
HAL Id: hal-01803445
https://hal.science/hal-01803445v1

Submitted on 30 May 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Asymptotic Determinacy of Path Queries using
Union-of-Paths Views

Nadime Francis

To cite this version:
Nadime Francis. Asymptotic Determinacy of Path Queries using Union-of-Paths Views. Theory of
Computing Systems, 2017, 61 (1), pp.156-190. �10.1007/s00224-016-9697-x�. �hal-01803445�

https://hal.science/hal-01803445v1
https://hal.archives-ouvertes.fr

Asymptotic Determinacy of Path Queries using
Union-of-Paths Views

Nadime Francis∗

ENS-Cachan, Inria

Abstract

We consider the view-based query determinacy problem over graph databases for queries defined as unions
of path queries. These queries select pairs of nodes in a graph that are connected through a path whose
length falls in a given set. A view specification is a set of such queries. We say that a view specification V
determines a query Q if, for all databases D, the answers to V on D contain enough information to answer
Q. Our main result states that, given a view V, there exists an explicit bound that depends on V such
that we can decide the determinacy problem for all queries that ask for a path longer than this bound,
and provide first-order rewritings for the queries that are determined. We call this notion asymptotic
determinacy. As a corollary, we can also compute the set of almost all path queries that are determined
by V.

1 Introduction

View determinacy is a static analysis problem on databases that consists in deciding whether a
given set of initial queries, called a view, contains enough information to answer a new query, and
this on all databases. Solving this problem has many applications, namely in query optimization
and caching. Assume that querying the database is costly, but that answers to all previous queries
are kept in cache. Then it is useful to know whether a new query can be answered using only
cached information and without accessing the database. In that case, we are then interested in
finding a rewriting, that is, a query that explicitly computes the desired information by querying
only cached data. Query determinacy can also be stated as a security problem. Assume that views
represent information that can be publicly accessed, but that the considered query contains private
data that should not be disclosed. Then it should be ensured that the view does not determine the
query, in other words that there exists no rewriting of the private queries using public data.

We consider this question over graph databases. Graph databases are relational databases
in which all relations are binary. Equivalently, they can be seen as directed graphs whose edges
carry a label from a finite alphabet. Such databases arise naturally in several scenarios, which
include social networks, crime detection, biological data and the Semantic Web. For instance, in
social networks, individual data such as name or phone number are represented as nodes, whereas
relationships between members of the network are edges linking the corresponding nodes and
labeled by the nature of the relationship. Thus, a person X is a friend of a person Y if there is an
edge going from X to Y with the label friend.

Information contained in a graph database does not only lie in the content of the graph but
also in its topology, that is, in how the different data nodes are connected to each other. Typical
queries then ask about topological properties of the graph, namely the existence of edges, paths,
and so on. In a social network, a user X could be interested in computing the transitive closure of
the friend relation: she would like to retrieve all nodes Y such that there is a path going from X
to Y using only the friend label.

∗Part of this work was done while the author was supported by EPSRC grant EP/M025268/1.

1 Introduction 2

The determinacy problem has been considered in various contexts (see [1], [8] among others). It
was shown in [2] that determinacy is decidable when queries and views are defined as path queries,
that is, queries Qk that select pairs of nodes (x, y) such that there is a path from x to y whose
length is a given integer k. For instance, it proves that the two views Q3 and Q4 determine the
query Q5, which is not immediate to see.

The main contribution of our work is to extend this result by considering a broader class of
views that allows disjunction. More precisely, we consider here unions of path queries. A union
of path queries Q is a query that selects pairs of nodes in a graph that are connected through a
path whose length falls in a given set. For instance, a query Qk,` selects pairs of nodes that are
linked either by a path of length k or a path of length `. A typical case covered by our work is the
following: views are Q2, Q1,2 and Q2,3, and we will see that these views determine the query Q5.
While most of our work can and should be understood in this setting, we also show how to extend
it to cover arbitrary disjunctions, that is, unions of path queries whose associated sets are infinite.

In this paper, we show that, given a view V defined by unions of path queries, we can decide
whether V determines a path query Q assuming Q is “big enough,” that is, Q asks for the existence
of a path longer than some n0 that we can effectively compute from V. We call this notion
asymptotic determinacy. Although n0 is of exponential size, our decision procedure actually works
in ΠP

2 in the size of the queries that occur in the view. When it concludes that V determines Q, we
also provide a first-order rewriting of Q using V. Otherwise, it produces a generic counter-example
that shows that V does not determine Q. Our technique starts by reducing V to a much simpler
view V′ which has many useful properties, including that some Q ∈ V′ is actually a path query Qc,
for some integer c. This particular query is a key to our reasoning, as it allows us to reduce infinite
structures to finite ones by computing modulo c. The finite number of small queries that we are not
able to process are cases where both our criterion of determinacy and our generic counter-examples
fail.

Related Work.

The determinacy problem has been considered in [3] for regular path queries, i.e. queries that
select pairs of nodes that are connected through a path whose sequence of labels satisfies some
regular expression. In [3], determinacy is known as losslessness under the exact views assumption.
However, it is still unknown whether this property is decidable and what a good rewriting language
could be. Note that, on a one-letter alphabet, regular path queries are actually weaker than infinite
unions of path queries, and that finite unions of path queries are exactly regular path queries whose
associated set is finite.

The determinacy problem has been solved in two specific cases. First, [2] showed how to decide
whether a path view determines a path query and provides first-order rewritings of the query using
the view when it is the case. The work presented here can be seen as an extension of [2], where we
consider more expressive views, by allowing (possibly infinite) disjunction. In [2], a simple criterion
is given: the view determines the query if and only if the view image of a simple path satisfying
the query is connected. We will see in Example 1 and Example 2 that this decision criterion no
longer applies here, as the view images in these examples are connected, but the view does not
determine the query.

Second, [5] proved that regular path queries can always be rewritten as Datalog queries using
regular path views, assuming monotone determinacy. Monotone determinacy is a stronger form
of determinacy that is known to be decidable in this setting. It requires both determinacy and
the fact that rewritings of the query using the view are monotone. Our work can be seen as an
attempt to lift this monotonicity assumption, while still retaining some of the expressive power
of regular path queries and views, such as disjunction and transitive closure. Of course, without
assuming monotonicity there is no hope of finding a rewriting in Datalog, since it can only express
monotone queries.

On the negative side, it was proved in [6] that determinacy is undecidable for conjunctive
queries and conjunctive views in the unrestricted case, that is, when the databases are allowed to
be infinite. This work has later been expanded in [7] to cover the standard case where databases

2 Preliminaries 3

are required to be finite, while maintaining the undecidability result. While conjunctive queries
and views are not directly comparable to the languages that we consider, these results strongly
hint at the fact that determinacy remains a difficult problem even in seemingly simple cases.

The simplest cases for which determinacy is undecidable and that contain path queries and
union-of-paths views are provided by [5]. There, it is shown that determinacy is undecidable
for regular path queries, using either context-free path views or conjunctive regular path views.
Admittedly, both settings offer considerably more expressive power than the query and view
languages that we consider here, such as multiple labels in the alphabet, disjunctions in the query,
and conjunctions in the view. However, to the best of our knowledge, there are no intermediate
settings for which determinacy has been shown to be undecidable.

This paper is an extended version of [4]. This extended version contains all the details of the
proofs that were missing or merely sketched in the conference version. Additionally, Section 3 also
covers an alternate and more intuitive statement of the asymptotic determinacy problem that was
defined in [4], and Section 5 discusses several possible extensions of this work, and the challenges
that come with them.

2 Preliminaries

Graph Databases.

A binary schema σ is a finite set of binary relational predicates. A graph database D over σ is a rela-
tional structure over a binary schema σ. Alternatively, it can also be seen as a directed edge-labeled
graph whose labeling alphabet are symbols in σ. An element in the domain of D is called a node.

A path π in a database D from x0 to xm is a finite sequence π = x0a0x1 . . . xm−1am−1xm,
where each xi is a node of D, each ai is a symbol of σ, and for all i, ai(xi, xi+1) holds in D. Such a
path is said to be simple if each node occurs at most once in π. We write π = x0 . . . xm when the
specific symbol of σ that holds for each pair (xi, xi+1) is irrelevant. The length of π, denoted by
|π|, is the length of the word a0 . . . am−1, in this case m. To denote the fact that π is a path from

x0 to xm, we will write x0
π→ xm. Similarly, we will sometimes use x

k→ y to say that there exists
a path of length k going from x to y, when the sequence of symbols that occur along the path is
irrelevant. By abuse of notation, we also consider π as a graph database that contains exactly the
nodes x0, . . . , xm, and in which only ai(xi, xi+1) holds, for all i.

Queries.

A binary query Q over a schema σ is a mapping associating to each graph database D over σ a
binary relation Q(D) over the domain of D. We consider the following two query languages.

A path query Q is defined by a single positive integer k. On a given database D, Q returns all
the pairs of nodes (x, y) in D such that there exists a path in D from x to y of length k. In other

words, Q(D) = {(x, y) ∈ D | ∃π, x π→ y and |π| = k}. For ease of notation and consistency with
what follows, we will write Q = {k}.

A union of path queries Q is defined by a finite set of positive integers {k1, k2, . . . , kn}, and
returns all the pairs of nodes that are connected through a path whose length belongs to the set,
i.e. Q(D) = {(x, y) ∈ D | ∃π, x π→ y and |π| ∈ Q}. By abuse of notation, Q represents both the
query and the associated set. Unions of path queries are a generalization of path queries, as any
path query can be seen as a union of path queries whose associated set is of size 1.

Remark that these query languages cannot distinguish the specific labels that are used to
build the required paths. The simplest way to compare them to other commonly used query
languages is to assume that the schema σ on wich the databases are defined only contains a single
predicate. In this case, path queries are conjunctive queries whose underlying graph is a directed
path. Alternatively, they are also regular path queries whose associated language is a single word.
Then, unions of path queries are simply unions of such queries, or regular path queries whose
associated language is finite.

2 Preliminaries 4

a

a

aa

c c

b b

b

Fig. 1: A database (left) and its view image (right) through a view V. Here, σ = {a}, τ = {b, c}.
V = {Qb,Qc}, with Qb = {2} and Qc = {3}. The names of the nodes are omitted for
readability. Instead, the corresponding nodes are placed at the same relative position in the
database and its view image.

If |σ| ≥ 2, then path queries are not strictly speaking conjunctive queries. Indeed, assume that
σ = {a, b}, then the query Q = {2} selects all pairs of nodes (x, y) such that there exists a path
π = xαzβy, with αβ ∈ {aa, bb, ab, ba}, which cannot be expressed as a conjunctive query. This
means that path queries correspond to a very restricted form of disjunction. However, it is more
natural to say that path queries are not directly evaluated on a graph database D, but on the
underlying structure of D, which is an unlabeled graph. In this case, the first comparison applies.

Views.

Let σ and τ be two binary schemas. A view V from σ to τ is a set of binary queries over σ, one
for each symbol in τ . Note that, since both σ and τ are finite, then V is also a finite set. Given a
database D over σ, the view image of D, V(D), is defined as the database E over τ such that, for
each b ∈ τ , the interpretation of b in E is precisely Qb(D), where Qb is the query in V associated
with b. The nodes of E are exactly those that appear in one of those relations, also known as the
active domain of E. See Figure 1 for an example of a database and its view image.

By abuse of notation, we will use the same symbol (typically V) to denote both a symbol b ∈ τ
and its associated query Qb ∈ V. Thus, it is the same to say that V (x, y) holds in V(D), or that
(x, y) ∈ V (D). In other words, the interpretation of (the symbol) V in E = V(D), and the answers
to (the query) V on D represent the same relation. Finally, for complexity purposes, we will use
|V| to refer to the size of the set V, that is, the number of queries it contains, and ‖V‖ to refer to
the sum of sizes of all queries that occur in V.

When a view is defined by queries that belong to a certain query language, we will informally
extend the name of the query language to the view. For instance, a view defined by conjunctive
queries will be called a conjunctive view, a view defined by path queries will be called a path view
and a view defined by unions of path queries will be called a union-of-paths view.

Determinacy.

A formal definition of determinacy is given in [10] as:

Definition 1 (Determinacy). We say that a view V determines a query Q if:

∀D,D′,V(D) = V(D′) ⇒ Q(D) = Q(D′)

Intuitively, this means that a view V determines a query Q, which we write V � Q, if, for all
databases D, V(D) always contains enough information to answer Q on D. Moreover, we say that
a query R is a rewriting of Q using V if R(V(D)) = Q(D) for all D.

The determinacy problem is the problem of deciding, given a view V and a query Q, whether
V � Q. To the best of our knowledge, its decidability status is still open when Q is a conjunctive
query and V a conjunctive view, and also when Q is a regular path query, and V a regular path
view. Nonetheless, several cases have been considered and solved. The results in [2] solve the
problem when Q is a path query and V a path view. In [10], this problem is considered for Q

2 Preliminaries 5

and V defined by conjunctive queries, and in [5] for Q and V defined with regular path queries,
both with the added restriction that V must determine Q in a monotone way, which means that a
monotone rewriting of Q using V exists.

Here, we consider the determinacy problem for Q defined as a path query, and V defined as a
set of unions of path queries. However, for each V, there exist a finite number of queries Q on
which our technique does not work. Hence, we are actually solving a slightly weaker problem, that
we call the α-asymptotic determinacy problem which allows, for each V, to exclude a finite number
of queries Q. The excluded queries are those that ask for a path shorter than α(V), where α is
a fixed function that maps each view to a natural number. Note that providing an answer or a
rewriting in “almost all” cases is something that has already been considered in the same context,
for instance in [2]. We can now formally state the problem and our main result:

Problem : α-asymptotic determinacy
Input : A union-of-paths view V and a path query Q = {n}, with n > α(V)
Question : Does V � Q?

Theorem 1. There exists an explicit and computable function α for which the α-asymptotic
determinacy problem is decidable. Moreover, when the view determines the query, the decision
procedure effectively computes a first-order rewriting of the query using the view.

It will actually come from the proof that the specific α for which we can solve the problem
grows exponentially in the size of the queries in V, as α(V) is in 2O(‖V ‖4). However, the decision
procedure itself works with a much lower ΠP

2 complexity.

Arithmetic Tools.

Some of the proofs in this work involve a lot of arithmetic reasoning. We present here the notations
and properties that we use. Given two integers n and d, n[d] represents the remainder in the
division of n by d. We say that two integers n1 and n2 are equivalent modulo d, and we write
n1 ≡ n2[d] if they have the same remainder modulo d. We denote by gcd(A) the greatest common
divisor of a set of integers A, and we use n1 ∧ n2 for gcd({n1, n2}).

We will make extensive use of Bezout’s Identity, a fundamental arithmetic property stating
that, for a given set of integer A = {n1, . . . , nk}, there exist integers a1, . . . , ak such that a1n1 +
. . . + aknk = gcd(A). Moreover, it was proved in [9] that these integers can be chosen so that
|ai| ≤ max(|n1|, . . . , |nk|)/2, for all i. Remark also that if A contains both positive and negative
numbers, then these integers can be chosen so that ai ≥ 0, for all i. We will refer to this as Bezout’s
Identity with positive coefficients. In this case, a naive way of producing such coefficients from
those given by [9] makes them to be of size at most |A|max(|n1|, . . . , |nk|)2, which will be sufficient
for our analysis.

Additionally, for two binary relations R and S, we write R·S for {(x, z) | ∃y,R(x, y) and S(y, z)}.
Let n be a positive integer, we also use R1 = R, and Rn = Rn−1 ·R if n ≥ 2. For two unions of
path queries Q = {k1, . . . , kn} and P = {`1, . . . , `m}, we define Q · P = {ki + `j | i ≤ n, j ≤ m},
and similarly define Qn. This notation is consistent with the fact that, for any database D,
Q · P(D) = Q(D) · P(D). Remark that, when Q and P are path queries, then Q · P is also a path
query, as is Qn.

Organization.

The rest of the paper investigates the determinacy problem for a path query Q using view V defined
by unions of path queries. In Section 3, we start by providing some conditions on Q and V that
are necessary for V to determine Q, which leads to a more intuitive statement of the asymptotic
determinacy problem. Section 4 is dedicated to proving Theorem 1, which gives a procedure for
deciding the determinacy problem for almost all path queries Q, as well as a first-order rewriting
of Q using V for the queries that are determined. Finally, in Section 5, we discuss the issue that
remains to be solved in order to decide determinacy for all queries, as well as possible extensions of
this work.

3 Towards Asymptotic Determinacy 6

3 Towards Asymptotic Determinacy

In this section and the next, we consider path queries and union-of-paths views. When we simply
say “query” or “view”, it is implied that they belong to those specific classes.

In Section 3.1, we provide a set of necessary conditions for a view V to determine a query Q.
We then use these results in Section 3.2 to restate the asymptotic determinacy problem in a more
intuitive way, which will justify its name.

3.1 First Results

Our first lemma states that a view V cannot possibly determine a query Q if V does not at least
contain a path query. In other words, even though V is defined using unions of path queries, at
least one of them cannot make use of the union.

Lemma 1. Assume that a view V and query Q are such that V � Q. Then there exists C ∈ V
such that |C| = 1.

Proof. Assume by contraposition that, for all V ∈ V, |V | > 1. Let Q = {n}. We build a database
D over σ = {a} as follows:

• D contains n+ 1 distinct nodes x0, . . . , xn.

• For all i < n, a(xi, xi+1) holds in D.

• For all i ≤ n and for all V ∈ V such that i ∈ V , we add to D a simple path πi,V from x0 to
xi, such that |πi,V | ∈ V − {i}. Such a path exists because |V | > 1.

We then construct another database D′ which is a copy of D except that a(x0, x1) does not
hold in D′. It is then easy to check that V(D) = V(D′) and that Q(D) 6= Q(D′). In particular,
(x0, xn) ∈ Q(D) and (x0, xn) /∈ Q(D′). Hence V 6� Q, which concludes the proof. This construction
is illustrated in Figure 2.

x0 x1 x2 x3 x4

Fig. 2: Illustration for the proof of Lemma 1, showing here that V = {2, 4} 6� Q = {4}. Following
the notations in the proof, the top path is π2,V and the bottom path is π4,V . Remark then
that adding or removing the dashed edge does not change the view, but changes the query
result.

In view of Lemma 1, we know that we can restrict our attention to views that contain a path
query C. This allows us to state the following definition for such views:

Definition 2 (Complete view). Let V be a view and C ∈ V such that C = {c}. We say that V is
C-complete if, for all i ∈ {0, . . . , c− 1}, there exists V ∈ V and k ∈ V such that k ≡ i[c].

For our next necessary condition, we adapt the condition in [2] which originally works as follows.
Let Q = {n} be a path query and V be a path view, without unions. Consider a database D
which consists of a simple path of length n: x0 . . . xn. Let E = V(D), and let G be the underlying
undirected graph of E, that is a graph whose set of nodes is exactly the set of nodes of E, and
such that there is an undirected and unlabeled edge between two nodes x and y in G if and only if
there is any edge going from x to y or from y to x in E. Then it was shown in [2] that, if V � Q,
then x0 and xn belong to the same connected component in G. We remark that this condition still
holds when V is a union-of-paths view:

3 Towards Asymptotic Determinacy 7

Claim 1. Let V be a view and Q = {n}. Let π = x0 . . . xn. If V � Q then there is an undirected
path from x0 to xn in V(π).

This claim could quite easily be proved by looking at the construction given in [2] and showing
that it still applies when V contains unions. Instead, we give another simple argument: consider
V′ to be the path view deduced from V by separating all the unions, that is, if V = {k1, . . . , km}
is a query in V, then V′ contains all the queries Vi = {ki}. Then the result comes from applying
the condition on V′ together with the two following remarks: first, if V � Q, then V′ � Q, as
V′ yields strictly more information. Second, for any database D, V(D) and V′(D) have the same
connectedness properties.

This condition allows us to reduce any determinacy problem to an equivalent problem with the
added hypothesis that the view is C-complete:

Lemma 2. Let V be a view and C ∈ V such that C = {c}. Let Q = {n}, and π = x0 . . . xn.
Assume that there is a path from x0 to xn in V(π). Then we can effectively compute a view V ′

with C ′ ∈ V ′ such that C ′ = {c′} and a query Q′ such that V ′ is C ′-complete and V � Q if and
only if V ′ � Q′.

Proof. Let V and Q be defined as in the statement of the lemma. Let U be the set of all numbers
that appear in V, that is:

U =
⋃
V ∈V
u∈V

{u}

and d = gcd(U).
Assume d = 1. Then there exists u1, . . . , uk ∈ U such that u1 + . . . + uk ≡ 1[c]. This means

that there exists V1, . . . , Vk ∈ V and v ∈ V = V1 · . . . · Vk such that v ≡ 1[c]. We define V′ as

V′ = V ∪
c⋃
i=1

{V i}

and Q′ = Q. It follows that V′ is C-complete. Indeed, for all k ∈ {0, . . . , c − 1}, V k contains
kv ≡ k[c]. Additionally, V′ � Q′ if and only if V � Q, as all queries in V are also in V′, and all
queries in V′ can be written as compositions of queries in V.

Assume now that d 6= 1. Then d divides all the numbers in V. Additionally, we know that
there exists a path from x0 to xn in V(x0 . . . xn), which implies that d divides n as well. For each
V ∈ V, we define V ′ = {ud | u ∈ V }. We then define V′ = {V ′ | V ∈ V} and Q′ = {nd }.

Claim 2. V � Q if and only if V ′ � Q′.

• Assume that V 6� Q. Then there exists two databases D1 and D2 such that D1 and D2 agree
on V but not on Q. We build two new databases D′1 and D′2 that are copies of D1 and D2

except that there is an edge between x and y in D′i if and only if there is a path of length d
from x to y in Di.

Let x and y be two nodes of D′1 such that (x, y) ∈ V ′(D′1) for some V ′ ∈ V′. Then there
exists u ∈ V ′ such that x and y are at distance u in D′1. By construction, this means that x
and y are at distance du in D1. Hence, (x, y) ∈ V (D1). Then (x, y) ∈ V (D2). Thus, there
exists v ∈ V such that x and y are at distance v in D2. It follows that x and y are at distance
v
d in D′2, and finally that (x, y) ∈ V ′(D′2). Hence D′1 and D′2 agree on V′. A similar reasoning
shows that D′1 and D′2 don’t agree on Q′, so that we can conclude that V′ 6� Q′.

• Assume that V′ 6� Q′. Then there exists two databases D′1 and D′2 such that D′1 and D′2
agree on V′ but not on Q′. We build two new databases D1 and D2 as follows:

– For each node x of D′i and each α ∈ {0, . . . , d− 1}, (x, α) is a node of Di.

– For each x and each α < d− 1, there is an edge from (x, α) to (x, α+ 1).

3 Towards Asymptotic Determinacy 8

– For each x, y such that there is an edge from x to y in D′i, there is an edge from (x, d−1)
to (y, 0) in Di.

Let (x, α) and (y, β) be two nodes of D1 such that
(
(x, α), (y, β)

)
∈ V (D1) for some V ∈ V.

Then there exists u ∈ V such that (x, α) and (y, β) are at distance u in D1. Since u ∈ V , we
have u ≡ 0[d], which implies that α = β. By construction, this implies that x and y are at
distance u

d in D′1. Hence, (x, y) ∈ V ′(D′1). Then (x, y) ∈ V ′(D′2). Thus there exists v ∈ V ′
such that x and y are at distance v in D′2. By construction, this implies that (x, α) and (y, α)
are at distance dv in D2, and thus

(
(x, α), (y, α)

)
∈ V (D2). Hence D1 and D2 agree on V.

A similar reasoning shows that D1 and D2 don’t agree on Q, so that we can conclude that
V 6� Q.

Finally, we get a new set of views V′ for which we can apply the first case of the proof and
compute a new V′ that is C ′-complete.

The last lemma of this section shows that the set of queries determined by a view V which
contains a path query C = {c} is closed under adding c. While perhaps obvious, this result is key
to defining asymptotic determinacy, as will be explained in Section 3.2.

Lemma 3. Let V be a view and C ∈ V such that C = {c}. Let Q = {n}, and assume that V � Q.
Then, for all positive integers k, V � {n+ kc}.

Proof. Let D and D′ be two databases such that V(D) = V(D′). Let Q1 = {n+c}, and assume that
there exists (x, y) in D, such that (x, y) ∈ Q1(D). Then, there exists z in D such that (x, z) ∈ Q(D)
and (z, y) ∈ C(D).

Since V � Q, then x appears in V(D), and thus in V(D′). Similarly, since (z, y) ∈ C(D), then
both z and y appear in both V(D) and V(D′). It remains to notice that (x, y) ∈ Q1(D′). Indeed,
since V � Q, then (x, z) ∈ Q(D′), which implies that there exists a path of length n from x to
z in D′. Additionally, C(z, y) holds in V(D′) (because it also does in V(D)), which implies that
there exists a path of length c from z to y in D′. Altogether, these two paths combine to form a
path of length n+ c going from x to y in D′, and conclude the proof that V � Q1.

It easily follows by induction that V � Qk = {n+ kc} for any positive integer k.

3.2 Asymptotic Determinacy

In this section, we show how to use the results of Section 3.1 to assess the situation from a slighty
different perspective. Let V be a view defined by unions of path queries. Assume that, instead of
being given a specific query Q for which we want to decide whether V � Q, we want to compute
the complete determinacy picture of V. In other words, we want to know all path queries Q such
that V � Q.

We start by using Lemma 1. This allows us to say that, if V does not contain a path query
C = {c}, then there is no path query Q such that V � Q, which answers our question, as well as
the asymptotic determinacy problem. Let us now assume that V does indeed contain a path query
C = {c}. Consider a natural number o ∈ {0, . . . , c − 1}. Then there are two cases for a query
Q = {m} such that m ≡ o[c]:

• Case 1: V does not determine any query Q′ = {n} with n ≡ o[c]. In particular, this means
that V 6� Q, which answers our question for such queries.

• Case 2: There exists some query Q′ = {n} with n ≡ o[c] such that V � Q. Let us assume,
without loss of generality, that Q′ is actually the smallest such query. Then either m < n,
in which case we can easily conclude that V 6� Q, or m ≥ n, in which case Lemma 3
immediately proves that V � Q. Thus the determinacy status for such queries is entirely
determined by this specific n.

4 Deciding Asymptotic Determinacy 9

What this means is that, if we restrict our attention to big enough queries Q = {m} with
m ≡ o[c], there are only two possibilities. Either none of them are determined by Q (Case 1), or
all of them are (Case 2). Thus, deciding the determinacy status of big enough queries becomes
much easier: it simply amounts to deciding, for each o ∈ {0, . . . , c− 1}, if it behaves as in Case 1
or Case 2. This is what we call the asymptotic determinacy picture of V.

This gives a new perspective on the asymptotic determinacy problem: given a view V, we can
first compute the asymptotic determinacy picture of V, and then compute a safety threshold α(V)
that ensures that all queries Q that ask for paths longer than α(V) comply to this asymptotic
determinacy picture. Then, given a query Q = {n} with n > α(V), it simply remains to check if
n[c] is in Case 1 or Case 2, which determines whether V � Q. Finally, by using Lemma 2, we can
restrict our attention to C-complete views. Altogether, this discussion shows that Theorem 1 is a
consequence of the following proposition:

Proposition 1. Given a C-complete view V defined by unions of path queries, such that C ∈ V
with C = {c} for some c ∈ N and a natural number o ∈ {0, . . . , c− 1}, it is decidable in ΠP

2 whether
there exists a query Q = {n} such that n ≡ o[c] and V � Q. If this is the case, such a query Q of

size 2O(‖V‖4) and a first-order rewriting of Q with regards to V can be computed effectively.

Indeed, if V is C-complete, the specific α required by Theorem 1 can be defined as the function
that, given V, computes a witness query for each o ∈ {0, . . . , c− 1} as in Proposition 1, and then
returns the size of the biggest one. If V is not C-complete, then Lemma 2 allows us to compute
a C-complete view V′ for which the previous argument provides a suitable α′. It then remains
to define α(V) = kα′(V′), where k is the gcd of all numbers that appear in V, as in the proof of
Lemma 2. Then, given a query Q = {n}, with n ≥ α(V), we define Q′ = {nk } if k divides n, and
apply Proposition 1 with V′ and Q′, or conclude that V 6� Q otherwise.

Remark that, in order to produce the complete determinacy picture of V, and thus to solve the
general determinacy problem, we would need to compute the smallest query that is determined
by V for each o. We do not know how to solve this challenging task yet, and discuss it further in
Section 5.1. The proof of Proposition 1 itself is the goal of Section 4.

4 Deciding Asymptotic Determinacy

This section is devoted to proving Proposition 1, and therefore Theorem 1. For the whole section,
we fix a C-complete view V, with C = {c} ∈ V and a natural number o ∈ {0, . . . , c− 1}, as in the
statement of the proposition.

The proof is divided in three parts. In Section 4.1, we introduce a tool that describes the
possible behaviors that can be observed through the view V. We use it to prove the propositions
in Section 4.2 and Section 4.3. More precisely, Section 4.2 settles the case where no query Q = {n}
with n ≡ o[c] is determined by V, and Section 4.3 builds an appropriate query Q when one does
exist.

4.1 Behavior Graph

The goal of this section is to define a tool that will help us deal with the combinatorial complexity
of trying to find a path of specific length in a database based on its view image. We now give a
rough sketch of the idea behind this tool. Assume we want to prove that some database D contains
a path π of length n by looking only at E = V(D). If D does indeed contain such a path, then the
following properties must necessarily hold in E:

C1. E contains the n+ 1 (not necessarily distinct) nodes of π, x0, . . . , xn.

C2. For each V ∈ V and u ∈ V , V (xi, xi+u) holds in E for all i.

C3. For each x in E such that V (x, xi) holds in E, there exists an appropriate value of k and
j such that Ck(x, xj) holds in E. The values of k and j depend on the witness path that
proves V (x, xi), as shown in Figure 3.

4 Deciding Asymptotic Determinacy 10

x0 x1 x2 x3 x4

x V

implies

x0 x1 x2 x3 x4

x V
C

or

x0 x1 x2 x3 x4

x V
C

Fig. 3: Example of possible behaviors for a database (full) and its view (dashed), with C = {3}
and V = {1, 2}. Assume we know the information represented in the top figure. Then, one
of the two bottom pictures must hold. More generally, if C = {c} and V (x, xi) holds in E,
then Ck(x, xj) must also hold, with j = i+ (c− v[c]) and kc = v+ (c− v[c]) for some v ∈ V .

If E = V(D) does not satisfy these properties, then we can safely conclude that D does not
contain a path of length n going from x0 to xn. Let us fix x0, . . . , xn and assume that E satisfies
(C2) and (C3) for these fixed nodes. Our intention here is for these nodes to be the consecutive
nodes of a path of length n going from x0 to xn. Unfortunately, there are still many ways for E to
satisfy (C2) and (C3) without D actually having a path of length n from x0 to xn, let alone one
that goes through all the xi’s in the right order.

Let µ be a path in D from some xi to some xj . We define the delay of this path as δ(µ) =
|µ| − (j − i). The value δ(µ) caracterizes the difference between µ and the section of the path
of length n going through the xi’s, that we expected to find in D. If µ is of the intended (j − i)
length, then its delay will be zero. Otherwise δ(µ) can be positive, if µ is longer than expected, or
negative, if µ is shorter than expected.

Let D be a database and E = V(D) such that E satisfies the necessary conditions above. For
this D and E, we build a graph HD that represents the delays of the paths of D that are induced
by the conditions (C1), (C2) and (C3) as follows:

• HD has n+ 1 nodes that represent x0, . . . , xn, as in (C1). We simply note them 0, . . . , n.

• For all V ∈ V and u ∈ V , (C2) implies that V (xi, xi+u) holds in E. Hence, there exists a
path µ in D going from xi to xi+u of length v, for some v ∈ V . For each such µ:

– We represent it as an edge in HD going from i to i+ u of label δ(µ) = (v − u).

– For all u′ < v such that u′ ∈ V ′ for some V ′ ∈ V, we know that V ′(x, xi+u) holds in
E, where x is the node that occur at distance u′ before xi+u along µ. We apply (C3)
as shown in Figure 4. This leads to a path µ′ in D from xi to xi+u+(c−v′[c]) such that
δ(µ′) = (v− u) + (v′ − u′), for some v′ ∈ V ′. We similarly represent each such µ′ in HD.

xi xi+u xi+u+q

x
v − u′

u′

V ′

kc = v′ + q

Fig. 4: Illustration for the existence of the path µ′ of delay (v − u) + (v′ − u′) in the construction
of HD. Full arrows represent paths in D and are labeled by their length. Dashed arrows
represent edges in E. µ′ is the thick path, and q = c− v′[c].

4 Deciding Asymptotic Determinacy 11

Assume that there is a path from node 0 to node n in HD whose sum of labels is 0. By
composing all the paths in D that led to this path in HD, we can prove that there exists in D a
path π from x0 to xn such that δ(π) = 0. Hence, π is of length n, and we have actually found a
path of length n from x0 to xn in D.

Consider the case where this is true for all databases D, that is, for all databases D such that
V(D) satisfies the necessary conditions, HD contains such a path. Then all these databases contain
a path of length n from x0 to xn. This means that the necessary conditions for the existence of a
path of length n in D are also sufficient. Since these conditions can be checked by looking only at
the view instance, it implies that V � {n}.

Unfortunately, the size of HD depends on the size of the target query. In order to have a
representation that does not depend on n, we identify in HD all nodes i and j such that i ≡ j[c].
Note that this is consistent with the fact that such nodes were already linked by paths of delay 0
thanks to C ∈ V. This is exactly the idea behind choice graphs, that are formally defined below.
While we do lose some information by doing this merging, these graphs are still rich enough to
allow us to decide asymptotic determinacy, as we will see in the rest of the proof.

Definition 3 (Choice graph). Given a C-complete view V such that C ∈ V with C = {c}, we
define HV as the set of all directed, edge-labeled graphs H such that:

1. H has c nodes, which we will simply note 0, 1, . . . , c− 1.

2. The edges of H carry labels in {−2(m− 1), . . . , 2(m− 1)}, where m is the biggest element
that appears in the views, that is m = maxV ∈V maxu∈V u.

3. For each i, j ∈ {0, . . . , c− 1}, for each V ∈ V, for each u ∈ V such that u ≡ (j − i)[c], there
exists v ∈ V such that:

• there is an edge in H from i to j labeled by v − u.

• for each V ′ ∈ V, for each u′ ∈ V ′, there exist v′ ∈ V ′ and an edge in H from i to
(j − v′)[c] labeled by (v − u) + (v′ − u′).

Remark 1. For a given V, the number of nodes and edges of a graph H ∈ HV is bounded, thus
HV is finite. Moreover all H ∈ HV are complete graphs, because V is C-complete.

Definition 4 (Weight). The weight of a path in a graph H is the sum of all labels along edges of
the path. A path with no edge is of weight 0.

Definition 5 (Behavior graph). Given a C-complete view V such that C ∈ V with C = {c}, we
define GV as the set of all directed, edge-labeled graphs G constructed as follows:

1. Pick H ∈ HV, and start with G = H. If G only contains cycles of positive weights or cycles
of negative weights, skip Step 2 and Step 3. Otherwise, if G contains both cycles of positive
and negative weights1:

2. Pick i, j ∈ {0, . . . , c− 1} such that:

• There exists in G a path from i to j of weight (i− j)[c]. Let a be a minimal (in absolute
value) weight of a path satisfying this property.

• For all a′ ≡ a[c], there exists i′, j′ such that (j′ − i′) ≡ (j − i)[c], and there is no edge
from i′ to j′ of label a′.

Then, for all i′, j′ such that (j′ − i′) ≡ (j − i)[c], add an edge from i′ to j′ of label a.

1 Please note that this definition differs slightly from the definition in [4] in that we did not require in [4] that G
had both negative and positive cycles in order to proceed to Step 2. This minor difference does not actually change
any of the proofs, as Lemma 6 did not make use of this part of the construction, and Lemma 9 already assumes that
the graph contains cycles of both signs. It does however make the size analysis at the end of Section 4.1 (which was
not featured in [4]) easier.

4 Deciding Asymptotic Determinacy 12

3. Repeat Step 2 until no more edges can be added.

Remark 2.

• Step 2 of the construction of GV can only be applied a finite number of times for each G,
since it can be done at most once for each (i, j). Moreover, there is a finite number of choices
at each step. Hence, GV is finite.

• As soon as there is a path from some i to some j of weight (i− j)[c], then there is a weight
a ≡ (i− j)[c] such that all i′, j′ that are at the same distance as i is from j are linked by an
edge of this particular weight, provided that G contains cycles of both positive and negative
weights.

Behavior graphs contain another necessary property of the existence of a path of length n that
goes through the xi’s. Remark that a path π of delay i− j going from xi to xj is actually of length
0 modulo c. Hence π appears in E as a sequence of C edges. Then the reasoning shown in Figure 5
implies the existence of paths of identical delay from nodes xi−u to nodes xj+c−u for all u.

xk x`

C C C C

implies, for all u:

xk x`xk−u x`+c−u

C C C C C

u c− u

Fig. 5: Illustration of the intuition for the construction of a behavior graph. Assume that the xi’s
form a path of length n from x0 to xn. If xk and x` are connected via a sequence of C’s,
represented by the dashed edges, then for all u < c, there exists some intermediate nodes
such that xk−u and x`+c−u are connected as shown in the picture.

All the intuitions presented in this section are made precise in Section 4.2 and Section 4.3, when
this tool is actually used. Before moving on, we prove two lemmas that give upper bounds on the
size of these graphs and the relevant paths they contain, which will be useful for the complexity
analysis of the final algorithm.

Lemma 4. Let G be a weighted graph on nodes 0, . . . , c− 1. Assume that there exists in G a path
of weight d going from node i to node j. Then there exists in G a path of weight d going from node
i to node j whose length is in O(c4m4d+ c6m5), where m is the weight of greatest absolute value
that occurs in G.

Proof. Let π be a path of weight d going from i to j. By reordering the edges in π, we can assume
that π has the following form:

i u1 u1 u1 u1
ρ0 . . .

θ1,1 θ1,2 θ1,3 θ1,k1

u2 u2 u2 u2
ρ1

. . .
θ2,1 θ2,2 θ2,3 θ2,k2

u3 u3 u3 u3
ρ2

. . .
θ3,1 θ3,2 θ3,3 θ3,k3

ρ3
.

u` u` u` u`
ρ`−1

. . .
θ`,1 θ`,2 θ`,3 θ3,k`

j
ρ`

4 Deciding Asymptotic Determinacy 13

In the picture above, i and j are the starting and ending points of the path. The us’s are
pairwise distinct nodes of G, among {0, . . . , c− 1}. The paths θs,k are simple cycles going from
us to us, and the paths ρs for s ∈ 1, . . . , `− 1 are simple paths going from us to us+1. Finally ρ0
and ρl are simple paths linking respectively i to u1 and u` to j. This shape of path is achieved by
selecting (arbitrarily) the position of each line of the picture (at an occurence of a new ui) and
then moving iteratively each simple cycle from ui to ui to its correct position in the path, until
only simple cycles and paths remain. We also assume that all cycles θs,k have non-zero weight,
otherwise they can safely be removed without changing the weight of π.

Let ρ = ρ0 · . . . ·ρ`. Since ` ≤ c and each ρs is a simple path, then ρ is of length at most c(c+ 1).
Let W be the set of all weights in G, and let m = maxw∈W (|w|). Let wρ be the weight of ρ. Then
−mc(c+ 1) ≤ wρ ≤ mc(c+ 1).

Similarly, let wθ be the sum of the weights of all θs,k cycles. Then wθ + wρ = d. Thus
|wθ| ≤ |d|+ |wρ|. Let Θ be the set of all weights of θs,k cycles.

Case 1: Assume that Θ contains only positive or only negative integers. Then, there are at most
|wθ| occurences of θs,k cycles in π. Thus, the total length of π is bounded by c(c+1)+c|d|+mc2(c+1),
which proves the claim.

Case 2: Assume that Θ contains both positive and negative integers. We know that gcd(Θ)
divides wθ. Then, by applying Bezout’s Identity with positive coefficients, we build a sequence of
integers from Θ whose sum is wθ and whose length is at most |wθ||Θ|2 max(Θ)2, which is bounded
by 4(|d|+mc(c+ 1))(mc)4. We deduce from this sequence a new path µ from i to j of weight d by
inserting each cycle from Θ used in the sequence at the correct position in ρ. Thus µ is of size at
most 4(|d|+mc(c+ 1))(mc)4 + c(c+ 1), which ends the proof of the lemma.

Lemma 5. Let G be a behavior graph in GV. Then G is of size at most O(‖V‖4).

Proof. Let G be a graph in GV. Then there exists a graph H in HV from which G is built, using
Definition 5. Now remark that by definition H has c nodes and at most 4mc2 edges, where m is
the biggest element that appears in any query in V, and with each edge carrying a weight of size
at most 4m. If H only contains positive or negative cycles, then there is nothing else to prove, as
G is then of size O(‖V‖4).

Otherwise, it remains to consider the number of edges and size of the weights added by Step 2
of Definition 5. First, we notice that Step 2 adds at most c2 edges, that is, no more than one
for each pair of nodes of the graph. Next, we prove that the new weights are bounded in size.
Indeed, since there exists at least a cycle of negative weight and a cycle of positive weight, we can
deduce that all nodes have a cycle of positive weight and a cycle of negative weight, since H is a
complete graph. Similarly, we can assume that each node has a positive cycle of weight at most 3u
and a negative cycle of weight at least −3u, where u is the largest absolute value that appears in
H. Indeed, as soon as a path’s weight becomes larger than u or smaller than −u, any edge that
returns to its starting point will turn it into a cycle of weight bounded by −3u and 3u. Finally,
these cycles can be used to make sure that no added weight at Step 2 of Definition 5 can be less
than −3cu or bigger than 3cu. All in all, Step 2 of the definition adds at most c2 which carry
weights whose size vary in a range of 6cu = 12cm. Thus, the added structure is of size O(‖V‖4),
which ends the proof of the lemma.

In Section 4.2, we show that, if there exists some behavior graph G such that there is no path
of weight 0 from 0 to o in G, then we can build two databases that agree on the view but not on
paths of length n ≡ o[c], for all n. In other words, we can build a database whose view satisfies all
the necessary conditions for the existence of a path of length n, while still maintaining a non-zero
delay between the relevant nodes. On the contrary, in Section 4.3, we show that, if for all behavior
graphs G, there is a path of weight 0 from 0 to o in G, then it is enough to satisfy the necessary
conditions in order to have a path of length n.

In Section 4.4, we give a precise proof of how our decision algorithm uses the properties of
behaviour graphs. The proof can be outlined as follows. For a given C-complete view V and a
given natural number o ∈ {0, . . . , c − 1}, we are simply looking for the occurrence of a specific
graph G ∈ GV, namely one that does not contain a path of weight 0 from node 0 to node o. If we

4 Deciding Asymptotic Determinacy 14

do find one such G, then, for all n ≡ o[c], V 6� {n}. Otherwise, V � {n} for some n ≡ o[c]. We
do not actually need to compute GV: we simply guess the appropriate graph G and check that it
does contain the critical path. Since G is of size polynomial in V and the considered path, if it
exists, can be assumed to be polynomial in the size of G, our decision algorithm works in PSpace,
more precisely in ΠP

2 .

4.2 Negative Direction: Building Counter-examples

In this section, we solve the negative case of Proposition 1 by proving the following proposition:

Proposition 2. Assume that there exists G ∈ GV such that there is no path of weight 0 from 0 to
o. Then, for all n ≡ o[c], V 6� {n}.

The proof of Proposition 2 is split across Lemma 6 and Lemma 9. The canonical counter-
examples that we build in order to prove that V 6� {n} depend on whether G only contains cycles
of positive or negative weights, or if it actually has both. These two cases are respectively dealt
with in Lemma 6 and Lemma 9, and Example 1 and Example 2 give examples of both situations.

Example 1. Let V = {C, V }, C = {2} and V = {1, 2}. Figure 6 represents one of the graphs in
GV, that additionally satisfies the condition of Lemma 6. Namely, there is no path of weight 0 from
0 to 1, and 0 only has non-negative cycles.

Example 2. Let V = {C, V }, C = {3} and V = {1, 5}. Figure 7 represents one of the graphs in
GV, that additionally satisfies the condition of Lemma 9. Namely, there is no path of weight 0 from
0 to 1, and 0 has positive and negative cycles.

0

1

+1+1

+0,+1

+0,+1

Fig. 6: A behavior graph for the
view defined in Example 1.

0

12

+4,−8

−4,+8

−4,+8

+4,−8

−4,+8

+4,−8

+0

+0+0

Fig. 7: A behavior graph for the view defined in Example 2.

Lemma 6. Assume that there exists G ∈ GV such that 0 does not have both a cycle of positive
weight and a cycle of negative weight and that there is no path of weight 0 from 0 to o. Then, for
all n ≡ o[c], V 6� {n}.

Proof. Assume that all cycles of 0 in G have positive or zero weight. An example of such a case is
given in Example 1.

Let M be the set of all maximal elements of each query in V, that is M = {max(V) | V ∈ V}.
Let d = gcd(M). Remark that d divides c, as c is the maximal (and only) element of C.

Claim 3. d does not divide o.

Assume d divides o. Then, Bezout’s Identity provides u1, . . . , uk ∈M such that u1 + . . .+ uk ≡
o[c]. Since each ui belongs to M , then each ui is the maximal element of some Vi ∈ V. Then, by
construction of G, there exists a path from 0 to o whose weight is of the form (v1 − u1) + (v2 −
u2) + . . .+ (vk − uk) where each vi is an element of Vi. Hence, all terms of the sum are negative or
zero. If all are zero, then there is a path of weight zero from 0 to o. Otherwise, there is a path of

4 Deciding Asymptotic Determinacy 15

negative weight from 0 to o, and by applying the same reasoning from o to 0, we get a cycle of
negative weight from 0 to 0. Both these cases are false by assumption, which proves the claim.

For each Vi ∈ V , let ui be the maximal element of Vi. By construction of d, we know that d
divides ui. Let n be any natural number such that n ≡ o[c]. We can now construct a database D
as follows:

• D contains two simple paths of length n, whose respective nodes are x0, . . . , xn and x′0, . . . , x
′
n.

• For each s, t ≤ n such that t− s ∈ Vi for some i, and d does not divide t− s, we add to D a
new path πis,t of length ui − 2, and we connect xs and x′s to its initial node, and we connect
its final node to xt and x′t.

We then construct D′, a copy of D, in which xj and x′j switch roles for each j ≡ o[d]. Note
that, since d does not divide o, this means that x0 and x′0 are not switched, but xn and x′n are.
See Figure 8 for an example of the construction.

Claim 4. D and D′ agree on V, but each path from x0 to xn in D′ is strictly longer than n. Hence
D and D′ disagree on Q = {n}.

Let (x, y) ∈ Vi(D) for some Vi ∈ V. If either x or y belongs to one of the new paths of the
form πjs,t, then the symmetry of the construction between the two original simple paths show that

(x, y) ∈ Vi(D′). Otherwise x = xs or x = x′s and y = xt or y = x′t, for some s and t. Then either
t − s ≡ 0[d], in which case either both x and y are switched with their copy in D′, or none are.
Then, once again the symmetry of the construction concludes that (x, y) ∈ Vi(D′). Otherwise, d
does not divide t−s, which implies that (x, y) are linked by πis,t in Vi, and thus that (x, y) ∈ Vi(D′).
Hence, V(D) = V(D′). Remark now how each path from x0 to xn in D′ has to cross one of the
πjs,t, which is longer than t − s. It follows that each path from x0 to xn in D′ is longer than n,
which proves the claim.

It easily follows from this claim that V 6� {n}. The case where 0 only has cycles of negative or
zero weight is dealt with in a very similar way, which concludes the proof of the lemma.

x0 x1 x2 x3 x4 x5

x′0 x′1 x′2 x′3 x′4 x′5

x0 x′1 x2 x′3 x4 x′5

x′0 x1 x′2 x3 x′4 x5

Fig. 8: Example of the construction in Lemma 6 for the view defined in Example 1, that is
V = {C, V } with C = {2} and V = {1, 2}. For this example, d = 2, n = 5 and o = 1.
Remark how the left and right databases agree on V, while there exists a path of length 5
going from x0 to x5 in the left database, but no such path in the right one.

We now move on to the proof of Lemma 9. Note that this proof is a little more involved and
mainly relies on the arithmetic properties of behavior graphs, that are given in Lemma 7:

Lemma 7. Let G ∈ GV such that 0 has both cycles of positive and negative weight. Let W be the
set of all weights of cycles of 0 in G, and let d = gcd(W). Then G has the following properties:

1. For all i, j ∈ {0, . . . , c− 1} all paths from i to j have the same weight modulo d. We denote
this value by w(i, j). Moreover, w(i, j) is compatible with composition. Namely:

• w(i, i) ≡ 0[d]

• For all k, w(i, k) + w(k, j) ≡ w(i, j)[d]

• w(i, j) ≡ −w(j, i)[d]

4 Deciding Asymptotic Determinacy 16

2. For all 0 ≤ i < j < c ∧ d, w(i, j) 6≡ i− j[c ∧ d], where c ∧ d denotes gcd(c, d).

3. For all i ∈ {0, . . . , c− 1}, w(i, i+ c ∧ d) ≡ 0[d].

Proof.

1. By construction of d, we already know that all cycles of 0 have weight 0[d]. Let i, j ∈
{0, . . . , c− 1}. Let π1 and π′1 be two paths from i to j of respective weights w1 and w′1. Let
π0 be a path from 0 to i of weight w0 and π2 be a path from j to 0 of weight w2. Then
both π0 · π1 · π2 and π0 · π′1 · π2 are cycles of 0. Hence, we have w0 + w1 + w2 ≡ 0[d] and
w0 + w′1 + w2 ≡ 0[d], which implies w1 ≡ w′1[d], so that w(i, j) is correctly defined, as in the
statement of the lemma.

The other properties are easy consequences of this fact.

2. To prove this property, we make use of the following claim:

Claim 5. For all i ∈ {0, . . . , c− 1}, for all natural number k, there exists j ∈ {0, . . . , c− 1}
such that w(i, j) ≡ −j + k[c ∧ d].

Proof of claim. Let i ∈ {0, . . . , c−1}, let k be any natural number. Since V is complete, there
exists V, V ′ ∈ V such that there exists u ∈ V and u′ ∈ V ′ with u ≡ 1[c] and u′ ≡ i − k[c].
Then, Property 3 of Definition 3 with i− 1, i, u and u′ gives v ∈ V and v′ ∈ V ′ such that:

• w(i− 1, i) ≡ (v − u)[d]

• w(i− 1, i− v′) ≡ (v − u) + (v′ − u′)[d]

Then it follows that:

w(i− 1, i− v′) ≡ (v − u) + (v′ − u′)[c ∧ d]

w(i− 1, i− v′) ≡ (v − u) + (v′ − i+ k)[c ∧ d]

w(i− 1, i) + w(i, i− v′) ≡ (v − u) + (v′ − i+ k)[c ∧ d]

(v − u) + w(i, i− v′) ≡ (v − u) + (v′ − i+ k)[c ∧ d]

w(i, i− v′) ≡ (v′ − i) + k[c ∧ d]

and we conclude the proof of the claim by renaming v′ − i to j.

We can now move on to the proof of the property. Assume by contradiction that there exists
i, j such that w(i, j) ≡ i− j[c∧ d]. Then w(i, j) ≡ i− j+ kd[c] for some k. Since gcd(W) = d
and W contains both positive and negative elements, by using Bezout’s Identity with positive
coefficients, we show that there exists a cycle of i of weight −kd. Hence, there exists a path
from i to j of weight i− j[c]. Since this path satisfies the requirement in Definition 5, we can
show that for all r ∈ {0, . . . , c− 1}, w(r, r + (j − i)) ≡ i− j[c ∧ d].

This is a contradiction with the claim. Indeed, the claim implies that for all k, there exists l
such that w(0, l) ≡ −l+k[c∧d]. Since, k can take c∧d different values, but j− i < c∧d, this
means that we can find two values k 6= k′ for which the claim produces l and l′ that are in the
same class modulo j−i. More precisely, we have w(0, l) ≡ −l+k[c∧d], w(0, l′) ≡ −l′+k′[c∧d],
and l ≡ l′[j − i]. Hence, there exists some α such that l′ = l + α(j − i). By using what we
just proved above α times, we get w(l, l′) ≡ α(i − j)[c ∧ d]. Hence, w(l, l′) ≡ l − l′[c ∧ d].
Thus, we have:

w(0, l) ≡ −l + k[c ∧ d]

w(0, l) + w(l, l′) ≡ w(l, l′)− l + k[c ∧ d]

w(0, l′) ≡ l − l′ − l + k[c ∧ d]

w(0, l′) ≡ −l′ + k[c ∧ d]

This final equality implies that k = k′, which is a contradiction.

4 Deciding Asymptotic Determinacy 17

3. We first prove that w(0, 0 + c ∧ d) ≡ 0[c ∧ d]. This is a purely arithmetic consequence of
Property 2, as explained in Lemma 8.

We rewrite this equality as w(0, 0 + c ∧ d) ≡ −c ∧ d + kd[c]. Then, by following the same
reasoning as in the proof for Property 2, we prove that there exists a path from 0 to c ∧ d of
weight −c ∧ d[c]. Since this path satisfies the requirement in Definition 5, then there must
exist some weight w ≡ −c ∧ d[c] such that, for all i ∈ {0, . . . , c− 1}, there is an edge from i
to i+ c ∧ d of weight w, which we denote by πi,i+c∧d.

Let c′ = c
c∧d . Then π0,c∧d · πc∧d,2(c∧d) · . . . · π(c′−1)(c∧d),c′(c∧d) is a cycle of 0 of weight c′w.

Thus, d divides c′w. By construction, c′ ∧ d = 1, hence d divides w, that is, w ≡ 0[d]. This
implies that for all i ∈ {0, . . . , c− 1}, w(i, i+ c ∧ d) ≡ 0[d].

The proof of Lemma 7 uses the following arithmetical result:

Lemma 8. Let d ∈ N, and a1, . . . , ak ∈ {0, . . . , d−1}. Assume that for all i, j, ai+ai+1+. . .+aj 6≡
i − j − 1[d]. Then there are at most d − k − 1 possible values for ak+1 such that the sequence
a1, . . . , ak+1 also satisfies this property. In particular, if k = d − 1, then there are no possible
continuations.

Proof. Assume everything defined as in the statement of the lemma. We define F as:

F = {a ∈ {0, . . . , d− 1} | ∃i, ai + . . .+ ak + a ≡ i− k − 2[d]} ∪ {d− 1}

We refer to F as the set of forbidden values for ak+1 in the sense that if ak+1 ∈ F , then the
resulting sequence a1, . . . , ak+1 does not satisfy the property of the lemma. In the same way, we say
that an integer i ∈ {1, . . . , k} forbids a value a when ai + . . .+ak +a ≡ i−k− 2[d]. In other words,
a is the element of that is obtained for the quantification i in the definition of F . Remark that
d− 1 belongs to F , as it is always a forbidden value2 regardless of the remainder of the sequence.

We conclude the proof now by showing that |F | = k + 1, which reduces the set of possible
values for ak+1 to at most d− k− 1. This comes from two facts: (1) no i ∈ {1, . . . , k} forbids d− 1
and (2) for all i, j, if i 6= j, then i and j forbid two distinct values. We now prove the two facts:

1. Assume that there exists i ∈ {1, . . . , k} such that i forbids d− 1. Then ai + . . .+ ak − 1 ≡
i− k − 2[d]. Hence, ai + . . .+ ak ≡ i− k − 1[d], which is a contradiction.

2. Assume that there exists j > i such that i and j forbid the same value a. Then

aj + . . .+ ak + a ≡ j − k − 2[d]

Then
a ≡ j − k − 2− aj − . . .− ak[d]

But we also have
ai + . . .+ ak + a ≡ i− k − 2[d]

Hence
ai + . . .+ aj−1 + j − k − 2 ≡ i− k − 2[d]

Finally
ai + . . .+ aj−1 ≡ i− j[d]

which is a contradiction.

We are now ready to give the full proof of Lemma 9:

2 If ai = d− 1 for some i, then the property of the lemma is falsified by the subsequence ai obtained with j = i.

4 Deciding Asymptotic Determinacy 18

Lemma 9. Assume that there exists G ∈ GV such that 0 has both cycles of positive and negative
weight, and that there is no path of weight 0 from 0 to o. Then, for all n ≡ o[c], V 6� {n}.

Proof. Let G ∈ GV be defined as in the statement of the lemma. An example of such a case is
given in Example 2. We also define d as in Lemma 7.

Let f be the function defined as follows:

∀i ∈ {0, . . . , c ∧ d− 1}, f(i) = i+ w(0, i)[d]

Remark that f is one-to-one. Indeed, assume that i, j are such that f(i) = f(j). Then :

i+ w(0, i) ≡ j + w(0, j)[d]

w(0, i)− w(0, j) ≡ j − i[d]

And by using Property 1 of Lemma 7 we get:

w(j, i) ≡ j − i[d]

This final equation implies that i = j. Otherwise, this would be a contradiction with Property 2 of
Lemma 7. We can then define g as:

∀i ∈ {0, . . . , d− 1}, g(i) = i+ w(0, i)[d]

Property 3 of Lemma 7 then gives us:

∀i ∈ {0, . . . , d− 1}, g(i) = i+ w(0, i[c ∧ d])[d]

Remark now that g can also be written:

∀i ∈ {0, . . . , d− 1}, g(i) = f(i[c ∧ d]) + (i− (i[c ∧ d]))[d]

from which we deduce that g is one-to-one, because f is. Thus g is a permutation of {0, . . . , d− 1}.
We can now define two databases D and D′ such that D is a cycle of length d whose nodes are

x0, . . . , xd−1, and D′ is a copy of D in which xi is replaced by xg(i) for all i. This is well defined
and also a cycle of length d because g is a permutation. See Figure 9 for an example of this
construction.

Claim 6. D and D′ agree on V.

Let xi and xj be two nodes of D such that (xi, xj) ∈ V (D) for some V ∈ V. Then there exists
u such that u ∈ V and j − i ≡ u[d]. Let γ be the length of any path from xi to xj in D′. Then we
have:

γ ≡ g−1(j)− g−1(i)[d]

γ ≡ (j − w(0, j))− (i− w(0, i))[d]

γ ≡ (j − i)− (w(0, j)− w(0, i))[d]

γ ≡ u− w(i, j)[d]

By definition of G, there exists v ∈ V such that v − u ≡ w(i, j)[d]. Hence, we have γ ≡ v[d]. This
means that there is a path from xi to xj in D′ of length v, and thus (xi, xj) ∈ V (D′). A similar
reasoning proves the other direction, and concludes the proof of the claim.

Claim 7. For all n ≡ o[c], g(n) 6≡ n[d].

Assume that g(n) ≡ n[d]. Then w(0, n) ≡ 0[d]. Hence, Property 3 of Lemma 7 implies that
w(0, o) ≡ 0[d]. Hence there exists a path in G from 0 to o of weight kd for some k. Since d is the
gcd of all cycles of 0, Bezout’s Identity implies that there exists a path from 0 to 0 of weight −kd.
Hence there exists a path from 0 to o of weight 0, which is a contradiction.

It easily follows from the claim that, for all n ≡ 0[c], V 6� {n}. Indeed, the only path of length
n starting from x0 ends in xn in D, whereas it ends in xg(n) in D′. This concludes the proof of the
lemma.

4 Deciding Asymptotic Determinacy 19

x0

x1

x2
x3

x4

x5

x6

x7

x8
x9

x10

x11

x0

x5

x10
x3

x8

x1

x6

x11

x4
x9

x2

x7

Fig. 9: Example of the construction in Lemma 9 for the view defined in Example 2, that is
V = {C, V } with C = {3} and V = {1, 5}. Remark how the left and right databases agree
on V, while they disagree on all queries that do not ask for paths of length 0[3].

4.3 Positive Direction: Computing a Rewriting

In this section, we solve the positive case of Proposition 1. We start by giving a simple example
that shows some of the features of the rewritings that will be used to prove Proposition 3.

Example 3. In this example, we work with:

• V = {C, V1, V2}

• C = {2}

• V1 = {1, 2}

• V2 = {2, 3}
• Q = {5}

We show that V � Q. Indeed, the following formula R is a rewriting of Q using V.

R(x, y) = ∃x0, . . . , x5, x0 = x∧x5 = y∧CQπ5
(x0, . . . , x5)∧

(
∀z, V1(z, x3)⇒ (C(z, x3)∨C(z, x4))

)
where π5 is a simple path whose nodes are x0, . . . , x5 and CQπ5

is the conjunctive query that states
all the atoms that hold in V(π5), as follows:

CQπ5
(x0, . . . , x5) =

∧
0≤i≤4

V1(xi, xi+1) ∧
∧

0≤i≤2

V2(xi, xi+3)

∧
0≤i≤3

V1(xi, xi+2) ∧ V2(xi, xi+2) ∧ C(xi, xi+2)

First, remark that R only states necessary conditions for the existence of a path of length 5
from x to y, as explained in Section 4.1, hence, for all D, Q(D) ⊆ R(V(D)).

Assume now that (x, y) ∈ R(V(D)). Let x0, . . . , x5 be a quantification for which R(x, y) is
satisfied. We can prove the following:

• C(x0, x2), C(x1, x3) and C(x2, x4) hold in V(D). Hence, these pairs of nodes are at distance 2
in D.

• V1(x4, x5) holds in V(D). Hence, x4 and x5 are either at distance 1 or 2. If this distance is
1, then we immediately get a path of length 5 from x0 to x5 by using the previous point, as

x0
2→ x2

2→ x4
1→ x5.

• Similarly, V2(x0, x3) holds in V(D). If the distance from x0 to x3 is 3, we immediately get

x0
3→ x3

2→ x5. Otherwise, there exists z such that x0 → z → x3. This implies V1(z, x3).

• The remaining case is represented in Figure 10, with the two possible implications of V1(z, x3)
given by R. Both possibilities also imply a path of length 5 from x0 to x5.

4 Deciding Asymptotic Determinacy 20

x0 x1 x2 x3 x4 x5

z

2

2

2
2

Fig. 10: Illustration for the last case of Example 3. The full edges represent paths in the database,
along with their length when it is more than 1. The dotted edges represent the two possible
implications of V1(z, x3) given by R.

Proposition 3. Assume that for all G ∈ GV there is a path of weight 0 from 0 to o. Then there
exists a computable n ≡ o[c] of size 2O(‖V ‖4) such that V � {n} and we can effectively compute a
first-order rewriting that witnesses it.

Proof. For each G ∈ GV, let πG be the shortest path in G of weight 0 from 0 to o. Let ρG
be the longest path that is used to build G from some H ∈ HV, in Step 2 of Definition 5 and
kG be the number of iterations of Step 2 used to build G from H. Let k = maxG∈GVkG. Let
ρ = maxG∈GV |ρG|. Let K = ρk. Let L = maxG∈GV |πG|. Let M = 2ck + 3cm where m is the
biggest number that occurs in one of the views. Let N = |HV|. Let n′ = K · L ·M ·N . Let n be
the smallest number such that n ≡ o[c] and n ≥ n′.

Using Definition 3, Definition 5, Lemma 4 and Lemma 5, we can check that:

• K is in O(‖V‖18‖V‖);

• L and M are polynomial in ‖V‖, being respectively O(‖V‖18) and O(‖V‖2);

• N is of size 2O(‖V‖4), as it is the set of all behavior graphs for V, and each is of size O(‖V‖4).

Thus n is in 2O(‖V‖4).

Claim 8. V determines Q = {n}.

Let R1 be the (n+ 1)-ary conjunctive query deduced from V(x0 . . . xn), with x0, . . . , xn as free
variables. It simply states all the atoms that hold in the view of the simple path x0 . . . xn, as
follows:

R1(x0, . . . , xn) =
∧
V ∈V

∧
i,j

(xi,xj)∈V (x0...xn)

V (xi, xj)

We also define:

R2(x0, . . . , xn) = ∀z,
n∧
i=0

∧
V ∈V

V (z, xi)⇒
c∨
j=0

∨
u∈V
u≡j[c]

V
u−j
c +1

c (z, xi+c−j)

and:

R3(x0, . . . , xn) =

n∧
i,j=0

n+A
c∧

k=1

V kc (xi, xj)⇒
c−1∧
l=0

V k+1
c (xi−l, xj+c−l)

where A is the biggest weight that occurs in a graph in GV.
Finally, we define R as:

R(x, y) = ∃x0, . . . , xn, x0 = x ∧ xn = y ∧
3∧
i=1

Ri(x0, . . . , xn)

4 Deciding Asymptotic Determinacy 21

xαixαi−l xαi+u

xαi+u+c−(v′[c])

π, |π| = v ∈ V
πl, |πl| = l ≡ 0[c]

z

π1, |π1| = v′ − (v′[c]) + c

Fig. 11: Illustration for the various notations in the definition of Hr. An additional, undrawn,
information is that the path from z to xαi+u along the drawn edges is of length u′.

Intuitively, each Ri enforces a necessary condition for the existence of a path of length n going
from x = x0 to y = xn, as explained in Section 4.1. R1 and R2 test conditions (C2) and (C3)
respectively, while R3 enforces the additional constraint of behavior graphs in Definition 5, as
illustrated on Figure 5.

It now remains to show that these necessary conditions actually become sufficient under the
hypotheses of the proposition. Thus, we can rephrase Claim 8 as:

Claim 9. R is a rewriting of Q = {n} with regards to V.

Let D be a database, and x and y be two distinguished nodes of D. Assume that (x, y) ∈ Q(D).
Then there exists a path of length n from x to y. Let x0, . . . , xn be the n+ 1, possibly repeating,
nodes of this path. Then it is easy to check that x0, . . . , xn satisfy R1, R2 and R3 in V(D). Hence,
R(x, y) holds in V(D).

Conversely, assume that R(x, y) holds in V(D). There exists x0, . . . , xn such that x = x0,
y = xn, and R1(x0, . . . , xn), R2(x0, . . . , xn) and R3(x0, . . . , xn) all hold in V(D). We define, for
all r < K · L ·N :

pr = {xr·M+ck, xr·M+ck+1, . . . , xr·M+ck+3cm = x(r+1)·M−ck}

Each pr is a set of 3cm+ 1 consecutive nodes among the xi’s, and all pr’s are disjoint. Additionally,
for all paths π in D from some xi to some xj , we define δ(π) = |π| − (j − i). To each pr we
associate3 a directed edge-labeled graph Hr defined as follows:

• Hr has c nodes which we will simply note 0, 1, . . . , c− 1.

• For all i ∈ {0, . . . , c− 1}, let αi = r ·M + ck + i+ 2cm. Remark that αi ≡ i[c]. Then, for all
V ∈ V, for all u ∈ V :

- We pick a path π in D from xαi to xαi+u that satisfies V . There exists one, because
R1(x0, . . . , xn) holds. Let v = |π|. We add to Hr an edge from i to i + u[c] labeled
δ(π) = v − u.

- For all V ′ ∈ V, for all u′ ∈ V ′, let l be the smallest number such that l + v ≥ u′ and
l ≡ 0[c]. Let πl be a path of D of length l from xαi−l to xαi . There exists one because
R1(x0, . . . , xn) holds. Let π0 = πl · π. Let z be the u′th predecessor of xαi+u along this
path. Then V ′(z, xαi+u) holds. Then R2 implies that there exists v′ ∈ V ′ and a path π1
in D from z to xαi+u+c−(v′[c]) of length v′ − (v′[c]) + c. Hence, there is a path π′ from
xαi−l to xαi+u+c−(v′[c]) of length ((l + v)− u′ + (v′ − (v′[c]) + c)). We then add to Hr

an edge from i to i+ u− v′[c] labeled δ(π′) = (v − u) + (v′ − u′).

See Figure 11 for a visual representation of the various notations.

3 arbitrarily, when there are more than one possibility.

4 Deciding Asymptotic Determinacy 22

Claim 10.

• For all r, Hr ∈ HV.

• For all r, for all edge of label a from i to j in Hr, there exists xi′ and xj′ in pr such that
there exists a path π in D from xi′ and xj′ with δ(π) = a, i′ ≡ i[c] and j′ ≡ j[c].

Since there are K ·L ·N different pr’s, then there are at least K ·L of them that are attributed
the same graph H ∈ HV. This means that there exists an increasing function f such that, for all
r < K · L, pf(r) is attributed H. For ease of notations, we rename pf(r) to q0r and H to G0. Let
G0, . . . , Gk be k successive iterations as described in Definition 5 on G0. Then Gk ∈ GV and for
each s, Gs+1 is deduced from Gs by doing one iteration of Step 2 in Definition 5.

Claim 11. For all s ∈ {0, . . . , k}, there exist K·L
ρs disjoint sets qsr that consist of consecutive nodes

among the xi’s such that:

1. The distance between qsr ’s last index and qsr+1’s first index is at least 2c(k − s). Additionally,
the first index of qs0 is at least c(k − s) and the last index of qsK·L

ρs
is at most n′ − c(k − s).

2. For all r, for all edge of label a from i to j in Gs, there exists xi′ and xj′ in qsr such that
there exists a path π in D from xi′ and xj′ with δ(π) = a, i′ ≡ i[c] and j′ ≡ j[c].

We prove this claim by induction on s. For s = 0, the correctly named q0r ’s already satisfy the
required properties.

Assume that, at Step s, the properties are true for some qsr ’s. For each l < K·L
ρs+1 , let αl be the first

index of qslρ and βl be the last index of qs(l+1)ρ−1. Then we define qs+1
l as qs+1

l = {xαl−c, . . . , xβl+c}.
It is easy to see that the qs+1

l ’s defined as such satisfy Property 1 and also Property 2 for the
edges of Gs+1 that are already in Gs. Let µ be the path in Gs that is used to build Gs+1 by
applying Step 2. Then µ is a path of label a and of length η ≤ ρ and we have µ = i0a1i1 . . . iη−1aηiη,
where, for all t, there is an edge of label at from it to it+1 in Gs. Then Property 2 applied at
Step s implies that for all t there exists a two nodes xi′t and xi′′t+1

in qslρ+t such that there exists a

path πt from xi′t to xi′′t+1
with δ(πt) = at, i

′
t ≡ it[c] and i′′t+1 ≡ it+1[c].

Since R1(x0, . . . , xn) holds, and for all t i′′t ≡ i′t[c], then there exists a path π′t from i′′t to i′t
with δ(π′t) = 0. Hence, we can define π as π = π0 · π′0 · π1 . . . πη−2 · π′η−2πη−1. π is a path from
xi′0 to xi′′η with δ(π) =

∑
at = a, i′0 ≡ i0[c] and i′′η ≡ iη[c]. Then Property 2 is true for all edges of

Gs+1 from i0 to iη.
Since δ(π) = a, then δ(π) ≤ A. Hence |π| ≤ n+ A. Hence, we can apply R3(x0, . . . , xn) and

get the other required paths. This ends the proof of the claim.
Finally, the claim applied for s = k proves that there exists L sets qkr of consecutive xi’s that

satisfy property 1 and 2 for some Gk ∈ GV. By hypothesis, there exists a path in Gk from 0 to o of
length at most L and of weight 0. We conclude by applying once more the reasoning in the proof
of the claim. We deduce that there exists two nodes xi and xj such that there exists a path π in D
with δ(π) = 0, i ≡ 0[c] and j ≡ o[c]. We complete π with a path π1 from x0 to xi and a path π2
from xj to xn with δ(π1) = δ(π2) = 0 that are provided by R1(x0, . . . , xn). Hence π1 · π · π2 is a
path from x0 to xn with δ(π1 · π · π2) = 0. Thus, the length of π1 · π · π2 is n, and (x, y) ∈ Q(D).
This ends the proof of the proposition.

4.4 Decision Algorithm

In this section, we finally prove Proposition 1 by piecing together the tools from Section 4.1 and
the results from Section 4.2 and Section 4.3. Recall the statement of Proposition 1:

Proposition 1. Given a C-complete view V defined by unions of path queries, such that C ∈ V
with C = {c} for some c ∈ N and a natural number o ∈ {0, . . . , c− 1}, it is decidable in ΠP

2 whether
there exists a query Q = {n} such that n ≡ o[c] and V � Q. If this is the case, such a query Q of

size 2O(‖V‖4) and a first-order rewriting of Q with regards to V can be computed effectively.

5 Extensions 23

Proof. Let V be a C-complete view defined by unions of path queries, such that C ∈ V with
C = {c} for some c ∈ N. Let o ∈ {0, . . . , c− 1}. Assume that there exists a behavior graph G ∈ GV
such that G contains no path of weight 0 going from its 0 node to its o node. Then Proposition 2
proves that there exists no query Q = {n} with n ≡ o[c] such that V � Q. Conversely, assume
that all G ∈ GV do contain a path of weight 0 going from their 0 nodes to their o nodes. Then
Proposition 3 effectively computes a query Q = {n} with n ≡ o[c] such that V � Q and a first-order
rewriting of Q using V. Thus, Proposition 1 reduces to the following claim:

Claim 12. It is decidable in ΠP
2 whether all behavior graphs G ∈ GV contain a path of weight 0

going from their 0 nodes to their o nodes.

The statement of the claim naively translates to a ΠP
2 algorithm, whose universal part considers

all graphs G of the correct form and size and whose existential part tests either that G /∈ GV or
that G contains a path of weight 0 from node 0 to node o. To ensure that it is correct, it remains
to check that (1) all graphs in GV are of polynomial size in the size of the queries in V, (2) it can
be checked in NP whether a graph does not belong to GV and (3) it can be checked in NP whether
a graph contains a path of weight 0 from node 0 to node o.

We will actually substitute (2) with a weaker property (2’), that only tests whether a graph
of the correct form and size does not satisfy the second bullet of Remark 2, instead of the whole
construction of Definition 5. Indeed, since the proof of Proposition 2 does not actually rely on the
exact construction of GV but only on the property stated in Remark 2, it is actually equivalent to
prove the claim for any extension of choice graphs that contains GV and satisfies Remark 2.

Property (1) is a direct application of Lemma 5. It turns out that (2’) and (3) are actually
consequences of Lemma 4:

(2’) Let G be a weighted graph of polynomial size in the size of the queries in V. Checking that
G is an extension of a choice graph can be done in polynomial time by simply going through
all edges of G and ensuring that all conditions of Definition 3 are satisfied. Then, checking
that G does not satisfy Remark 2 is done by non deterministically guessing the existence
of cycles of positive and negative weights (of polynomial size, as explained in the proof of
Lemma 4), a pair of nodes i, j that are not linked by a path of weight (i − j)[c] and then
guessing another pair of nodes i′, j′ such that i′ − j′ ≡ i− j[c] and a path of weight (i− j)[c]
going from i′ to j′. This final path can correctly be assumed to be of polynomial size if it
exists, thanks to Lemma 4.

(3) This is an immediate consequence of Lemma 4. Given a weighted graph G, we non determin-
istically guess a path of weight 0 going from node 0 to node o. This path can be assumed
to be of polynomial size in the size of G if it exists, thanks to Lemma 4. This last item
concludes the proof of the proposition.

5 Extensions

In this section, we discuss several possible extensions of the work presented here. More precisely,
Section 5.1 shows the issue that remains to be solved in order to go from asymptotic determinacy to
general determinacy, while Section 5.2 considers extensions to stronger view and query languages.

5.1 The Case of Small Queries

This section is devoted to producing the full determinacy picture for the view below. As the
asymptotic determinacy picture of this view is already known thanks to Theorem 1, this should
highlight what remains to be done in order to decide general determinacy. In all this section, we
consider the following view:

5 Extensions 24

• V = {C, V1, V2}

• C = {2}

• V1 = {1, 2}

• V2 = {2, 5}

Claim 13. For all even n, V � Q = {n}. This easily comes from C = {2}.

By applying Theorem 1 we can show that there exists some odd n such that V � Q = {n},
hence V also determines all bigger queries. In order to get the full picture, we need to find the
smallest odd n that is determined by V. Our work so far actually gives us:

Claim 14. For all odd n ≤ 7, V 6� Q = {n}.

To prove this claim, we use a technique that is very similar to Lemma 6. More precisely, the
two databases in Figure 12 agree on V, but disagree on all Q = {n} when n is odd and not greater
than 7.

x0 x1 x2 x3 x4 x5 x6 x7

x′0 x′1 x′2 x′3 x′4 x′5 x′6 x′7

x0 x′1 x2 x′3 x4 x′5 x6 x′7

x′0 x1 x′2 x3 x′4 x5 x′6 x7

Fig. 12: The two databases above are a proof that V 6� Q = {n} for any odd n that is not greater
than 7. Indeed, we can check that both databases agree on V. However, there is no path
of length 1 (respectively 3, 5 and 7) from x0 to x1 (respectively x3, x5 and x7) in the
bottom database.

Note that this technique does not work for n greater than 7. Indeed, in the case shown above,
any path that goes from x0 to x7 in the bottom database has to cross from the top section to the
bottom section. By doing so, it suffers a delay of either +1 or −3 compared to the expected value.
It works here because 7 is “too small” and does not provide enough space to catch-up on this delay.
Assume now that n = 9, then a delay of −3 can be mitigated by following a +1 path three times,
and thus does not provide a counter-example.

Claim 15. For all n ≥ 11, V � Q = {n}.

We show this by arguing that V � Q = {11}. This is done by actually proving that the
canonical rewriting R given in Section 4.3 works in this case. Although the proof given in Section 4.3
does not apply (because 11 is not “big enough” for all the combinatorial arguments to go through),
a careful enumeration of all the possibilities for a database satisfying R actually shows that R(x, y)
implies a path of length 11 from x to y, as was done in Example 3.

It is then straightforward to prove that V determines every odd query bigger than 11. Let
n = 11 + 2k be such a query. Then a rewriting for n is simply R11 · Ck, as in Lemma 3. As we
already know that V determines every even query, this end the proof of the claim.

5 Extensions 25

The case of n = 9. There remains only a single unsolved case, which is n = 9. This qualifies
as a “small query” for the view V: a query for which we are unable to either build a generic
counter-example, as in Section 4.2, or provide a generic rewriting, as in Section 4.3. We actually
proved that V 6� Q = {9}. However, the smallest counter-example that we know is a pair of
databases of 154 nodes each, that were built by hand through a very tedious trial and error process
and checked by a computer program. At this time, we are unfortunately unable to provide any
technique to generate such a counter-example for other views and queries. We conjecture that the
combinatorial complexity of these “small queries” might be much higher than what we have dealt
with so far.

5.2 Language Extensions

In this section, we show how to extend parts of our work to stronger query languages. We do so by
extending the view and query languages in two directions: first, we allow the unions in the view
to be arbitrary, that is, we allow the sets associated with the queries in the view to be infinite.
Second, we allow the database schema to contain more than one symbol and adapt the query
and view languages accordingly. To this end, a natural extension is to consider queries defined
by chain queries and views defined by unions of chains queries. In [2], chain queries are defined
as conjunctive queries whose underlying graph is a directed path. Here, we provide an equivalent
definition that more closely resembles the way we defined path queries.

A chain query Q is defined by a single word w ∈ σ∗. On a given database D, Q returns all
pairs of nodes (x, y) in D such that there exists a path in D of the form xa0x1a1 . . . xm−1am−1y,
with a0 . . . am−1 = w. The word a0 . . . am−1 is called the label of π and is denoted λ(π). Thus,

Q(D) = {(x, y) ∈ D | ∃π, x π→ y and λ(π) = w}. As with path queries, we will simply note
Q = {w}.

Similarly, an arbitrary union of chain queries Q is defined by a (possibly infinite) set of words
{w1, . . . , wn, . . .} of σ∗. It returns all pairs of nodes connected by a path whose label falls into this

set, that is, Q(D) = {(x, y) ∈ D | ∃π, x π→ y and λ(π) ∈ Q}. As with unions of path queries, we
can remark that unions of chain queries generalize chain queries, in the sense that a chain query is
simply a union of chain queries whose associated set is of size 1.

Remark that arbitrary unions of chain queries correspond to “any language” path queries, in
that they contain all query languages that select pairs of nodes based on the label of a path linking
them, such as regular path queries, context-free path queries, and so on.

Remark also that we do not have any theoretical requirement on the way in which the infinite
sets associated with these queries should be represented. Indeed, we will shortly see that when an
arbitrary union-of-paths view determines a path query, then its finite component already determines
the same query. However, for the following construction to be effective, we do require:

• the ability to decide, given a query, whether its associated set is infinite.

• the ability to effectively list all the elements in the associated set, when it is finite.

The following lemma gives a formal statement to the intuition that infinite unions cannot be
used to determine a path query.

Lemma 10. Let Q be a chain query and V be a view defined by arbitrary unions of chain queries.
Let V = Vf]V∞, such that Vf only contains queries defined by finite sets, and V∞ only contains
queries defined by infinite sets. Then V � Q if and only if Vf � Q.

Proof. It is easy to see that if Vf � Q, then V � Q. Conversely, assume that Vf does not
determine Q. Then there exists two databases D1 and D2 such that D1 and D2 agree on Vf but
not on Q. Let k be the length of the longest word that appears in Q ∪Vf . We transform D1 into
a new database D′1 as follows:

• We add to D′1 k + 1 new nodes x0,. . . ,xk, as well as the following edges:

– For all i and for all a ∈ σ, a(xi, xi+1) holds in D′1.

6 Conclusions 26

– For all a ∈ σ, a(x0, x0) and a(xk, xk) hold in D′1.

• For each original node x of D1 and all a ∈ σ, we add a(x, x0) and a(xk, x) to D′1.

We then apply the same steps to D2 and get a new database D′2. This construction has no effect
on Q or Vf for the original nodes of D1 and D2. However, for each (x, y) ∈ D1 (respectively D2)
and for each V ∈ V∞, V (x, y) holds in V∞(D′1) (respectively V∞(D′2)). Thus, we can check that
D′1 and D′2 agree on V but not on Q. Hence V 6� Q, which concludes the proof.

In view of Lemma 10, we can restrict our attention to views defined by finite unions of chain
queries. We now show how to translate the necessary conditions from Section 3.1 for a view V
defined by finite unions of chain queries to determine a chain query Q. We start by giving an
analogue to Lemma 1, by showing that if V � Q, then V contains a chain query. We can say even
more: each edge in the graph representation of Q must actually belong to a path that satisfies
some chain query in V. While this was the case in the previous setting, it was also trivial then.

Lemma 11. Let Q = {w} be a chain query, and V be a view defined by unions of chain queries.
Let D be the database consisting of a simple path π = x0a0x1 . . . xn−1an−1xn such that λ(π) = w.
Assume that V � Q. Then for each 0 ≤ i < n, there exists j ≤ i ≤ k such that C = {aj · . . . ·ak} ∈
V.

Proof. This proof is an extension of the proof of Lemma 1. Assume by contradiction that there
exists 0 ≤ i < n such that the edge xi

ai−→ xi+1 of D is not used to satisfy any chain query of V.
In other words, there is no chain query C ∈ V such that (xj , xk) ∈ C(D) for any j ≤ i and k > i.

We now build a database D1 as follows:

• D1 contains the simple path π.

• For each j ≤ i and k > i such that there exists V ∈ V with aj . . . ak ∈ V , we add to D1 a
simple path πj,k,V from xj to xk such that λ(πj,k,V) ∈ V − {aj . . . ak}. Such a path exists
because V is not a chain query, by our hypothesis.

We then build a database D2 that is a copy of D1 except that ai(xi, xi+1) does not hold in D2.
Then, it remains to check that V(D1) = V(D2) as was the case in the proof of Lemma 1, and that
Q(D1) 6= Q(D2). Thus V 6� Q, which concludes the proof.

This lemma greatly restricts the form of chain queries Q that can possibly be determined by a
given view V. Indeed, a chain query Q = {w} can only be determined by a view V if w consists of
(possibly overlapping) words taken from the chain queries in V and stitched together. Remark
that what makes the problem non-trivial is precisely this overlapping, in the same way that a view
V defined by unions of path queries can determine a path query Q that is not a multiple of the
necessary path query in V.

Next, we remark that Lemma 3 immediately applies in this setting. Indeed, if V � Q, then V
necessarily contains a chain query C. Then, we can deduce that V � Q · Ck, for any k.

We still however have one major challenge to overcome in order to adapt the remainder of
our proof to this extended setting comes from the fact that, when the alphabet is reduced to a
single symbol, the resulting free monoid is commutative. This implicit argument is crucial both for
the alternate definition of asymptotic determinacy of Section 3.2 and for the arithmetic proofs of
Section 4. It is likely that the case of chain queries behaves differently and requires new techniques
and ideas. We leave this interesting question for future work.

6 Conclusions

We have shown that, given a view V defined by unions of path queries, we can decide determinacy
of almost all path queries Q. Although the smallest query that we can handle is of exponential size
in the size of V, our decision procedure still works with ΠP

2 complexity. Moreover, for the queries

6 Conclusions 27

that are big enough to be handled by our algorithm, we also provide a first-order rewriting when
they are determined, and a canonical counter-example otherwise.

A natural continuation of this work would be to try and solve the determinacy problem even
for small queries. Another possible continuation stems from the following remark: on all examples
where V determines Q that we are aware of, it also turns out that our rewriting is actually correct,
even when the query is too small to be handled by our technique. Perhaps it so happens that this
rewriting is always correct, as soon as we assume that V determines Q. Failing that, it might still
be the case that a first-order rewriting can always be found.

Acknowledgements I gratefully thank Luc Segoufin and Cristina Sirangelo for carefully proof-
reading this paper and providing many invaluable comments and advices. I also thank the
anonymous reviewers for their painstaking and helpful reviews.

References

[1] Serge Abiteboul and Oliver M. Duschka. Complexity of answering queries using materialized
views. In ACM Symp. on Principles of Database Systems (PODS), pages 254–263, 1998.

[2] Foto N. Afrati. Determinacy and query rewriting for conjunctive queries and views. Theoretical
Computer Science, 412(11):1005–1021, 2011.

[3] Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Moshe Y. Vardi. Lossless
regular views. In ACM Symp. on Principles of Database Systems (PODS), pages 247–258.
ACM, 2002.

[4] Nadime Francis. Asymptotic determinacy of path queries using union-of-paths views. In 18th
International Conference on Database Theory (ICDT 2015), 2015.

[5] Nadime Francis, Luc Segoufin, and Cristina Sirangelo. Datalog rewritings of regular path
queries using views. Logical Methods in Computer Science, 11(4), 2015.

[6] Tomasz Gogacz and Jerzy Marcinkowski. The hunt for a red spider: Conjunctive query
determinacy is undecidable. In Proceedings of the 2015 30th Annual ACM/IEEE Symposium
on Logic in Computer Science (LICS), pages 281–292. IEEE Computer Society, 2015.

[7] Tomasz Gogacz and Jerzy Marcinkowski. Red spider meets a rainworm: Conjunctive query
finite determinacy is undecidable. arXiv preprint arXiv:1512.01681, to appear in PODS 2016,
2015.

[8] Alon Y. Levy, Alberto O. Mendelzon, Yehoshua Sagiv, and Divesh Srivastava. Answering
queries using views. In ACM Symp. on Principles of Database Systems (PODS), pages 95–104,
1995.

[9] Bohdan S Majewski and George Havas. The complexity of greatest common divisor computa-
tions. In Algorithmic Number Theory, pages 184–193. Springer, 1994.

[10] Alan Nash, Luc Segoufin, and Victor Vianu. Views and queries: Determinacy and rewriting.
ACM Transactions on Database Systems, 35(3), 2010.

