
HAL Id: hal-01803008
https://hal.science/hal-01803008v1

Submitted on 30 May 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Concern-Oriented Language Development (COLD):
Fostering Reuse in Language Engineering

Benoit Combemale, Jörg Kienzle, Gunter Mussbacher, Olivier Barais, Erwan
Bousse, Walter Cazzola, Philippe Collet, Thomas Degueule, Robert Heinrich,

Jean-Marc Jézéquel, et al.

To cite this version:
Benoit Combemale, Jörg Kienzle, Gunter Mussbacher, Olivier Barais, Erwan Bousse, et al.. Concern-
Oriented Language Development (COLD): Fostering Reuse in Language Engineering. Computer Lan-
guages, Systems and Structures, 2018, 54, pp.139-155. �10.1016/j.cl.2018.05.004�. �hal-01803008�

https://hal.science/hal-01803008v1
https://hal.archives-ouvertes.fr

Concern-Oriented Language Development (COLD):
Fostering Reuse in Language Engineering

Benoit Combemalee, Jörg Kienzleh, Gunter Mussbacherh, Olivier Baraisa, Erwan
Bousseb, Walter Cazzolac, Philippe Colletd, Thomas Degueulef, Robert Heinrichg,

Jean-Marc Jézéquela, Manuel Leduca, Tanja Mayerhoferb, Sébastien Mosserd, Matthias
Schöttleh, Misha Strittmatterg, Andreas Wortmanni

aUniv Rennes, Inria, CNRS, IRISA, France
bTU Wien, Austria

cUniversità degli Studi di Milano, Italy
dUniversité Nice Côte d’Azur, CNRS, I3S, France

eUniversity of Toulouse, France
fCentrum Wiskunde & Informatica, Netherlands

gKarlsruhe Institute of Technology, Germany
hMcGill University, Canada

iRWTH Aachen University, Germany

Abstract

Domain-Specific Languages (DSLs) bridge the gap between the problem space, in which
stakeholders work, and the solution space, i.e., the concrete artifacts defining the target
system. They are usually small and intuitive languages whose concepts and expressive-
ness fit a particular domain. DSLs recently found their application in an increasingly
broad range of domains, e.g., cyber-physical systems, computational sciences and high
performance computing. Despite recent advances, the development of DSLs is error-prone
and requires substantial engineering efforts. Techniques to reuse from one DSL to another
and to support customization to meet new requirements are thus particularly welcomed.
Over the last decade, the Software Language Engineering (SLE) community has proposed
various reuse techniques. However, all these techniques remain disparate and complicate
the development of real-world DSLs involving different reuse scenarios.

In this paper, we introduce the Concern-Oriented Language Development (COLD)
approach, a new language development model that promotes modularity and reusability
of language concerns. A language concern is a reusable piece of language that consists of
usual language artifacts (e.g., abstract syntax, concrete syntax, semantics) and exhibits
three specific interfaces that support (1) variability management, (2) customization to a
specific context, and (3) proper usage of the reused artifact. The approach is supported
by a conceptual model which introduces the required concepts to implement COLD.
We also present concrete examples of some language concerns and the current state of
their realization with metamodel-based and grammar-based language workbenches. We
expect this work to provide insights into how to foster reuse in language specification and
implementation, and how to support it in language workbenches.

Keywords: domain-specific languages, language concern, language reuse

Preprint submitted to Elsevier May 30, 2018

1. Introduction

Domain-Specific (Modeling) Languages (DSLs) aim at bridging the gap between the
problem and solution spaces. The stakeholders of a DSL work in the problem space, while
the concrete software artifacts defining the target system forms the solution space. DSLs
are most often small and intuitive software languages whose concepts and expressiveness
focus on a particular domain. Since “software languages are software too” [1], the
development of DSLs includes their supporting environment (e.g., editors, generators,
simulators, etc.) and thus inherits the complexity of software development in general.

Despite recent advances, the development of DSLs is prone to errors and requires
substantial engineering efforts. Moreover, using today’s technologies, the same process is
typically repeated from scratch for every new DSL or new version of a DSL. To foster their
adoption in industry, the benefits in terms of productivity when using DSL technologies
must offset the initial investment required in developing such DSLs. Therefore, tools and
methods must be provided to assist language designers in the development of new DSLs
and the evolution of legacy ones to mitigate development costs. Techniques for increasing
reuse from one DSL to another and supporting the customization of legacy languages to
meet new requirements are thus particularly welcomed.

Over the last decade, the Software Language Engineering (SLE) community has
proposed various reuse techniques, mostly leveraging previous experiences in software reuse
(e.g., aspects [2], polymorphic [3] and parametric [4] reuse, composition operators [5, 6],
language product lines [7, 8, 9]). Although these techniques address a wide range of
scenarios, the development of realistic languages is still difficult as it requires to combine
them.

In this paper, we leverage previous efforts to integrate different software reuse tech-
niques [10] to lift them up to the meta-level for language reuse. We introduce the
Concern-Oriented Language Development (COLD) approach, a new language develop-
ment model that promotes modularity and reusability of language concerns. A language
concern is a reusable piece of language that is made of a set of usual language constituents:
some abstract syntax, some concrete syntax, and some semantics definitions. In addi-
tion, a language concern exhibits three specific interfaces that support (1) variability
management, (2) customization to a specific context, and (3) proper usage of the reused
artifact.

In the remainder, Section 2 introduces background notions on language reuse and the
existing conceptual model at the software level to foster modularity and reuse, as well as
a common case study. Section 3 introduces the underlying conceptual model of COLD
and presents the roles and the respective scenarios considered within COLD. Section 4
provides details about the concernification of languages, i.e., making reusable languages
through the three interfaces promoted by concern-oriented development. We notably
describe these three interfaces for a language concern and the underlying life cycle to
use them for supporting various kinds of language reuse. To demonstrate the possible
applications of COLD, we illustrate in Section 5 the current support across different
technological spaces (e.g., grammarware and modelware) on the basis of the common case
study. Finally, Sections 6 and 7 conclude the paper and draw some perspectives.

2

2. Background and Motivating Example

In this section we introduce the background material require for the rest of the paper,
and we illustrate the motivation to provide a unifying paradigm for language reuse. In
particular, we introduce the existing paradigm of concern-oriented reuse, demonstrate its
usefulness at the language level to unify various disparate literature on language reuse,
and motivate on the basis of an illustrative example used throughout the paper.

2.1. Concern-Oriented Reuse
Concern-Oriented Reuse (CORE) [10] is a new reuse paradigm for general-purpose

software development that combines best practices from Model-Driven Engineering (MDE),
Component-Based Software Engineering (CBSE), Software Product Lines (SPL), advanced
Separation of Concerns (SoC) (including feature-oriented and aspect-oriented software
development), and goal modeling.

In CORE, software development is structured around modules called concerns that
provide a variety of reusable solutions (i.e., models and code) for recurring software
development issues in a versatile, generic way. Concerns decompose software into reusable
units according to some points of interest and may have varying scopes, e.g., encap-
sulating several authentication choices, communication protocols, or design patterns.
The models within a concern may span multiple phases of software development and
levels of abstraction (from requirements, analysis, architecture, and design models to
implementation). The main premise of CORE is that recurring development concerns are
made available in a concern library, which eventually should cover most recurring software
development needs. Similar to class libraries in modern programming languages, this
library should grow as new development concerns emerge, and existing concerns should
continuously evolve as alternative architectural, algorithmic, and technological solutions
become available. Applications are built by reusing existing concerns from the library
whenever possible, following a well-defined reuse process supported by clear interfaces.
To generate an executable in which concerns exhibit intricate crosscutting structure and
behavior, CORE relies on additive software composition techniques, feature-oriented
technology and aspect-oriented technology.

2.1.1. Concern Interfaces and Concern Reuse
A concern provides a well-defined, three-part interface [11]. The Variation Interface

(VI) of a concern is composed of a feature model [12] that expresses the closed variability 1

of solutions and techniques encapsulated within the concern by its designer, similar to
what is done in software product lines for a specific application domain. Additionally,
the VI specifies the impacts of selecting a feature on non-functional goals and qualities
with an impact model that is expressed using a variant of the Goal-oriented Requirement
Language [14, 15]. This allows a concern user to perform trade-off analysis between
offered features, e.g., for design-time exploration.

The Customization Interface (CI) of a concern designates the generic, partially defined
structural/behavioral elements that enable an open form of variability, and how these

1Variability can be considered open when at least one variation point can still receive new variants,
and closed instead [13].

3

elements have to be connected to application-specific elements when the concern is reused.
For example, an Authentication concern might define a generic Authenticatable entity
that needs to be mapped to one or several application-specific entities, e.g., Administrator,
ProjectManager, and Developer.

The Usage Interface (UI), similar to classic APIs, designates the elements of the
concern that can be accessed by the context in which the concern is reused. Any element
that has its visibility set to public is part of the usage interface and can therefore be used.
Other elements remain encapsulated within the concern.

Then, reusing a concern is based on three steps guided by the three-part interface:

1. choosing the desired solution among the available alternatives encapsulated within
the concern from the VI,

2. adapting the realization of the chosen solution (generated based on the selection
made in step one) to the specific reuse context using the CI, and,

3. using the chosen, adapted realization for the targeted purpose via the UI.

2.1.2. Component Interfaces vs. Concern Interfaces
While concerns and their interfaces (VI, CI and UI) show many similarities with

components and their required (RI) and provided (PI) interfaces as defined by CBSE, one
of the fundamental differences is that the unit of reuse in CORE—the concern—is broader
than the unit of reuse in CBSE—the component. Similar to SPLs, a CORE concern
groups and encapsulates a variety of reusable solutions for a specific domain of interest2,
and expresses this variability explicitly in the VI. The VI expresses the closed variability,
i.e., the set of solutions that the designers of the concern have realized. Standard CBSE
does not provide a means to group a set of functionally equivalent components together. If
a developer has access to a library of existing components, then it is possible to determine
the set of components 𝑆 in the library that have the same RI and PI. Each component
encapsulates a specific solution, and 𝑆 groups them together, declaring that from an RI
and PI perspective they are equivalent. The VI in CORE does more than just grouping,
though. By exposing impacts on non-functional properties and qualities, it allows the
developer to perform trade-off analysis, which ultimately allows to choose a specific
solution from within the concern.

The UI of a concern is equivalent to the PI of a component, as both kinds of interfaces
designate the structural and behavioral properties/services that the units offer to the
reuse context. However, the CI of a concern is different from the RI of a component in at
least two situations.

Situation 1. In CBSE, when a more specific component 𝐴 needs to use a service from a
more generic component, 𝐴 declares an RI which during assembly can be linked to, e.g.,
a component 𝐵 that has a matching PI. As a result, 𝐴 and 𝐵 are only loosely coupled.
In theory, any other component 𝐵′ that has the same PI as 𝐵 could be used instead of 𝐵.
In CORE this situation is handled with the UI, not the CI. When a more specific concern
𝑋 needs functionality provided by a generic concern 𝑌 , the feature in 𝑋 that needs 𝑌
simply reuses the desired variant of 𝑌 (by making a selection in the VI) and then directly
connects to the UI of that selected variant of 𝑌 . The reuse of 𝑌 is encapsulated within

2A practice already advocated almost 40 years ago in [16]
4

𝑋 in accordance with the information hiding principle, and as a result, the reuse of 𝑌
is not visible in the interfaces of 𝑋. Also, when 𝑋 is reused, 𝑌 is always automatically
reused, resulting in a stronger coupling.

Situation 2. In CBSE, when a developer wants to reuse a (generic) component 𝐵 to
augment a service 𝑆 that is part of the PI of an existing component 𝐴, then 𝐵 must declare
the same provided interface as 𝑆. During assembly, any connections from components
that require 𝑆 offered by 𝐴 should be assembled with the new 𝑆 offered by 𝐵. Achieving
the same effect in CORE is much simpler. 𝐵 can declare a placeholder of the service 𝑆 in
its CI. The developer can then augment the service 𝑆 offered by reusing a variant of 𝐵
and mapping the service 𝑆 from 𝐵’s CI to a service in 𝐴.

2.2. On Language Reuse
DSLs are complex artifacts that require specialized development skills. Specifying

and implementing their abstract syntax, concrete syntax, semantics, and supporting tools
(e.g., analyzers, editors, transformations) is a complex endeavor that is prone to errors and
requires substantial engineering efforts. Moreover, the same process is typically repeated
from scratch for every new DSL or new version of a DSL. To foster their adoption, the
benefits in terms of productivity when using DSL technologies must offset the initial
investment required in developing such DSLs. Therefore, researchers have provided tools
and techniques to assist language designers in the development of new DSLs and the
evolution of legacy ones to mitigate development costs. DSLs are by their very nature
meant to be tailored to a particular domain of application. Although this may suggest
that there are few opportunities for reuse from one DSL to another, it is not uncommon
to see different DSLs share recurring paradigms (e.g., state-transition, workflows, actions
and queries, units, etc.) [17]. Over the years, researchers have proposed many approaches
seeking to improve language reuse. We give a brief overview of them in the following.
Many of these techniques ultimately materialize as features of a language workbench:
LISA [18], Melange [5], MontiCore [19], Neverlang [6], Rascal [20], or Spoofax [21] to
name a few.

Language Extension and Composition. Implementation techniques for DSLs are diverse,
and so are the language composition techniques at hand. From attribute grammars [22]
to Parsing Expression Grammars [23] and scannerless parsing [24], the literature is rich in
extension and modularization techniques for grammars. The same can naturally be said
of the metamodeling world, where the problem of composing language constituents often
boils down to the problem of (meta-)model composition [25]. In both cases, solutions
either require the definition of explicit language modules that have built-in modularity
mechanisms (e.g., extension points) or propose composition operators that operate on
existing languages to build new ones [5]. On the semantics side, formal approaches
have been modularized (e.g., modular structural operational semantics [26], modular
denotational semantics [27]) as well as their concrete realization in e.g., K [28], Redex [29],
or DynSem [30]. DSLs are eventually implemented in a concrete programming language,
for instance in the form of a set of classes materializing the language concepts and
an associated interpreter implementing its execution semantics. Researchers have thus
developed extensible and composable design patterns to implement such concrete artifacts
modularly (e.g., [31, 32]). While most of these seek to compose languages that are

5

developed within the same technological space, or that run on the same virtual machine,
other authors tackle the problem of composing heterogeneous languages [33]. Recent
advances in projectional editing also pave the way for better language composition [34].
Overall, while many techniques have been developed, language composition approaches
can rarely express the closed and open variability of language modules on their own.

Language Product Lines. A recent advance in SLE is the notion of language product
lines [8, 9]. In analogy with software product lines [35], a language product line is a
product line where the products are languages. Engineering a language product line
requires expressing the variability of such a family of languages. Typically, features of
the variability model correspond to language features. Language features are reusable
pieces of languages that can be easily composed to derive a new specialized language
variant from the family, according to a particular configuration. Language product lines
typically make explicit the closed variability of a family of languages: the set of features
of a language can be tailored, but it is hard to further adapt the resulting language to a
new context of use.

To the best of our knowledge, there is no language reuse mechanism that adequately
captures both the closed and open variability of language modules. The notion of language
interfaces, similarly, has only recently been explored [36]. Overall, the vision of off-the-shelf
language components that can be freely picked from a library, composed, and customized
by language designers has yet to be fully realized.

2.3. Motivating Example
To illustrate the vision of COLD in the context of concern-oriented language reuse,

we consider the following use case, which is referenced throughout the paper: A language
engineer aims to implement a timed state machine language for modeling cyber-physical
systems. The core concepts of this language are State, Transition, Trigger, and Guard
Expression. However, to be able to define complex guard conditions for state transitions,
an expression language needs to be integrated into the timed state machine language.
Furthermore, to be able to represent sensed physical data (e.g., measured distances, speed,
etc.), as well as time triggers, a type system supporting units is required. Developing the
expression language and unit language from scratch for their integration into the targeted
timed state machine language would impose significant additional engineering efforts,
as they are non-trivial languages themselves. To mitigate increased initial investments
for developing the timed state machine language, it would be beneficial to reuse an
existing expression language as well as an existing unit language as illustrated in Fig. 1.
From an existing expression language (e.g., Xbase [37]), concepts for representing literals,
variables, arithmetic operations, and comparison operations could be reused. Comparison
operations could then be used to define complex guard expressions. From an existing
unit language, such as the one presented in [38], different kinds of units, such as time
units (millisecond, second, minute, etc.) and length units (centimeter, meter, feet, etc.),
as well as operations considering units in computations could be reused. This would allow
the definition of the units of sensed values represented as literals assigned to variables.
Furthermore, literals with a time unit could then be used to define time triggers. These
reused languages are explained in more detail in the next paragraphs.

6

State

Trigger

Transition

Timed State Machine

Literal

Comparison Operation

Arithmetic Operation

Expression

Variable

Unit (Time, Length, �)

Unit

Unit Operation

Guard Expression

«reusable»

«reusable»

Language

Language

Concept

reuses

integrated

Legend

Figure 1: COLD use case of a state machine language reusing two different concerns

Expression Language. An expression language is needed in many DSLs. Therefore, it is a
perfect candidate for reuse. An expression language provides the necessary elements to
define calculations and comprises features for defining literals and operations. A language
engineer can choose to reuse different types of literals (e.g., Integer literals, String literals,
Boolean literals), as well as different types of operations, such as arithmetic operations
(e.g., add, subtract, multiply) and comparison operations (e.g., smaller than, equals,
greater than) that are provided for all supported literal types.

Unit Language. Most common programming languages (with the exception of Ada) do
not have support for units within their type system. This lack of units attached to
numeric values can lead to conversion issues and have serious consequences. One infamous
example is the loss of NASA’s Mars Climate Orbiter which was caused by English units
and metric units being mixed up3. The unit language provides concepts for attaching
units to numeric values ensuring type safety when assigning numerical values to variables.
Along basic features for SI Units, this concern also provides necessary operations on these
units. Possible support can also include the ability to provide automatic conversions,
e.g., when performing an operation between two values with different units of the same
dimensions (e.g., lengths measured in meter and feet).

Open Issues. While the principle of language reuse appears obvious at first glance, the
actual implementation of concrete techniques raises many open issues. In particular, since
software languages are initially defined in a given context, reusing an existing language
in another language may require to precisely select what should be reused (e.g., String
literals may not be required in the Timed State Machine), and to customize it in the
context of the new language (e.g., renaming a particular construct to fit the new context).
Eventually, the reused languages must be composed in the new one (e.g., integration links
in Fig. 1), possibly employing complex composition mechanisms according to the artifact
that belongs to the definition of the initial languages.

3See https://mars.jpl.nasa.gov/msp98/news/mco991110.html
7

https://mars.jpl.nasa.gov/msp98/news/mco991110.html

Language WorkbenchLanguage

Artifact MetaLanguage

Language
Concern

Language

Perspective

Library

RelationshipsLinks

Facet
Variation
Interface

Customization
Interface

Usage
Interface

*

*

*

*

1

*

1

1

1 1

*

*1 1

1

1

1

*
*
*

Im
plem

entation
C

oncernification

Figure 2: Conceptual model of COLD

Section 3 defines the vocabulary required to express the different concepts of COLD.
The definitions are illustrated using the expression language reused for implementing the
timed state machine language. This use case is also used in Section 4, which develops
further the implications of the definitions of the COLD interfaces in the context of software
language definition. Finally, Section 5 demonstrates how the use case can be realized
with COLD in different language workbenches.

3. COLD: A Unifying Framework for Language Reuse

This section introduces COLD, the proposed unifying framework for language reuse,
which bring together diverse existing reuse mechanisms in the common concept of language
concern. We first give the definitions of the main concepts, and then discuss the different
roles involved in the use of such a framework, and the expected scenarios of reuse to be
supported.

3.1. Definitions
This subsection is dedicated to the definition of the vocabulary required to express

the concepts introduced in COLD. Fig. 2 shows the conceptual model of COLD and the
relationships between its concepts. An example instantiation of those concepts can be
found in Fig. 3. Each term defined in the conceptual model of COLD is shown in italic
font in this section.
Language Concern: A Language Concern is a configurable unit of reuse that encapsu-
lates a specific user-visible set of constructs of a language (such as support for expressions,

8

artifact
2,a

artifact
2,b

P1

facet 2

artifact
2/3,c

P2

P2

facet 2

facet 3

Feature 1

Feature 2
Feature 3

...... ...

Language Concern 1

This concern integrates 2
perspectives P1 and P2

e.g., Expression

e.g., Expressions
Language
Concern

e.g., Arithmetic Operation

e.g.,Literal

e.g., Facets consisting of Ecore
metamodel and Java Artifacts to
d e fi n e t h e s t r u c t u r a l a n d
behavioural properties of Feature
1 / 2 / 3 , f o r t h e S e m a n t i c s
Perspective using the Ecore and
Java Metalanguages

e.g., Facet consisting of BNF
Artifacts to specify the concrete
syntax of Feature 2/3 for the
Concrete Syntax Perspective using
the BNF Metalanguage

artifact
1,a

artifact
1,b

P1

facet 1

artifact
3,a

artifact
3,b

P1

facet 3

Figure 3: Illustration of a Language Concern

support for exceptions, units, uncertainty management, etc.). A Language Concern may
reuse other Language Concerns.

A Language Concern encompasses the definition of the expected constituents among
abstract syntax, concrete syntax and behavioral semantics. Those constituents are
concretized in various artifacts (e.g., Ecore metamodels, BNF grammars, OCL constraints,
ATL model transformations, Java visitors, etc.). Artifacts are organized in facets that
correspond to the perspectives (e.g., domain model, graphical concrete syntax, context
conditions, interpreter, compiler, etc.) of a specific language workbench.

Language Concern reuse is achieved thanks to three interfaces: A variation interface
expressing variabilities in the Language Concern in terms of features (shown in textwriter
font in this section) from which a user, i.e., a language engineer, can select his desired
configuration; a customization interface allowing to integrate a Language Concern into
another language or Language Concern; and a usage interface exposing the relevant
information needed to use the functionality that a concern provides to a language or
another Language Concern. Section 2.3 introduced two examples of Language Concerns
(Expression and Unit), albeit without explicitly defined interfaces yet.
Language: A Language is a specific kind of language concern where there is no more
variability and no more customization to be done. For instance, if the Expression
language concern is configured by selecting Literal and Arithmetic Operation (but
not Variable and Comparison Operation) and customized by defining the Literal as
Double values, and nothing is left in the variation interface and customization interface,
then the result is a specific Expression Language, i.e, one among all the potential
Expression Languages derivable from the Expression Language Concern. Section 2.3
introduced the exemplary Timed State Machine Language, which by design does not offer
any variability or customization possibilities.
Metalanguage: All artifacts within a language concern are defined by means of Meta-
languages. For instance, an Expression language concern can be defined with artifacts
written in two metalanguages: Ecore (and possibly OCL) for specifying the structural
properties and Java for specifying the behavioral properties of a semantics perspective.
Perspective: A Perspective groups a set of metalanguages and defines relationships
among them. The goal of the Perspective is to define how several metalanguages are
supposed to be used together in a coherent way to achieve a specific purpose. It is also

9

possible to define a Perspective containing only one metalanguage in order to make it
explicit that the metalanguage is being used for a specific purpose. For example, to
express the concrete syntax of a language, a concrete syntax Perspective can be defined
that uses a specific metalanguage, e.g., BNF. Another concrete syntax Perspective can be
defined that uses a different metalanguage, e.g., Xtext.
Artifact: An Artifact belongs to a facet of a language concern and conforms to a
specific metalanguage of the facet’s perspective. In our Expression language, an example
would be a text file containing the BNF grammar of the concrete syntax for the Literal
facet of the Literal feature.
Facet: A Facet realizes part of a given language concern using the metalanguages of
the corresponding perspective. For example the grammar of the concrete syntax of an
Expression language is a Facet of the Expression language concern. Artifacts of a given
facet are kept consistent according to the relationships among the used metalanguages of
the respective perspectives.
Variation Interface (VI): The Variation Interface of a language concern exposes a
set of end user relevant language concern features and the constraints between them. A
language concern feature represents any user visible configurable part of a language concern
(e.g., design choices, alternative implementations, selection of a language capability...).
A common approach for specifying variations is the use of Feature Models (FMs). Such
a FM may be complemented by Goal Models that specify the impact of a particular
configuration. For example, a State Machine concern could define different variants of
state machines, such as Timed State Machines and Stochastic State Machines, with
semantics implemented either with a compiler or an interpreter and two concrete syntax
alternatives: a tree editor and a textual editor.
Customization Interface (CI): The Customization Interface (CI) of a language
concern explicitly defines which elements of the artifacts need to be tailored to integrate
the language concern into a given context (i.e., into a language or language concern). For
example a Collection language concern could define the construct OrderedList that is
used to order Comparable elements. How the elements are compared is outside of the
scope of the Collection language concern. It is the task of the user to specify the notion
of Comparable element in terms of its context.
Usage Interface (UI): The Usage Interface (UI) of a language concern is the aggre-
gation of the relevant information of the artifact that is required to achieve a specific
functionality. For example, in order to statically check the soundness of an instance of the
language the user only needs to have access to the check operation. Note that a Usage
Interface (UI) might introduce additional specifications (e.g., a particular protocol) in
order to ensure the proper use of the functionality.
Library of Language Concerns: A Library of Language Concerns is a collection of
unambiguously identifiable reusable language concerns, and a collection of perspectives
(i.e., that are usable to define facets in that library).

As shown in Fig. 2, the left part (swimlane Language) provides the concepts required
to define language concerns, while the right part correspond to the facilities provided by
the language workbench (swimlane Language Workbench). Hence, there is a type-instance
relationship in between these two parts: a facet conforms to a perspective in terms of the
artifacts and links defined according to the metalanguages and relationships provided by

10

the corresponding perspective. The bottom part of Fig. 2 (swimlane Concernification)
provides the concepts required to encapsulate as language concern and structure the
various facets of the actual language implementation (top part of Fig. 2, swimlane
Implementation).

Fig. 3 provides a possible instantiation of the conceptual model for a particular
language concern. The CI is provided in the form of a feature model on the left, while
the right part of the figure illustrates different facets, each composed of different artefacts.
These artefacts can be defined from scratch, or sliced from a 150% model (see in gray the
facets 2 & 3 conforming to the perspective P2).

3.2. Roles
Creating, evolving, and (re-)using concern-oriented modeling languages requires various

skill sets. Within COLD we distinguish four different roles.
Language Workbench Engineer: A language workbench engineer defines the per-
spectives provided by language workbenches and the related tooling (e.g., editors for the
metalanguages of choice).
Language Concern Engineer: A language concern engineer creates reusable language
concerns. To this end, he defines interfaces and the facets implementing a language concern.
Each of these facets is compatible with the perspective of the language workbenches of
choice.
Language Engineer: A language engineer creates languages by reusing language
concerns. In the process, he selects the required features of the individual language
concerns’ VIs, tailors these according to their CIs, and obtains a language usable through
the reused language concerns’ UIs.
Language User: A language user uses a language to model. Some configuration choices
of language concerns may also be left to the language users, such that she can configure
the language concerns using their Variation Interface before using the resulting language.

3.3. Scenarios
COLD is expected to cover various scenarios related to language reuse, to create a

brand new language, to evolve or adapt an existing one, or to contribute new reusable
language concerns. The underlying principle of COLD is to create a new language through
the combination of language concerns by individually configuring (i.e., selecting features
and/or re-exposing some of them) and customizing them. For example, one wants to
create a new language by combining the language concern of a State Machine, with an
Action language concern to be used for expressing actions on the transitions of the state
machine. The language engineer can select the expected features in the two language
concerns, and then customize them in order to symmetrically integrate them in a final
language.

A closely related scenario consists in extending an existing language by integrating an
additional language concern into it. For example, one wants to integrate a Parallel Loop
language concern into an existing Action language concern. In this case, the composition
is asymmetric, composing the facets of the reused Parallel Loop language concern with
the facets of the Action language concern.

Beyond the planned variability and customization of a language concern, or beyond a
given language, a language engineer may want to add new features to an existing language

11

concern by adding a feature to the VI and adding the corresponding language facet, or to
adapt an existing language facet to fit a particular purpose. In the later case, the change
of the language facet should not have an impact on the UI. Similarly, a language engineer
may want to adapt an existing language to evolve it according to an evolution of the
understanding of a given domain. Finally, a language engineer may want to extract a
slice of an existing language to be used as a standalone language or language concern.

In all the aforementioned scenarios, when the time comes for a language engineer to
build a new language or language concern, she first needs to understand whether existing
language concerns already offer the expected features to be configured to satisfy the
requirements for the desired language.

4. Concernification of Languages

The COLD approach relies on the definition and the reuse of Language Concerns. We
use the term concernification for the process of defining a piece of language as a language
concern, including an explicit definition of the three proposed interfaces (see bottom part
of Fig. 2, which structure as a language concern the actual language implementation in the
top part of Fig. 2). In this section, we first explain in more detail the three interfaces that
characterize a Language Concern. We then present the life cycle of Language Concerns,
which involves different actors around a common Language Concern Library.

4.1. Language Concern Interfaces
A Language Concern is primarily characterized by its interfaces. In this subsection, we

take a closer look at each of the three Language Concern interfaces defined in Section 3.1,
namely the Variation Interface (VI), the Customization Interface (CI) and the Usage
Interface (UI).

4.1.1. Language Concern Variation Interface
In order to define reusable Language Concerns, the Language Concern Engineer must

explicitly express the variation points implemented in the Language Concern facets, which
enable the closed variability of the Language Concern. Those design choices are formalized
in the Variation Interface (VI). Defining the VI requires constructs for specifying and
resolving variability at an abstract level, i.e., without exposing details about the Language
Concern implementation.

Variability specifications are technically similar to features in feature modeling. Ad-
ditionally, the set of features exposed in a VI can be linked to goal models provided by
the Language Concern Engineer to inform the Language Engineer about non-functional
properties of features (e.g., impact on performance). Based on the exposed features,
their relationships, and the provided goal models, the Language Engineer can choose a
configuration for the Language Concern, i.e., a valid selection of features.

Once a feature has been defined in the VI, the impact of the selection of the feature
on the different facets must be specified in the Language Concern. For example, selecting
a feature may trigger the addition of one or several constructs (with their own syntax
and semantics) to the Language Concern, or alter specific parts of artifacts scattered in
multiple facets, or may even condition the presence of a complete facet of the Language
Concern. Due to the large number of possibilities, the COLD approach does not make any

12

assumption on the feature granularity of the VI (i.e., the number of features, and which
elements are conditioned by which feature) and it is the responsibility of the Language
Concern Engineer to define a relevant and well structured VI for the Language Concern.

Consider the use case described in Section 2.3. A possible VI for the Expression
Language Concern could include two features: one conditioning the presence of the Literal
concept, and another conditioning the presence of the Variable concept. When reusing
this concern, the Language Engineer can use the VI to tailor the Language Concern by
selecting features of interest, e.g., to create a Language without variables.

In order to define the VI and the corresponding variation points of a Language Concern,
the metalanguages provided by the considered language workbench must provide several
facilities. First, it must be possible to declare features and the relationships between them
(e.g., with a dedicated metalanguage for feature modeling). Second, it must be possible
to specify how the choice of features affects the different facets, which may require the
use of operators to manipulate the artifacts of the Language Concern. These operators
are specific to the provided metalanguages, and may include the possibility to compose
multiple artifacts (also called positive variability) or to remove parts of artifacts (also
called negative variability).

The definition and use of the VI raises many challenges. The impacts of the choice
of granularity on the Language Concern definition are studied in Section 6.1.1. The
implication of the goal model in the context of COLD is studied in details in Section 6.2.1.

4.1.2. Language Concern Customization Interface
The Customization Interface (CI) allows Language Concerns to be designed as generi-

cally as possible to foster their reuse in new contexts. Its purpose is to describe how a
Language Concern can be adapted (or molded) to the specific needs of a given context of
reuse. In other words, the CI enables the open variability of the Language Concern.

The CI of a Language Concern can be thought of as the contract that must be
fulfilled by another reusing Language Concern or Language. This is expressed by a
set of customizable elements (i.e., “holes”) that must be bound to concrete elements of
the reusing Language Concern or Language (i.e., “filling the holes”). Note that what is
exposed in the CI depends on the choices made by the Language Engineer with the VI,
since the resulting configuration may condition the presence or absence of elements, and
consequently of their own CI.

Consider the use case described in Section 2.3, where the Unit Concern must expose a
CI for both its abstract syntax and semantics facets. Regarding the abstract syntax, a
customizable concept called Value can be defined with a link to Unit. This means that to
reuse the Unit Concern, one must provide a concrete concept to play the role of Value.
Regarding the semantics, the customizable Value concept can expose a customizable
evaluate operation where unit conversion logic is called before the actual evaluation logic,
the latter being provided by the concrete operation bound to evaluate. A Language
Engineer can then use this CI to bind a concrete concept Expression from the Expression
Concern, to the customizable concept Value of the Unit Concern, leading to expressions
with units and automatic unit conversion facilities.

In order to define the CI of a Language Concern, and to be able to use this CI
later on, the used metalanguages must provide several facilities. First, each considered
metalanguage must provide a way to identify which elements are customizable, i.e., which
elements are part of the CI. For instance, a grammar language can identify as customizable

13

every non terminal elements without corresponding production rule, and a metamodeling
language can identify as customizable every class that is abstract or that has generics.
Additional consistency constraints may be required either within the CI, or across the
CIs of the different facets of a concern. For example, the customization of a specific part
of the abstract syntax (e.g., binding a generic type 𝑛 times) may have consequences on
the possible or required customization within the corresponding part of the operational
semantics (e.g., managing 𝑛 cases within a switch expression).

Second, each metalanguage must provide a set of composition operators that can be
used to bind concrete elements to customizable elements. For example, both inheritance
or package merge can be used to bind a concrete class to an abstract class in an abstract
syntax, and an abstract method can be implemented by a concrete method in the
semantics. Aspect-oriented approaches are also possible for more fine grained composition
operators. Depending on how the composition operators are implemented, there may
be consequences on the non-functional properties of the generated language, such as
incremental compilation, execution speed, or analyzability.

We identify several challenges related to the definition of the CI and the composition
of Language Concerns in Section 6.2.2.

4.1.3. Language Concern Usage Interface
The Usage Interface (UI) is the set of the relevant functionalities of the Language

Concern that can be externally requested. The UI definition, appearing from the Language
Concern configuration and customization, is the cornerstone of the encapsulation strategy
promoted by the COLD approach and initially proposed by Parnas [39, 40].

The functionalities exposed in the UI may either be structural or behavioral elements
of the artifacts. The UI represents the comprehensive set of operations provided by the
concern, and consequently the only interface exposed to Language Users (to create and
use instances) and to both Language Engineers and Language Concern Engineers (to
understand what a Language Concern provides). The UI is not only an explicit set of the
exposed functionalities of the concern, but also a mean to analyze Language Concerns
and Languages, e.g., to see whether different Language Concerns and Languages provide
the same functionalities (for conformance checking, substitutability, etc.). Besides, the UI
can be used as an explicit contract exported by the Language Concern engineers, ensuring
that the reuse of the Language Concern does not lead to undocumented breaking changes
in the UI.

From the use case described in Section 2.3, consider an Expression Language that has
been defined using the Expression Language Concern and composed of two perspectives:
the abstract syntax and the operational semantics. The UI of such a language would
contain both the model manipulation operations for the abstract syntax perspective (such
as the instantiation of an Add operation or the assignment of a Literal to the left part of
the Add) and an evaluation operation for the semantics perspective (such as returning a
numerical value from an expression model).

In order to define the UI of a Language Concern, the considered metalanguages
must provide a way to expose parts of the artifacts of a facet. The Language Concern
Engineer is free to use either the encapsulation capabilities of the metalanguages (e.g.,
Java’s public classes keyword), or some external specification (e.g., Eclipse plugin’s
Export-Package property), to define which parts of the artifact’s functionalities can be
used by the Language Concern user.

14

We identify one main challenge related to the definition of the UI in the context of
Language globalization in Section 6.2.3.

4.2. COLD Life Cycle
The Language Concern Library contains a set of language concerns to ease the

development of new software languages and to support a wide spectrum of scenarios. In
this subsection, we discuss the life cycle of the language concerns in the context of the
different scenarios of reuse introduced in the previous section.

Language Engineers may use pre-existing Language Concerns, or build new ones from
scratch, or act as Language Concern Engineer to contribute new Language Concerns
to the Language Concern Library. For example, unlike in the use case presented in
Section 2.3, a Finite State Machine (FSM) may be created by a Language Engineer
by selecting applicable features inside a pre-configured Language Concern dedicated to
classical FSM. On the other hand, a Language Engineer may use the FSM Language
Concern as a starting point and integrate additional Language Concerns to yield the
desired FSM, for example a FSM dealing with Units – following the development scenario
presented in Section 2.3. And lastly, a Language Engineer acting as Language Concern
Engineer, may start with a blank slate and integrate several Language Concerns to build
a new Language Concern. This gives him/her complete freedom and flexibility about how
the different concerns are integrated, but requires in-depth knowledge of the elements to
integrate. Starting from a blank slate does not allow the Language Concern engineer to
benefit from the implementation choices done by a previous Language Concern Engineer
when defining the integration of many Language Concerns and can be seen as a missed
opportunity to reuse existing components.

When several Concerns are composed with each other into a language, a natural
order of composition is imposed by the existence of required language elements. For
example, to compose the Unit Concern, an element needs to exist in the language to
which the Literal can be mapped. In addition to this natural order, the order of
composition is largely influenced by the properties of the composition operator. The way
language components associated to Language Concerns can be composed has a strong
impact on the usage of the composition framework used to assemble the concerns into
a single language. A commutative and associative composition operator—while simple
to use theoretically—is known as difficult to apply to real case studies because of its
restrictiveness, and must usually be degraded to support real-world needs. For example,
considering the commutativity property, the class merging operator was less used than
the AspectJ weaving one (which is asymmetric and non commutative). By losing the
commutativity property, it is up to the user to know how the different concerns must be
composed together, to avoid the capture of unintended elements during the composition
(so called fragile pointcut in the aspect community). To address this problem, one solution
is to enforce a composition process with less freedom, and as the user cannot deviate from
a given process, composition conflicts can be anticipated. Consider for example staged
configuration in software product lines: “The process of specifying a family member may
also be performed in stages, where each stage eliminates some configuration choices. We
refer to this process as staged configuration. Each stage takes a feature model and yields
a specialized feature model, where the set of systems described by the specialized model
is a proper subset of the systems described by the feature model to be specialized.” [41].
Applied to Language Concern composition, a staged approach supports the Language

15

Engineer by restricting his/her choices and guiding him/her in the realization of his/her
language. On the other side of the spectrum, the Language Engineer can be freed from
this multi-staged process and benefit from more flexibility. In COLD, the composition
order is implicitly specified by the feature hierarchy within a language concern, and the
concern reuse hierarchy between language concerns.

5. Supporting COLD Across the Technological Spaces

Concern-oriented language development is already supported to varying degrees by
existing language workbenches. This section presents how popular metamodel-driven and
grammar-driven language workbenches support aspects of COLD.

5.1. The GEMOC Studio
The GEMOC Studio [42] is an extensible metamodel-based language workbench

built on top of the Eclipse Modeling Framework (EMF) [43]. It includes Melange [5], a
metalanguage for assembling and composing different DSLs using language-level operators.
During the execution of a model, several generic or generated runtime services are provided,
such as a graphical animator, a trace manager, and an omniscient debugger.

Perspectives. The abstract syntax of a DSL is defined by an Ecore metamodel (possi-
bly complemented with OCL constraints), while the operational semantics is defined with
Kermeta [44], possibly complemented with MoCCML [45] and ECL [46]. Experimental
support is also provided for specifying the semantics using xMOF [47] and ALE [32].
For the concrete syntax, other tools of the Eclipse ecosystem, such as Xtext or Sirius,
are supported. The BCOoL metalanguage [48] allows to specify coordination patterns
between heterogeneous languages to coordinate the concurrent execution of conforming
models. In summary, the GEMOC Studio offers the following perspectives: abstract
syntax, concrete syntax, various kinds of semantics, and coordination.

Language Concerns. From the abstract syntax and semantics of a DSL, Melange
extracts a structural interface called the model type, which specifies what can be publicly
accessed or executed on a model [3]. Hence, model types roughly correspond to the UI in
COLD. In addition, the ECL metalanguage can be used to explicitly expose the symbolic
event structure of the concern, which correspond to a purely behavioral UI. Regarding the
CI, the metalanguages can define abstract elements that must be implemented later on
(e.g., an abstract Ecore class, or an abstract Kermeta method). There is also experimental
support with the Puzzle tool [49, 50], which can be used to define the VI as a feature
model using the Common Variability Language (CVL). To support configuration, the
concern must be broken down into different language modules that can be composed
together using Melange operators (i.e., inheritance, slicing, merging, weaving) based on a
valid configuration of features.

Libraries. As the GEMOC Studio is based on Eclipse, Language Concern Engineers
can package Language Concerns as Eclipse plugins and push them on a remote update
site, allowing Language Engineers to install and compose them on demand.

Use Case. The Expression and Unit reusable Language Concerns can each be devel-
oped independently as a GEMOC executable DSL composed of an abstract syntax and
a semantics. If Puzzle is used, the VI of the Expression Concern can be defined as two
features Literal and Variable. The CI of the Unit Concern can include an abstract class

16

Value linked to the Unit class. Using Melange operators (e.g., merge and rename), both
Language Concerns can be reused into a Timed State Machine Language, where the Value
class of Unit is merged with the Expression class of Expression. Glue code is required to
combine the semantics of Unit and Expression (e.g., to realize unit conversions before
arithmetic operations). The remainder of the Timed State Machine Language can then
be defined, including a Trigger relying on Literal reused from Expression (which now also
has a Unit, e.g., “seconds”), and a GuardExpression that contains a ComparisonOperator
from Unit (which now convert units if required).

Towards COLD with The GEMOC Studio. Some of the GEMOC Studio’s features,
such as structural language interfaces and language-level composition operators, could be
directly reused to implement the COLD philosophy. Support for the VI with Puzzle is
still experimental as of today, and can be improved for better COLD support. Lastly,
while model types can be used to define the UI, they could also be used for the CI by
using model typing to describe the structure of the customizable elements.

5.2. MontiCore
MontiCore [51] is an extensible workbench for the development of compositional

languages. Its languages are defined in terms of grammars that specify the concrete
and abstract syntax of modeling languages. These grammars moreover support multiple
inheritance and embedding, which MontiCore leverages to compose languages. From
these grammars, MontiCore generates model-processing infrastructure (e.g., parsers) to
facilitate checking and transforming models of the language.

Perspectives. The quintessential perspectives of MontiCore are integrated concrete
and abstract syntax, well-formedness, and behavior. Syntax is realized through extended
context-free grammars of the MontiCore metalanguage from which MontiCore generates
parsers, abstract syntax classes, and additional model processing infrastructure. The
latter includes an extensible visitor-based model checking framework that applies Java
well-formedness rules (context conditions) to the models. Behavior can be realized through
FreeMarker-based code generators that process models and translate these into arbitrary
target language artifacts or through domain-specific model-to-model transformations [52].
Facets realize these perspectives through specific grammars, Java rules, and templates.

Language Concerns. A MontiCore language comprises at least three facets that
correspond to the quintessential MontiCore perspectives (syntax, well-formedness, and
behavior). The notion of a variation interface of the FSM language in MontiCore is realized
by the selection of context conditions to be activated. The language engineer selects from
context conditions provided by the language concern. The customization interface is
reflected in syntax and well-formedness. Syntax can be customized by grammar extension,
via implementing interface rules that serve as dedicated grammar extension points, or
through adding alternatives by overriding productions. The well-formedness checking
infrastructure supports additional customization through an interface that enables adding
new composition-specific well-formedness rules. The usage interfaces are the methods
generated into their abstract syntax classes. E.g., these include methods to compare
models, which can be used by language developers for various analyses.

Libraries. MontiCore supports reusable grammars, context conditions, and model
transformations. Languages comprising these are available for reuse online. A dedicated
language (concern) library is not available.

17

Use Case. For integration of the three language concerns presented in subsection 2.3,
the resulting grammar (syntax facet) inherits from the grammars of the syntax facet of
the other concerns and implements their interfaces (e.g., Guard Expression) to define a
new syntax for the Timed State Machine language concern. Context conditions of the
other concerns are selected as appropriate and new inter-language context conditions are
added.

Towards COLD with MontiCore. Concern-oriented composition currently is purely
syntactical. While there have been approaches to compose code generators [53], these yet
have to be generalized. Also, MontiCore currently does not support 150% grammars, i.e.,
grammars that support variability through features. Also, MontiCore does not support
libraries for concerns yet.

5.3. Neverlang
The Neverlang [6] language workbench is built around the language feature concept.

Language components, called slices, embodying the language features are developed as
separate units by tying together some modules. A module may contain a syntax definition
and/or one or more semantic roles. Each slice defines and needs one or more types.
These are declared in provides and requires clauses, respectively. Finally, the language
descriptor indicates which slices are to be composed together, which roles should be used
and in which order the generated tooling will use them.

Perspectives. Some of Neverlang’s perspectives are: composable concrete and abstract
syntax, staged and dynamically customized behavior, and ad hoc modular DSLs to support
the generation of language artifacts. Syntax is expressed by context-free attributed
grammars. The semantic roles define the behavior. Each role represents one Neverlang
production step whose execution defines one of the possible language artifacts: parser,
interpreter, compiler, debugger, IDE, etc.

Language Concerns. A language concern is realized by a slice (or a set of slices).
A set of slices without any further need for composition—i.e., all used nonterminals
are provided by at least one syntax rule—is a language in the COLD parlance. The
concrete syntax is given through EBNF rules and the abstract syntax—as an AST—is the
internal representation created by Neverlang over slices composition [54]. Limited to the
composition functionality, the language concern usage interface—in Neverlang—is realized
by the provides clause. provides and requires clauses are also used by the AiDE [8]
tool to automatically build a configuration tree (a CVL [55]) out of the available slices
making explicit the existing variability. In the COLD parlance, the configuration tree built
by AiDE realizes the language concern variability interface. Neverlang provides several
ways to customize a language feature, e.g., substituting a semantic role, substituting
its syntax role and—if needed—re-mapping the existing semantic actions on the new
rules, or dynamically injecting new semantic actions on a specific node of the AST [56].
The requires clause is the only explicit support for the language concern customization
interface; this clause declares which elements to customize in order to make the language
concern composable.

Libraries. Neverlang supports separate compilation: a slice or a set of slices can be
compiled even if their requirements are not satisfied—i.e., one or more nonterminals are
undefined—, and shipped pre-compiled—i.e., with an (incomplete) parser that will be
extended when a further composition adds new rules [54]. Neverlang provides a bundle

18

COLD
Feature

The GEMOC Studio MontiCore Neverlang

Variation
Interfaces

Puzzle (CVL) context condition selection API AiDE (CVL)

Customization
Interfaces

inheritance, type param-
eters

required grammar interfaces,
adding context conditions

implicit, “requires” clauses

Usage
Interfaces

model types, and sym-
bolic event structure

implicit implicit, “provides” clauses

Perspectives Abstract Syntax (AS),
Concrete Syntax (CS),
Operational Semantics
(OS), Coordination
(Coord)

Integrated Abstract and Concrete
Syntax (IS), Well-formedness
(WF), Translational Semantics
(TS)

Parser, Abstract Syntax (AS), Op-
erational Semantics (OS), type
checker, code generator (TS), code
optimizer (TS), debugger (UI),
IDE (UI), code translator (TS)...

Metalanguages AS: Ecore; CS: Xtext,
Sirius; OS: Kermeta,
MoCCML, ECL, Ale,
xMOF, Java (or JVM
based languages) Co-
ord: BCOoL

IS: MontiCore Grammar Lan-
guage; WF: Java Context Condi-
tions; TS: FreeMarker, Java

Parser: LALR parse tree; AS:
EBNF; OS, TS: Java (or JVM
based languages); UI: DSL

Reuse
Operators

inherit,merge, slice, import, cross-
references, compose, extend,
coordination

inherit, aggregate, embed import, re-map, aggregate, slice,
cross-references

Table 1: Summary of current COLD support in different language workbenches

statement to import as-it-is a pre-compiled language concern into the one under develop-
ment. Separate compilation and bundles enable Neverlang to support the development of
libraries of language concerns as envisaged by the COLD methodology.

Use case. In Neverlang, the considered language concerns are realized by a set of
slices. Unit provides the expression units—i.e., time and length units—and the conversion
operations; it needs the numeric literals. Whereas, Expr provides dimensionless numeric
expressions—i.e., literals and related operations. Their composition occurs on the numeric
literals. Unit conversions are applied in a separate role—a facet of the final language—
before expressions evaluation to maintain the concern separation.

Towards COLD in Neverlang. The concern composition is mostly syntactical with
limited control on semantic composition [57]. Moreover, even if Neverlang provides the
mechanisms to customize a language concern, no explicit interface is available.

5.4. Summary
Table 1 describes the feasibility of COLD across the technological spaces. The first

column shows COLD features, the subsequent columns represent the technological spaces
and their cells summarize how the respective feature may be supported.

6. Discussion

In this section, we discuss some of the open issues related to COLD. First, Section 6.1
focuses on open issues related to the implementation and design of Language Concerns,
and the support of COLD in language workbenches. Then, Section 6.2 discusses the open
issues resulting from the use of Language Concerns.

6.1. Open Issues Related to Language Concern Implementation
This subsection discusses open issues related to the implementation and design of

Language Concerns, i.e., open issues that only impact the Language Concern Engineer.
We first discuss the granularity of a Language Concerns, then the breakdown Language
Concerns, and finally the impacts of composition operators.

19

6.1.1. Language Concern Granularity
The long studied field of object-oriented software development led to the definition

of well defined guidelines for choosing the right granularity of objects [58], i.e., how to
distribute roles and constructs among objects. In particular, this lead to the definition of
design patterns [59] that guide developers with well studied and reusable patterns of object-
oriented software design. In the context of COLD, to produce highly reusable language
concerns requires to address the problem of defining their granularity. In principle,
language concerns may range from small generic language concerns (e.g., Expressions) to
large framework-like language concerns (e.g., for the definition of automotive business
processes). Yet, a set of generalized and well-studied granularity guidelines would be of
great benefit for the production of language concerns.

6.1.2. Language Concern Breakdown
Breaking down software is a key concept of software modularization that has already

been studied both for General Purpose Languages (GPLs) [8, 60] and Domain Specific
Languages (DSLs) [61]. Essentially, breaking down software into modules (or units)
facilitates both software development and maintainability by easing the creation and
modification of modules independently of other modules. Besides the well-studied feature
interaction problem4, the following open issues need to be considered.

In the context of COLD, the proper way to break down a language is still an open issue.
However, two possible kinds of modules naturally emerge for the breakdown of Language
Concerns: language constructs (i.e., basic blocks of a language possibly implemented
in many facets, as in Neverlang) and facets (as in Rascal). If a module is defined as
a language construct, adding constructs to the Concern (or removing constructs) is
facilitated. This has already been identified as a valid strategy for languages, especially
in the context of GPLs [7, 8, 62]. However, if a whole facet (e.g., a concrete syntax) must
be added to the Concern, then all modules must be modified (e.g., to define the concrete
syntax of each construct) even if this effect can be alleviated by the use/definition of
proper composition operators (see the introduction of a “permission check” facet in [61]
as an example). Conversely, if a module is defined as a facet (similarly to what is done
in Rascal [20]), adding a new facet is facilitated while adding a new construct requires
modifying all modules. In summary, both strategies come with a strong trade-off, and
picking a strategy requires anticipating how a given Language Concern may evolve in the
future.

Since software is designed to grow over time [63], it is important to facilitate the
extension of Language Concerns both on the axes of language constructs and facets.
Therefore, future studies should explore more sophisticated breakdown strategies, possibly
combining aspects of both the strategies presented above.

6.1.3. Impacts of Composition Operators
As explained in Section 4, syntactic and semantic composition operators [64] are

required by COLD both to realize a valid configuration of the VI, and to bind concrete
elements to customizable elements of the CI. However, in practice, the use of specific

4e.g., International Conference Series on Feature Interactions in Telecommunications and Software
Systems; http://www27.cs.kobe-u.ac.jp/wiki/icfi/index.php?History

20

composition operators can impact several aspects of concern implementations, such as
incremental compilation, type safety, or independent extensibility. For instance, while an
abstract syntax defined using the Ecore metalanguage can be extended by inheritance and
referenced without recompilation, merging two Ecore models would allow the introduction
of new fields in an existing Ecore class forcing the recompilation.

Consequently, future work must both study the impacts and trade-offs of composition
operators, and identify (or define) relevant composition operators for given implementa-
tions of the COLD approach. This problem is strongly related to the topics of granularity
(see Section 6.1.1) and breakdown (see Section 6.1.2), as composition operators are of
first importance in both cases.

6.1.4. Language Concern Composition Issues
The availability of well-defined language reuse interfaces can greatly facilitate the

production of sound Languages through the reuse of independently engineered Language
Concerns. However, issues may emerge from the composition of valid Language Concerns
(i.e., with sound interfaces and implementations), which would result in an unsound
Language. For instance, a concept exposed in a Language Concern interface might come
with hidden assumptions (e.g., stateful initialization or hidden dependencies) – unknown
from the Concern Language Engineer, or the composition of artifacts can lead to unsound
behaviors (e.g., the composition of two valid BNF grammars can produce an ambiguous
grammar).

To automatically detect and prevent such emerging issues may be difficult. However,
the detection of composition issues is a critical aspect to support the language engineer in
identifying possible issues with the language he/she is building, which may lead to either
erroneous or unexpected behaviors. While some potential issues can be identified before
the composition (e.g., detection of ambiguity), others, especially related to soundness of
the resulting language semantics are still subjected to research.

Experience from engineering a variety of languages for research and industry indicates
that the guidance provided by the different language concern interfaces as implemented
in the different workbenches (see Section 5) already substantially facilitate language
engineering. Nonetheless, further research must be dedicated to investigate issues emerging
from Language Concern composition and evaluate COLD in the context of real industrial
language reuse scenarios.

6.2. Language Concern Reuse
This subsection discusses open issues resulting from the reuse of Language Concerns,

i.e., open issues impacting both the Language Concern Engineer and the Language
Engineer. We discuss first the difficulty of defining comprehensible goal models, then the
overall reuse process, and finally the impacts of COLD on the globalization of software
languages.

6.2.1. Exposing Comprehensible Goal Models
As explained in Section 4, the VI of a Language Concern can include different goal

models to expose the impacts of features on non-functional properties. This information
can be used by the Language Engineer to make informed decisions when selecting features.
For instance, a Language Engineer building a language for rapid web language prototyping

21

may want to improve the reactiveness of the auto-completion of the language but may
not require a formal type system for the language.

Consequently, Language Concern Engineers need to share a glossary of non-functional
properties with the Language Engineer, and tooling [65] is required to help them quanti-
fying the intentional elements (goals or tasks/features) of the Language Concerns. While
existing templates for requirements documents form a good starting point for defining
such a shared glossary, as they cover common non-functional requirements and qualities,
determining the set of intentional elements useful to the Language Engineer is still a topic
of research.

6.2.2. Simplifying the Reuse Process
While the COLD reuse process relies on three well identified phases (selection of

features from the VI; customization of elements from the CI; use of the Concern with the
UI), the Language Engineer must still face different intricacies.

A first problem is the large number of possible combinations of choices when using the
VI and the CI, which leads to a very large number of possible combinations of artifacts.
Furthermore, features selected in the VI will impact the content of the CI, and will
therefore restrict the number of remaining choices in the customization phase, which
can be hard to forecast for the Language Engineer. Finding ways to help the Language
Engineer to deal with the vast number of possibilities is an open issue.

A second problem is related to the use of composition operators by the Language
Engineer. When composition operators are used by Language Concern Engineers to
compose artifacts and facets, these engineers are aware of the internal details of the
Language Concern, and are experts in Language reuse. But when composition operators
are used by Language Engineers to customize concerns, the implementation details
are encapsulated. Consequently, a Language Engineer does not have the same level of
knowledge—and expertise—as a Language Concern Engineer, and therefore cannot be
expected to use the same type of language composition operations. Identifying or defining
relevant composition operations for Language Engineers is currently an open issue.

6.2.3. Language Concern Globalization
The globalization of Software Language Engineering has already been discussed by

Bryant et al. [66] and is defined by Clark et al. [67] as follows: ”Globalization deals
with the purposeful construction, adaptation, coordination and integration of explicitly
defined languages, to be amenable to mechanical and cognitive processing, with the goal of
improving quality and reducing the cost of system development.” A conceptual model for
globalization is also proposed by Clark et al. [67], with concepts such as composition and
relationships. They also identify a wide range of challenges that must be addressed in the
context of globalization, both from a socio-technical point of view (How to communicate
across language engineering teams?), and from a purely technical point of view (e.g., How
to model the reuse and composition of languages?).

COLD already covers a large portion of the concepts identified in this conceptual
model, and can therefore be considered as a relevant conceptual approach to address
part of the globalization challenge. Yet, further research is required to establish which
socio-technical and technical challenges of globalization are addressed by COLD, and how
to further extend COLD to fully address the globalization challenge.

22

7. Conclusion

DSL development has reached a level of maturity where creating DSLs has become
ordinary, despite requiring substantial development efforts. Fostering and supporting
reuse in DSL engineering is hence of crucial importance. Based on existing language
reuse approaches, we introduce Concern-Oriented Language Development (COLD) to
unify DSL engineering. COLD applies separation of concerns to language constituents,
making them language concerns, which are configurable units of reuse that encapsulate
constructs of a language visible to the language engineer. A language concern can reuse
other concerns recursively. They consist of artifacts representing abstract syntax, concrete
syntax, and behavioral semantics. Artifacts are arranged in facets and perspectives to
organize relationships between language constituents, languages, metalanguages, and
language workbenches. COLD usage is organized around three language concern interfaces
(variation, customization, usage), following principles already applied to general-purpose
software development with concerns [11]. This enables systematic language (concern)
reuse life cycles. To illustrate the COLD notions, we presented some language concerns
and the current state of their realization with metamodel-based and grammar-based
language workbenches.

COLD reveals many interesting challenges, which we surveyed in Section 6. To support
language concern implementation, guidelines to the language engineers must be provided
as many forms and sizes of concerns are likely to emerged, e.g., generic constituents or
domain concerns. Such guidelines should cover how to determine the right granularity
of a language concern, how to break a language into concerns, and how to deal with
cross-concern semantic issues. We also expect this work to provide insights into how
to identify a relevant set of metalanguage composition operators in order to foster, or
ideally maximize, language concern reusability while taking into account expressiveness,
safety, or encapsulation of the artifacts. Hence, devising a set of intentional elements
for language concerns while considering non-functional properties is a research line we
believe is worth investigating, taking goal modeling as a starting point.

Finally, in order to realize the vision of COLD, we are convinced that two main steps
are to be taken. First, we need to experiment its application to gather feedback, especially
in terms of complexity and applicability. To do so, we expect to explore adapted tool
support, and socio-technical issues on communication and coordination of such concerns
among teams. Second, we plan to investigate appropriate means to share and distribute
language concerns libraries on a large scale, establishing a form of globalization [66] of
language concerns.

References

[1] J.-M. Favre, D. Gasevic, R. Lämmel, E. Pek, Empirical Language Analysis in Software Linguistics,
in: SLE, Springer, 2010, pp. 316–326.

[2] P.-A. Muller, F. Fleurey, J.-M. Jézéquel, Weaving executability into object-oriented meta-languages,
in: Proceedings of MODELS/UML’2005, Montego Bay, Jamaica, 2005.

[3] T. Degueule, B. Combemale, A. Blouin, O. Barais, J. Jézéquel, Safe model polymorphism for flexible
modeling, Computer Languages, Systems & Structures 49 (2017) 176–195.

[4] J. de Lara, E. Guerra, Generic Meta-modelling with Concepts, Templates and Mixin Layers, in: 2010
ACM/IEEE 13th International Conference on Model-Driven Engineering Languages and Systems
(MODELS), Oslo, Norway, 2010, pp. 16–30. doi:10.1007/978-3-642-16145-2_2.

23

http://dx.doi.org/10.1007/978-3-642-16145-2_2

[5] T. Degueule, B. Combemale, A. Blouin, O. Barais, J. Jézéquel, Melange: a meta-language for modular
and reusable development of DSLs, in: Proceedings of the 2015 ACM SIGPLAN International
Conference on Software Language Engineering, SLE 2015, Pittsburgh, PA, USA, October 25-27,
2015, 2015, pp. 25–36. doi:10.1145/2814251.2814252.

[6] E. Vacchi, W. Cazzola, Neverlang: A Framework for Feature-Oriented Language Development,
Computer Languages, Systems & Structures 43 (3) (2015) 1–40. doi:10.1016/j.cl.2015.02.001.

[7] E. Vacchi, W. Cazzola, S. Pillay, B. Combemale, Variability Support in Domain-Specific Language
Development, in: M. Erwig, R. F. Paige, E. Van Wyk (Eds.), Proceedings of 6th International
Conference on Software Language Engineering (SLE’13), LNCS 8225, Springer, Indianapolis, USA,
2013, pp. 76–95.

[8] T. Kühn, W. Cazzola, D. M. Olivares, Choosy and Picky: Configuration of Language Product Lines,
in: G. Botterweck, J. White (Eds.), Proceedings of the 19th International Software Product Line
Conference (SPLC’15), ACM, Nashville, TN, USA, 2015, pp. 71–80.

[9] D. Méndez-Acuña, J. A. Galindo, T. Degueule, B. Combemale, B. Baudry, Leveraging Software
Product Lines Engineering in the Development of External DSLs: A Systematic Literature Review,
Computer Languages, Systems & Structures 46 (2016) 206–235.

[10] M. Schöttle, O. Alam, J. Kienzle, G. Mussbacher, On the Modularization Provided by Concern-
Oriented Reuse, in: Companion Proceedings of the 15th International Conference on Modularity,
MODULARITY Companion 2016, ACM, 2016, pp. 184–189. doi:10.1145/2892664.2892697.

[11] J. Kienzle, G. Mussbacher, O. Alam, M. Schöttle, N. Belloir, P. Collet, B. Combemale, J. DeAntoni,
J. Klein, B. Rumpe, VCU: The Three Dimensions of Reuse, in: Software Reuse: Bridging with
Social-Awareness - 15th International Conference, ICSR 2016, Limassol, Cyprus, June 5-7, 2016,
Proceedings, 2016, pp. 122–137. doi:10.1007/978-3-319-35122-3_9.

[12] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, A. S. Peterson, Feature-Oriented Domain Analysis
(FODA) Feasibility Study, Technical Report CMU/SEI-90-TR-21, Carnegie Mellon University,
Pittsburgh, Pennsylvania, USA (Nov. 1990).

[13] M. Svahnberg, J. Van Gurp, J. Bosch, A taxonomy of variability realization techniques, Software:
Practice and Experience 35 (8) (2005) 705–754.

[14] International Telecommunication Union (ITU-T), Recommendation Z.151 (10/12): User Require-
ments Notation (URN) - Language Definition (approved October 2012).

[15] M. B. Duran, G. Mussbacher, Investigation of feature run-time conflicts on goal model-based reuse,
Information Systems Frontiers 18 (5) (2016) 855–875. doi:10.1007/s10796-016-9657-7.

[16] P. Naur, B. Randell, Software Engineering: Report on a conference sponsored by the NATO
SCIENCE COMMITTEE, Garmisch, Germany, 7th to 11th October 1968, NATO, 1969.

[17] A. Pescador, A. Garmendia, E. Guerra, J. S. Cuadrado, J. de Lara, Pattern-based development
of domain-specific modelling languages, in: 2015 ACM/IEEE 18th International Conference on
Model-Driven Engineering Languages and Systems (MODELS), IEEE, 2015, pp. 166–175.

[18] M. Mernik, M. Lenič, E. Avdičaušević, V. Žumer, LISA: An Interactive Environment for Programming
Language Development, in: N. R. Horspool (Ed.), Proceedings of the 11th International Conference
on Compiler Construction (CC’02), Lecture Notes in Computer Science 2304, Springer, Grenoble,
France, 2002, pp. 1–4.

[19] H. Krahn, B. Rumpe, S. Völkel, MontiCore: A Framework for Compositional Development of
Domain Specific Languages, International Journal on Software Tools for Technology Transfer 12 (5)
(2010) 353–372.

[20] P. Klint, T. van der Storm, J. J. Vinju, RASCAL: A domain specific language for source code
analysis and manipulation, in: Ninth IEEE International Working Conference on Source Code
Analysis and Manipulation, SCAM 2009, Edmonton, Alberta, Canada, September 20-21, 2009, 2009,
pp. 168–177. doi:10.1109/SCAM.2009.28.

[21] L. C. L. Kats, E. Visser, The Spoofax Language Workbench: Rules for Declarative Specification of
Languages and IDEs, in: M. Rinard, K. J. Sullivan, D. H. Steinberg (Eds.), Proceedings of the ACM
International Conference on Object Oriented Programming Systems Languages and Applications
(OOPSLA’10), ACM, Reno, Nevada, USA, 2010, pp. 444–463.

[22] E. Van Wyk, D. Bodin, J. Gao, L. Krishnan, Silver: An extensible attribute grammar system,
Science of Computer Programming 75 (1-2) (2010) 39–54.

[23] B. Ford, Parsing expression grammars: a recognition-based syntactic foundation, in: ACM SIGPLAN
Notices, Vol. 39, ACM, 2004, pp. 111–122.

[24] E. Visser, Scannerless generalized-LR parsing, Universiteit van Amsterdam. Programming Research
Group, 1997.

[25] M. Emerson, J. Sztipanovits, Techniques for metamodel composition, in: OOPSLA–6th Workshop

24

http://dx.doi.org/10.1145/2814251.2814252
http://dx.doi.org/10.1016/j.cl.2015.02.001
http://dx.doi.org/10.1145/2892664.2892697
http://dx.doi.org/10.1007/978-3-319-35122-3_9
http://dx.doi.org/10.1007/s10796-016-9657-7
http://dx.doi.org/10.1109/SCAM.2009.28

on Domain Specific Modeling, 2006, pp. 123–139.
[26] P. D. Mosses, Modular structural operational semantics, The Journal of Logic and Algebraic

Programming 60 (2004) 195–228.
[27] S. Liang, P. Hudak, Modular denotational semantics for compiler construction, Programming

Languages and Systems—ESOP’96 (1996) 219–234.
[28] G. Ros,u, T. F. S, erbănută, An overview of the k semantic framework, The Journal of Logic and

Algebraic Programming 79 (6) (2010) 397–434.
[29] M. Felleisen, R. B. Findler, M. Flatt, Semantics engineering with PLT Redex, Mit Press, 2009.
[30] V. Vergu, P. Neron, E. Visser, DynSem: A DSL for dynamic semantics specification, Technical

Report Series TUD-SERG-2015-003.
[31] M. Gouseti, C. Peters, T. v. d. Storm, Extensible language implementation with object algebras

(short paper), in: ACM SIGPLAN Notices, Vol. 50, ACM, 2014, pp. 25–28.
[32] M. Leduc, T. Degueule, B. Combemale, T. Van Der Storm, O. Barais, Revisiting Visitors for

Modular Extension of Executable DSMLs, in: 2017 ACM/IEEE 20th International Conference on
Model-Driven Engineering Languages and Systems (MODELS), 2017, pp. 112–122.

[33] E. Barrett, C. F. Bolz, L. Diekmann, L. Tratt, Fine-grained Language Composition: A Case Study,
in: Proceddings of the 30th European Conference on Object-Oriented Programming (ECOOP’16),
2016.

[34] M. Voelter, K. Solomatov, Language modularization and composition with projectional language
workbenches illustrated with mps, Software Language Engineering, SLE 16 (2010) 3.

[35] K. Pohl, G. Böckle, F. J. van Der Linden, Software product line engineering: foundations, principles
and techniques, Springer Science & Business Media, 2005.

[36] T. Degueule, B. Combemale, J.-M. Jézéquel, On Language Interfaces, Springer International
Publishing, 2017, pp. 65–75. doi:10.1007/978-3-319-67425-4_5.

[37] S. Efftinge, M. Eysholdt, J. Köhnlein, S. Zarnekow, R. von Massow, W. Hasselbring, M. Hanus, Xbase:
implementing domain-specific languages for java, in: Generative Programming and Component
Engineering, GPCE’12, Dresden, Germany, September 26-28, 2012, 2012, pp. 112–121. doi:10.
1145/2371401.2371419.

[38] T. Mayerhofer, M. Wimmer, A. Vallecillo, Adding uncertainty and units to quantity types in software
models, in: Proceedings of the 2016 ACM SIGPLAN International Conference on Software Language
Engineering, ACM, 2016, pp. 118–131.

[39] D. L. Parnas, On the Criteria To Be Used in Decomposing Systems into Modules, Communications
of the ACM 15 (12) (1972) 1053–1058. doi:10.1145/361598.361623.

[40] D. L. Parnas, A Technique for Software Module Specification with Examples, Communications of
the ACM 15 (5) (1972) 330–336. doi:10.1145/355602.361309.

[41] K. Czarnecki, S. Helsen, U. Eisenecker, Staged Configuration Using Feature Models, in: D. Weiss,
R. van Ommering (Eds.), Proceedings of the 3rd International Conference on Software Product-Line
(SPLC’04), Lecture Notes in Computer Science 3154, Springer, Boston, MA, USA, 2004, pp. 266–283.

[42] E. Bousse, T. Degueule, D. Vojtisek, T. Mayerhofer, J. Deantoni, B. Combemale, Execution
framework of the gemoc studio (tool demo), in: Proceedings of the 2016 ACM SIGPLAN International
Conference on Software Language Engineering, SLE 2016, ACM, 2016, pp. 84–89.

[43] D. Steinberg, F. Budinsky, E. Merks, M. Paternostro, EMF: Eclipse Modeling Framework, Pearson
Education, 2008.

[44] J.-M. Jézéquel, B. Combemale, O. Barais, M. Monperrus, F. Fouquet, Mashup of metalanguages
and its implementation in the kermeta language workbench, Software & Systems Modeling 14 (2)
(2015) 905–920. doi:10.1007/s10270-013-0354-4.

[45] J. Deantoni, I. P. Diallo, C. Teodorov, J. Champeau, B. Combemale, Towards a Meta-language
for the Concurrency Concern in DSLs, in: Proceedings of the 2015 Design, Automation & Test
in Europe Conference & Exhibition, DATE ’15, EDA Consortium, San Jose, CA, USA, 2015, pp.
313–316.

[46] B. Combemale, J. De Antoni, M. V. Larsen, F. Mallet, O. Barais, B. Baudry, R. B. France, Reifying
Concurrency for Executable Metamodeling, Springer International Publishing, Cham, 2013, pp.
365–384. doi:10.1007/978-3-319-02654-1_20.

[47] T. Mayerhofer, P. Langer, M. Wimmer, G. Kappel, xmof: Executable dsmls based on fuml, in:
International Conference on Software Language Engineering, Springer, 2013, pp. 56–75.

[48] M. E. V. Larsen, J. DeAntoni, B. Combemale, F. Mallet, A behavioral coordination operator
language (bcool), in: 2015 ACM/IEEE 18th International Conference on Model-Driven Engineering
Languages and Systems (MODELS), 2015, pp. 186–195. doi:10.1109/MODELS.2015.7338249.

[49] D. Méndez-Acuña, J. A. G. Galindo, B. Combemale, A. Blouin, B. Baudry, Reverse engineering

25

http://dx.doi.org/10.1007/978-3-319-67425-4_5
http://dx.doi.org/10.1145/2371401.2371419
http://dx.doi.org/10.1145/2371401.2371419
http://dx.doi.org/10.1145/361598.361623
http://dx.doi.org/10.1145/355602.361309
http://dx.doi.org/10.1007/s10270-013-0354-4
http://dx.doi.org/10.1007/978-3-319-02654-1_20
http://dx.doi.org/10.1109/MODELS.2015.7338249

language product lines from existing DSL variants, Journal of Systems and Software 133 (Supplement
C) (2017) 145 – 158. doi:https://doi.org/10.1016/j.jss.2017.05.042.

[50] D. Méndez-Acuña, J. A. Galindo, B. Combemale, A. Blouin, B. Baudry, Springer International
Publishing, Cham, 2016, pp. 393–396. doi:10.1007/978-3-319-35122-3_26.

[51] A. Haber, M. Look, P. Mir Seyed Nazari, A. Navarro Perez, B. Rumpe, S. Völkel, A. Wort-
mann, Composition of Heterogeneous Modeling Languages, Model-Driven Engineering and Software
Development Conference (MODELSWARD’15) 580 (2015) 45–66.

[52] K. Hölldobler, B. Rumpe, I. Weisemöller, Systematically Deriving Domain-Specific Transformation
Languages, in: 2015 ACM/IEEE 18th International Conference on Model-Driven Engineering
Languages and Systems (MODELS), ACM/IEEE, 2015, pp. 136–145.

[53] J. O. Ringert, A. Roth, B. Rumpe, A. Wortmann, Language and Code Generator Composition
for Model-Driven Engineering of Robotics Component & Connector Systems, Journal of Software
Engineering for Robotics (JOSER) 6 (1) (2015) 33–57.

[54] W. Cazzola, E. Vacchi, On the Incremental Growth and Shrinkage of LR Goto-Graphs, ACTA
Informatica 51 (7) (2014) 419–447. doi:10.1007/s00236-014-0201-2.

[55] F. Fleurey, A. Solberg, A Domain Specific Modeling Language Supporting Specification, Simulation
and Execution of Dynamic Adaptive Systems, in: A. Schürr, B. Selic (Eds.), 2009 ACM/IEEE 12th
International Conference on Model-Driven Engineering Languages and Systems (MODELS), ACM,
Denver, CO, USA, 2009, pp. 606–621.

[56] W. Cazzola, A. Shaqiri, Open Programming Language Interpreters, The Art, Science, and Engineering
of Programming Journal 1 (2) (2017) 5–1–5–34. doi:10.22152/programming-journal.org/2017/1/5.

[57] W. Cazzola, P. Giannini, A. Shaqiri, Formal Attributes Traceability in Modular Language Devel-
opment Frameworks, in: L. Aceto, S. Micali (Eds.), Proceedings of the 16th Italian Conference on
Theoretical Computer Science (ICTCS’15), Firenze, Italy, 2015.

[58] J. B. Martin, Principles of object-oriented analysis and design, notThenot James Martin Books,
Prentice Hall, 1993.

[59] E. Gamma, Design patterns: elements of reusable object-oriented software, Pearson Education India,
1995.

[60] W. Cazzola, D. M. Olivares, Gradually Learning Programming Supported by a Growable Program-
ming Language, IEEE Transactions on Emerging Topics in Computing 4 (3) (2016) 404–415, special
Issue on Emerging Trends in Education. doi:10.1109/TETC.2015.2446192.

[61] W. Cazzola, D. Poletti, DSL Evolution through Composition, in: Proceedings of the 7th ECOOP
Workshop on Reflection, AOP and Meta-Data for Software Evolution (RAM-SE’10), ACM, Maribor,
Slovenia, 2010.

[62] E. Vacchi, W. Cazzola, B. Combemale, M. Acher, Automating Variability Model Inference for
Component-Based Language Implementations, in: P. Heymans, J. Rubin (Eds.), Proceedings of the
18th International Software Product Line Conference (SPLC’14), ACM, Florence, Italy, 2014, pp.
167–176.

[63] G. L. Steele, Jr., Growing a Language, Higher-Order and Symbolic Computation 12 (3) (1999)
221–236. doi:10.1023/A:1010085415024.

[64] S. Erdweg, P. G. Giarrusso, T. Rendel, Language composition untangled, in: International Workshop
on Language Descriptions, Tools, and Applications, LDTA ’12, Tallinn, Estonia, March 31 - April 1,
2012, 2012, p. 7. doi:10.1145/2427048.2427055.

[65] Y. Yu, Y. Wang, J. Mylopoulos, S. Liaskos, A. Lapouchnian, J. C. S. do Prado Leite, Reverse
Engineering Goal Models from Legacy Code, in: 13th IEEE International Conference on Requirements
Engineering (RE 2005), 29 August - 2 September 2005, Paris, France, 2005, pp. 363–372. doi:
10.1109/RE.2005.61.

[66] B. R. Bryant, J. Jézéquel, R. Lämmel, M. Mernik, M. Schindler, F. Steinmann, J. Tolvanen,
A. Vallecillo, M. Vöelter, Globalized domain specific language engineering, in: Globalizing Domain-
Specific Languages - International Dagstuhl Seminar Dagstuhl Castle, Germany, October 5-10, 2014
Revised Papers, 2014, pp. 43–69. doi:10.1007/978-3-319-26172-0_4.

[67] T. Clark, M. van den Brand, B. Combemale, B. Rumpe, Conceptual model of the globalization
for domain-specific languages, in: Globalizing Domain-Specific Languages - International Dagstuhl
Seminar Dagstuhl Castle, Germany, October 5-10, 2014 Revised Papers, 2014, pp. 7–20. doi:
10.1007/978-3-319-26172-0_2.

26

http://dx.doi.org/https://doi.org/10.1016/j.jss.2017.05.042
http://dx.doi.org/10.1007/978-3-319-35122-3_26
http://dx.doi.org/10.1007/s00236-014-0201-2
http://dx.doi.org/10.22152/programming-journal.org/2017/1/5
http://dx.doi.org/10.1109/TETC.2015.2446192
http://dx.doi.org/10.1023/A:1010085415024
http://dx.doi.org/10.1145/2427048.2427055
http://dx.doi.org/10.1109/RE.2005.61
http://dx.doi.org/10.1109/RE.2005.61
http://dx.doi.org/10.1007/978-3-319-26172-0_4
http://dx.doi.org/10.1007/978-3-319-26172-0_2
http://dx.doi.org/10.1007/978-3-319-26172-0_2

	1 Introduction
	2 Background and Motivating Example
	2.1 Concern-Oriented Reuse
	2.1.1 Concern Interfaces and Concern Reuse
	2.1.2 Component Interfaces vs. Concern Interfaces

	2.2 On Language Reuse
	2.3 Motivating Example

	3 COLD: A Unifying Framework for Language Reuse
	3.1 Definitions
	3.2 Roles
	3.3 Scenarios

	4 Concernification of Languages
	4.1 Language Concern Interfaces
	4.1.1 Language Concern Variation Interface
	4.1.2 Language Concern Customization Interface
	4.1.3 Language Concern Usage Interface

	4.2 COLD Life Cycle

	5 Supporting COLD Across the Technological Spaces
	5.1 The GEMOC Studio
	5.2 MontiCore
	5.3 Neverlang
	5.4 Summary

	6 Discussion
	6.1 Open Issues Related to Language Concern Implementation
	6.1.1 Language Concern Granularity
	6.1.2 Language Concern Breakdown
	6.1.3 Impacts of Composition Operators
	6.1.4 Language Concern Composition Issues

	6.2 Language Concern Reuse
	6.2.1 Exposing Comprehensible Goal Models
	6.2.2 Simplifying the Reuse Process
	6.2.3 Language Concern Globalization

	7 Conclusion

