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This is anOp
Abstract – The main source rock (SR) of the Aquitaine Basin, the most important oil province in France,
corresponds to organic-rich marine limestones of Upper Kimmeridgian age (Lons Formation in the Béarn
area and Parnac Formation in the Quercy area). In order to better characterize their depositional
environment, in particular the conditions of accumulation and preservation of organic-matter, a
sedimentological, micropaleontological and geochemical study of the Crayssac section (Quercy) has
been performed. Organic-rich sediments are argillaceous limestones (65 to 99% CaCO3) organized in
repetitive beds of up to 1-m thickness. Their total organic matter content reaches up to 15wt.%, and in this
SR kerogen is type of II and immature. Microfauna content, the lack of barrier facies and the control of the
wave action base over the depositional environments reflect deposition in an open marine type homoclinal
ramp. Strong similarities with Kimmeridgian organic-rich limestones of theMiddle East (Hanifa Formation)
suggest that the Parnac Formation could act as an analogue of this prolific SR.

Keywords: Aquitaine Basin / source rock / Upper Kimmeridgian / Parnac Formation / carbonates / organic matter

Résumé – Caractérisation sédimentaire de la formation roche mère carbonatée Parnac du
Kimméridgien supérieur du Bassin d’Aquitaine (Quercy). La principale roche mère du Bassin
aquitain, première province pétrolière française, correspond à des roches marno-calcaires marines d’âge
Kimméridgien supérieur (Formations de Lons dans le Béarn et de Parnac dans le Quercy). Afin de
caractériser l’environnement de dépôt de la Formation Parnac, en particulier les conditions d’accumulation
et de préservation de la matière organique, une étude sédimentologique, micropaléontologique et
géochimique de la coupe de Crayssac (Quercy) a été réalisée. Les sédiments riches en matière organique
sont des calcaires argileux (65 à 99% de CaCO3) organisés en une succession de bancs d’épaisseur
atteignant 1mètre. Leur concentration en carbone organique total s’élève jusqu’à 15%, et dans cette roche
mère les kérogènes sont de type II et immatures. La microfaune, l’absence de faciès de barrière et le contrôle
de la profondeur d’action des vagues sur les environnements de dépôts avec une graduation régulière
indiquent que l’environnement de dépôt de cette formation roche mère est de type marin ouvert sur une
rampe homoclinale. Les fortes similitudes avec les calcaires argileux riches en matière organique de la
formation roche mère du Kimméridgien au Moyen-Orient (Formation Hanifa) suggèrent que la Formation
Parnac constitue un analogue de cette roche mère prolifique.

Mots clés : Bassin d’Aquitaine / roche mère / Kimméridgien supérieur / Formation de Parnac / carbonates / matière
organique
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1 Introduction

In the context of increasing unconventional oil and gas
exploration, carbonate petroleum SR (SR) are of special
interest for the oil industry due to their commonly high prolific
character (Murris, 1980; Droste, 1990). Much effort is needed
to better constrain their conditions of organic matter
accumulation and preservation, which are still largely debated
(Harris and Katz, 2005; Myers, 2009). One of the best-known
examples of carbonate SR is the Upper Jurassic Hanifa
Formation (Fm) (Upper Oxfordian/Lower Kimmeridgian,
Gulf of Arabia), which is one of the most prolific SR in the
world (Alsharhan andMagara, 1994; Poppelreiter et al., 2012).
This Formation comprises organic-rich argillaceous limestone
beds (Gotnia Basin) which pass laterally into calcareous shales
(Qatar Arch) (Poppelreiter et al., 2012). It was set up within an
intra-shelf basin on a wide epeiric shallow-water carbonate
platform under anoxic conditions and organic carbon content
can be greater than 13%, with generation potential of 90mg
HC/g rock (Droste, 1990). The source interval has a cyclic
character and can exceed 170-m thick (Poppelreiter et al.,
2012). Accordingly, massive hydrocarbon generation in the
Hanifa Fm has sourced several world-class reservoirs of the
Middle East, such as Upper Jurassic Arab and Lower
Cretaceous Thamama reservoirs in offshore Abu Dhabi
(Beydoun, 1986), and Upper Jurassic Hanifa reservoir at the
Abqaiq and Berri Fields, Saudi Arabia (Alsharhan andMagara,
1994). Paradoxically, the depositional conditions and geo-
chemistry of the Hanifa Fm remain to be investigated in detail,
due in particular to the scarcity of wells crossing this SR (e.g.,
Harris and Katz, 2005; Myers, 2009).

The Lons Limestones Formation, the main SR of the
Aquitaine Basin (France) petroleum system, is also character-
ized by high carbonate content (Hantzpergue and Lafaurie,
1983; Hantzpergue, 1987; Cubaynes et al., 1989), which
makes it a potential analogue of the Hanifa Formation. The
Lons Limestones Formation outcrops south and north of the
basin, making its study easy from field observations and
sampling. In order to evaluate potential analogies between
Lons Limestones and Hanifa Formations, a sedimentological,
mineralogical and geochemical study was carried out on a
referential outcrop from the Quercy area (NE Aquitaine
Basin), in the Parnac Formation, a local equivalent of the Lons
Limestones Formation. This integrated approach is used to
build a depositional model and a preliminary interpretation in
terms of sequence stratigraphy, as well as to determination the
origin and quality of organic matter.

2 Geological context

The Aquitaine Basin (SW France), which extends over
66 000 km2, is open to the west on the Atlantic margin, bordered
to the north by the Armorican Massif, to the northeast by the
Massif Central, to the east by the Montagne Noire, and to the
south by the Pyrenees. It can be divided into three zones: to
the north, a stable margin overlying the Hercynian basement, in
the median part, the subsiding area of Parentis-Quercy (Fig. 1)
and to the south, the Pyrenean foredeep.

The Aquitaine Basin opened during a phase of continental
rifting (Fig. 2), developed from the Triassic to the Early Liassic
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and marked by the deposition of a thick evaporitic sequence
(Bilotte, 1995; Biteau et al., 2006). During theMiddle Jurassic,
it was filled by marine, fine terrigenous deposits alternating
with coarse-grained carbonates, in the context of the early
opening of the Atlantic Ocean (BRGM, 1986). In the Middle
Jurassic, the Aquitaine Basin formed a wide shallow carbonate
platform (Canerot and Lenoble, 1989). Three areas can be
differentiated from west to east: an outer platform with marl
facies, an oolitic barrier and an inner platform that was locally
confined (Canerot and Lenoble, 1989). Jurassic sedimentation
ended with a first-order regression, the so-called “Purbeckian”
regression (Berriasian; [Hardenbol et al., 1998]) characterized
by shallow marine to restricted environments (e.g., Schnyder
et al., 2012). This regression resulted in individualization of
small confined areas during the early Cretaceous (Charentes,
Quercy, Parentis, and Adour areas) (BRGM, 1986; Cubaynes
et al., 2004). The Pyrenean orogeny, which started in the
Lower Eocene and accentuated during the Eocene, involved
positive topographic readjustments and erosion in the Massif
Central (BRGM, 1986). In the Early Miocene, a shallow sea
still covered the area of Agen where shorelines developed and
the Miocene was marked by the Alpine compression (BRGM,
1986). At the end of the Miocene, the Aquitaine Basin was
essentially filled (BRGM, 1986; Cubaynes et al., 2004). The
sedimentary record reaches 500 to 2000meters in the north-
Aquitaine platform (Charente, Périgord, Quercy), 4000 to
6000meters in the northern basin of the Landes region, and
finally 8000meters in the southern Aquitaine rift valley
between Pau and Audignon (Cubaynes et al., 2004).

The main SR formations of the Aquitaine Basin were
deposited during the Pliensbachian-Toarcian (Lias Marls Fm.)
and the Kimmeridgian (Lons Limestones Fm. and Lituolidae
Limestones Fm.), in two first-order transgression intervals
(Hardenbol et al., 1998; Biteau et al., 2006).

This study focuses on the Crayssac section as part of the
Quercy area, where several exposures of Kimmeridgian
organic-rich carbonates can be observed (Delfaud, 1969;
Pélissié, 1982). This 77-m-thick section consists of four
lithological groups (Pélissié, 1982) (Fig. 1). To the base, the
first one consists in nodular limestone alternating with massive
and argillaceous limestone, corresponding to the Pont de
Rhodes and the St Martin de Vers Formations, as well as the
lower part of the Parnac Formation, which is crowned by the
Caletanum horizon (Hantzpergue, 1987; Cubaynes et al.,
2004). The second group comprises the upper part of the
Parnac Formation and includes the SR of interest in this study.
It is made of argillaceous limestone layers of variable organic-
matter content and characterized by vertebrate fauna (Sten-
eosaurus sp.) (Hantzpergue and Lafaurie, 1983). It is covered
by 23meters of argillaceous limestone also locally rich in
organic matter (Saint-Chamarand Fm). Finally, the upper
lithological group consists of limestone of the Salviac
Formation (Delfaud, 1969; Cubaynes et al., 1989) (Figs. 3–5).

3 Material and methods

3.1 Field-work methods

A total of 123 samples were taken along the section with a
sample distance of ca. 0.50m for further analyses in the
laboratory. In addition, a total gamma-ray profile was surveyed
f 16
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Fig. 1. Geological map of the Quercy (modified after Astruc et al., 2008).
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along 77meters of the section mostly in the Parnac Formation
(77 samples with a step of 0.50m) (Figs. 4 and 5). Spectral
gamma-ray measurements used a nanoSPEC apparatus
(Aries). Spectral gamma-ray quantifies the gamma emission
from 40K, 235U and 232Th, the three main natural gamma-ray
sources (Serra, 1979). These three radioisotopes are commonly
concentrated in the continental crust and exported with the
clays to the basin during continental alteration (Quirein et al.,
1982). In addition, uranium is an organophile element and is
found in abundance in organic-rich sediments (Schmoker,
1981). Potassium and thorium are usually concentrated in
clayey sediments, while uranium is concentrated in organic-
rich sediments (Schmoker, 1981; Quirein et al., 1982). Each
measurement was performed with a constant acquisition time
of 60 seconds. Each point was measured after the surface had
been cleaned from weathered sediments and smoothed in order
to avoid border effects (Huret, 2006). Each point was measured
three times to assess the reproducibility of the measurements.
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3.2 Laboratory analyses

Apetrographic andmicropaleontogical study of limestones
and argillaceous limestones was performed on 48 thin sections
produced from selected samples, using conventional micros-
copy in order to determine the mineralogy, texture and micro
fauna for depositional environment characterization.

Five bulk rock samples corresponding to distinct facies of
the Crayssac section were analysed with a Scanning Electron
Microscope (Hitachi S4700) to identify the micro-texture of
the most organic-matter-rich facies at the Centre Scientifique
et Technique Jean-Féger (TOTAL SA, Pau, France).

Bulk rock and clay mineralogy of 30 powdered samples
were acquired by X-ray diffraction (XRD) using CoKa
radiations at the Laboratoire Géosciences Environnement de
Toulouse (GET, France). For bulk rock data, XRD measure-
ments were performed on disoriented powder preparations.
For clay minerals, data were acquired on oriented mounts of
f 16
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non-calcareous clay-sized particles (2mm). After removing
carbonate using0.2NHCl, deflocculationof clayswas completed
by repeatedwashingwith distilledwater. Particlesfiner than2mm
were concentrated by centrifugation. The first XRD run was
performed after air-drying, the second after ethylene-glycol
solvation, and the third after heating at 550 °C for 2 hours.

Calcimetry was performed at the Laboratoire des Fluides
Complexes et leurs Réservoirs (Pau, France) on 30 powdered
samples following the volumetric method employing a
Bernard calcimeter (Lamas et al., 2005) (accuracy of ± 3%).

Rock-Eval pyrolysis (Espitalié et al., 1977) was made on
73 powdered samples, using a Rock Eval 6 (VINCI Technolo-
gies) at the ISTeP (Paris, France). From Rock-Eval analyses, it
is possible to obtain the quantity of free hydrocarbons (S1, in
mg/g of rock), the quantity of thermally generated cracked
hydrocarbons (S2, in mg/g of rock), the quantity of CO2

generated during pyrolysis of the sample (S3, in mg/g of rock),
the Hydrogen Index (HI, in mg/g of rock), the Oxygen Index
(OI, in mg CO2/g TOC), and temperature at which the largest
quantity of hydrocarbons is released upon cracking (Tmax).
The inorganic carbon content obtained with the technique was
converted into carbonate content (% CaCO3).

4 Results

A synthetic sedimentological log of the Crayssac section,
which includes faunal content, gamma ray and geochemical
results, is presented in Figures 3–5.
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4.1 Calcimetry data

The calcimetry data from Figures 4 and 5 show that the
content in CaCO3 ranges from 65% to 100%. The clay or marl
fraction is therefore always a secondary component. The studied
rocks thus correspond to argillaceous limestones and limestones.

4.2 Macroscopic description

Field observations allow to distinguish the different facies
observed in the Crayssac section between five distinct macro-
facies: massive limestone (Fig. 6A), nodular limestone
(Fig. 6B), bioclastic limestone (Fig. 6C), argillaceous
limestone (Fig. 6D), and organic-matter-rich argillaceous
limestone (Fig. 6E and F). All limestones are light beige except
the organic-matter-rich one which is brown. Massive,
bioclastic and argillaceous limestones are compact and lack
clear sedimentary structures, whereas organic matter-rich
argillaceous limestone is laminated.

4.3 Optical petrography

Microfacies characterization of massive limestone allows
to define it as a bioclastic mudstone. It includes the presence of
large fragments of bivalves, sponge spicules, benthic
foraminifera with hyaline test (Epistomina sp., Lenticulina
sp.), some gastropods, rare fragments of echinoderms and
abundant pyrite (Fig. 7B and F).
f 16
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Bioclastic limestone microfacies corresponds to a bio-
clastic wackestone, comprising large, perforated, and lightly
micritised bioclasts (Fig. 7F). The faunal content is marked by
the predominant presence of bivalve fragments, and of some
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gastropod and echinoderm fragments, as well as benthic
foraminifera. The latter have mainly agglutinated test
(Conicospoirillina sp., Everticyclammina virguliana), and
more rarely hyaline test (Lenticulina sp.) (Fig. 7B).

Nodular limestone corresponds to a bioclastic wackestone
with abundant microbioclasts, large fragments of bivalves,
gastropods, echinoderms, pyrite, numerous benthic foraminif-
era with agglutinated test (Rectocyclammina chouberti,
Everticyclammina virguliana) and some with hyaline test
(Lenticulina sp.) (Fig. 7B, D and E).

Argillaceous limestone can be classified as a mudstone/
wackestone. Its faunal content is composed of bivalve
fragments, benthic foraminifera with agglutinated (Ever-
ticyclammina virguliana) and hyaline tests (Lenticulina sp.),
sponge spicules, serpula, some microbioclasts, and rare
fragments of echinoderms (Fig. 7A, B and D). All bioclasts
have been altered during diagenesis. Pyrite is found in
abundance.

The organic-matter-rich limestone corresponds to a
wackestone with bioclasts of bivalves, locally filled with
peloids, and echinoderms. It is also composed of benthic
foraminifera with hyaline test (Fondicularia sp.) (Fig. 7H), and
presents numerous iron oxide grains. The fauna in this facies
was shattered and transported. It is therefore reworked.
4.4 Sample examination by SEM

Five samples representative of the different macro-facies
have been studied (Fig. 8), using both the classification of
Volery et al. (2010) focused on the different types of
intercrystalline contacts in the micrites, and the classification
of de Périère et al. (2011) focused on micritic microtextures.

Massive limestone (sample 3-1-a; CaCO3 = 99%) has a
micritic matrix composed of coarse, heterogeneous grains
(∼2.7mm in size), surrounding rare bioclastic components
(Fig. 8A). Micrite grains are sub-euhedral to rhombohedral
with tight intercrystalline contacts, resulting in low intercrys-
talline microporosity. Rhombohedral crystals likely result
from recrystallization of former micrite (Volery et al., 2010).
Drusy calcite cement is also locally observed.

Bioclastic limestone (sample 3-1-b; CaCO3 = 95%) has a
more crystalline micritic matrix with coarse, heterogeneous
anhedral grains (∼2.7mm in size), which are angular with
intercrystalline tangential contacts (Fig. 8B). Evidence of
partial grain dissolution likely explains good apparent
intercrystalline porosity. Large rhombohedral dolomite grains,
which are partially dissolved, are locally observed.

Nodular limestone (sample 3-1-c; CaCO3 = 90%) present
micrite and composed of fine homogeneous micrite grains
(∼1.7mm in size) (Fig. 8C). Particles are flattened, with
crushed intercrystalline contacts and evidence of secondary
precipitation of calcite platelets. This sample has a very low
intercrystalline microporosity.

Argillaceous limestone (sample 3-1-d; CaCO3 = 85%) has
a matrix made of coarse, heterogeneous micrite (∼2.7mm in
size) and clays in the form of rounded sheets and platelets
(Fig. 8D). Most micrite grains are subhedral to anhedral with
coalescent intercrystalline contacts, but some particles have
scalenohedral morphologies. Intercrystalline microporosity is
very low.
f 16
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Organic-matter-rich argillaceous limestone (sample 3-1-e:
CaCO3 = 82%; TOC= 5.2%) shows fine, angular and homo-
geneous micrite (1.6mm in size) (Fig. 8E). Micrite grains are
mainly subhedral with tight intercrystalline contacts, resulting
in very low intercrystalline microporosity.

4.5 Rock-Eval Pyrolysis

Most limestone samples have a TOC lower than 1% and a
strong OI (> 100mgCO2/g TOC), and as such cannot be
classified as SR (Figs. 4 and 5). Samples with a high OI could
have either been altered by oxidation during depositing or
exhumation (Espitalié et al., 1985). Alternatively, high OI may
be an artefact of high CaCO3 and low TOC contents (< 3%)
(Espitalié et al., 1985). Most organic-matter-rich argillaceous
limestones and part of argillaceous limestones have high TOC
(2 to 15%), and important HI values of up to 700mgHC/gTOC
(Fig. 6). In these lithologies, S1 values reach up to 4mg HC/g
rock and S2 values reach up to 80mg HC/g rock (Figs. 4 and
5). Finally, Tmax values are on average lower than 430 °C,
indicating that the organic matter suffered a very limited
thermal alteration and is still immature with respect to the oil
generation.
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4.6 Gamma-ray spectrometry

Gamma-ray values range from 40 to 110 counts per second
(cps), with an average of 71 cps (Figs. 4 and 5). From 15m to
32.5m, the gamma-ray signal first shows an interval of high
values (average = 78 cps). Then, the values sharply decrease
and remain lower up to the top of the series (average = 66 cps).
The gamma-ray series roughly covaries with the insoluble
fraction and TOC (Figs. 4 and 5). This is particularly obvious
in the upper interval (from 32.5m upward), in which the peaks
of gamma-ray values at 36m, 41m and 47m correspond to
maximum values in insoluble fraction. In the lower interval,
however, peaks of gamma-ray values at 19–21m and 32.5m
are not associated to maximum values in neither insoluble
fraction nor TOC.
4.7 Analyses of X-Ray Diffraction

These XRD analyses led to three different types of
diffractograms. The first type, which includes most samples
(12 of 16), indicates the presence of calcite (95%), clay (4%)
and minor quartz (1%). Clay minerals mainly contain
illiteþmica, a swelling phase of illite-smectite, and kaolinite
f 16
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inmuch lower proportions (∼6 times less than illite). The second
type (2 samples) is almost similar (∼98%calcite and∼2%clay),
except that it showsno swelling clays. The third type (2 samples)
is alsomainly composed of calcite, some quartz, and 4–5% clay,
but also shows the presence of equal amounts of chlorite and
kaolinite in addition to illiteþmica mixture.

5 Interpretation

5.1 Depositional environments

Both faunal associations and lithologies suggest that
deposits of the Crayssac section were set up in an open marine
environment. In detail, benthic foraminiferas –Everticyclam-
mina virguliana, Rectocyclammina chouberti and Lenticulina
sp. are characteristic of open outer shelf facies (e.g., Meyer,
2000), and have been previously interpreted to represent mid
and outer ramp environments in the Quercy (Pélissié et al.,
1984, Burchette and Wright, 1992). Epistomina sp., a
plurilocular foraminifera, is also mainly found in open marine
facies, associated with Lenticulina (e.g., Meyer, 2000). The
hyaline formainifer Conicospirillina sp. is observed in outer
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lagoon facies and is regarded as a good marker of mid ramp
facies (e.g., Meyer, 2000). Echinoderms are mainly repre-
sented by plates or sea-urchin radioles that are generally rare in
the proximal facies, and usually represent a good marker of
open environment (e.g., Meyer, 2000). The same interpretation
has been proposed in the Quercy, where benthic foraminifera
with hyaline test, brachiopods, serpula and sponge spicules
would be characteristic of an outer ramp environment (Pélissié
et al., 1984), and ostracods, gastropods, bivalves, and
echinoderms of inner and mid ramp environments. This fauna,
along with the lack of sedimentary structures related to wave
dynamics, suggests that the Parnac Formation was deposited in
an open marine homoclinal ramp (Pélissié, 1982; Burchette
and Wright, 1992; Flügel, 2004) (Fig. 9). This is coherent with
the Upper Kimmeridgian transgressive trend, which was
accompanied by a large homogenization of lithologies at the
scale of the entire Quercy area (Cubaynes et al., 1989). Indeed,
the Salviac Formation, of Tithonian age, shows the same
faunal content and a similar absence of sedimentary structures
related to wave dynamics, compatible with open subtidal
depositional environment (Pélissié, 1982; Burchette and
Wright, 1992; Flügel, 2004).
f 16



Fig. 6. Macroscopic observations of each facies. (A)Massive limestone (ML), (B) Nodular Limestone (NL), (C) Bioclastic Limestone (BL), (D)
Argillaceous Limestone (AL), (E) Argillaceous Limestone and Organic matter-rich Argillaceous Limestone (OAL), (F) Organic matter-rich
Argillaceous Limestone).
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Taking into account variations of faunal associations
according to lithofacies, we suggest that massive and bioclastic
limestones were deposited on the inner ramp, above the fair
weather wave base (Fig. 9). The nodular limestone is
interpreted to have set up in the mid ramp, alternating with
the argillaceous limestone (Fig. 9). For the argillaceous
limestone facies, the fine-grained texture and the large
presence of clays, along with the faunal content, suggest that
deposition occurred in a low-energy environment, below the
fair weather wave base, between the mid and the outer ramp
(Fig. 9). Finally, in the case of organic-rich argillaceous
Page 8 o
limestones, the fine-grained texture, the presence of mud and
fine laminations suggest that deposition took place in a low-
energy environment below the storm wave base, correspond-
ing to the outer ramp (Fig. 9).

5.2 Sequence stratigraphy

This study shows a close link between lithofacies and
biofacies on the Crayssac section. Thus, two sequence
stratigraphic interpretations (Fig. 10) have been proposed
using each criterion (lithology and faunal association)
f 16



Fig. 7. Microfacies images by petrographic microscope of Crayssac outcrop samples. (A) Serpula, (B) Benthic Foraminifera with hyaline test,
Lenticulina sp., (C) Coprolithe, Palaxius salataensis, equatorial section, (D) Benthic Foraminifera with agglutinated test, Everticyclammina
virguliana, (E) Benthic Foraminifera with agglutinated test, Conicospirillina sp., (F) Trace of Gastropod, Presence of an internal filling; (G)
Benthic Foraminifera with agglutinated test, Rectocyclammina chouberti, (H) Benthic Foraminifera with hyaline test, Fondicularia sp., (I)
Peloidal and sparitic filling of a burrow.
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independently. The sequential model deduced from the faunal
content is primarily based on paleoenvironmental significance
of each faunal assemblage and the presence of echinoderms
and foraminifera with hyaline test. The presence of
echinoderms reflects a more restricted environment while
the loss of these expresses a deepening (Pélissié, 1982;
Burchette and Wright, 1992; Flügel, 2004). Foraminifera
indicate a more open marine environment. From these
Page 9 o
observations, it has also been possible to highlight four
transgressive-regressive cycles.

For the lithofacies sequence model, several MFS are
proposed based on the highest values of the gamma-ray and
proportion of insolubles. According to this interpretation,
sequence boundaries correspond to the contact between
massive limestone and clay layers. From bottom to top, a
regression followed by four transgressive-regressive cycles are
f 16
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Fig. 8. SEM images of Crayssac outcrop samples. (A) Sample 3-1-a, (B) Sample 3-1-b), (C) Sample 3-1-c, (D) Sample 3-1-d, (E) Sample 3-1-e.
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observed. They are in good accordance with the changes
between different paleoenvironments (Inner Ramp, Mid
Ramp, and Outer Ramp) identified on the basis of faunal
associations. Indeed, the transition between a transgressive to a
regressive trend corresponds to the transition to a more
restricted environment. Conversely, the establishment of a
transgressive trend implies deepening. In detail, from 0 to
24m, there is a large regression corresponding to the evolution
from mid and outer ramp environments (nodular and
argillaceous limestone) to inner ramp environments (massive
limestone). From 24 to 35m, a first transgressive-regressive
cycle is defined as follows: the transgressive interval
corresponds to the transition from the mid ramp (nodular
limestone) to the outer ramp (argillaceous limestone), while
the regression interval is characterized by the evolution
between the outer ramp (organic matter-rich argillaceous
limestone) to the inner ramp (massive limestone). Two
additional transgressive-regressive cycles are defined from 35
to 45m, and from 45 to 56m. From 56 to 77m, a transgression
is described by the transition from inner ramp (massive
limestone) to outer ramp (organic matter-rich argillaceous
limestone), followed by the regression corresponding to the
evolution between the outer ramp and the inner ramp. This
sequence model corresponds fairly well to the model deduced
from the faunal. In comparison, the sequence chronostrati-
graphic chart of Hardenbol et al. (1998) shows that there are
two regressive-transgressive cycles in the Eudoxus Zone, one
regressive-transgressive cycle in the Autissiodorensis Zone
and one regressive-transgressive cycle in the Gigas Zone.

5.3 Interpretation of geochemical data

The pseudo Van Krevelen diagram representing HI versus
OI shows that in the studied SR (organic-matter-rich
argillaceous limestone), kerogen is of type II and immature
(Fig. 11). This indicates that organic matter is probably derived
from marine algae or cyanobacteria (Espitalié et al., 1985).
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6 Discussion

6.1 Origin of organic matter preservation in the
Parnac and St-Chamar and Formation carbonate
source rock

During the Kimmeridgian, the opening of the North
Atlantic Ocean which was concomitant to the south-eastward
drift of the Africa South America megablock (Cecca et al.,
1993; De Wever and Baudin, 1996). The Arabian Peninsula
movement from the equatorial belt to the tropical arid zone
induced the deposition of marine organic-carbon rich facies
(De Wever and Baudin, 1996). In the meantime, Eurasia
moved from the temperate humid area to the north tropical belt
and this location allowed the deposition in the Paris basin of
marine organic-carbon rich facies (De Wever and Baudin,
1996). On the other hand, during the Kimmeridgian marine
connections between the Tethyan, Central Atlantic and Arctic
Ocean were developed (Churkin and Trexler, 1981; Vogt et al.,
1981; Birkenmajer et al., 1982; Oschmann, 1988) including
shallow water connections from the Arctic Ocean southward
via the Volga-Ural Strait, Western Siberia, East Siberia, Alaska
and the North Atlantic Shelf Sea (Hallam, 1975; Barron et al.,
1980, 1981; Churkin and Trexler, 1981).

In the western Tethysian domain, the Kimmeridgian and
the early Tithonian were marked by the widespread deposition
of organic-rich deposits, in link with the major transgressive
trend observed at that time (Herbin and Geyssant, 1993), and
followed by a rapid decrease of organic carbon accumulation
during the late Tithonian (Baudin, 1995; Frakes et al., 2005).
Examples include organic-rich shales such as the Kimmeridge
Clay in the UK, North Sea and Western Siberia (Hantzpergue
et al., 1998; Frakes et al., 2005). Detailed stratigraphy of
Upper Kimmeridgian/Tithonian deposits of southern England
(UK) and of the Boulonnais (France) regions has identified 2
to 3 organic-rich sequences, the two lattest respectively
corresponding to the transition between the Eudoxus and
of 16
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the Autissiodorensis ammonite zones (Upper Kimmeridgian),
and to the Gigas-Elegans ammonite zones (Tithonian)
(Herbin and Geyssant, 1993). Ammonite biozonation of
the Crayssac section (Hantzpergue, 1987) shows similar ages
for organic-rich intervals (Figs. 4 and 5), suggesting that the
conditions required for their deposition have been reached
simultaneously on the entire West-European platform,
including the Quercy. This calls for large scale changes in
environmental conditions rather than local perturbations of
the carbon cycle. In western Europe, the Kimmeridgian
generally corresponded to a hot and humid climate (Abbink
et al., 2001, Brigaud et al., 2008) followed by a transition to
more arid climate throughout the Tithonian (Abbink et al.,
2001; Riboulleau et al., 2003; Schnyder et al., 2005, 2009).
Climate has an important influence on primary productivity,
production of anoxia and carbon burial (e.g., Bordenave,
1993; Frakes et al., 2005). Whether organic matter
accumulation is ruled by important primary productivity or
by anoxic conditions, which help preserving organic matter,
has been a long-standing matter of debate (e.g., Pedersen and
Calvert, 1990; Bordenave, 1993). In the Kimmeridgian of
northwestern Europe, primary productivity has likely been
fuelled by monsoonal conditions, involving important fluvial
discharges in the Tethys Ocean (Martinez and Dera, 2015;
Armstrong et al., 2016). Accordingly, high planktonic
production is inferred to have been the main driver of
organic matter accumulation in distal platforms, while local
development of anoxic conditions could further enhance
preservation (e.g., Disnar and Ramanampisoa, 1995; Lallier-
Vergès et al., 1995).
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Although further work is needed to constrain more
precisely the origin of organic matter accumulation, we
suggest by analogy that this scenario also took place in the
Quercy area. The presence of bivalves and foraminifera in
several beds of organic-rich argillaceous limestones indicate,
however, that anoxic conditions were probably not reached.

Another important parameter that controls organic matter
preservation is sedimentation rate (Müller and Suess, 1979).
High sedimentation rates tend to enhance preservation by
rapidly removing organic carbon from the oxic zone (Müller
and Suess, 1979). In the Crayssac section, sedimentation rates
of organic-rich intervals of the Parnac and St-Chamarand
Formations can be calculated from ammonite biozonations.
The first interval (from 24 to 32.5m) includes the Caletanum
Subzone (of a 240 ka duration [Gradstein et al., 2012]), which
corresponds to a sedimentation rate of 6.7 cm/k.y (uncorrected
from compaction). The second interval (from 40.8 to 42m) is
located in the Contejeani Subzone (of a 130 ka duration
[Gradstein et al., 2012]), which leads to a mean sedimentation
rate of 11.7 cm/k.y. The two other organic-rich intervals
(from 45.3 to 50.5m and from 59.5 to 66m) are observed
within the Autissiodorensis Subzone. This ammonite zone has
a duration estimated as 450 ka duration (Gradstein et al., 2012),
corresponding to a mean sedimentation rate of 5.1 cm/k.y.
These values fall in the moderately rapid sedimentation rates
of Müller and Suess (1979), corresponding to 0.1 to 2% of
primary produced organic carbon preserved in the sediments.
Provided primary production is important, such values are
high enough to form organic-rich sediments (TOC> 1%)
(Müller and Suess, 1979).
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6.2 Is the Parnac Formation a good analogue to
Middle East organic-rich carbonates of the Hanifa
Formation?

Our results show that the Parnac Formation is composed of
a succession of limestones, argillaceous limestones and
organic-matter-rich argillaceous limestones, which can petro-
graphically defined as mudstones and wackestones. These
lithologies are quite similar to those of the Upper Jurassic
(Upper Oxfordian/ Lower Kimmeridgian) Hanifa Formation of
the Arabian Peninsula. The Hanifa Formation primarily
consists of organic-rich argillaceous limestone (Gotnia Basin)
that evolves laterally into calcareous shale (Qatar Arch)
(Poppelreiter et al., 2012), and includes alternations between
laminated, organic-rich mudstones and bioturbated mudstones
or wackestones (Droste, 1990). In addition, organic-rich
intervals of the Hanifa Formation, which constitute one of the
most important hydrocarbon SR of theMiddle East oil (Murris,
1980), have geochemical characteristics comparable to the
Parnac Formation (TOC of 5–15%, type II kerogen, high
generation potential) (Droste, 1990).

Similarities are also found in terms of sequence
stratigraphy. The Hanifa Formation corresponds to a major
transgressive-regressive cycle including two transgressive-
regressive subcycles, controlled by regional relative sea-level
change (Droste, 1990). Organic-rich carbonates were
deposited in the lower transgressive parts of each subcycle,
whereas prograding bioturbated wacke/packstones constitute
the upper regressive part. These two subcycles are defined as
two depositional sequences where the maximum flooding
surfaces are associated with maximum organic carbon
contents (Droste, 1990). In the major sequence, the SR
interval occurred in the upper part of the transgressive system
tract. An almost similar configuration is found in the Parnac
Formation, which consists of two transgressive-regressive
cycles comprised in a major transgressive sequence (Droste,
1990). In addition, the maximum flooding surfaces also
correspond to peaks of high organic content in the
argillaceous carbonates (Droste, 1990).

However, despite these lithological and stratigraphical
similarities, depositional environments and conditions of
organic matter accumulation and preservation appear to differ
between the two Formations. First, the Hanifa Formation was
deposited in an intraplatform depression, formed by differen-
tial subsidence of the platform interior during rapid sea-level
rise (Murris, 1980). Accordingly, the fine-grained texture, the
presence of mud and laminations all indicate deposition below
fair-weather wave base, as the depression was enclosed by a
wide, epeiric, shallow-water carbonate platform (Droste,
1990). By comparison, the Parnac Formation was deposited
in an open shelf likely corresponding to a carbonate ramp.
Sedimentary structures also suggest, however, that deposition
of pelagic carbonates, including organic-rich ones, mainly
occurred below the fair-weather wave base, favored by rapid
Kimmeridgian transgression. Second, in the Hanifa Formation
restricted circulation in the intraplatform depression was prone
to the development of anoxic conditions, as shown by the
absence or limited presence of benthic fauna, thereby leading
to an exceptional preservation of marine organic matter
(Myers, 2009). In contrast, strong anoxic conditions have not
been identified in the Parnac Formation, where bioclasts are
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present in the organic-matter-rich argillaceous limestones. By
analogy with other Upper Kimmeridgian SR of western
Europe, it seems that organic matter preservation was mainly
controlled by a strong primary productivity rather than by
extensive anoxic conditions. It should be noted, however, that
evidences of active upwelling currents have been demonstrat-
ed both in northern Tethys and close to the Arabian platform
during the Jurassic (Dercourt et al., 1994; Golonka and
Krobicki, 2012). Not only those currents did favour plankton
production, but they also were at the origin of the development
of widespread anoxic episodes during the Kimmeridgian
(Baudin, 1995).
7 Conclusion

During this work, a sedimentological, mineralogical and
geochemical study was conducted including analysis of
microfacies (petrographic microscope and SEM), XRD,
calcimetry, and Rock Eval to better understand carbonate
source-rock deposition and preservation. Although the
section of the Parnac and St-Chamarand Formations is
highly carbonated, with %CaCO3> 65%, some intervals of
the section show high TOC content, which can reach 15%.
The organic matter is type II and immature. The deposition
system of this SR is with an algal type organic matter. Based
on analyses of lithofacies and fauna, the depositional
environment of this section is attributed to a homoclinal
ramp. Organic matter of this formation is concentrated in the
mid ramp alternating with argillaceous limestones.

The Parnac Formation appears to be a potential analogue of
the Hanifa Formation. The deposition system of the Hanifa
Formation was an intra-platform basin in shallow marine
environment below wave base, whereas The Parnac Formation
SR is interpreted to have been deposited in an open marine
environment within a homoclinal ramp (outer ramp), below
storm wave base. The two SR intervals of each formation took
place during high sea-level rise and hence through the
transgressive sequence. The Parnac Formation is composed of
two transgressive-regressive cycles, whereas the Hanifa
Formation is defined by two low-order transgressive-regres-
sive cycles within one major transgressive-regressive cycle.
Finally, these two carbonate SR have both strong petroleum
potential.
Acknowledgements. The authors would like to thank Bertrand
Fasentieux for the production of thin sections. We would like
to express our gratitude to Dr. Alexander Brasier for his
contribution to this manuscript. Olivier Ridet and Maryline
Castello are acknowledged for their participation to field
campaigns. We also thank Frank Haeseler, Claire Fialips and
Pierre Hantzpergue for fruitful discussions. This manuscript
greatly benefited from the remarks of two anonymous
reviewers.

References

Abbink O, Targarona J, Brinkhuis H, Visscher H. 2001. Late Jurassic
to earliest Cretaceous palaeoclimatic evolution of the southern
North Sea. Global and Planetary Change 30 (3): 231–256.
of 16



L. Bastianini et al.: BSGF 2017, 188, 32
Alsharhan AS, Magara K. 1994. The Jurassic of the Arabian Gulf
Basin: Facies, depositional setting and hydrocarbon habitat.
Pangea: Global Environment and Resources. Canadian Society
of Petroleum Geologists Memoir 17: 397–412.

Armstrong HA,Wagner T, Herringshaw LG, Farnsworth AJ, Lunt DJ,
Harland M, et al. 2016. Hadley circulation and precipitation
changes controlling black shale deposition in the Late Jurassic
Boreal Seaway. Paleoceanography 31: 1041–1053.

Astruc JG, Bruxelles L, Ciszak R. 2008. La série stratigraphique des
Causses du Quercy. Journées AFK/AGSO/CFH 5: 6–8.

Barron E, Sloan II JL, Harrison CG. 1980. Potential significance of
land sea distribution and surface albedo variations as climatic
forcing factor; 180 m.y. to the present. Palaeogeography,
Palaeoclimatology, Palaeoecology 30: 17–40.

Barron EJ, Harrison CG, Sloan II JL, Hay WW. 1981. Paleogeogra-
phy, 180 million years ago to the present. Eclogae Geologicae
Helvetiae 74: 443–470.

Baudin F. 1995. Depositional controls on the Mesozoic source rocks
in the Tethys. AAPG Studies in Geology, Tulsa 40: 191–211.

Beydoun ZR. 1986. The petroleum resources of the Middle East: a
review. Journal of Petroleum Geology 9 (1): 5–27.

Bilotte M. 1995. Le Bassin d’Aquitaine. Évolution sédimentaire et
structurale. Toulouse, 7 : Laboratoire de Géologie sédimentaire et
Paléontologie, Université Paul Sabatier.

Birkenmajer K, Pugazewska H, Wierzbowski A. 1982. The
Janusfjellet Formation (Jurassic-Lower Cretaceous) at Mykle-
gardfjellet, east Spitsbergen. Acta Palaeontologica Polonica 43:
107–140.

Biteau JJ, Le Marrec A, Le Vot M, Masset JM. 2006. The Aquitaine
Basin. Petroleum Geoscience 12 (3): 247–273.

Bordenave ML. 1993. The sedimentation of organic matter. In:
Bordenave ML, ed. Applied Petroleum Geochemistry. Paris:
Éditions Technip, pp. 15–76.

Brigaud B, Puceat E, Pellenard P, Vincent B, Joachimski MM. 2008.
Climatic fluctuations and seasonality during the Late Jurassic
(Oxfordian-EarlyKimmeridgian) inferred fromd 18OofParis Basin
oyster shells. Earth and Planetary Science Letters 273 (1): 58–67.

Burchette TP, Wright VP. 1992. Carbonate ramp depositional
systems. Sedimentary Geology 79 (1–4): 3–57.

Bureau de recherches géologiques et minières. 1986. Aperçu de la
géologie du Bassin Aquitain. Synthèse ANDRA-BRGM.

Canerot J, Lenoble JL. 1989. Le diapir du Lichançumendy (Pyrénées-
Atlantiques), nouvel élément de la marge ibérique des Pyrénées
occidentales. Comptes rendus de l’Académie des Sciences. Série 2,
Mécanique, Physique, Chimie, Sciences de l’univers, Sciences de la
Terre 308 (16): 1467–1472.

Cecca F, Azema J, Fourcade E, Baudin F, Guiraud R, Bonneau M,
et al. 1993. Early Kimmeridgian palaeoenvironments. In: Dercourt
J, Ricou LE, Vrielynck B, eds. Atlas Tethys palaeoenvironmental
maps. Maps. Rueil-Malmaison: BEICIP-FRANLAB.

Churkin MJ, Trexler JH. 1981. Continental plates and accreted
oceanic terranes in the Arctic. The Arctic Ocean. New York:
Plenum Press, pp. 1–20.

Cubaynes R, Faure P, Hantzpergue P, Pelissie T, Rey J. 1989. Le
Jurassique du Quercy : unités lithostratigraphiques, stratigraphie et
organisation séquentielle, évolution sédimentaire. Géologie de la
France 3: 33–62.

Cubaynes R, Hantzpergue P, Lezin C. 2004. Les dépôts littoraux du
jurassique sur la bordure quercynoise (Aquitaine) : généralités.
Livret-guide d’excursion. Toulouse : Laboratoire de Géologie
sédimentaire et paléontologie de l’Université Paul Sabatier, vol. 42.

De Périère MD, Durlet C, Vennin E, Lambert L, Bourillot R, Caline B,
et al. 2011. Morphometry of micrite particles in cretaceous
Page 15
microporous limestones of the Middle East: Influence on reservoir
properties. Marine and Petroleum Geology 28 (9): 1727–1750.

De Wever P, Baudin F. 1996. Paleogeography of radiolarite and
organic-rich deposits in Mesozoic Tethys. Geologische Rundschau
85: 310–326.

Delfaud J. 1969. Essais sur la géologie dynamique du domaine
aquitano-pyrénéen durant le Jurassique et le Crétacé inférieur.
Thèse de Doctorat d’État, Université de Bordeaux.

Dera G, Prunier J, Smith PL, Haggart JW, Popov E, Guzhov A, et al.
2015. Nd isotope constraints on ocean circulation, paleoclimate,
and continental drainage during the Jurassic breakup of Pangea.
Gondwana Research 27 (4): 1599–1615.

Dercourt J, Fourcade E, Cecca F, Azema J, Enay R, Bassoullet JP,
et al. 1994. Palaeoenvironment of the Jurassic system in the
Western and Central Tethys (Toarcian, Callovian, Kimmeridgian,
Tithonian): An overview. Geobios 27: 625–644.

Disnar JR, Ramanampisoa L. 1995. Palaeoproduction control on anoxia
and organicmatter preservation and accumulation in theKimmeridge
ClayFormationofYorkshire (GB):molecularassessment. In:Organic
Matter Accumulation. Berlin Heidelberg: Springer, pp. 49–62.

Droste H. 1990. Depositional cycles and source rock development in
an epeiric intra-platform basin: the Hanifa Formation of the
Arabian peninsula. Sedimentary Geology 69 (3): 281–296.

Espitalié J, Madec M, Tissot B, Leplat P. 1977. Source rock
characterization method for petroleum exploration. Proceedings of
the Offshore Technology Conference, Maggio 2–5, Houston, TX,
pp. 439–444.

Espitalié J, Madec M, Leplat P, Paulet J. 1985. Method and device for
determining the organic carbon content of a sample. U.S. Patent 4:
519, 983.

Flügel E. 2004. Microfacies of carbonate rocks: analysis, interpreta-
tion and application. Berlin: Springer.

Frakes LA, Francis JE, Syktus JI. 2005. Climate modes of the
Phanerozoic. Cambridge: Cambridge University Press.

Golonka J, Krobicki M. 2012. Upwelling regime in the Carpathian
Tethys: a Jurassic-Cretaceous palaeogeographic and paleoclimatic
perspective. Geological Quarterly 45 (1): 15–32.

Gradstein FM, Ogg JG, Schmitz M, Ogg G. 2012. The geologic time
scale 2012. Amsterdam: Elsevier, vol. 2.

Hallam A. 1975. Jurassic Environments. Cambridge: Cambridge
University Press.

Hantzpergue P. 1987. Les ammonites kimmeridgiennes du haut-fond
d’europe occidentale (perisphinctidae, aulacostephanidae et aspi-
doceratidae) : biochronologie, systématique, évolution, paléobio-
géographie. Thèse de Doctorat, Université de Poitiers.

Hantzpergue P, Lafaurie G. 1983. Le Kimméridgien quercynois : un
complément biostratigraphique du Jurassique supérieur d’Aqui-
taine. Geobios 16 (5): 601–611.

Hantzpergue P, Baudin F, Mitta V, Olferiev A, Zakharov V. 1998. The
Upper Jurassic of the Volga basin: ammonite biostratigraphy and
occurrence of organic-carbon rich facies. Correlations between
Boreal-Subboreal and Submediterranean Provinces. In: Crasquin-
Soleau S, Barrier E, eds. Peri-Tethys Memoir 4: Epicratonic basins
of Peri-Tethyan Platforms.Mém Muséum natn Hist Nat 179: 9–33.

Hardenbol J, Thierry J, FarleyMB, Jacquin T, De Graciansky PC, Vail
PR. 1998. Appendix To: Mesozoic and Cenozoic Sequence
Chronostratigraphic Framework of European Basins. Special
Publication-SEPM 60: 763–781.

Harris PMM, Katz BJ. 2005. Carbonate mud and carbonate source
rocks. Calgary (Canada): AAPG.

Herbin JP, Geyssant JR. 1993. Ceintures organiques au Kimmér-
idgien/Tithonien en Angleterre (Yorkshire, Dorset) et en France
(Boulonnais). Comptes rendus de l’Académie des sciences. Série 2,
of 16



L. Bastianini et al.: BSGF 2017, 188, 32
Mécanique, Physique, Chimie, Sciences de l’univers, Sciences de la
Terre 317 (10): 1309–1316.

Huret E. 2006. Analyse cyclostratigraphique des variations de la
susceptibilité magnétique des argilites callovo-oxfordiennes de l’Est
duBassindeParis : applicationà la recherchedehiatus sédimentaires.
Thèse de Doctorat, Université Pierre et Marie Curie–Paris 6.

Lallier-Vergès E, Bertrand P, Tribovillard N, Desprairies A. 1995.
Short-term organic cyclicities from the Kimmeridge Clay
Formation of Yorkshire (GB): combined accumulation and
degradation of organic carbon under the control of primary
production variations. In: Organic Matter Accumulation. Berlin
Heidelberg: Springer, pp. 3–13.

Lamas F, Irigaray C, Oteo C, Chacon J. 2005. Selection of the most
appropriate method to determine the carbonate content for
engineering purposes with particular regard to marls. Engineering
geology 81 (1): 32–41.

Martinez M, Dera G. 2015. Orbital pacing of carbon fluxes by a 9-My
eccentricity cycle during the Mesozoic. Proceedings of the
National Academy of Sciences 112 (41): 12604–12609.

Meyer M. 2000. Le complexe récifal kimméridgien-tithonien du Jura
méridional interne (France), évolution multifactorielle, stratigra-
phique et tectonique. Thèse de Doctorat. Faculté Sciences,
Université de Genève.

Müller PJ, Suess E. 1979. Productivity, sedimentation rate, and
sedimentary organic matter in the oceans. I. Organic carbon
preservation. Deep Sea Research Part A. Oceanographic Research
Papers 26 (12): 1347–1362.

Murris RJ. 1980. Hydrocarbon habitat of the Middle East. In: Miall
AD, ed. Facts and Principles of World Petroleum Occurrence.
Calgary (Canada): CSPG Mem, vol. 6, pp. 1–1004.

Myers KJ. 2009. Organic rich facies and hydrocarbon source rocks.
Sequence Stratigraphy 11: 238–257.

Oschmann W. 1988. Kimmeridge Clay sedimentation – a new cyclic
model. Palaeogeography, Palaeoclimatology, Palaeoecology 65:
217–251.

Pedersen TF, Calvert SE. 1990. Anoxia vs. productivity: what controls
the formation of organic-carbon-rich sediments and sedimentary
rocks? AAPG Bulletin 74: 454–466.

Pélissié T. 1982. Le Causse jurassique de Limogne-en-Quercy :
stratigraphie, sédimentologie, structure. Thèse 3e cycle. Toulouse :
Université Paul Sabatier.

Pélissié T, Peybernes B, Rey J. 1984. Les grands foraminifères
benthiques du Jurassiquemoyen/supérieur du sud-ouest de la France
(Aquitaine, Causses, Pyrénées). Intérêt biostratigraphique, paléo-
écologique et paléobiogéographique. Benthos 83 (2): 479–489.

Pene F. 1956. Les Hydrocarbures dans le Bassin Aquitain. Bordeaux :
Éditions Universitaires.

Poppelreiter MC, Kolkmann W, Hordijk H, Stevanovich M. 2012.
Regional settings and characteristics of an Oxfordian hot shale. In:
Fourth EAGE Workshop on Arabian Plate Geology.
Page 16
Quirein JA, Gardner JS, Watson JT. 1982. Combined natural gamma-
ray spectral litho-density measurements applied to clay mineral
identification. AAPG Bulletin-American Association of Petroleum
Geologists 66 (9): 1446–1446.

Riboulleau A, Baudin F, Daux V, Hantzpergue P, RenardM, Zakharov
V. 1998. Évolution de la paléotempérature des eaux de la plate-
forme russe au cours du Jurassique supérieur. Comptes Rendus de
l’Académie des Sciences, Paris, Sciences de la Terre et des
Planètes 326: 239–246.

Riboulleau A, Baudin F, Deconinck JF, Derenne S, Largeau C,
Tribovillard N. 2003. Depositional conditions and organic matter
preservation pathways in an epicontinental environment: the
Upper Jurassic Kasphir Oil Shales (Volga Basin, Russia).
Palaeogeography, Palaeoclimatology, Palaeoecology 197
(3–4): 1–27.

Riboulleau A, Schnyder J, Riquier L, Lefevre V, Baudin F,
Deconinck J-F. 2007. Environmental change during the Early
Cretaceous in the Purbeck-type Durlston Bay section (Dorset,
Southern England): a biomarker approach. Organic Geochemistry
38: 1804–1823.

Schmoker JW. 1981. Determination of organic-matter content of
Appalachian Devonian shales from gamma-ray logs. AAPG
Bulletin 65 (7): 1285–1298.

Schnyder J, Gorin G, Deconinck JF, Baudin F, Soussi M. 2005.
Enregistrement de la variation climatique du passage Jurassique/
Crétacé sur la marge sud de la Téthys : minéralogie des argiles et
palynofaciès de la coupe du Jebel Meloussi en Tunisie (formation
Sidi Kralif). Bulletin de la Société géologique de France 176 (2):
171–182.

Schnyder J, Baudin F, Deconinck JF. 2009. Occurrence of organic-
matter-rich beds in Lower Cretaceous coastal evaporitic setting
(Dorset, UK): a link to long-term palaeoclimate changes?
Cretaceous Research 30: 356–366.

Schnyder J, Deconinck JF, Baudin F, Colombie C, Du Chene RJ,
Gardin S, et al. 2012. Purbeck beds (Late Jurassic) in the Phare de
Chassiron section (Île d’Oléron, NW Aquitaine Basin, France):
Refined age-assignment and long-term depositional sequences.
Geobios 45 (5): 485–499.

Serra O. 1979. Diagraphies différées. Bases de l’interprétation. Tome
1 : Acquisition des données diagraphiques. Bulletin du Centre de
Recherche Exploration-Production Elf-Aquitaine. Pau : Éditions
Technip, vol. 328.

Vogt PR, Peery RK, Feden RH, Fleming HS, Cherkis NZ. 1981. The
Greenland-Norwegian Sea and Iceland environment. Arctic Ocean.
New York, N.Y.: Plenum Press, pp. 493–581.

Volery C, Davaud E, Durlet C, Clavel B, Charollais J, Caline B. 2010.
Microporous and tight limestones in the Urgonian Formation (late
Hauterivian to early Aptian) of the French Jura Mountains: focus
on the factors controlling the formation of microporous facies.
Sedimentary Geology 230 (1): 21–34.
Cite this article as: Bastianini L, Caline B, Hoareau G, Bonnel C, Martinez M, Lézin C, Baudin F, Brasier A, Guy L. 2017. Sedimentary
characterization of the carbonate source rock of Upper Kimmeridgian Parnac Formation of the Aquitaine Basin (Quercy area), Bull. Soc.
géol. Fr. 188: 32.
of 16


	Sedimentary characterization of the carbonate source rock of Upper Kimmeridgian Parnac Formation of the Aquitaine Basin (Quercy area)
	1 Introduction
	2 Geological context
	3 Material and methods
	3.1 Field-work methods
	3.2 Laboratory analyses

	4 Results
	4.1 Calcimetry data
	4.2 Macroscopic description
	4.3 Optical petrography
	4.4 Sample examination by SEM
	4.5 Rock-Eval Pyrolysis
	4.6 Gamma-ray spectrometry
	4.7 Analyses of X-Ray Diffraction

	5 Interpretation
	5.1 Depositional environments
	5.2 Sequence stratigraphy
	5.3 Interpretation of geochemical data

	6 Discussion
	6.1 Origin of organic matter preservation in the Parnac and St-Chamar and Formation carbonate source rock
	6.2 Is the Parnac Formation a good analogue to Middle East organic-rich carbonates of the Hanifa Formation?

	7 Conclusion
	Acknowledgements
	References


