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In the paper, the author proves the logarithmically complete monotonicity of a function involving the q-gamma function and derives some inequalities for the q-multinomial coefficient and the q-multivariate beta function. These conclusions generalize corresponding ones for the gamma function, the multinomial coefficient, and the multivariate beta function respectively.

then we call f a completely monotonic function; if f : I → (0, ∞) is positive and (-1) n [ln f (x)] (n) ≥ 0, n ∈ N, then we call f a logarithmically completely monotonic function; if f : (0, ∞) → [0, ∞) can be written in the form

f (x) = a x + b + ∞ 0 1 s + x d µ(s),
where a, b are non-negative constants and µ is a measure on (0, ∞) such that ∞ 0 1 1+s d µ(s) < ∞, then we call f a Stieltjes transform. For more details on definitions and properties of these kinds of functions, please see [15, Chapter XIII], [START_REF] Schilling | Bernstein Functions-Theory and Applications[END_REF]Chapter 1], and [START_REF] Widder | The Laplace Transform[END_REF]Chapter IV]. Among these three kinds of functions, there are the following relations:

(1) a function f is completely monotonic on (0, ∞) if and only if it is a Laplace transform, that is, there is a positive measure µ on [0, ∞) such that

f (x) = ∞ 0 e -xt d µ(t);
(2) the set of all logarithmically completely monotonic functions is a strict subset of all completely monotonic functions; (3) the set of all Stieltjes transforms is a strict subset of all logarithmically completely monotonic functions on (0, ∞).

For details on these relations, please refer to [START_REF] Berg | Integral representation of some functions related to the gamma function[END_REF][START_REF] Guo | A property of logarithmically absolutely monotonic functions and the logarithmically complete monotonicity of a power-exponential function[END_REF][START_REF] Qi | A complete monotonicity property of the gamma function[END_REF][START_REF] Qi | Some completely monotonic functions involving the gamma and polygamma functions[END_REF][START_REF] Schilling | Bernstein Functions-Theory and Applications[END_REF] and closely related references therein. For information on new developments of these kinds of functions, please refer to [START_REF] Guo | A completely monotonic function involving the tri-gamma function and with degree one[END_REF][START_REF] Guo | On the degree of the weighted geometric mean as a complete Bernstein function[END_REF][START_REF] Qi | Properties of modified Bessel functions and completely monotonic degrees of differences between exponential and trigamma functions[END_REF][START_REF] Qi | Integral representations and properties of some functions involving the logarithmic function[END_REF][START_REF] Qi | Complete monotonicity, completely monotonic degree, integral representations, and an inequality related to the exponential, trigamma, and modified Bessel functions[END_REF][START_REF] Qi | Lévy-Khintchine representations of the weighted geometric mean and the logarithmic mean[END_REF][START_REF] Schilling | Bernstein Functions-Theory and Applications[END_REF] and closely related references therein.

The classical Euler's gamma function Γ(z) can be defined [START_REF] Qi | Limit formulas for ratios between derivatives of the gamma and digamma functions at their singularities[END_REF] by

Γ(z) = ∞ 0 t z-1 e -t d t, (z) > 0 or by Γ(z) = lim n→∞ n!n z n k=0 (z + k) , z ∈ C \ {0, -1, -2, . . . }.
The logarithmic derivative of Γ(z), denoted by ψ(z) = Γ (z) Γ(z) , and the derivatives ψ (i) (x) for i ∈ N are respectively called the digamma (or psi) funciton and polygamma functions. See [START_REF] Abramowitz | Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables[END_REF]Chapter 6] and [START_REF]NIST Handbook of Mathematical Functions[END_REF]Chapter 5].

The q-analogue Γ q (x) of the gamma function Γ(x) for q > 0 and x > 0, called the q-gamma function, can be defined [3, pp. 493-496] and [6, Section 1.10] by

Γ q (x) =            (1 -q) 1-x ∞ i=0 1 -q i+1 1 -q i+x , 0 < q < 1; (q -1) 1-x q ( x 2 ) ∞ i=0 1 -q -(i+1)
1 -q -(i+x) , q > 1; Γ(x), q = 1.

(1.1)

They satisfy

lim q→1 + Γ q (z) = lim q→1 -Γ q (z) = Γ(z) and Γ q (x) = q ( x-1 2 ) Γ 1/q (x).
The q-analogue ψ q (x) of the digamma function ψ(x) for q > 0 and x > 0, called the q-digamma function, is defined by

ψ q (x) =    Γ q (x) Γ q (x) ; q = 1, ψ(x), q = 1.
The q-analogues ψ

(k)
q (x) of the polygamma functions ψ (k) (x) for k ∈ N are called the q-polygamma functions. From (1.1), we obtain that, (1) when 0 < q < 1 and x ∈ (0, ∞),

ψ q (x) = -ln(1 -q) + (ln q) ∞ k=0 q k+x 1 -q k+x = -ln(1 -q) + (ln q) ∞ k=1 q kx 1 -q k ,
(2) when q > 1 and x ∈ (0, ∞),

ψ q (x) = -ln(q -1) + (ln q) x - 1 2 - ∞ i=1 q -ix 1 -q -i .
The formula (1.11) in the paper [START_REF] Ismail | Inequalities and monotonicity properties for gamma and q-gamma functions[END_REF] and its corrected version [START_REF] Ismail | Inequalities and monotonicity properties for gamma and q-gamma functions[END_REF] reads that

ψ q (x) = -ln(1 -q) - ∞ 0 e -xt 1 -e -t d γ q (t) (1.2)
for 0 < q < 1 and x > 0, where

γ q (t) =      -ln q ∞ k=1 δ(t + k ln q), 0 < q < 1 t, q = 1 (1.3)
and δ(t) represents the Dirac delta function, that is, d γ q (t) is a discrete measure with positive masses | ln q| at the positive points k| ln q| for k ∈ N. Accordingly, we obtain

∞ 0 e -xt d γ q (t) = - q x ln q 1 -q x and ∞ 0 te -xt d γ q (t) = q x (ln q) 2
(1 -q x ) 2 for 0 < q < 1 and x > 0. Differentiating with respect to x on both sides of (1.2) yields

ψ (k) q (x) = (-1) k+1 ∞ 0 t k e -xt 1 -e -t d γ q (t), 0 < q < 1, k ∈ N. (1.4) 
In [10, p. 1245 , it was presented that, when 0 < q < 1, the identity

ψ (k-1) q (x) -ψ (k-1) q (x + 1) = (ln q) d k-1 d x k-1 q x 1 -q x
is valid for x ∈ (0, ∞) and k ∈ N. One can also find these knowledge in [START_REF] Qi | A completely monotonic function related to the q-trigamma function[END_REF][START_REF] Qi | Bounds for the ratio of two gamma functions[END_REF][START_REF] Qi | Certain logarithmically N -alternating monotonic functions involving gamma and qgamma functions[END_REF][START_REF] Qi | Complete monotonicity of functions involving the q-trigamma and q-tetragamma functions[END_REF][START_REF] Qi | Comments on two completely monotonic functions involving the q-trigamma function[END_REF] and closely related references.

Motivations

Let a = (a 1 , a 2 , . . . , a m ) with

a i > 0 for 1 ≤ i ≤ m, let p = (p 1 , p 2 , . . . , p m ) with m i=1 p i = 1 and p i ∈ (0, 1) for 1 ≤ i ≤ m, let m i=1 a i a 1 , a 2 , . . . , a m = Γ 1 + m i=1 a i Γ(1 + a 1 )Γ(1 + a 2 ) • • • Γ(1 + a m )
denote the multinomial coefficient, and let

B(a 1 , a 2 , . . . , a m ) = Γ(a 1 )Γ(a 2 ) • • • Γ(a m ) Γ(a 1 + a 2 + • • • + a m )
be the multivariate beta function. In [START_REF] Ouimet | Complete monotonicity of multinomial probabilities and its application to Bernstein estimators on the simplex[END_REF] and [START_REF] Qi | Some logarithmically completely monotonic functions and inequalities for multinomial coefficients and multivariate beta functions[END_REF], the authors considered the function

Q(x) = Q a,p;m (x) = Γ 1 + x m i=1 a i m i=1 Γ(1 + xa i ) m i=1 p xai i = x m i=1 a i xa 1 , xa 2 , . . . , xa m m i=1 p xai i = m i=1 a i m i=1 a i m i=1 p xai i x m-1 B(xa 1 , xa 2 , . . . , xa m ) , x ∈ (0, ∞), m ∈ N (2.1)
and, among other things, proved the following theorem. 

(x) = Q a,p;m (x) defined in (2.1
) is logarithmically completely monotonic on (0, ∞).

For more information on the backgrounds, history, motivations, origins, and applications of the function Q(x) = Q a,p;m (x), please refer to [START_REF] Alzer | Complete monotonicity of a function related to the binomial probability[END_REF][START_REF] Leblanc | On a uniformly integrable family of polynomials defined on the unit interval[END_REF][START_REF] Ouimet | Complete monotonicity of multinomial probabilities and its application to Bernstein estimators on the simplex[END_REF][START_REF] Qi | Some logarithmically completely monotonic functions and inequalities for multinomial coefficients and multivariate beta functions[END_REF] and closely related references therein.

In this paper, we consider the q-analogue of the function Q(x) = Q a,p;m (x) and investigate its logarithmically complete monotonicity.

A logarithmically completely monotonic function

Let a = (a 1 , a 2 , . . . , a m ) with a i > 0 for 1 ≤ i ≤ m and let p = (p 1 , p 2 , . . . , p m ) with

m i=1 p i = 1 and p i ∈ (0, 1) for 1 ≤ i ≤ m. Define Q q (x) = Q q;a,p;m (x) = Γ q 1 + x m i=1 a i m i=1 Γ q (1 + xa i ) m i=1 p xai i (3.1)
for q ∈ (0, 1), x ∈ (0, ∞), and m ∈ N. It is clear that

lim q→1 -Q q (x) = lim q→1 -Q q;a,p;m (x) = Q(x) = Q a,p;m (x).
Theorem 3.1. The function Q q (x) = Q q;a,p;m (x) defined in (3.1) is logarithmically completely monotonic on (0, ∞).

Proof. From (1.3) for 0 < q < 1 and the well-known property δ(at) = 1 |a| δ(t), it follows that

γ q t τ = -ln q ∞ k=1 δ t + kτ ln q τ = -τ ln q ∞ k=1 δ(t + kτ ln q)
for τ > 0. This implies that

d γ q t τ = τ d γ q (t). (3.2) Direct calculation gives ln Q q (x) = ln Γ q 1 + x m i=1 a i - m i=1 ln Γ q (1 + a i x) + x m i=1 a i ln p i , [ln Q q (x)] = m i=1 a i ψ q 1 + x m i=1 a i - m i=1 a i ψ q (1 + a i x) + m i=1 a i ln p i , and 
[ln Q q (x)] = m i=1 a i 2 ψ q 1 + x m i=1 a i - m i=1 a 2 i ψ q (1 + a i x).
Making use of (1.4) for k = 1 and the equality (3.2), it follows that

ψ q (τ x + 1) = ∞ 0 t 1 -e -t e -(τ x+1)t d γ q (t) = ∞ 0 t e t -1 e -τ xt d γ q (t) = ∞ 0 h v τ e -vx d γ q v τ = τ ∞ 0 h v τ e -vx d γ q (v),
where τ > 0 and h(t) = t e t -1 . Hence, we have

[ln Q q (x)] = ∞ 0 m i=1 a i 3 h v m i=1 a i - m i=1 a 3 i h v a i e -xv d γ q (v). (3.3)
By calculus, we have

d d t t 3 h 1 t = d d t t 2 e 1/t -1 = e 1/t (2t + 1) -2t (e 1/t -1) 2 , d 2 d t 2 t 3 h 1 t = 2t 2 -e 1/t 4t 2 + 2t -1 + e 2/t 2t 2 + 2t + 1 (e 1/t -1) 3 t 2 → 0, t → 0 + , d 3 d t 3 t 3 h 1 t = e 1 
/t 4e 1/t + e 2/t + 1 (e 1/t -1) 4 t 4 > 0 on (0, ∞). As a result, the function t 3 h 1 t is strictly convex on (0, ∞). Recall from [14, p. 650] that

(1) a function φ : [0, ∞) → R is said to be star-shaped if φ(αx) ≤ αφ(x) for all α ∈ [0, 1] and x ≥ 0; (2) a real function φ defined on a set S ⊂ R n is said to be super-additive if

x, y ∈ S implies x + y ∈ S and φ(x + y) ≥ φ(x) + φ(y); (3) if φ is a real function defined on [0, ∞), φ(0) ≤ 0, and φ is convex, then φ is star-shaped, but convexity is not a property of all star-shaped functions; (4) if φ : [0, ∞) → R is star-shaped, then φ is super-additive.

Consequently, since lim t→0 + t 2 e 1/t -1 = 0, the function t 3 h 1 t is star-shaped, and then super-additive, on (0, ∞). As a result, it follows inductively that m i=1

a i v 3 h 1 m i=1 (a i /v) ≥ m i=1 a i v 3 h 1 a i /v
which can be rearranged as

m i=1 a i 3 h v m i=1 a i ≥ m i=1 a 3 i h v a i .
Combining this with (3.3) yields that the second derivative [ln Q q (x)] is completely monotonic on (0, ∞).

Complete monotonicity of [ln Q q (x)] implies that the first derivative [ln Q q (x)] is strictly increasing on (0, ∞). Hence, from (1.2), it follows that

[ln Q q (x)] ≤ lim x→∞ m i=1 a i ψ q 1 + x m i=1 a i - m i=1 a i ψ q (1 + a i x) + m i=1 a i ln p i = m i=1 a i lim x→∞ ψ q 1 + x m i=1 a i - m i=1 a i lim x→∞ ψ q (1 + a i x) + m i=1 a i ln p i = - m i=1 a i ln(1 -q) + m i=1 a i ln(1 -q) + m i=1 a i ln p i = m i=1 a i ln p i < 0.
By definition, the function Q q (x) is logarithmically completely monotonic on (0, ∞). The proof of Theorem 3.1 is complete.

Inequalities for the q-multinomial coefficient

Let a = (a 1 , a 2 , . . . , a m ) with a i > 0 for 1 ≤ i ≤ m. Then the q-multinomial coefficient for q ∈ (0, 1) is

m i=1 a i a 1 , a 2 , . . . , a m q = Γ q 1 + m i=1 a i Γ q (1 + a 1 )Γ q (1 + a 2 ) . . . Γ q (1 + a m ) . (4.1)
With the aid of logarithmically complete monotonicity of Q q (x) = Q q;a,p;m (x), we now present some inequalities for the q-multinomial coefficient.

Theorem 4.1. Let q ∈ (0, 1), , m ∈ N, and a = (a 1 , a 2 , . . . , a m ) with a i > 0 for 1 ≤ i ≤ m. If x j > 0 for 1 ≤ j ≤ and λ j ∈ (0, 1) with j=1 λ j = 1, then F. QI j=1 λ j x j m i=1 a i a 1 j=1 λ j x j , a 2 j=1 λ j x j , . . . , a m j=1 λ j x j q ≤ j=1 x j m i=1 a i x j a 1 , x j a 2 , . . . , x j a m λj q (4.2) and the equality in (4.2) holds if and only if

x 1 = x 2 = • • • = x .
Proof. The logarithmically complete monotonicity in Theorem 3.1 indicates that the function Q q (x) is logarithmically convex on (0, ∞). Hence, one acquires

Q q j=1 λ j x j ≤ j=1 Q λj q (x j ).
Using the expression

Q q (x) = x m i=1 a i xa 1 , xa 2 , . . . , xa m q m i=1 p xai i leads to j=1 λ j x j m i=1 a i a 1 j=1 λ j x j , a 2 j=1 λ j x j , . . . , a m j=1 λ j x j q m i=1 p ai j=1 λj xj i ≤ j=1 x j m i=1 a i x j a 1 , x j a 2 , . . . , x j a m q m i=1 p aixj i λj
which can be rearranged as (4.2). The proof of Theorem 4.1 is complete. Theorem 4.2. Let q ∈ (0, 1), , m ∈ N, and a = (a 1 , a 2 , . . . , a m ) with a i > 0 for

1 ≤ i ≤ m. If x j > 0 for 1 ≤ j ≤ , then j=1 x j m i=1 a i x j a 1 , x j a 2 , . . . , x j a m q < j=1 x j m i=1 a i a 1 j=1 x j , a 2 j=1 x j , . . . , a m j=1 x j q . (4.3) 
Proof. In [2, Lemma 3], it was proved that, if g : [0, ∞) → (0, 1] is differentiable and g g is strictly increasing on (0, ∞), then the inequality g(x)g(y) < g(x + y) is valid for x, y ∈ (0, ∞). As a result, we can inductively deduce

j=1 g(x j ) < g j=1 x j .
Applying this inequality to the logarithmic convexity of the function Q q (x) reveals j=1 x j m i=1 a i x j a 1 , x j a 2 , . . . , x j a m q m i=1 p aixj i < j=1 x j m i=1 a i a 1 j=1 x j , a 2 j=1 x j , . . . , a m j=1 x j q m i=1 p ai j=1 xj i which can be rewritten as (4.3). The proof of Theorem 4.2 is complete. Theorem 4.3. Let q ∈ (0, 1), m ∈ N, and a = (a 1 , a 2 , . . . , a m ) with a i > 0 for 1 ≤ i ≤ m. If 0 < a ≤ c and x > 0, then (a + x) m i=1 a i (a + x)a 1 , (a + x)a 2 , . . . , (a + x)a m q c m i=1 a i ca 1 , ca 2 , . . . , ca m q ≤ a m i=1 a i aa 1 , aa 2 , . . . , aa m q (c + x) m i=1 a i (c + x)a 1 , (c + x)a 2 , . . . , (c + x)a m q (4.4)

and the equality in (4.4) holds if and only if a = c.

Proof. For 0 < a < c, set

V (x) = ln Q q (a + x) + ln Q q (c) -ln Q q (a) -ln Q q (c + x). Because V (x) = Q q (a + x) Q q (a + x) - Q q (c + x) Q q (c + x
) and the logarithmically complete monotonicity of Q q (x) hints that the function

Q q (x)
Qq(x) is strictly increasing on (0, ∞), we see that V (x) < 0 and V (x) < V (0) = 0. Consequently, it follows that ln Q q (a + x) This can be simplified as (4.4). The proof of Theorem 4.3 is complete.

+ ln Q q (c) ≤ ln Q q (a) + ln Q q (c + x) which is equivalent to ln (a + x)

Inequalities for the q-multivariate beta function

Let a = (a 1 , a 2 , . . . , a m ) with a i > 0 for 1 ≤ i ≤ m. Then the q-multivariate beta function for q ∈ (0, 1) is

B q (a 1 , a 2 , . . . , a m ) = Γ q (a 1 )Γ q (a 2 ) • • • Γ q (a m ) Γ q (a 1 + a 2 + • • • + a m ) .
In [3, p. 544], it was proved that

Γ q (x + 1) = 1 -q x 1 -q Γ q (x)
with Γ q (1) = 1 for q ∈ (0, 1). Applying this recurrence relation to (4.1) yields

m i=1 a i a 1 , a 2 , . . . , a m q = (1 -q) m-1 1 -q m i=1 ai m i=1 (1 -q ai ) 1 B q (a 1 , a 2 , . . . , a m )
.

(5.1) Substituting (5.1) into those inequalities in Theorems 4.1 to 4.3, we can conclude several inequalities for the q-multivariate beta function B q (a 1 , a 2 , . . . , a m ). Equivalently speaking, Theorems (4.1) to (4.3) can be respectively reformulated as follows.

Let q ∈ (0, 1), , m ∈ N, and a = (a 1 , a 2 , . . . , a m ) with a i > 0 for 1 ≤ i ≤ m. If x j > 0 for 1 ≤ j ≤ and λ j ∈ (0, 1) with j=1 λ j = 1, then

F. QI m i=1 1 -q ai j=1 λj xj 1 -q j=1 λj xj m i=1 ai B q a 1 j=1 λ j x j , a 2 j=1 λ j x j , . . . , a m j=1 λ j x j ≥ j=1 m i=1 (1 -q xj ai ) 1 -q xj m i=1 ai B q (a 1 x j , a 2 x j , . . . , a m x j ) λj (5.2)
and the equality in (5.2) holds if and only if

x 1 = x 2 = • • • = x .
The inequality (5.2) implies that the function m i=1 (1 -q aix ) 1 -q x m i=1 ai B q (a 1 x, a 2 x, . . . , a m x) for m ∈ N is logarithmically concave with respect to x ∈ (0, ∞). Generally, we claim that the function 1 -q x m i=1 ai m i=1 (1 -q aix ) 1 B q (a 1 x, a 2 x, . . . , a m x) for m ∈ N is logarithmically completely monotonic with respect to x ∈ (0, ∞).

Let q ∈ (0, 1), , m ∈ N, and a = (a 1 , a 2 , . . . , a m ) with a i > 0 for 1 ≤ i ≤ m. If x j > 0 for 1 ≤ j ≤ , then 1 (1 -q) ( -1)(m-1) j=1 m i=1 (1 -q aixj ) 1 -q xj m i=1 ai B q (a 1 x j , a 2 x j , . . . , a m x j ) > m i=1 1 -q ai j=1 xj 1 -q j=1 xj m i=1 ai B q a 1 j=1

x j , a 2 j=1

x j , . . . , a m j=1

x j .

Let q ∈ (0, 1), m ∈ N, and a = (a 1 , a 2 , . . . , a m ) with a i > 0 for 1 ≤ i ≤ m. If 0 < a ≤ c and x > 0, then 1 -q (a+x) m i=1 ai 1 -q (c+x) m i=1 ai m i=1 (1 -q (c+x)ai ) m i=1 (1 -q (a+x)ai ) B q ((c + x)a 1 , (c + x)a 2 , . . . , (c + x)a m ) B q ((a + x)a 1 , (a + x)a 2 , . . . , (a + x)a m ) ≤ 1 -q c m i=1 ai 1 -q a m i=1 ai m i=1 (1 -q aai ) m i=1 (1 -q cai ) B q (ca 1 , ca 2 , . . . , ca m ) B q (aa 1 , aa 2 , . . . , aa m ) (5.3) and the equality in (5.3) holds if and only if a = c.

Theorem 2 . 1 (

 21 [START_REF] Ouimet | Complete monotonicity of multinomial probabilities and its application to Bernstein estimators on the simplex[END_REF] Theorem 2.1] and[START_REF] Qi | Some logarithmically completely monotonic functions and inequalities for multinomial coefficients and multivariate beta functions[END_REF] Thereom 2.2]). The function Q

m

  i=1 a i (a + x)a 1 , (a + x)a 2 , . . . , (a + x)a m x)a 1 , (c + x)a 2 , . . . , (c + x)a m
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