N
N

N

HAL

open science

A LOGARITHMICALLY COMPLETELY
MONOTONIC FUNCTION INVOLVING THE
¢-GAMMA FUNCTION

Feng Qi

» To cite this version:

Feng Qi. A LOGARITHMICALLY COMPLETELY MONOTONIC FUNCTION INVOLVING THE
¢-GAMMA FUNCTION: A monotonic function involving ¢g-gamma function. 2018. hal-01803352

HAL Id: hal-01803352
https://hal.science/hal-01803352

Preprint submitted on 30 May 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-01803352
https://hal.archives-ouvertes.fr

A LOGARITHMICALLY COMPLETELY MONOTONIC
FUNCTION INVOLVING THE ¢-GAMMA FUNCTION

FENG QI

ABSTRACT. In the paper, the author proves the logarithmically complete mono-
tonicity of a function involving the g-gamma function and derives some inequal-
ities for the g-multinomial coefficient and the g-multivariate beta function.
These conclusions generalize corresponding ones for the gamma function, the
multinomial coefficient, and the multivariate beta function respectively.
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1. PRELIMINARIES
Suppose that f: I — oo is an infinite differentiable function on an interval I. If
0< (=) 1 V() <00, neN,
then we call f a completely monotonic function; if f: I — (0,00) is positive and
(=D)"[ln f(2)]™ >0, neN,

then we call f a logarithmically completely monotonic function; if f : (0,00) —
[0,00) can be written in the form

fla) =5 +b+ [ ——duts)

where a,b are non-negative constants and p is a measure on (0,00) such that
fooo l}rs du(s) < oo, then we call f a Stieltjes transform. For more details on
definitions and properties of these kinds of functions, please see [I5, Chapter XIII],
[32, Chapter 1], and [33 Chapter IV]. Among these three kinds of functions, there

are the following relations:

2010 Mathematics Subject Classification. Primary 44A10; Secondary 05A20, 26A48, 26D07,
33B15.
Key words and phrases. logarithmically completely monotonic function; g-gamma function; in-
equality; g-multinomial coefficient; g-multivariate beta function.
This paper was typeset using AAS-ITEX.

1



2 F. QI

(1) a function f is completely monotonic on (0, c0) if and only if it is a Laplace
transform, that is, there is a positive measure p on [0, 00) such that

fa) = /0 T e du(t):

(2) the set of all logarithmically completely monotonic functions is a strict
subset of all completely monotonic functions;

(3) the set of all Stieltjes transforms is a strict subset of all logarithmically
completely monotonic functions on (0, c0).

For details on these relations, please refer to [5] [8 24, 25| [32] and closely related
references therein. For information on new developments of these kinds of functions,
please refer to [7, [9, 23] 26, [30] BI], B2] and closely related references therein.

The classical Euler’s gamma function I'(z) can be defined [22] by

I'(z2) :/ t*~le7tdt, R(z) >0
0

or by
I'(z)= lim ———~, 2€C\{0,-1,-2,...}.
The logarithmic derivative of T'(z), denoted by ¥(z) = I;/((ZZ)),

tives () (z) for i € N are respectively called the digamma (or psi) funciton and
polygamma functions. See [I, Chapter 6] and [I6, Chapter 5].

The g-analogue I';(z) of the gamma function I'(z) for ¢ > 0 and = > 0, called
the g-gamma function, can be defined [3, pp. 493-496] and [6l Section 1.10] by

and the deriva-

L2 1—q
(1-q! HoW’ 0<g¢<l
o _ g+
Fal@) = (o 1yirg® [ L2 70 sy, (L.1)
o 1 — ¢~
F(JZ), g=1

They satisfy
lim Ty(z) = lim Ty(z) =T(2) and Ty(z) = q(m?)Fl/q(aﬁ).

q—1t q—1-

The g-analogue ¢, (z) of the digamma function ¢(z) for ¢ > 0 and = > 0, called
the g-digamma function, is defined by

F“@'q#l
Yg(z) = Fq(@’)’ ’
w(x)v q= 1.

The g-analogues wék)(a:) of the polygamma functions v*)(z) for k € N are called
the g-polygamma functions. From (I.1)), we obtain that,

(1) when 0 < ¢ <1 and z € (0, 00),

> qk+:c & q
g() = =In(1—q) + (Ing) Y T—ge —In(1—q)+ (Ing) )
k=0

(2) when ¢ > 1 and z € (0, 00),

Yg(z) = —In(g — 1) + (Ing) <x 1o _ ¢ )
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The formula (1.11) in the paper [II] and its corrected version [12] reads that
oo efzt
dfa) ===~ [ {5 da (12)
0 —€
for 0 < g < 1 and = > 0, where

—lng» d(t+klng), 0<g<1
Vq(t) = ,; (1.3)

t, g=1

and () represents the Dirac delta function, that is, dy,4(¢) is a discrete measure
with positive masses | Ing| at the positive points k|ln g| for k € N. Accordingly, we

obtain
o Tlng
et dy,(t) = _4
| et = -1
and ,
. q"(Ingq)
te” " dy,(t) =
/o ) = Ty

for 0 < ¢ < 1 and & > 0. Differentiating with respect to x on both sides of (|1.2))

yields
o] tk€71t

v = (-0 [

1—et
0

In [I0, p. 1245, Theorem 4.4, (4.15)], [18, Lemma 2.3 and Remark 2.1], [I9, Theo-
rem 7.2, (7.5)], and [28] p. 152, Theorem 4.22, (4.20)], it was presented that, when
0 < g < 1, the identity

dk—l T
wg’“‘%) _ ¢§k—1)(x +1) = (In Q)W (13(]:1:)

is valid for « € (0,00) and k € N. One can also find these knowledge in [I8] [19] 20}
211, 27] and closely related references.

dve(t), 0<g<l, keN. (1.4)

2. MOTIVATIONS

Let a = (a1, as,...,a,) with a; > 0 for 1 <i < m, let p= (p1,p2,--.,Pm) With
St pi=1andp; € (0,1) for 1 <i < m, let

((The Yo T0rsre)
a1,02, ..., 0m P(1+a)l(1+a2) - T(1+an)

denote the multinomial coefficient, and let

I'(a1)T(az) - T(am)
Tlar+as+ -+ am)

B(a17a27...,am) =

be the multivariate beta function. In [I7] and [29], the authors considered the
function

Q1) = Qu g () = bt I ) T ( Fai )sz““'

[LZ P+ za) -5 Ta1, TAz, - .., TAm ) o
moa; mo T
= anzl a% — iz 7 , z€(0,00), meN (2.1)
| J B B(zay, zas, ... ,xam)

and, among other things, proved the following theorem.

Theorem 2.1 ([I7, Theorem 2.1] and [29, Thereom 2.2]). The function Q(z) =
Qa.pim () defined in (2.1)) is logarithmically completely monotonic on (0, 00).
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For more information on the backgrounds, history, motivations, origins, and
applications of the function Q(x) = Qg p.m (), please refer to [2] [13] [I'7, 29] and
closely related references therein.

In this paper, we consider the g-analogue of the function Q(z) = Qg p.m(z) and
investigate its logarithmically complete monotonicity.

3. A LOGARITHMICALLY COMPLETELY MONOTONIC FUNCTION

Let a = (a1,a2,...,am,) with a; > 0 for 1 < i <m and let p = (p1,p2,-..,Pm)
with E:"lpz—landpl (0,1) for 1 < i < m. Define

Lo(1+2Y" ) a;) ﬁ va,
Hz 1 r (1 + JZCI,z) ‘
for g € (0,1), z € (0,00), and m € N. It is clear that
lim Qg (x) = 15{1 Qgiapim(7) = Q) = Qa pim (7).
el

q—1—

Theorem 3.1. The function Qu(z) = Qg.a.p;m(x) defined in (3.1)) is logarithmi-
cally completely monotonic on (0,00).

Proof. From ([1.3)) for 0 < ¢ < 1 and the well-known property §(at) = ‘}T‘é(t), it
follows that

'yq<7t_> = lan(;(t—’_k:lnq) = lean(;(tJrlenq)

k=1 k=1

(%) = Qgapm(r) = (3.1)

i=1

for 7 > 0. This implies that

dvq(7> = 7d,(). (3.2)

Direct calculation gives

InQy(z) =InTy (1 +x2ai> - ZlnI‘q(l + a;x) +xZai In p;,
i=1 i=1

i=1
In Qq(x <Zal>¢q <1+x2al> —Zaiwq(l—l—aix)—&—z:ailnpi,
i=1 i=1
and
(In Q,(x (Z az> <1+x2ai> =Y al (1 + a;z).
i=1 i=1

Making use of (L.4) for £ =1 and the equality (3.2), it follows that

oo ¢ o 0o t .
v+ = [T e a0 = [T e
0 o €

— et

() [

where 7 > 0 and h(t) = =45. Hence, we have

[In Q,(z)] :/ [(Zal> ( zlaz) Zm( )]e”d’yq(v). (3.3)

By calculus, we have

dfg (N]_d( ettt 1) -2t
dt t)] T dt\el/t—1) (et —1)2
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t

2 2 1/t(442 _ 2/t (942
1 2t 482 + 2t — 1 202 + 2t + 1
d—t?’h = G G ) (2 + +)—>0, t—0F,
dt? (el/t —1)3¢2
d33 h 1 _ el/t(4€1/t+62/t+1) =0
dt t (el/t —1)4¢4

n (0,00). As a result, the function t*h(7) is strictly convex on (0,00). Recall
from [I4], p. 650] that

(1) a function ¢ : [0,00) — R is said to be star-shaped if ¢(az) < ag(z) for all
a €[0,1] and z > 0;

(2) a real function ¢ defined on a set S C R™ is said to be super-additive if
z,y € S implies x +y € S and ¢(z +y) > d(x) + ¢(y);

(3) if ¢ is a real function defined on [0, 00), ¢(0) < 0, and ¢ is convex, then ¢
is star-shaped, but convexity is not a property of all star-shaped functions;

(4) if ¢ : [0,00) — R is star-shaped, then ¢ is super-additive.

Consequently, since lim;_,o+ el/t% = 0, the function t3h(%) is star-shaped, and
then super-additive, on (0,00). As a result, it follows inductively that

m ) 3 m o
(55) n(srt) 2 (%) ()

which can be rearranged as

(5e) (gtm) = 5o

Combining this with (3.3)) yields that the second derivative [ln Q,(x)]"” is completely
monotonic on (0, oo).

Complete monotonicity of [In Q,(z)]” implies that the first derivative [In Q,(z)]’
is strictly increasing on (0, 00). Hence, from , it follows that

[ Qq(x)] < hm [(Z al> g <1 + SUZ%) - Zaiwq(l + a;x)
= [(Zal> zlingowq<1+x2ai> Zaz lim 1/1q (1+ a;x)

+ E a; Inp;
=1
m m

l (Zaz>ln 1—¢q) +§:a/zln (1-9q) +Zazlﬂpz Zailnpi<0~
i=1

By definition, the function Q, (x) is logarithmically completely monotonic on (0, c0).
The proof of Theorem [3.1] is complete. O

+ iai In p;

4. INEQUALITIES FOR THE ¢-MULTINOMIAL COEFFICIENT

Let a = (a1,a2,...,an,) with a; > 0 for 1 < i < m. Then the g-multinomial
coefficient for ¢ € (0,1) is
( D sy @ ) _ Ly (1 +2 i ai)
ai,az,...,am/), Tq(l4+a1)lg(l+az)...Te(l+an)

With the aid of logarithmically complete monotonicity of Q,(z) = Qg.ap:m (), We
now present some inequalities for the g-multinomial coefficient.

(4.1)

Theorem 4.1. Let g € (0,1), {,m € N, and a = (a1,a2,...,an) with a; > 0 for
1<i<m. Ifx; >0 for1 <j</land )\ €(0,1) with Z§=1)‘j =1, then
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4 m
Zj:l AjT Dy )

¢ Y4 ¢
<a1 Z]‘:1 A, a2 Zj:l AjTjy .oy Qm Z]‘:1 Aj; q

¢ m Aj
< H < Lj Zi:l a; ) (4 2)
_j=1 TjA1,2A2,...,T;Qm

q
and the equality in (4.2)) holds if and only if 1 = o = -+ = .

Proof. The logarithmically complete monotonicity in Theorem indicates that
the function Q4(x) is logarithmically convex on (0,00). Hence, one acquires

4
o (Z Wj) < [ Q).
j=1 j=1

Using the expression

o =, "=t ) T

zay, was, ..., vay ) L
leads to
0 m m
< D1 AiTy Dty G ) Hp‘“ S A
¢ ¢ ¢ i
1) g AjTy 02 ) 5y ATy G Dy Aj T

4 m m >‘.i
< l [ ( TjY ity Qi ) ] Ipt_zixj
= %
i=1 Tj1,T;02,...,Tj0m

qi=1

qi=1

which can be rearranged as (4.2)). The proof of Theorem is complete. O

Theorem 4.2. Let g € (0,1), {,m € N, and a = (a1, aq,...,an,) with a; > 0 for
1<i<m. Ifx; >0 for 1 <j <Y, then

4 m
H ( TjD i >
i=1 TjG1,T;02,...,Tj0m q

A

4 m
( D1 Tj 2 @i ) (4.3)
¢ ¢ ¢ : :
A1) 5oy Ty A9 Y 5y Ty G D i T
Proof. In [2], Lemma 3], it was proved that, if g : [0,00) — (0, 1] is differentiable

and £ is strictly increasing on (0, 00), then the inequality g(z)g(y) < g(z +y) is
valid for z,y € (0,00). As a result, we can inductively deduce

q

Applying this inequality to the logarithmic convexity of the function Q4 (z) reveals
E m m
H ( TjD i @ ) Hp‘?wfj
o1 LT, Tz, - Tjam ) ¢
L m
- ( D15 D ) ﬁ RN
‘ ¢ ¢ i
ai Zj:l Tj, a2 Z_j:l Ljyeoslm Zj:l Lj/ g i=1

which can be rewritten as (4.3). The proof of Theorem is complete. O
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Theorem 4.3. Let ¢ € (0,1), m € N, and a = (a1, az,...,ay) with a; > 0 for
1<i<m. If0<a<candz >0, then

(a4+z)> i, a; )( e a )

((a + x)ag, (a+ x)ag, ..., (a+ x)ay, Ca1,Ca, ..., Com,
< ( ay iy a; ) ( (c+a) 3t a; ) (4.4)
aai,aas, ..., aam )  \(c+z)ay, (c+ x)as,...,(c+x)am/,
and the equality in holds if and only if a = c.
Proof. For 0 < a < c, set
V() =InQ4(a+z)+InQu(c) —InQ4(a) —In Qy(c + z).

Because

_Qata) Qleta)

- Qula+x)  Qulc+uw)

and the logarithmically complete monotonicity of Q,(x) hints that the function
gégg is strictly increasing on (0, 00), we see that V'(z) < 0 and V(z) < V(0) = 0.
Consequently, it follows that

InQu(a+x)+1InQu(c) <InQy(a) +1nQy(c+ x)

which is equivalent to

V()

. @+ a e
(a+ x)ay, (a+ x)ag, ..., (a+ x)ay, i
m m
+1n ( X ) [ < ( X ) [T
€ay, Cag, . .., Cam) 5= aay,aaz, ..., 0am ) ot
m
+1In (c+a) 2L, a T
(C + x)ah (C+ IE)U,Q, ceey (C + LE)am qi=1
This can be simplified as (4.4)). The proof of Theorem is complete. O
5. INEQUALITIES FOR THE ¢-MULTIVARIATE BETA FUNCTION
Let a = (a1,a2,...,a,) with a; > 0 for 1 < i < m. Then the g-multivariate

beta function for g € (0,1) is

Fq(al)rq(@) T Fq(am)
Lylar +as+ - +am)’

By(a1,a9,...,am) =

In [3} p. 544], it was proved that
1—-4"

with T'y(1) =1 for ¢ € (0,1). Applying this recurrence relation to (4.1)) yields
< St a ) (1= @)™ 1 - gzis @) 1
ai,az,...,am/ [, (1 —q*) By(a1,az,...,am)’

Substituting (|5.1) into those inequalities in Theorems to we can conclude
several inequalities for the ¢g-multivariate beta function B,(a1, ag, .. ., an). Equiva-
lently speaking, Theorems (4.1)) to (4.3) can be respectively reformulated as follows.

Let ¢ € (0,1), ,m € N, and a = (a1,a2,...,a;,) with a; > 0for 1 <i < m. If
zj>0for 1 <j<fand X €(0,1) with 32;_; A; = 1, then

Ly(z+1) =

(5.1)
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||T_nl(1_qai§§:1>\jmj) ) ¢ ,
1=
S Az, T an Byl ax E AjTj, az E AjZj, ey E N,
= i 4 _ 4
: ]:1 ]:1

1—g¢q

1 — qr]ai) Aj
> H [_mjzla By(aiz;, a0y, . .. ,amxj)] (5.2)

and the equality in (5.2)) holds if and only if 21 = 2 = --- = zy.
The inequality (5.2]) implies that the function
[T%, (1 —q%")
1t By(a1z,azz, ..., amx)

for m € N is logarithmically concave with respect to x € (0,00). Generally, we
claim that the function

S s !
[T, (1 = q%®) By(arz, asz, . .., amx)
for m € N is logarithmically completely monotonic with respect to x € (0, 00).
Let ¢ € (0,1), {,m € N, and a = (a1,a2,...,a;) with a; >0 for 1 <i < m. If
xz; > 0for 1 <j < ¥, then

m qaixj)

¢
(1_q81m11:[ 1—q$1211a1

Hm (1 _ qai Zj:l (lj'j 4 4 4
> ) ST ST Bq alzzj,agz:xj,...,amz:nj
—q=i= j=1 j=1 j=1

Let ¢ € (0,1), m € N, and a = (a1,a2,...,a,) with a; > 0 for 1 <i < m. If
0<a<cand x>0, then

By(aizj, asxj, ..., amx;)

qlat®) XiZiai T (1 — ¢(e+%) By((c + x)ay, (¢ + x)ag, ..., (c+ x)any)
1— q(CJr:I?) 2itiai T (1 — glot®)ai) By((a + 2)ar, (@ + x)as, . .., (@ + x)ay,)
< 1—g°Xi=ia [T (1 — ¢%%) By(car,cas, ..., cany)
T 1 gt [T (1 — ¢°%) By(aar, aas, . . ., aay,)
and the equality in holds if and only if a = c.

(5.3)
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