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Abstract

Inverse problems occur in a wide range of scientific applications, such as in the fields of
signal processing, medical imaging, or geophysics. This work aims to present to the field
practitioners, in an accessible and concise way, several established and newer cutting-edge
computational methods used in the field of inverse problems—and when and how these
techniques should be employed.
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1. Introduction

In this work, we aim to survey several techniques useful to a practitioner in the field of inverse

problems, where the solution to a vector of interest is given through a linear system Ax ¼ b or

through a set of nonlinear equations F xð Þ ¼ 0. In our presentation below, we review both

classical results and newer approaches, which the reader may not be familiar with. In particu-

lar, this chapter offers entries on the following material:

• Matrix factorizations and sparse matrices

• Direct solves and pivoted factorizations

• Least squares problems and regularization

• Nonlinear least squares problems

• Low-rank matrix factorizations and randomized algorithms

• An introduction to Backus-Gilbert inversion

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



2. Notation

In this chapter, we use the norm �k k to refer to the spectral or operator norm, and �k kp to refer

to the ℓp norm. We make frequent use of the QR decomposition and the SVD (singular value

decomposition). For anyM�N matrix A and (ordered) subindex sets Jr and Jc, A(Jr, Jc) denotes

the submatrix of A obtained by extracting the rows and columns of A indexed by Jr and Jc,

respectively; and A :; Jcð Þ denotes the submatrix of A obtained by extracting the columns of A

indexed by Jc. We will make use of the covariance and the variance matrix, which we define as

follows in terms of the expected value:

cov x; yð Þ ¼ E x� E x½ �½ Þ y� E y½ �ð ÞT � and var xð Þ ¼ cov x; xð Þ:

By “Diag,” we refer to a diagonal matrix with nonzeros only on the diagonal. We make use of

the so-called GIID matrices. These are matrices with independent and identically distributed

draws from the Gaussian distribution. In the Octave environment (which we frequently refer-

ence), these can be obtained with the “randn” command. We assume the use of real matrices,

although most techniques we describe extend to the complex case.

3. Matrix factorizations and sparse matrices

Let A be an M�N matrix with real or complex entries, and set r ¼ min M;Nð Þ. We will make

use of the singular value decomposition (SVD) of a real matrix A∈R
M�N : if A is of rank r, then

there exist U∈R
m�r, V ∈R

N�r and
P

∈R
r�r such that

1. UTU ¼ I, VTV ¼ I,

2.
P

¼ Diag σ1; σ2;…; σrð Þ∈R
r�r is a diagonal matrix with σ1 ≥ σ2 ≥⋯ ≥ σr > 0, and

3. A ¼ UΣVT .

This is known as the economic form of the SVD [1]. For 1 ≤ i ≤min M;Nf g, the i-th largest

singular value of A is defined to be σi, with σj ¼ 0 for j ¼ rþ 1,…,min M;Nf g whenever

r < min M;Nf g. The generalized inverse of A∈R
m�N with SVDA ¼ UΣVT , is defined as

Aþ ¼ VΣ�1UT (and
P�1 ¼ Diag σ�1

1 ; σ�1
2 ;…; σ�1

r

� �
∈R

r�r). By a rank deficient matrix, we

imply a nonlinear decay of singular values σif g. In this case, the numerical rank of A may be

smaller than the actual rank due to the use of finite precision arithmetic.

The (compact) QR-factorization of A takes the form

A P ¼ Q R,

m� n n� n m� r r� n
(1)

where P is a permutation matrix, Q has orthonormal columns, and R is upper triangular. The

permutation matrix P can more efficiently be represented via a vector Jc ∈Z
n
þ of indices such

that P ¼ I :; Jcð Þwhere I is the n� n identity matrix. The factorization (1) can then be written as:
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A :; Jcð Þ ¼ Q R

m� n m� r r� n
(2)

Another commonly used decomposition is the pivoted LU:

A :; Jcð Þ ¼ L U:

m� n m� r r� n
(3)

with L a lower triangular and U an upper triangular matrix. In the Octave environment, these

decompositions can be constructed, respectively, via the commands Q;R; I½ � ¼ qr A; 0ð Þ;ð
L;U; I½ � ¼ lu Að Þ. The matrix P does not need to be explicitly formed. Instead, vector I gives

the permutation information. The relation between the two in Octave is given by the command

P :; Ið Þ ¼ eye length Ið Þð Þ.

Many matrices in applications turn out to be sparse. They can be stored more efficiently,

without the need to store all m� n elements. The simplest sparse format is the so called

coordinate sparse format, common to, e.g., the Octave environment. In this format, we store

the integers row, column, and floating point value for each nonzero of the sparse matrix A: a

set of triplets of the form i; j; vð Þ. However, we do not need to store all the row and column

indices of the nonzero elements. Below, we summarize the two commonly used sparse formats

for an example matrix.

A ¼
0 6 3 0

1 0 8 0

7 0 0 2

2

64

3

75

The compressed column and row formats for this matrix are given by the vectors:

ic ¼ 1; 2; 0; 0; 1; 2½ �, pc ¼ 0; 2; 3; 5; 6½ �, dc ¼ 1; 7; 6; 3; 8; 2½ �,

and

ir ¼ 2; 1; 0; 2; 3; 0½ �, pr ¼ 0; 2; 4; 6½ �, dr ¼ 3; 6; 1; 8; 2; 7½ �:

In the compressed column format, the dc array stores the nonzero elements, scanned row by

row. The array ic stores the row index of the corresponding data element, and the array pc stores

function y = mat_mult (A, x) function y = mat_trans_mult (A, x)

y = zeros (m, 1); y = zeros (n, 1);

for i = 1:m for i = 1:m

for j = pr (i): pr (i + 1) for j = pr (i): pr (i + 1)

y (i) = y (i) + dr (j) * � (i r (j)); y (i r (j)) = y (i r (j)) + dr (j) * � (i);

end end

end end

end end
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the index of the start of each column in the data array dc. Similarly, for the compressed row

format, all the column indices of nonzeros are given, but the row information is compressed by

giving in pr, the index of the start of each row in dr. Moreover, if needed, the three vectors for the

sparse representation above can be further compressed, with, e.g., lossless compression tech-

niques, such as arithmetic coding [2]. BLAS operations on sparse matrices can be performed

directly using these storage formats. Below, we list the pseudocode for the operations y1 ¼ Ax1

and y2 ¼ ATx2 for a m� n sparse matrix A stored with compressed row format.

4. Direct solves

Given a linear system Ax ¼ b with a square matrix A which is invertible det Að Þ 6¼ 0ð Þ, the
solution x can be constructed through the inverse of A, built up using Gaussian elimination.

For relatively small systems, the construction of such solutions is often desired over least

squares formulations, when a solution is known to exist. Typically elimination is used to

construct the factorization of A into a QR or LU decomposition. The construction of factoriza-

tions (QR, LU) with column pivoting can be applied to system solves involving rank deficient

matrices. As an example, consider the pivoted QR factorization AP ¼ QR. Here AP ¼ A :; Ið Þ, a
rearrangement of the columns of A upon multiplication with permutation matrix P. Plugging

into Ax ¼ b yields QRPTx ¼ b ) QRy ¼ b ) Ry ¼ QTb, which is an upper triangular system,

and can be solved by back substitution. A simple permutation PTx ¼ y ) x ¼ Py yields the

solution x.

Similarly, suppose we have the pivoted LU factorization AP ¼ LU. Then, plugging into

Ax ¼ b yields LUPTx ¼ b. Next, set z ¼ UPTx ¼ Uy with y ¼ PTx. Then Lz ¼ b (which is a

lower triangular system) can be solved by forward substitution for z, while Uy ¼ z can be

solved by back substitution for y. Again applying a permutation matrix to x ¼ Py yields the

result. Notice that multiplying by P can be done efficiently, simply be re-arranging the

elements of y. The implementations of the back substitution and forward substitution algo-

rithms are given below.

% Solve Lz = b % Solve Uy = z

function z = fwd_sub (L, b) function y = back_sub (U, z)

n = length (b); n = length (z);

z = zeros (n, 1); y = zeros (n, 1);

for i = 1:n for i = n: �1:1

z (i) = (b (i) � L(i,:) * z) /L(i, i); y (i) = (z (i) � U(i,:) y) /U(i, i);

end end

end end
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5. Regularization

5.1. Least squares

Prior to discussing two-norm or what is more commonly known as Tikhonov regularization,

we mention the least squares problem:

xlsq ¼ argmin
x

Ax� bk k22 (4)

This formulation arises due to the noise in the right hand side b, in which case it does not make

sense to attempt to solve the system Ax ¼ b directly. Instead, if we have an estimate for the

noise norm (that is, b ¼ bþ e with unknown noise vector e, but we can estimate ek k2), then we

could seek a solution x such that Ax� bk k2 ≈ ek k2. Let us now look at the solution of (4) in more

detail. As the minimization problem is convex and the functional quadratic, we obtain the

minimum by setting the gradient of the functional to zero:

∇x Ax � bk k22 ¼ 0 ) ATAx ¼ ATb (5)

A common choice of solution to the quadratic Eq. (5) would be directly through the general-

ized inverse:

x ¼ ATA
� �þ

ATb ¼ VΣ�2VT
� �

VΣUTb ¼ Aþb, (6)

because of all the solutions to ATAx ¼ ATb, Aþb has the smallest ℓ2-norm: ATAx ¼ ATb if and

only if x ¼ Aþbþ d for some d∈ker ATA
� �

¼ range ATA
� �⊥ ¼ range Aþ� �⊥

, and

Aþbþ d
�� ��2 ¼ Aþb

�� ��2 þ 2dT Aþb
� �

þ dk k2 ¼ Aþb
�� ��2 þ dk k2 Aþb

�� ��2:

Typically, the least squares problem is solved by an iterative method such as conjugate gradi-

ents (CG) or related techniques such as LSQR. Whichever way the solution to the normal

equations in (5) is obtained, it will be close A+b and share its properties.

First, if A has small singular values, the norm of the solution Aþb ¼ VΣ�1UTb will be very

large because of the Σ
�1 matrix. Another disadvantage of (4) is that the solution A+b will be

very sensitive to any noise in b or even in A (if any approximations in the calculations are

used). Suppose the noise vector e behaves like white noise. Its different entries are

uncorrelated, each having mean 0 and standard deviation ν. If, in addition, the elements of b

and e are uncorrelated, we have:

var eð Þ ¼ E e� E e½ �ð Þ e� E e½ �ð ÞT
h i

¼ E eeT
� �

¼ ν2I,

and
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var bð Þ ¼ E b� E b½ �ð Þ b� E b½ �ð ÞT
h i

¼ E eeT
� �

¼ ν2I:

We may then estimate the norm of the variance of the solution vector:

var xð Þ ¼ var Aþb
� �

¼ var VΣ�1UT
� �

b
� �

¼ VΣ�1UT
� �

var bð Þ U Σ
�1

� �T
VT

� �
¼ ν2VΣ�2VT

) var xð Þk k2 ¼ ν2 VΣ�2VT
�� ��

2
¼ ν2

σ2min

,

where σmin is the smallest magnitude singular value of A. We can clearly see that when A has

an appreciable decay of singular values (such that σmin is small relative to σ1), the solution

x ¼ Aþb will be sensitive to data errors. For these reasons, adding additional terms (regulari-

zation) to the optimization problem is often necessary.

5.2. Tikhonov regularization

Having discussed the least squares approach we turn our attention to the simplest form of

Tikhonov Regularization:

xtik ¼ argmin
x

Ax� bk k22 þ λ xk k22
n o

(7)

where λ > 0 is a scalar regularization parameter, which controls the tradeoff between the

solution norm xk k2 and the residual fit Ax� bk k2. Since the functional in brackets is convex,

we can get the solution by again setting the gradient to zero:

∇x Ax� bk k22 þ λ xk k22
n o

¼ 0 ) 2AT Ax� bð Þ þ 2λx ¼ 0 ) ATAþ λI
� �

x ¼ ATb (8)

If we plug in the SVD of A ¼ UΣVT , we get:

x ¼ UΣVT
� �T

UΣVT
� �

þ λI
� ��1

ATb

¼ V Σ
T
Σþ λI

� ��1
VT

� �
VΣTUTb

¼ V Σ
T
Σþ λI

� ��1
Σ
TUTb

¼ VDiag
σi

σ2i þ λ

 !

UTb ¼ VDUTb

We see that the effect of the regularization is to filter the small singular values σi, by replacing

each σi by σi
σ2
i
þλ
, which prevents the singular values smaller than λ from dominating the

solution. If we now compute the norm of the solution variance, we obtain:
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var xð Þ ¼ var VDUTb
� �

¼ VDUT
� �

var bð Þ UDVT
� �

¼ v2VD2VT

) var xð Þk k2 ¼ v2 VD2VT
�� ��

2
¼ v2 D2

�� ��
2
≤
v2

4λ
:

The result follows because the function h tð Þ≔ t
t2þλ

satisfies h0 tð Þ ¼ 0 at t ¼ �
ffiffiffi
λ

p
with

h
ffiffiffi
λ

p� �
¼ 1

2
ffiffiffi
λ

p . Thus, the solution to the system from (8) (even if obtained from a CG type

scheme after a finite number of iterations) relieves the problems due to small singular values

and noise, which affect the solution from (5).

In practice, a slight generalization of (7) is performed by adding a regularization matrix L:

xtikL ¼ arg min
x

Ax� bk k22 þ λ1kx 2
2 þ λ2∥Lx
�� ��2

2

n o
(9)

Generally, L is some kind of sharpening (difference) operator. The penalization of the term

Lxk k, thus results in smoothing. If the coordinate system x is one-dimensional, it could take the

form:

L1 ¼

�1 1 … 0 0

0 �1 … 0 0

⋮ ⋮ ⋱ ⋮ ⋮

0 0 … �1 1

2

666664

3

777775

When the coordinate system corresponding to the model vector x is higher dimensional, Lwill

be correspondingly more complicated and will generally have block structure. Note that the

solution to (9) can be obtained through the linear equations:

ATAþ λ1I þ λ2L
TL

� �
x ¼ ATb (10)

and can also be cast as an augmented least squares system and solved through its corresponding

augmented normal equations:

x ¼ argmin
x

A
ffiffiffiffiffi
λ1

p
I

ffiffiffiffiffi
λ2

p
L

2

664

3

775x�
b

0

0

2

664

3

775

��������

��������

2

2

)
A
ffiffiffiffiffi
λ1

p
I

ffiffiffiffiffi
λ2

p
L

2

664

3

775

T
A
ffiffiffiffiffi
λ1

p
I

ffiffiffiffiffi
λ2

p
L

2

664

3

775x ¼
A
ffiffiffiffiffi
λ1

p
I

ffiffiffiffiffi
λ2

p
L

2

664

3

775

T
b

0

0

2

664

3

775

This is an important point with regards to implementation, as it means that codes which solve

the normal equations for standard least squares can be readily modified to solve (9). If L is a

smoothing operator, the parameters λ1 and λ2 effect the degree of norm damping and model

smoothing, respectively. Notice that increasing λ2 from zero also changes the solution norm, so

λ1 may need to be altered to compensate.
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5.3. Sparse regularization and generalized functional

The ℓ2 penalty in (7) has the effect of penalizing the solution norm in a way which encourages

all coefficients to be small (as λ is increased). For very large λ, only x = 0 would result in the

required minimum but for modest values (below, e.g., ATb
�� ��

∞
), the effect would be to force all

solution coefficients to have smaller magnitudes with increasing λ, but would not make any of

them explicitly zero. In many applications, a sparse solution is sought (where, a significant

percentage of the coefficients of x are zero). A so-called ℓ0 measure is an indicator function for

the number of nonzeros of x. This measure is not a norm, as it does not satisfy, e.g., the basic

triangle inequality. Constraining the ℓ0 measure (e.g., Ax� bk k < E, min xk k0), leads to a com-

binatorially difficult optimization problem.

A key insight of compressive sensing is that the minimization with respect to the ℓ0 measure

and the convex ℓ1 norm (the sum of the absolute values of the components of a vector) produce

the same result (the sparsest solution) under some strong conditions (i.e., RIP, restricted

isometry property) on A [3]. In practice, a nonrandom A from a physical application would

not satisfy the RIP conditions. On the other hand, the minimization with respect to the ℓ1 norm

(and the ℓp-norms for 0 < p < 2, convex only for p ≥ 1) produce sparse solutions (but not-

necessarily the sparsest one at a given residual level). Sample illustrations for the 2d case are

given in Figure 2, where we can observe that in two dimensions, the minimization of the ℓp

norm for p ≤ 1 results in one of the two components equal to zero. To account for the possibility

of employing a sparse promoting penalty and also for more general treatment of the residual

term, which we discuss more below, we will consider the two-parameter functional [4]:

Fl,p xð Þ ¼ Ax� bk kll þ λ xk kpp ¼
Xm

i¼1

Xm

j¼1

Aijxj � bi

















l

þ λ
Xn

i¼1

xij jp, (11)

with ~Fp ¼ F2,p (with l = 2 being the most-common residual-based penalty). For p < 2, the

functional ~Fp is not differentiable. This means that the minimum value cannot be obtained by

setting the gradient equal to zero as for ℓ2-based minimization. A particularly well-studied

example is the ℓ1 case, which is the closest convex problem to the ℓ0 penalty. Convexity of ~F1 xð Þ

Figure 1. Comparison of geophysical models recovered via (10) with λ2 ¼ 0 and λ2 > 0.
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guarantees that any local minimizer is necessarily a global one. In this case, an algorithm can

be constructed which decreases the functional value and tends to the (global) minimizer of
~F1 xð Þ. One such method is called the iterative soft thresholding algorithm (ISTA) and relies on

the soft thresholding function Sτ xð Þ, defined as:

Sτ xð Þð Þk ¼ sgn xkð Þmax 0; jxkj � τf g, ∀k ¼ 1,…, n,∀x∈R
n:

The benefit of this function is two-fold: it explicitly sets small components of x to zero (pro-

moting sparsity) and is continuous (unlike the related hard thresholding function which

simply zeros out all components smaller than τ in absolute value). The soft thresholding

function satisfies a useful identity:

Sτ bð Þ ¼ argmin
x

x� bk k22 þ 2τkxk1
�
,

n

which is utilized with a surrogate functional approach to construct the ISTA scheme:

xnþ1 ¼ Sτ xn þ ATb� ATAxn
� �

This algorithm converges to the ℓ2 minimizer for any initial guess and with Ak k2 (the spectral

norm ofA) being less than 1 (which can be accomplished simply by rescaling). The spectral norm

of a matrix A can easily be estimated using so called power iteration [1]. Let us assume that A is

square. If it is not we can take the matrix ATA in it’s place and take the square root of the

eigenvalue found to be the estimate for the spectral norm. If we take a vector x0 and write it as

a linear combination of eigenvectors ofA, then x0 ¼ α1v1 þ…þ αnvn. It follows that the iterative

computation xm ¼ Axm�1 yields (plugging in Avk ¼ λkvk):

α1λ
m
1 v1 þ…þ αnλ

m
n vn ¼ λm

1 α1v1 þ α2
λ2

λ1

� m

v2 þ…þ λn
λn

λ1

� m

vn

� �
) lim

m!∞

xm

λm
1

¼ α1v1,

a scalar multiple of the dominant eigenvector. A simple computation yields the dominant

eigenvalue. In practice, a much faster converging scheme called FISTA (Fast ISTA) [5] is

utilized, which is a slight reformulation of ISTA applied to a linear combination of two

previous iterates:

Figure 2. Illustration of family of functions yj jp for p∈ 0; 2ð Þ and sample solutions to ax1 þ bx2 ¼ c subject to min xk kp for
p = 2, 1, 0.5.
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xnþ1 ¼ Sτ yn þ ATb� ATAyn
� �

, yn ¼ xn þ tn�1 � 1

tn
xn � xn�1
� �

, tnþ1 ¼
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4t2n

q

2
, (12)

where t1 = 1. This algorithm is simple to implement and readily adapts to parallel architectures.

For challenging problems (such as when the decay of singular values of A is rapid), the

thresholding function Sτ can be slightly altered (see Figure 3), but the same iterative scheme

(12) can be utilized. Two possible approaches are either to vary the thresholding, starting from

soft thresholding and slowly approaching the (discontinuous) hard thresholding function, or

to use a function which better mimics hard thresholding away from zero. The use of different

thresholding functions alters the optimization problem being solved. Thresholding-based

techniques are simple to implement but are not effective in all situations, particularly when

only a few iterations are feasible (for example, when A is large). In this case, two interesting

approaches are iteratively re-weighted least squares (IRLS) and convolution smoothing [4].

Both techniques replace the nonsmooth part of the functional (namely, the absolute value

function |x|) by a smooth approximation. Moreover, both techniques have the particular

advantage of being able to employ gradient-based methods (such as CG) at each iteration,

considerably increasing the per-iteration performance. The IRLS approach is based on the

approximation:

∣xk∣ ¼
x2k
∣xk∣

¼ x2kffiffiffiffiffi
x2k

q ≈
x2kffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2k þ E
2

q

where in the rightmost term, a small E 6¼ 0 is used, to insure the denominator is finite,

regardless of the value of xk. The resulting algorithm [4] for the minimization of (11) can be

written as:

ATRnAþ Dnð ÞT Dnð Þ
� �

xnþ1 ¼ ATRnb

with two diagonal iteration dependent matrices Dn and Rn. The diagonal matrix Dn has

elements
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2λpw

n
k

q
and Rn has diagonal elements l rni



 

l�2
(for i where rni



 

 < E, we can set the

entry to lEl�2 with the choice of E user controllable, tuned for a given application). Here, the

residuals rni ¼ Axn � bð Þi and the iteration dependent weights are given by:

Figure 3. Illustrations of different thresholding functions [6, 7].
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wn
k ¼ 1

xnk
� �2 þ E

2
n

h i2�p
2

:

The diagonal matrices (or simply the vectors holding the diagonal elements) are updated at

each iteration and the system in (6.10) can be solved approximately via a few iterations of CG-

or LSQR-based algorithms. Another advantage of the IRLS approach is that the powers p can

be made component dependent. This then allows for better inversion of partially sparse signals

(if of course, the location of the sparse part can be estimated with some accuracy). An example

is illustrated in Figure 4 and further discussed in [8]. Another approach discussed in [4] is

based on a smooth approximation of the absolute value function f(t) = |t| obtained via

convolution with a sequence of Gaussian kernels, which have approximately shrinking sup-

port. The resulting “conv-CG” method is suitable especially for rapid warm start acceleration.

5.4. Alternate penalty functions and regularization parameter selection

Wemention here the classical image deconvolution problem. Given a blurring source g, such as a

2DGaussian function, we can produce a blurry image s from an unaltered source f via convolution

s ¼ f ∗gþ n, where n is some additive noise component. For such situations, a TV (total variation)

norm penalty is frequently used, for purposes of noise removal [9]. For a 2-D signal (such as an

image), the TV penalty can be written as V sð Þ ¼Pi, j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
siþ1; j� si, j


 

2 þ si, jþ1 � si, j



 

2
q

. Sometimes,

the alternate approximation
P

i, j siþ1, j � si, j


 

þ si, jþ1 � si, j



 

 is utilized. Various iterative schemes

have been developed for such penalty functions [9].

Both the ℓ2-based approaches and sparsity promoting regularization schemes (as well as TV-

norm penalty functionals) utilize one or more regularization parameters. In the case of

Tikhonov regularization with smoothing (as in (9)) more than one parameter is present. In this

case, the second (smoothing) parameter can generally be set according to the desired smooth-

ing effect, once the first parameter λ1 is chosen (with a fixed value of λ2) and then, λ1 can be

Figure 4. Illustration of half-sparse, half-dense signal recovery with different algorithms.
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adjusted to achieve a desired solution norm. Thus, we focus here on techniques to adjust λ1,

which we simply refer to as λ.

The standard way to choose the parameter is to use the L-curve technique starting at a large λ

(generally a value close to ATb
�� ��

∞
is a good choice) and decreasing down in logarithmic

fashion using the logarithmically spaced sequence:

S ¼ log λmaxð Þ � log λminð Þ
N � 1

; λi ¼ exp log λmaxð Þ � S i� 1ð Þð Þ, i ¼ 1,…, N:

The parameter N can vary by application but is typically in the range [5, 10]. Two typical

Strategies for parameter selection are employed.

The first is based on a target residual value, typically determined by the estimate of the noise

norm. At every λ after the initial value we reuse the previous solution as the initial guess for

the CG scheme at the current λ. We can use the solution xλ for which Axλ � bk k is closest to the

desired residual level (or refine further the solution at this λ with more CG iterations).

If however, the target residual norm is not available, other techniques must be used. We

discuss a method using the so-called L-curve where for the norm damping problem (7), we

plot a curve composed of points log Axλ � bk k; log xλk kð Þ which we can obtain using the same

continuation procedure previously discussed. The curve represents the tradeoff between the

residual value Axλ � bk k and the solution norm xλk k. In practice, neither of these quantities

should dominate over the other. Hence, an established strategy is to look for the point of

maximum curvature along the L-curve [11]. If we set:

E ¼ log xλk kp and ρ ¼ log Axλ � bk kl, (13)

where xλ is the solution of (11) at the particular value of λ. We can then compute the curvature

by the formula:

cλ ¼ 2
ρ0
E
00 � ρ00

E
0

ρ0� �2 þ E
0ð Þ2

� �3
2

, (14)

where the derivative quantities can be approximated via finite differences. We illustrate vari-

ous plots for a synthetic example in Figure 5. In the residual plot, the target residual is taken to

be the magnitude of the noise vector norm. We can also see that the lowest percent error

Figure 5. Regularization parameter picking. Set 1: Residuals and percent errors vs. λ fraction (fraction of ATb
�� ��

∞
). Set 2:

L-curve and curvature curve as a function of λ fraction.
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between xλ and the true x occurs at a value of λ roughly corresponding to the highest

curvature of the L-curve. In fact, for this example, the curvature method gives a better estimate

of good λ than the residual curve technique.

6. Nonlinear least squares (NLS) problems

In many cases, the inverse problem may be posed in terms of a nonlinear function F (x, t) with

x a vector of variables, which may be time dependent with parameter t. We first describe, here,

the popular Newton-Gauss method for NLS [1]. Let g xð Þ ¼ 1
2 r xð Þk k2 with ri xð Þ ¼ yi � F x; tið Þ.

Then, the NLS problem takes the form: x ¼ arg minxg xð Þ. Setting ∇g xð Þ ¼ 0, yields with

Newton’s method:

xnþ1 ¼ xn � ∇2g xnð Þ
� ��1

∇g xnð Þ

Expanding the gradient and Hessian of g yields:

∇g xð Þ ¼
Xm

i¼1

ri xð Þ∇ri xð Þ ¼ JTr xð Þ where J ¼ J r xð Þ½ �

∇2g xð Þ ¼
Xm

i¼1

∇ri xð Þ∇ri xð ÞT þ
Xm

i¼1

ri xð Þ∇2ri xð Þ ¼ JTJ þ T xð Þ ≈ JTJ:

where T xð Þ ¼
Pm

i¼1 ri xð Þ∇2ri xð Þ and J r xð Þ½ � i;:ð Þ ¼ ∇ri xð ÞT ¼ �∇F x; tið ÞT : The approximation

T xð Þ ≈ 0 is used in the expression for the Hessian in the Gauss-Newton method, yielding a

simple iterative scheme:

xnþ1 ¼ xn � JTn Jn
� ��1

JTn rn:

Unfortunately, this method is not stable and will typically not converge if initialized far away

from a minimum solution [1]. Improvements include the introduction of a step size parameter:

xnþ1 ¼ xn � αn JTn Jn
� ��1

JTn rn

αn ¼ argmin
α

g xn � αsnð Þ with JTn Jns
n ¼ JTn rn:

and of the use of a regularizer (e.g., Levenberg-Marquardt method [1]): where the system

Jn
TJny ¼ Jn

Trn is replaced by an ℓ2-norm penalty regularized system, Jn
TJn þ λI

� �
~y ¼ Jn

Trn.

7. Low-rank matrix factorizations

In many applications, there are large matrices with rapidly decaying singular values. In such

cases, low-rank matrix approximations like the low-rank SVD are useful for compression,
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speed gains, and data analysis purposes. For A∈R
m�n, the low-rank SVD of rank k (with

k < min(m, n)) is the optimal matrix approximation of A in the spectral and Frobenius norms.

Taking p = min(m, n), we define the low-rank SVD of rank k by Ak by taking into account only

the first k < p singular values and vectors: that is, with Uk ∈R
m�k consisting of the first k

columns of U,Σk ¼ Diag σ1;…; σkð Þ∈R
k�k consisting of k rows and columns of Σ, and

Vk ∈R
n�k consisting of the first k columns of V:

Ak ¼
Xk

j¼1

σjujv
T
j ¼ Uk

X
k
VT

k , (15)

Uk ¼ u1 u2…uk½ �, Vk ¼ v1v2…vk½ �, and
P ¼

σ1 0 0 ⋯ 0

0 σ2 0 ⋯ 0

0 0 σ3 ⋯ 0

⋮ ⋮ ⋮ 0

0 0 0 ⋯ σk

2

666666664

3

777777775

By the Eckart-Young theorem [12]:

kA� Akk ¼ σkþ1,

when the error is measured in the spectral norm, and

A� Akk kF ¼
Xp

j¼kþ1

σ2j

0

@

1

A
1=2

in the Frobenius norm. When k≪ p, the matricesUk, Σk and Vk are significantly smaller (cost of

storage of all nonzeros is mk + nk + k) than the corresponding full SVD matrices U, Σ, and V

(cost of storage ismp + np + p) and that of A (cost of storage ismn, but only some fraction of this

if A is sparse). While the construction of Ak is expensive (requiring in most cases the SVD of A),

it can be approximated very accurately via randomized algorithms, which requires only the SVD

of a smaller matrix. Various randomized algorithms for constructing the low-rank SVD and

related factorizations are described in [13]. Techniques for computing the low-rank SVD of a

matrix rely on a simple principal. An orthonormal matrix Q∈R
m�r (with r = k + l where l is a

small oversampling parameter, e.g., l = 5), is computed such that QQTA ≈A. If in fact r is large

enough so that QQTA ¼ A, the range of A is a subset of the range of Q. Thus, when QQTA ≈A,

we expect the range of Q to capture a good portion of the range of A, a statement which can be

made rigorous with some analysis. In this case, we form the smaller matrix B ¼ QTA, where

B∈R
r�n, possibly much smaller than the m � nmatrix A. Instead of performing the SVD on A,

we can obtain the SVD of B ¼ UΣVT . If A ≈QQTA ¼ QB, then A ≈ QUð ÞΣVT and the later will

form a low-rank SVD approximation for A (if we only take the first k singular vectors and

values of the corresponding factorization). Notice that when A is rectangular, the eigen-

Recent Trends in Computational Science and Engineering62



decomposition of the BBT or BT B matrices can be used to construct the approximate low-rank

approximation of A.

A separate problem is the construction of a suitable matrix Q from A. Again, the idea is to

construct as small (in terms of column number) as possible Qwith orthonormal columns, such

that Q captures a good chunk of the range of A. When A is a matrix of known rank k then (in

MATLAB notation), simply setting Q ¼ qr AΩ; 0ð Þ where Ω∈R
n� kþlð Þ is a GIID matrix, with l a

small over-sampling parameter, produces a valid matrix Q for projection. When the tail

singular values (those smaller than σk) are still expected to be significant, a power sampling

scheme turns out to be effective. Instead of setting Y = AΩ and performing QR of Y, we use the

matrix Y ¼ AAT
� �q

AΩ with q ≥ 1. Plugging in the SVD of A, we obtain AAT
� �q

A ¼ UΣ
2qþ1VT ,

which has the same eigenvectors as A but much faster decaying singular values. Care must be

taken when taking powers of matrices, to prevent multiplying matrices whose singular values

are greater than one in magnitude. However, when the rank of the matrix A is not known, it is

hard to use this approach, since the optimal size of the random matrix Ω to use would not be

known. In this situation, a blocked algorithm can be employed [14], where on output with user

supplied E > 0 parameter, an orthonormal matrix Q and matrix B are produced such that

QB� Ak k < E where B = QT A. Then, any number of standard low-rank matrix factorizations

can be computed by operating on the matrix B instead of A. The basic steps of the proposed

algorithm are given in Figure 6. We note that the resulting Q matrix can be utilized also for

purposes of model reduction (e.g., one can use the reduced linear system QT Ax = QT b as an

approximation to the full system Ax = b). That is, one can use the reduced linear system

QTAx ¼ QTb as an approximation to the full system Ax ¼ b (or to replace A and b with the

projected values in the least squares formulation); which has applications to e.g. accelerate

image deblurring. The construction of Q for large matrices can in practice be done in parallel

by employing the algorithm in [13] over row blocks of the matrix, as illustrated in Figure 6.

Figure 6. A blocked and adaptive version of the accuracy enhanced QB algorithm proposed in [14].
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The rank-k SVD Ak ¼ Uk

P
kV

T
k

� �
of a general m� n matrix A yields an optimal approximation

of rank k to A, both in the operator (spectral) and Frobenius norms. On the other hand, even if

A is a sparse matrix, the m� k and n� k factors Uk and Vk are typically dense. This means that

if the matrix is approximately p percent filled, the matrix will have approximately

N ¼ p
100m� n
� �

nonzeros. On the other hand, the rank k SVD will consist of approximately

mk + k + nk nonzeros. For growing rank k, this quantity will quickly approach and even exceed

N. Thus, even though the low-rank SVD is optimal for a given rank k, the choice of rank may

be limited to relatively low values with respect to min(m, n) for sparse matrices, in order to

achieve any useful compression ratios. (Of course, the usefulness of low-rank SVD representa-

tion is not simply limited to compression; indeed they are useful, e.g., for low-dimensional

data projections; but the utility of a low-rank approximation is greatly reduced once the

storage size of the factors exceeds that of the original matrix). Yet another aspect of the SVD

which may be problematic is the difficulty in interpreting the eigenvectors present in Uk and

Vk. While in many applications these have distinct meanings, they are not often easy to

interpret for a particular data set.

It is thus plausible, in the above context, to look for factorizations which may not be optimal

for rank k, but which may preserve useful properties of A such as sparsity and non-negativity,

as well as allow easier interpretation of its components. Such properties may be found in the

one- and two-sided interpolative decompositions and the CUR decomposition based on the

pivoted QR decomposition. If we stop the QR procedure after the first k iterations, we obtain:

A :; Jcð Þ ¼
k r� k

m Q1 Q2½ �
�

n

k

r� k

S1

S2

" #
¼ Q1S1 þQ2S2: (16)

S1 ¼
k n� k

k S11 S12½ � and S2 ¼
k n� k

k 0 S22½ �
(17)

i:e:; S ¼
k n� k

k

r� k

S11 S12

0 S22

" #
;

0

B@

1

CA (18)

A :; JCð Þ ¼ Q1 S11 S12½ � þQ2 0 S22½ � ¼ m Q1S11
k

Q1S12 þ
n�k

Q2S22

h i
:

From this formulation, we set

C≔ A :; JC 1 : kð Þð Þ ¼ Q1S11:

Q1S1 ¼ Q1S11 Q1S12½ � ¼ Q1S11 Ik S�1
11 S12

� �
¼ C Ik Tl½ �,

where Tl is the solution to the matrix equation S11Tl = S12 (which if solved for Tl a column at a

time, is simply a set of linear systems). It follows that we can write:
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A ≈CVT , where VT ¼ Ik Tl½ �PT : (19)

The one-sided ID of (rank k) is the approximate factorization:

A ≈ A :; Jc 1 : kð Þð Þ VT ,

m� n m� k k� n
(20)

where we use a partial column skeleton C ¼ A :; Jc 1 : kð Þð Þ of a subset of the columns of A and V is

a well-conditioned matrix. Clearly, C simply represents a subset of the columns of A chosen

based on the pivoting strategy used in the QR factorization. The typical pivoting strategy is to

choose the permutation matrix P (which simply dictates the re-arrangement of the columns

of A) such that if S22 above is omitted, yielding:

AP ≈Q1 S11 S12½ � þQ2 0 0½ � ¼ Q1
~S,

then the components of ~S satisfy ~s11j j ≥ ~s22j j ≥⋯ ≥ ~snmj j. Several other pivoting strategies can be

employed and each will yield a somewhat different re-arrangement of the columns of A.

Once the single-sided ID is defined, the two-sided ID can be constructed simply by obtaining a

one-sided ID of A and that of AT. A set of select columns of AT obtained by this procedure, will

be the same as the set of select rows of A. Thus, we can write the two-sided ID of (rank k) as:

A ≈ W A Jr 1 : kð Þ; Jc 1 : kð Þð Þ VT ,

m� n m� k k� k k� n
(21)

The procedure for the construction of the interpolative decompositions can be accelerated by

means of randomization, just like for the low-rank SVD. This is possible by virtue of the result

below [13].

Lemma 1 Let ~Ω ∈R
l�m be a matrix with GIID entries. Then, for any a∈R

m, we have that

E
~Ωa
�� ��2

ak k2

" #

¼ l and Var
~Ωa
�� ��2

ak k2

" #

¼ 2l.

Suppose, A is m� n and we draw a l�m GIID matrix ~Ω. Suppose, we then form the l� n

matrix Z ¼ ~ΩA. Then, E Z :;jð Þk k2
A :;jð Þk k2

h i
¼ l. As the pivoting result depends heavily on the ratio of the

individual column norms of A with respect to one another, the above result tells us that the

ratio of column norms is roughly preserved in a matrix resulting from the multiplication of

the original matrix by a Gaussian random matrix from the left. As the product matrix consists

of fewer rows than the original matrix, the pivoted QR factorization is correspondingly

cheaper to perform on the product matrix Z than on A, while the resulting permutation matrix

(really the re-arrangement vector) will be similar for both cases.

The two-sided ID allows us to construct the popular Column/Row skeleton CUR (rank k)

decomposition:
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A ≈ C U R

m� n m� k k� k k� n
(22)

Suppose, we compute a two-sided rank k ID factorization forming the k� k column/row

skeleton A(Jr(1: k), Jc(1: k)). Set:

C ¼ A :; JC 1 : kð Þð Þ and R ¼ A Jr 1 : kð Þ; :ð Þ

We then set this to equal the factors C and R in CUR:

CUR ¼ A :; Jc 1 : kð Þð ÞUA Jr 1 : kð Þ; :ð Þ ≈A :; Jc 1 : kð Þð ÞVT (23)

where we take U to satisfy the system UR = V T: In Figure 7, we compare the relative errors

obtained with different approximations at the same rank. For matrices with mild singular

value decay, the low-rank SVD obtained via a randomized scheme (with oversampling) gives

significantly closer to optimal performance (to true truncated SVD) than other decompositions.

8. An introduction to Backus-Gilbert inversion

As previously mentioned, damped least-squares (DLS) techniques are commonly exploited to

solve linear, discrete inversion problems, such as those encountered in seismic tomography

[15, 16]. To break the nonuniqueness of the least-squares solution, DLS inversion schemes often

rely on ad hoc regularization strategies (e.g., model norm damping or smoothing), designed to

subjectively favor the model simplicity. However, in regions of poor seismic data coverage,

DLS methods may lead to locally biased model solutions—potentially causing model misinter-

pretations [17]. In other words, DLS models may represent “biased averages” over the true-

Figure 7. Relative errors for RSVD, ID, and CUR decompositions of rank k for matrices with two different rates of

singular value decay (slower, faster).
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model parameters. Most geotomographical studies suffer from uneven data coverages, and

thus are concerned by these averaging bias effects. For example, teleseismic body-wave ray-

paths irregularly sample the Earth’s interior, because earthquakes typically are concentrated

along oceanic ridges or subduction zones and seismometers are located over continental areas

or oceanic islands.

A fundamentally different approach is that of linear Backus-Gilbert inversion [18–20], which

belongs to the class of optimally localized averages (OLA) methods. In the discrete version of

the Backus-Gilbert theory, one aims at evaluating (weighted) averages of the true-model

parameters. That is, the Backus-Gilbert method seeks to determine unbiased model estimates.

Over the past half century, many authors have considered that, in addition to being computa-

tionally very intensive, it could be a clumsy affair in the presence of data errors to practically

implement the Backus-Gilbert method to (large-scale) tomographic applications [15, 21–23]. In

the following, we aim to describe a recently developed—and (finally!) computationally tracta-

ble—tomographic approach [10] based on the Backus-Gilbert philosophy.

The SOLA (subtractive optimally localized averages) method [24, 25] is a variant of the original

Backus-Gilbert approach, which has been exploited to solve helioseismic inversion problems

[26, 27]. As a remark, Pijpers and Thompson [24] termed this alternative the SOLA method,

though it may have been rediscovered independently by different authors [28, 29]. SOLA

retains all the advantages of the original Backus-Gilbert method, but is much more computa-

tionally efficient and versatile in the construction of resolving (averaging) kernels. Recently,

SOLA has been introduced and adapted to large-scale, linear and discrete “tomographic”

problems by Zaroli [10]. We now briefly review the SOLA inversion scheme, tailored to seismic

tomography.

In this section, let us slightly change the notations about linear inverse problems, to keep closer

with those preferred in the geosciences community [10, 17]. Let us consider linear, discrete

forward problems of the form:

d ¼ Gmþ n, (24)

where d ¼ dið Þ1 ≤ i ≤N denotes the data, G ¼ Gij

� �
1 ≤ i, j ≤N,M

the sensitivity matrix,m ¼ mj

� �
1 ≤ j ≤M

the true-model parameters, and n ¼ nið Þ1 ≤ i ≤N the noise. The sensitivity matrix elements are the

partial derivatives of the data with respect to the model parameters: Gij ¼ ∂di=∂mj. Typically, in

“large-scale” tomographic studies, one may have to deal with M≳105 model parameters and

N≳106 data. Let us consider, without loss of generality, that the data are time-residuals, the

model parameters are velocity anomalies, the model space is parametrized using regular-size

cells (local and “orthonormal” parameterization), the noise is randomly drawn from a normal

distribution N 0; σnð Þ, and the data covariance matrix is Cd ¼ σ2nIN. For local and “irregular”

parametrizations, the reader is referred to [10]. It is a common practice to normalize both the

data and sensitivity matrix by the data errors; thus Cd ¼ IN.

One aims to find a model estimate, bm, that can be expressed as a linear combination of the

data:
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bm ¼ bG
†

d,

where the matrix bG
†

denotes some generalized inverse. The model estimate can be decomposed

as

bm|{z}
model estimate

¼ bRm|{z}
filtered true model

þ bG
†

n|ffl{zffl}
propagated noise

, (25)

where

bR¼bG†

G, (26)

is often referred to as the model resolution matrix. The first term in right member of (25), bRm,

represents the filtered true model, and shows our inability, if bR 6¼ IM, to perfectly recover the

true model. Here, we refer to the k-th row of the resolution matrix, bRk: ¼ bRkj

� �

1 ≤ j ≤M
, as the

resolving kernel that linearly relates the k-th parameter estimate, bmk, to the true-model param-

eters:

bmk ¼
XM

j¼1

bRkjmj, ignoring the term of propagated noise
� �

: (27)

Therefore, we wish that bRm represents an unbiased averaging over the true model parameters,

m. This means that, for any parameter index k∈ 1;…;M½ �, we wish that bRk. is non-negative and

satisfies to

XM

j¼1

bRkj ¼ 1: (28)

The second term in right member of (25), bG
†

n, denotes the propagated noise (i.e. the propaga-

tion of data errors) into the model estimate. Robust model interpretations require accurate

appraisals of model estimates, that is to compute and carefully analyze both bR and the model

covariance matrix

Cbm ¼ bG
†

Cd
bG

†
� �T

: (29)

As a remark, for DLS models this would also mean to quantify averaging bias effects (if any)—

see [17]. The model estimate bm, resolution bR, and covariance Cbm can be inferred from the

generalized inverse bG
†

; efficiently computing the full generalized inverse is then crucial for

any linear inverse problem. As we shall see, in the “SOLA Backus-Gilbert” approach the

generalized inverse is directly determined.
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The original Backus-Gilbert scheme consists in constructing the most peak-shaped resolving

kernel (peaked around each model parameter location), while moderating at most the prop-

agated noise into the model estimate. The key idea in the SOLA method is to specify an a

priori “target form” for each resolving (averaging) kernel. One needs to specify M target

resolving-kernels (hereafter, target kernels) such that their spatial extent represents some a

priori estimate of the spatial resolving-length (around each parameter location). As an exam-

ple, for 2-D tomographic studies the simplest target form could be circular (isotropic

resolving-length); each target kernel would be constant inside such a circle and zero outside.

Rather than minimizing the spread of each resolving kernel, as in the original Backus-Gilbert

formulation, in the SOLA approach one aims at minimizing the integrated squared differ-

ence between each resolving kernel and its associated target kernel. Each row of the SOLA

generalized inverse is individually computed by solving a specific minimization problem—

the full computation of bG
†

is then extremely parallel. The k-th row, bG†

k: ¼ bG
†

ki

� �

1 ≤ i ≤N
, is

found such that:

min

bG
†

k:

XM

j¼1
bRkj � T

kð Þ
j

� �2

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
resolution misfit

þ η2k σ2bmk|{z}
model variance

, s:t:
XM

j¼1

bRkj ¼ 1, (30)

where ηk and t kð Þ ¼ T
kð Þ
j

� �

1 ≤ j ≤M
are the k-th tradeoff parameter (resolution misfit versus model

variance) and target resolving-kernel vector, respectively; k is the index of considered model

parameter. Because of the additional constraint in (30), the k-th parameter estimate, bmk, is

expected to be unbiased (provided that its corresponding resolving kernel is (mostly) non-

negative)—so for the model estimate bm. Though not strictly necessary, here all M target

kernels are imposed to be unimodular:

XM

j¼1

T
kð Þ
j ¼ 1, ∀k∈ 1;⋯;M½ �: (31)

The system to be solved for the k-th row of the SOLA generalized inverse then writes as follows:

GGT þ η2kIN
� � bG†

k: ¼ Gt kð Þ, s:t:
XM

j¼1

XN

i¼1

bG†

kiGij ¼ 1: (32)

As a remark, since only a single (k-th) parameter index is treated at a time in (32), it could be

difficult to ensure that all M selected values for the tradeoff parameters (η kð Þ) would lead to

“globally coherent” model solutions. However, it seems [10, 17] that globally coherent tomo-

graphic images can be obtained when using: (1) target kernels whose size is tuned to the

spatially irregular data coverage (for instance using seismic ray-paths density as a proxy for

the spatial variations of the local resolving-length); and (2) constant-valued tradeoff parame-

ters, that is:
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ηk ¼ η, ∀k∈ 1;⋯;M½ �: (33)

In practice, it seems that η may (roughly) be determined from analyzing a few curves of

tradeoff between
P

j
bRkj � T

kð Þ
j

� �2
and σ2bmk

, for some randomly chosen parameter index (k).

Let us now define the following quantities [10, 17, 30]:

x kð Þ ¼ x
kð Þ
i

� �

1 ≤ i ≤N
, x

kð Þ
i ¼ bG

†

ki

bx kð Þ ¼ x
kð Þ
i

� �

2 ≤ i ≤N
ci ¼

PM
j¼1 Gij

c ¼ cið Þ1 ≤ i ≤N,
bc ¼ ci=c1ð Þ2 ≤ i ≤N
e1 ¼ δi1ð Þ1 ≤ i ≤N

B ¼
�bcT

IN�1

 !

Q ηð Þ ¼
GTB

�ηbcT

 !

y k;ηð Þ ¼
t kð Þ � c�1

1 GTe1

�c�1
1 η

 !

,

8
>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>:

(34)

where c1 is assumed to be nonzero and δ denotes the Kronecker symbol. Solving (32) therefore

consists in solving for bx kð Þ
the following normal equations:

Q ηð Þ

ηIN�1

 !
bX

kð Þ ¼ y k;ηð Þ

0N�1

 !

, (35)

using for instance the LSQR algorithm [31], and then to infer the final solution x(k) (i.e., the k-th

row of the SOLA generalized inverse) from bx kð Þ
such that:

x kð Þ ¼ Bbx kð Þ þ c�1
1 e1: (36)

Last, but not least, we now aim to discuss about the computational efficiency of the SOLA

approach for computing the full generalized inverse (see [10]). First, the rows of the general-

ized inverse matrix can be computed in parallel on P processors, so that computing all M rows

would take t�M=P CPU-time, where t is the average CPU-time to numerically solve (35). A

crucial point is that the matrixQ ηð Þ, of size (M + 1)� (N� 1), does not depend on the parameter

index (k), so that it does not need to be recomputed M times—as it was required in the original

Backus-Gilbert approach (see [10]). The vector y k;ηð Þ has to be recomputed M times, but that

task is computationally cheap. Q ηð Þ and y k;ηð Þ can easily be reconstructed if one aims at

investigating different η values (only the last row of Q ηð Þ and last element of y k;ηð Þ depend on
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η). Finally, simply re-ordering the rows of the sensitivity matrix G (and corresponding data),

such that the first row ofG is the sparsest one, allows the matrixQ ηð Þ to be almost as sparse as G

—this sparsity property is very useful when solving (35), in terms of storage, efficiency of the

LSQR algorithm, and memory footprint.

Figure 8 shows an example of the SOLA method applied to global-scale seismic tomography

[10], for which there are M = 38, 125 model parameters and N = 79, 765 data (teleseismic

shear-wave time-residuals). Tomographic images represent isotropic, 3–D shear-wave velocity

perturbations within the whole Earth’s mantle (with respect to some reference, radial absolute

velocity model). Figure 8a and b displays the tomographic model bm, at about 600 km depth,

and its uncertainty σbm computed as

σbm ¼ σbmk

� �

1 ≤ k ≤M
, σbmk

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XN

i¼1

bG
†

ki

� �2
vuut , (37)

(since the data are normalized by their errors), respectively. The form of each target kernel is

that of a 3-D spheroid, corresponding to a priori lateral and radial resolving lengths that may

Figure 8. Example of a global geotomographical model and its associated resolution and uncertainty, obtained from

using a “SOLA Backus-Gilbert” inversion approach [10]. (a) Model estimate, bm, shown at 600 km depth; (c) model

uncertainty, σbm , shown at 600 km depth; (b) zoom-in on bm (600 km depth) around the k0-th parameter location, i.e., the

green dot; (d, e) and (f, g) horizontal (600 km depth) and vertical cross-sections through the k0-th target (spheroid shape)

and averaging kernels, respectively.
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be expected locally, at best, given the data coverage. Let us focus on the k0-th model parameter,

marked by a green dot in Figure 8; a zoom-in on the tomographic model is shown in Figure 8c.

Horizontal (600 km depth) and vertical cross-sections through the k0-th target kernel are

displayed in Figure 8d and e, respectively. The corresponding k0-th resolving (averaging)

kernel is similarly displayed in Figure 8f and g.

Finally, the “SOLA Backus-Gilbert” approach, introduced and adapted to large-scale, linear,

discrete tomographic problems by Zaroli [10], allows to efficiently compute unbiased models,

including their full resolution and covariance—enabling quantitative model interpretations [17].

9. Conclusion

In this work, we have presented several techniques useful to the practitioner in the field of

inverse problems, with the aim to give an idea of when and how these techniques should be

employed for various linear and nonlinear applications. We have discussed techniques such as

sparse matrix storage, the use of pivoted factorizations for direct solves, ℓ2, ℓ1 and intermediate

penalty-based regularization strategies, nonlinear least squares problems, the construction and

use of low-rank factorizations, and an application of the Backus-Gilbert inversion approach

tailored to seismic tomography.
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