin. Making SQL queries
correct on incomplete databases: A feasibility study.
In PODS 2016, pages 211–223.

[23] L. M. Haas, M. A. Hernández, H. Ho, L. Popa, and
M. Roth. Clio grows up: from research prototype to
industrial tool. In SIGMOD, pages 805–810, 2005.

[24] J. Hellings, B. Kuijpers, J. Van den Bussche, X.
Zhang. Walk logic as a framework for path query
languages on graph databases. In ICDT 2013, pages
117–128.

[25] M. Kaminski and N. Francez. Finite memory
automata. TCS, 134(2):329-363, 1994.

[26] E. Kostylev, J. Reutter, D. Vrgoč. Containment of
data graph queries. In ICDT 2014, pages 131–142.

[27] LDBC. Linked Data Benchmark Council.
http://www.ldbcouncil.org.

[28] M. Lenzerini. Data integration: a theoretical
perspective. In PODS 2002, pages 233–246.

[29] L. Libkin. SQL’s three-valued logic and certain
answers. ACM TODS, 41(1) (2016), 1–28.

[30] L. Libkin, W. Martens, and D. Vrgoč. Querying graphs
with data. Journal of the ACM 63(2): 14 (2016).

[31] L. Libkin, T. Tan, D. Vrgoč. Regular expressions for
data words. JCSS 81(7): 1278-1297 (2015).

[32] A. Ma̧dry. Data exchange: On the complexity of
answering queries with inequalities. IPL, 94 (2005),
253–257.

[33] B. Marnette, G. Mecca, P. Papotti, S. Raunich, and
D. Santoro. ++Spicy: an opensource tool for
second-generation schema mapping and data
exchange. PVLDB, 4 (2011),1438–1441.

[34] M. Nolé, C. Sartiani. A distributed implementation of
GXPath. In EDBT/ICDT Workshops 2016.

[35] J. Pérez, M. Arenas, C. Gutierrez. nSPARQL: A
navigational language for RDF. In J. Web Sem. 8(4):
255–270 (2010).

[36] I. Robinson, J. Webber, E. Eifrem. Graph Databases.
O’Reilly, 2013.

[37] L. Segoufin. Static analysis of XML processing with
data values. SIGMOD Record 36(1): 31–38 (2007).

[38] XML Path Language (XPath).
www.w3.org/TR/xpath.

